537d134373
This change introduces loadable fib lookup modules based on DPDK rte_lpm lib targeted for high-speed lookups in large-scale tables. It is based on the lookup framework described in D27401. IPv4 module is called dpdk_lpm4. It wraps around rte_lpm [1] library. This library implements variation of DIR24-8 [2] lookup algorithm. Module provide lockless route lookups and in-place incremental updates, allowing for good RIB performance. IPv6 module is called dpdk_lpm6. It wraps around rte_lpm6 [3] library. Implementation can be seen as multi-bit trie where the stride or number of bits inspected on each level varies from level to level. It can vary from 1 to 14 memory accesses, with 5 being the average value for the lengths that are most commonly used in IPv6. Module provide lockless route lookups for global unicast addresses and in-place incremental updates, allowing for good RIB performance. Implementation details: * wrapper code lives in `sys/contrib/dpdk_rte_lpm/dpdk_lpm[6].c`. * rte_lpm[6] implementation contains both RIB and FIB code. . RIB ("rule_") code, backed by array of hash tables part has been commented out, as base radix already provides all the necessary primitives. * link-local lookups are currently implemented as base radix lookup. This part should be converted to something like read-only radix trie. Usage detail: Compile kernel with option FIB_ALGO and load dpdk_lpm4/dpdk_lpm6 module at any time. They will be picked up automatically when amount of routes raises to several thousand. [1]: https://doc.dpdk.org/guides/prog_guide/lpm_lib.html [2]: http://yuba.stanford.edu/~nickm/papers/Infocom98_lookup.pdf [3]: https://doc.dpdk.org/guides/prog_guide/lpm6_lib.html Differential Revision: https://reviews.freebsd.org/D27412
1416 lines
34 KiB
C
1416 lines
34 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/ctype.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/kernel.h>
|
|
|
|
//#include <netinet6/rte_tailq.h>
|
|
int errno = 0, rte_errno = 0;
|
|
|
|
#include "rte_shim.h"
|
|
#include "rte_lpm6.h"
|
|
|
|
#define RTE_LPM6_TBL24_NUM_ENTRIES (1 << 24)
|
|
#define RTE_LPM6_TBL8_GROUP_NUM_ENTRIES 256
|
|
#define RTE_LPM6_TBL8_MAX_NUM_GROUPS (1 << 21)
|
|
|
|
#define RTE_LPM6_VALID_EXT_ENTRY_BITMASK 0xA0000000
|
|
#define RTE_LPM6_LOOKUP_SUCCESS 0x20000000
|
|
#define RTE_LPM6_TBL8_BITMASK 0x001FFFFF
|
|
|
|
#define ADD_FIRST_BYTE 3
|
|
#define LOOKUP_FIRST_BYTE 4
|
|
#define BYTE_SIZE 8
|
|
#define BYTES2_SIZE 16
|
|
|
|
#define RULE_HASH_TABLE_EXTRA_SPACE 64
|
|
#define TBL24_IND UINT32_MAX
|
|
|
|
#define lpm6_tbl8_gindex next_hop
|
|
|
|
/** Flags for setting an entry as valid/invalid. */
|
|
enum valid_flag {
|
|
INVALID = 0,
|
|
VALID
|
|
};
|
|
|
|
#if 0
|
|
TAILQ_HEAD(rte_lpm6_list, rte_tailq_entry);
|
|
|
|
static struct rte_tailq_elem rte_lpm6_tailq = {
|
|
.name = "RTE_LPM6",
|
|
};
|
|
EAL_REGISTER_TAILQ(rte_lpm6_tailq)
|
|
#endif
|
|
|
|
/** Tbl entry structure. It is the same for both tbl24 and tbl8 */
|
|
struct rte_lpm6_tbl_entry {
|
|
uint32_t next_hop: 21; /**< Next hop / next table to be checked. */
|
|
uint32_t depth :8; /**< Rule depth. */
|
|
|
|
/* Flags. */
|
|
uint32_t valid :1; /**< Validation flag. */
|
|
uint32_t valid_group :1; /**< Group validation flag. */
|
|
uint32_t ext_entry :1; /**< External entry. */
|
|
};
|
|
|
|
/** Rules tbl entry structure. */
|
|
struct rte_lpm6_rule {
|
|
uint8_t ip[RTE_LPM6_IPV6_ADDR_SIZE]; /**< Rule IP address. */
|
|
uint32_t next_hop; /**< Rule next hop. */
|
|
uint8_t depth; /**< Rule depth. */
|
|
};
|
|
|
|
/** Rules tbl entry key. */
|
|
struct rte_lpm6_rule_key {
|
|
uint8_t ip[RTE_LPM6_IPV6_ADDR_SIZE]; /**< Rule IP address. */
|
|
uint8_t depth; /**< Rule depth. */
|
|
};
|
|
|
|
/* Header of tbl8 */
|
|
struct rte_lpm_tbl8_hdr {
|
|
uint32_t owner_tbl_ind; /**< owner table: TBL24_IND if owner is tbl24,
|
|
* otherwise index of tbl8
|
|
*/
|
|
uint32_t owner_entry_ind; /**< index of the owner table entry where
|
|
* pointer to the tbl8 is stored
|
|
*/
|
|
uint32_t ref_cnt; /**< table reference counter */
|
|
};
|
|
|
|
/** LPM6 structure. */
|
|
struct rte_lpm6 {
|
|
struct rte_lpm6_external ext; /* Storage used by the algo wrapper */
|
|
/* LPM metadata. */
|
|
char name[RTE_LPM6_NAMESIZE]; /**< Name of the lpm. */
|
|
uint32_t max_rules; /**< Max number of rules. */
|
|
uint32_t used_rules; /**< Used rules so far. */
|
|
uint32_t number_tbl8s; /**< Number of tbl8s to allocate. */
|
|
|
|
/* LPM Tables. */
|
|
//struct rte_hash *rules_tbl; /**< LPM rules. */
|
|
struct rte_lpm6_tbl_entry tbl24[RTE_LPM6_TBL24_NUM_ENTRIES]
|
|
__rte_cache_aligned; /**< LPM tbl24 table. */
|
|
|
|
uint32_t *tbl8_pool; /**< pool of indexes of free tbl8s */
|
|
uint32_t tbl8_pool_pos; /**< current position in the tbl8 pool */
|
|
|
|
struct rte_lpm_tbl8_hdr *tbl8_hdrs; /* array of tbl8 headers */
|
|
|
|
struct rte_lpm6_tbl_entry tbl8[0]
|
|
__rte_cache_aligned; /**< LPM tbl8 table. */
|
|
};
|
|
|
|
/*
|
|
* Takes an array of uint8_t (IPv6 address) and masks it using the depth.
|
|
* It leaves untouched one bit per unit in the depth variable
|
|
* and set the rest to 0.
|
|
*/
|
|
static inline void
|
|
ip6_mask_addr(uint8_t *ip, uint8_t depth)
|
|
{
|
|
int16_t part_depth, mask;
|
|
int i;
|
|
|
|
part_depth = depth;
|
|
|
|
for (i = 0; i < RTE_LPM6_IPV6_ADDR_SIZE; i++) {
|
|
if (part_depth < BYTE_SIZE && part_depth >= 0) {
|
|
mask = (uint16_t)(~(UINT8_MAX >> part_depth));
|
|
ip[i] = (uint8_t)(ip[i] & mask);
|
|
} else if (part_depth < 0)
|
|
ip[i] = 0;
|
|
|
|
part_depth -= BYTE_SIZE;
|
|
}
|
|
}
|
|
|
|
/* copy ipv6 address */
|
|
static inline void
|
|
ip6_copy_addr(uint8_t *dst, const uint8_t *src)
|
|
{
|
|
rte_memcpy(dst, src, RTE_LPM6_IPV6_ADDR_SIZE);
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* LPM6 rule hash function
|
|
*
|
|
* It's used as a hash function for the rte_hash
|
|
* containing rules
|
|
*/
|
|
static inline uint32_t
|
|
rule_hash(const void *data, __rte_unused uint32_t data_len,
|
|
uint32_t init_val)
|
|
{
|
|
return rte_jhash(data, sizeof(struct rte_lpm6_rule_key), init_val);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Init pool of free tbl8 indexes
|
|
*/
|
|
static void
|
|
tbl8_pool_init(struct rte_lpm6 *lpm)
|
|
{
|
|
uint32_t i;
|
|
|
|
/* put entire range of indexes to the tbl8 pool */
|
|
for (i = 0; i < lpm->number_tbl8s; i++)
|
|
lpm->tbl8_pool[i] = i;
|
|
|
|
lpm->tbl8_pool_pos = 0;
|
|
}
|
|
|
|
/*
|
|
* Get an index of a free tbl8 from the pool
|
|
*/
|
|
static inline uint32_t
|
|
tbl8_get(struct rte_lpm6 *lpm, uint32_t *tbl8_ind)
|
|
{
|
|
if (lpm->tbl8_pool_pos == lpm->number_tbl8s)
|
|
/* no more free tbl8 */
|
|
return -ENOSPC;
|
|
|
|
/* next index */
|
|
*tbl8_ind = lpm->tbl8_pool[lpm->tbl8_pool_pos++];
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Put an index of a free tbl8 back to the pool
|
|
*/
|
|
static inline uint32_t
|
|
tbl8_put(struct rte_lpm6 *lpm, uint32_t tbl8_ind)
|
|
{
|
|
if (lpm->tbl8_pool_pos == 0)
|
|
/* pool is full */
|
|
return -ENOSPC;
|
|
|
|
lpm->tbl8_pool[--lpm->tbl8_pool_pos] = tbl8_ind;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns number of tbl8s available in the pool
|
|
*/
|
|
static inline uint32_t
|
|
tbl8_available(struct rte_lpm6 *lpm)
|
|
{
|
|
return lpm->number_tbl8s - lpm->tbl8_pool_pos;
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* Init a rule key.
|
|
* note that ip must be already masked
|
|
*/
|
|
static inline void
|
|
rule_key_init(struct rte_lpm6_rule_key *key, uint8_t *ip, uint8_t depth)
|
|
{
|
|
ip6_copy_addr(key->ip, ip);
|
|
key->depth = depth;
|
|
}
|
|
|
|
/*
|
|
* Rebuild the entire LPM tree by reinserting all rules
|
|
*/
|
|
static void
|
|
rebuild_lpm(struct rte_lpm6 *lpm)
|
|
{
|
|
uint64_t next_hop;
|
|
struct rte_lpm6_rule_key *rule_key;
|
|
uint32_t iter = 0;
|
|
|
|
while (rte_hash_iterate(lpm->rules_tbl, (void *) &rule_key,
|
|
(void **) &next_hop, &iter) >= 0)
|
|
rte_lpm6_add(lpm, rule_key->ip, rule_key->depth,
|
|
(uint32_t) next_hop);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Allocates memory for LPM object
|
|
*/
|
|
struct rte_lpm6 *
|
|
rte_lpm6_create(const char *name, int socket_id,
|
|
const struct rte_lpm6_config *config)
|
|
{
|
|
char mem_name[RTE_LPM6_NAMESIZE];
|
|
struct rte_lpm6 *lpm = NULL;
|
|
//struct rte_tailq_entry *te;
|
|
uint64_t mem_size;
|
|
//struct rte_lpm6_list *lpm_list;
|
|
//struct rte_hash *rules_tbl = NULL;
|
|
uint32_t *tbl8_pool = NULL;
|
|
struct rte_lpm_tbl8_hdr *tbl8_hdrs = NULL;
|
|
|
|
//lpm_list = RTE_TAILQ_CAST(rte_lpm6_tailq.head, rte_lpm6_list);
|
|
|
|
RTE_BUILD_BUG_ON(sizeof(struct rte_lpm6_tbl_entry) != sizeof(uint32_t));
|
|
|
|
/* Check user arguments. */
|
|
if ((name == NULL) || (socket_id < -1) || (config == NULL) ||
|
|
config->number_tbl8s > RTE_LPM6_TBL8_MAX_NUM_GROUPS) {
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
#if 0
|
|
/* create rules hash table */
|
|
snprintf(mem_name, sizeof(mem_name), "LRH_%s", name);
|
|
struct rte_hash_parameters rule_hash_tbl_params = {
|
|
.entries = config->max_rules * 1.2 +
|
|
RULE_HASH_TABLE_EXTRA_SPACE,
|
|
.key_len = sizeof(struct rte_lpm6_rule_key),
|
|
.hash_func = rule_hash,
|
|
.hash_func_init_val = 0,
|
|
.name = mem_name,
|
|
.reserved = 0,
|
|
.socket_id = socket_id,
|
|
.extra_flag = 0
|
|
};
|
|
|
|
rules_tbl = rte_hash_create(&rule_hash_tbl_params);
|
|
if (rules_tbl == NULL) {
|
|
RTE_LOG(ERR, LPM, "LPM rules hash table allocation failed: %s (%d)",
|
|
rte_strerror(rte_errno), rte_errno);
|
|
goto fail_wo_unlock;
|
|
}
|
|
#endif
|
|
|
|
/* allocate tbl8 indexes pool */
|
|
tbl8_pool = rte_malloc(NULL,
|
|
sizeof(uint32_t) * config->number_tbl8s,
|
|
RTE_CACHE_LINE_SIZE);
|
|
if (tbl8_pool == NULL) {
|
|
RTE_LOG(ERR, LPM, "LPM tbl8 pool allocation failed: %s (%d)",
|
|
rte_strerror(rte_errno), rte_errno);
|
|
rte_errno = ENOMEM;
|
|
goto fail_wo_unlock;
|
|
}
|
|
|
|
/* allocate tbl8 headers */
|
|
tbl8_hdrs = rte_malloc(NULL,
|
|
sizeof(struct rte_lpm_tbl8_hdr) * config->number_tbl8s,
|
|
RTE_CACHE_LINE_SIZE);
|
|
if (tbl8_hdrs == NULL) {
|
|
RTE_LOG(ERR, LPM, "LPM tbl8 headers allocation failed: %s (%d)",
|
|
rte_strerror(rte_errno), rte_errno);
|
|
rte_errno = ENOMEM;
|
|
goto fail_wo_unlock;
|
|
}
|
|
|
|
snprintf(mem_name, sizeof(mem_name), "LPM_%s", name);
|
|
|
|
/* Determine the amount of memory to allocate. */
|
|
mem_size = sizeof(*lpm) + (sizeof(lpm->tbl8[0]) *
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * config->number_tbl8s);
|
|
|
|
#if 0
|
|
rte_mcfg_tailq_write_lock();
|
|
|
|
/* Guarantee there's no existing */
|
|
TAILQ_FOREACH(te, lpm_list, next) {
|
|
lpm = (struct rte_lpm6 *) te->data;
|
|
if (strncmp(name, lpm->name, RTE_LPM6_NAMESIZE) == 0)
|
|
break;
|
|
}
|
|
lpm = NULL;
|
|
if (te != NULL) {
|
|
rte_errno = EEXIST;
|
|
goto fail;
|
|
}
|
|
|
|
/* allocate tailq entry */
|
|
te = rte_zmalloc("LPM6_TAILQ_ENTRY", sizeof(*te), 0);
|
|
if (te == NULL) {
|
|
RTE_LOG(ERR, LPM, "Failed to allocate tailq entry!\n");
|
|
rte_errno = ENOMEM;
|
|
goto fail;
|
|
}
|
|
#endif
|
|
|
|
/* Allocate memory to store the LPM data structures. */
|
|
lpm = rte_zmalloc_socket(mem_name, (size_t)mem_size,
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
|
|
if (lpm == NULL) {
|
|
RTE_LOG(ERR, LPM, "LPM memory allocation failed\n");
|
|
//rte_free(te);
|
|
rte_errno = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/* Save user arguments. */
|
|
//lpm->max_rules = config->max_rules;
|
|
lpm->number_tbl8s = config->number_tbl8s;
|
|
strlcpy(lpm->name, name, sizeof(lpm->name));
|
|
//lpm->rules_tbl = rules_tbl;
|
|
lpm->tbl8_pool = tbl8_pool;
|
|
lpm->tbl8_hdrs = tbl8_hdrs;
|
|
|
|
/* init the stack */
|
|
tbl8_pool_init(lpm);
|
|
|
|
//te->data = (void *) lpm;
|
|
|
|
//TAILQ_INSERT_TAIL(lpm_list, te, next);
|
|
rte_mcfg_tailq_write_unlock();
|
|
return lpm;
|
|
|
|
fail:
|
|
rte_mcfg_tailq_write_unlock();
|
|
|
|
fail_wo_unlock:
|
|
rte_free(tbl8_hdrs);
|
|
rte_free(tbl8_pool);
|
|
//rte_hash_free(rules_tbl);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* Find an existing lpm table and return a pointer to it.
|
|
*/
|
|
struct rte_lpm6 *
|
|
rte_lpm6_find_existing(const char *name)
|
|
{
|
|
struct rte_lpm6 *l = NULL;
|
|
struct rte_tailq_entry *te;
|
|
struct rte_lpm6_list *lpm_list;
|
|
|
|
lpm_list = RTE_TAILQ_CAST(rte_lpm6_tailq.head, rte_lpm6_list);
|
|
|
|
rte_mcfg_tailq_read_lock();
|
|
TAILQ_FOREACH(te, lpm_list, next) {
|
|
l = (struct rte_lpm6 *) te->data;
|
|
if (strncmp(name, l->name, RTE_LPM6_NAMESIZE) == 0)
|
|
break;
|
|
}
|
|
rte_mcfg_tailq_read_unlock();
|
|
|
|
if (te == NULL) {
|
|
rte_errno = ENOENT;
|
|
return NULL;
|
|
}
|
|
|
|
return l;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Deallocates memory for given LPM table.
|
|
*/
|
|
void
|
|
rte_lpm6_free(struct rte_lpm6 *lpm)
|
|
{
|
|
#if 0
|
|
struct rte_lpm6_list *lpm_list;
|
|
struct rte_tailq_entry *te;
|
|
|
|
/* Check user arguments. */
|
|
if (lpm == NULL)
|
|
return;
|
|
|
|
lpm_list = RTE_TAILQ_CAST(rte_lpm6_tailq.head, rte_lpm6_list);
|
|
|
|
rte_mcfg_tailq_write_lock();
|
|
|
|
/* find our tailq entry */
|
|
TAILQ_FOREACH(te, lpm_list, next) {
|
|
if (te->data == (void *) lpm)
|
|
break;
|
|
}
|
|
|
|
if (te != NULL)
|
|
TAILQ_REMOVE(lpm_list, te, next);
|
|
|
|
rte_mcfg_tailq_write_unlock();
|
|
#endif
|
|
|
|
rte_free(lpm->tbl8_hdrs);
|
|
rte_free(lpm->tbl8_pool);
|
|
//rte_hash_free(lpm->rules_tbl);
|
|
rte_free(lpm);
|
|
//rte_free(te);
|
|
}
|
|
|
|
#if 0
|
|
/* Find a rule */
|
|
static inline int
|
|
rule_find_with_key(struct rte_lpm6 *lpm,
|
|
const struct rte_lpm6_rule_key *rule_key,
|
|
uint32_t *next_hop)
|
|
{
|
|
uint64_t hash_val;
|
|
int ret;
|
|
|
|
/* lookup for a rule */
|
|
ret = rte_hash_lookup_data(lpm->rules_tbl, (const void *) rule_key,
|
|
(void **) &hash_val);
|
|
if (ret >= 0) {
|
|
*next_hop = (uint32_t) hash_val;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Find a rule */
|
|
static int
|
|
rule_find(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth,
|
|
uint32_t *next_hop)
|
|
{
|
|
struct rte_lpm6_rule_key rule_key;
|
|
|
|
/* init a rule key */
|
|
rule_key_init(&rule_key, ip, depth);
|
|
|
|
return rule_find_with_key(lpm, &rule_key, next_hop);
|
|
}
|
|
|
|
/*
|
|
* Checks if a rule already exists in the rules table and updates
|
|
* the nexthop if so. Otherwise it adds a new rule if enough space is available.
|
|
*
|
|
* Returns:
|
|
* 0 - next hop of existed rule is updated
|
|
* 1 - new rule successfully added
|
|
* <0 - error
|
|
*/
|
|
static inline int
|
|
rule_add(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth, uint32_t next_hop)
|
|
{
|
|
int ret, rule_exist;
|
|
struct rte_lpm6_rule_key rule_key;
|
|
uint32_t unused;
|
|
|
|
/* init a rule key */
|
|
rule_key_init(&rule_key, ip, depth);
|
|
|
|
/* Scan through rule list to see if rule already exists. */
|
|
rule_exist = rule_find_with_key(lpm, &rule_key, &unused);
|
|
|
|
/*
|
|
* If rule does not exist check if there is space to add a new rule to
|
|
* this rule group. If there is no space return error.
|
|
*/
|
|
if (!rule_exist && lpm->used_rules == lpm->max_rules)
|
|
return -ENOSPC;
|
|
|
|
/* add the rule or update rules next hop */
|
|
ret = rte_hash_add_key_data(lpm->rules_tbl, &rule_key,
|
|
(void *)(uintptr_t) next_hop);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Increment the used rules counter for this rule group. */
|
|
if (!rule_exist) {
|
|
lpm->used_rules++;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Function that expands a rule across the data structure when a less-generic
|
|
* one has been added before. It assures that every possible combination of bits
|
|
* in the IP address returns a match.
|
|
*/
|
|
static void
|
|
expand_rule(struct rte_lpm6 *lpm, uint32_t tbl8_gindex, uint8_t old_depth,
|
|
uint8_t new_depth, uint32_t next_hop, uint8_t valid)
|
|
{
|
|
uint32_t tbl8_group_end, tbl8_gindex_next, j;
|
|
|
|
tbl8_group_end = tbl8_gindex + RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
|
|
|
|
struct rte_lpm6_tbl_entry new_tbl8_entry = {
|
|
.valid = valid,
|
|
.valid_group = valid,
|
|
.depth = new_depth,
|
|
.next_hop = next_hop,
|
|
.ext_entry = 0,
|
|
};
|
|
|
|
for (j = tbl8_gindex; j < tbl8_group_end; j++) {
|
|
if (!lpm->tbl8[j].valid || (lpm->tbl8[j].ext_entry == 0
|
|
&& lpm->tbl8[j].depth <= old_depth)) {
|
|
|
|
lpm->tbl8[j] = new_tbl8_entry;
|
|
|
|
} else if (lpm->tbl8[j].ext_entry == 1) {
|
|
|
|
tbl8_gindex_next = lpm->tbl8[j].lpm6_tbl8_gindex
|
|
* RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
|
|
expand_rule(lpm, tbl8_gindex_next, old_depth, new_depth,
|
|
next_hop, valid);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Init a tbl8 header
|
|
*/
|
|
static inline void
|
|
init_tbl8_header(struct rte_lpm6 *lpm, uint32_t tbl_ind,
|
|
uint32_t owner_tbl_ind, uint32_t owner_entry_ind)
|
|
{
|
|
struct rte_lpm_tbl8_hdr *tbl_hdr = &lpm->tbl8_hdrs[tbl_ind];
|
|
tbl_hdr->owner_tbl_ind = owner_tbl_ind;
|
|
tbl_hdr->owner_entry_ind = owner_entry_ind;
|
|
tbl_hdr->ref_cnt = 0;
|
|
}
|
|
|
|
/*
|
|
* Calculate index to the table based on the number and position
|
|
* of the bytes being inspected in this step.
|
|
*/
|
|
static uint32_t
|
|
get_bitshift(const uint8_t *ip, uint8_t first_byte, uint8_t bytes)
|
|
{
|
|
uint32_t entry_ind, i;
|
|
int8_t bitshift;
|
|
|
|
entry_ind = 0;
|
|
for (i = first_byte; i < (uint32_t)(first_byte + bytes); i++) {
|
|
bitshift = (int8_t)((bytes - i)*BYTE_SIZE);
|
|
|
|
if (bitshift < 0)
|
|
bitshift = 0;
|
|
entry_ind = entry_ind | ip[i-1] << bitshift;
|
|
}
|
|
|
|
return entry_ind;
|
|
}
|
|
|
|
/*
|
|
* Simulate adding a new route to the LPM counting number
|
|
* of new tables that will be needed
|
|
*
|
|
* It returns 0 on success, or 1 if
|
|
* the process needs to be continued by calling the function again.
|
|
*/
|
|
static inline int
|
|
simulate_add_step(struct rte_lpm6 *lpm, struct rte_lpm6_tbl_entry *tbl,
|
|
struct rte_lpm6_tbl_entry **next_tbl, const uint8_t *ip,
|
|
uint8_t bytes, uint8_t first_byte, uint8_t depth,
|
|
uint32_t *need_tbl_nb)
|
|
{
|
|
uint32_t entry_ind;
|
|
uint8_t bits_covered;
|
|
uint32_t next_tbl_ind;
|
|
|
|
/*
|
|
* Calculate index to the table based on the number and position
|
|
* of the bytes being inspected in this step.
|
|
*/
|
|
entry_ind = get_bitshift(ip, first_byte, bytes);
|
|
|
|
/* Number of bits covered in this step */
|
|
bits_covered = (uint8_t)((bytes+first_byte-1)*BYTE_SIZE);
|
|
|
|
if (depth <= bits_covered) {
|
|
*need_tbl_nb = 0;
|
|
return 0;
|
|
}
|
|
|
|
if (tbl[entry_ind].valid == 0 || tbl[entry_ind].ext_entry == 0) {
|
|
/* from this point on a new table is needed on each level
|
|
* that is not covered yet
|
|
*/
|
|
depth -= bits_covered;
|
|
uint32_t cnt = depth >> 3; /* depth / BYTE_SIZE */
|
|
if (depth & 7) /* 0b00000111 */
|
|
/* if depth % 8 > 0 then one more table is needed
|
|
* for those last bits
|
|
*/
|
|
cnt++;
|
|
|
|
*need_tbl_nb = cnt;
|
|
return 0;
|
|
}
|
|
|
|
next_tbl_ind = tbl[entry_ind].lpm6_tbl8_gindex;
|
|
*next_tbl = &(lpm->tbl8[next_tbl_ind *
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES]);
|
|
*need_tbl_nb = 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Partially adds a new route to the data structure (tbl24+tbl8s).
|
|
* It returns 0 on success, a negative number on failure, or 1 if
|
|
* the process needs to be continued by calling the function again.
|
|
*/
|
|
static inline int
|
|
add_step(struct rte_lpm6 *lpm, struct rte_lpm6_tbl_entry *tbl,
|
|
uint32_t tbl_ind, struct rte_lpm6_tbl_entry **next_tbl,
|
|
uint32_t *next_tbl_ind, uint8_t *ip, uint8_t bytes,
|
|
uint8_t first_byte, uint8_t depth, uint32_t next_hop,
|
|
uint8_t is_new_rule)
|
|
{
|
|
uint32_t entry_ind, tbl_range, tbl8_group_start, tbl8_group_end, i;
|
|
uint32_t tbl8_gindex;
|
|
uint8_t bits_covered;
|
|
int ret;
|
|
|
|
/*
|
|
* Calculate index to the table based on the number and position
|
|
* of the bytes being inspected in this step.
|
|
*/
|
|
entry_ind = get_bitshift(ip, first_byte, bytes);
|
|
|
|
/* Number of bits covered in this step */
|
|
bits_covered = (uint8_t)((bytes+first_byte-1)*BYTE_SIZE);
|
|
|
|
/*
|
|
* If depth if smaller than this number (ie this is the last step)
|
|
* expand the rule across the relevant positions in the table.
|
|
*/
|
|
if (depth <= bits_covered) {
|
|
tbl_range = 1 << (bits_covered - depth);
|
|
|
|
for (i = entry_ind; i < (entry_ind + tbl_range); i++) {
|
|
if (!tbl[i].valid || (tbl[i].ext_entry == 0 &&
|
|
tbl[i].depth <= depth)) {
|
|
|
|
struct rte_lpm6_tbl_entry new_tbl_entry = {
|
|
.next_hop = next_hop,
|
|
.depth = depth,
|
|
.valid = VALID,
|
|
.valid_group = VALID,
|
|
.ext_entry = 0,
|
|
};
|
|
|
|
tbl[i] = new_tbl_entry;
|
|
|
|
} else if (tbl[i].ext_entry == 1) {
|
|
|
|
/*
|
|
* If tbl entry is valid and extended calculate the index
|
|
* into next tbl8 and expand the rule across the data structure.
|
|
*/
|
|
tbl8_gindex = tbl[i].lpm6_tbl8_gindex *
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
|
|
expand_rule(lpm, tbl8_gindex, depth, depth,
|
|
next_hop, VALID);
|
|
}
|
|
}
|
|
|
|
/* update tbl8 rule reference counter */
|
|
if (tbl_ind != TBL24_IND && is_new_rule)
|
|
lpm->tbl8_hdrs[tbl_ind].ref_cnt++;
|
|
|
|
return 0;
|
|
}
|
|
/*
|
|
* If this is not the last step just fill one position
|
|
* and calculate the index to the next table.
|
|
*/
|
|
else {
|
|
/* If it's invalid a new tbl8 is needed */
|
|
if (!tbl[entry_ind].valid) {
|
|
/* get a new table */
|
|
ret = tbl8_get(lpm, &tbl8_gindex);
|
|
if (ret != 0)
|
|
return -ENOSPC;
|
|
|
|
/* invalidate all new tbl8 entries */
|
|
tbl8_group_start = tbl8_gindex *
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
|
|
memset(&lpm->tbl8[tbl8_group_start], 0,
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES *
|
|
sizeof(struct rte_lpm6_tbl_entry));
|
|
|
|
/* init the new table's header:
|
|
* save the reference to the owner table
|
|
*/
|
|
init_tbl8_header(lpm, tbl8_gindex, tbl_ind, entry_ind);
|
|
|
|
/* reference to a new tbl8 */
|
|
struct rte_lpm6_tbl_entry new_tbl_entry = {
|
|
.lpm6_tbl8_gindex = tbl8_gindex,
|
|
.depth = 0,
|
|
.valid = VALID,
|
|
.valid_group = VALID,
|
|
.ext_entry = 1,
|
|
};
|
|
|
|
tbl[entry_ind] = new_tbl_entry;
|
|
|
|
/* update the current table's reference counter */
|
|
if (tbl_ind != TBL24_IND)
|
|
lpm->tbl8_hdrs[tbl_ind].ref_cnt++;
|
|
}
|
|
/*
|
|
* If it's valid but not extended the rule that was stored
|
|
* here needs to be moved to the next table.
|
|
*/
|
|
else if (tbl[entry_ind].ext_entry == 0) {
|
|
/* get a new tbl8 index */
|
|
ret = tbl8_get(lpm, &tbl8_gindex);
|
|
if (ret != 0)
|
|
return -ENOSPC;
|
|
|
|
tbl8_group_start = tbl8_gindex *
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
|
|
tbl8_group_end = tbl8_group_start +
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
|
|
|
|
struct rte_lpm6_tbl_entry tbl_entry = {
|
|
.next_hop = tbl[entry_ind].next_hop,
|
|
.depth = tbl[entry_ind].depth,
|
|
.valid = VALID,
|
|
.valid_group = VALID,
|
|
.ext_entry = 0
|
|
};
|
|
|
|
/* Populate new tbl8 with tbl value. */
|
|
for (i = tbl8_group_start; i < tbl8_group_end; i++)
|
|
lpm->tbl8[i] = tbl_entry;
|
|
|
|
/* init the new table's header:
|
|
* save the reference to the owner table
|
|
*/
|
|
init_tbl8_header(lpm, tbl8_gindex, tbl_ind, entry_ind);
|
|
|
|
/*
|
|
* Update tbl entry to point to new tbl8 entry. Note: The
|
|
* ext_flag and tbl8_index need to be updated simultaneously,
|
|
* so assign whole structure in one go.
|
|
*/
|
|
struct rte_lpm6_tbl_entry new_tbl_entry = {
|
|
.lpm6_tbl8_gindex = tbl8_gindex,
|
|
.depth = 0,
|
|
.valid = VALID,
|
|
.valid_group = VALID,
|
|
.ext_entry = 1,
|
|
};
|
|
|
|
tbl[entry_ind] = new_tbl_entry;
|
|
|
|
/* update the current table's reference counter */
|
|
if (tbl_ind != TBL24_IND)
|
|
lpm->tbl8_hdrs[tbl_ind].ref_cnt++;
|
|
}
|
|
|
|
*next_tbl_ind = tbl[entry_ind].lpm6_tbl8_gindex;
|
|
*next_tbl = &(lpm->tbl8[*next_tbl_ind *
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES]);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Simulate adding a route to LPM
|
|
*
|
|
* Returns:
|
|
* 0 on success
|
|
* -ENOSPC not enough tbl8 left
|
|
*/
|
|
static int
|
|
simulate_add(struct rte_lpm6 *lpm, const uint8_t *masked_ip, uint8_t depth)
|
|
{
|
|
struct rte_lpm6_tbl_entry *tbl;
|
|
struct rte_lpm6_tbl_entry *tbl_next = NULL;
|
|
int ret, i;
|
|
|
|
/* number of new tables needed for a step */
|
|
uint32_t need_tbl_nb;
|
|
/* total number of new tables needed */
|
|
uint32_t total_need_tbl_nb;
|
|
|
|
/* Inspect the first three bytes through tbl24 on the first step. */
|
|
ret = simulate_add_step(lpm, lpm->tbl24, &tbl_next, masked_ip,
|
|
ADD_FIRST_BYTE, 1, depth, &need_tbl_nb);
|
|
total_need_tbl_nb = need_tbl_nb;
|
|
/*
|
|
* Inspect one by one the rest of the bytes until
|
|
* the process is completed.
|
|
*/
|
|
for (i = ADD_FIRST_BYTE; i < RTE_LPM6_IPV6_ADDR_SIZE && ret == 1; i++) {
|
|
tbl = tbl_next;
|
|
ret = simulate_add_step(lpm, tbl, &tbl_next, masked_ip, 1,
|
|
(uint8_t)(i + 1), depth, &need_tbl_nb);
|
|
total_need_tbl_nb += need_tbl_nb;
|
|
}
|
|
|
|
if (tbl8_available(lpm) < total_need_tbl_nb)
|
|
/* not enough tbl8 to add a rule */
|
|
return -ENOSPC;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add a route
|
|
*/
|
|
int
|
|
rte_lpm6_add(struct rte_lpm6 *lpm, const uint8_t *ip, uint8_t depth,
|
|
uint32_t next_hop, int is_new_rule)
|
|
{
|
|
struct rte_lpm6_tbl_entry *tbl;
|
|
struct rte_lpm6_tbl_entry *tbl_next = NULL;
|
|
/* init to avoid compiler warning */
|
|
uint32_t tbl_next_num = 123456;
|
|
int status;
|
|
uint8_t masked_ip[RTE_LPM6_IPV6_ADDR_SIZE];
|
|
int i;
|
|
|
|
/* Check user arguments. */
|
|
if ((lpm == NULL) || (depth < 1) || (depth > RTE_LPM6_MAX_DEPTH))
|
|
return -EINVAL;
|
|
|
|
/* Copy the IP and mask it to avoid modifying user's input data. */
|
|
ip6_copy_addr(masked_ip, ip);
|
|
ip6_mask_addr(masked_ip, depth);
|
|
|
|
/* Simulate adding a new route */
|
|
int ret = simulate_add(lpm, masked_ip, depth);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
#if 0
|
|
/* Add the rule to the rule table. */
|
|
int is_new_rule = rule_add(lpm, masked_ip, depth, next_hop);
|
|
/* If there is no space available for new rule return error. */
|
|
if (is_new_rule < 0)
|
|
return is_new_rule;
|
|
#endif
|
|
|
|
/* Inspect the first three bytes through tbl24 on the first step. */
|
|
tbl = lpm->tbl24;
|
|
status = add_step(lpm, tbl, TBL24_IND, &tbl_next, &tbl_next_num,
|
|
masked_ip, ADD_FIRST_BYTE, 1, depth, next_hop,
|
|
is_new_rule);
|
|
assert(status >= 0);
|
|
|
|
/*
|
|
* Inspect one by one the rest of the bytes until
|
|
* the process is completed.
|
|
*/
|
|
for (i = ADD_FIRST_BYTE; i < RTE_LPM6_IPV6_ADDR_SIZE && status == 1; i++) {
|
|
tbl = tbl_next;
|
|
status = add_step(lpm, tbl, tbl_next_num, &tbl_next,
|
|
&tbl_next_num, masked_ip, 1, (uint8_t)(i + 1),
|
|
depth, next_hop, is_new_rule);
|
|
assert(status >= 0);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Takes a pointer to a table entry and inspect one level.
|
|
* The function returns 0 on lookup success, ENOENT if no match was found
|
|
* or 1 if the process needs to be continued by calling the function again.
|
|
*/
|
|
static inline int
|
|
lookup_step(const struct rte_lpm6 *lpm, const struct rte_lpm6_tbl_entry *tbl,
|
|
const struct rte_lpm6_tbl_entry **tbl_next, const uint8_t *ip,
|
|
uint8_t first_byte, uint32_t *next_hop)
|
|
{
|
|
uint32_t tbl8_index, tbl_entry;
|
|
|
|
/* Take the integer value from the pointer. */
|
|
tbl_entry = *(const uint32_t *)tbl;
|
|
|
|
/* If it is valid and extended we calculate the new pointer to return. */
|
|
if ((tbl_entry & RTE_LPM6_VALID_EXT_ENTRY_BITMASK) ==
|
|
RTE_LPM6_VALID_EXT_ENTRY_BITMASK) {
|
|
|
|
tbl8_index = ip[first_byte-1] +
|
|
((tbl_entry & RTE_LPM6_TBL8_BITMASK) *
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES);
|
|
|
|
*tbl_next = &lpm->tbl8[tbl8_index];
|
|
|
|
return 1;
|
|
} else {
|
|
/* If not extended then we can have a match. */
|
|
*next_hop = ((uint32_t)tbl_entry & RTE_LPM6_TBL8_BITMASK);
|
|
return (tbl_entry & RTE_LPM6_LOOKUP_SUCCESS) ? 0 : -ENOENT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Looks up an IP
|
|
*/
|
|
int
|
|
rte_lpm6_lookup(const struct rte_lpm6 *lpm, const uint8_t *ip,
|
|
uint32_t *next_hop)
|
|
{
|
|
const struct rte_lpm6_tbl_entry *tbl;
|
|
const struct rte_lpm6_tbl_entry *tbl_next = NULL;
|
|
int status;
|
|
uint8_t first_byte;
|
|
uint32_t tbl24_index;
|
|
|
|
/* DEBUG: Check user input arguments. */
|
|
if ((lpm == NULL) || (ip == NULL) || (next_hop == NULL))
|
|
return -EINVAL;
|
|
|
|
first_byte = LOOKUP_FIRST_BYTE;
|
|
tbl24_index = (ip[0] << BYTES2_SIZE) | (ip[1] << BYTE_SIZE) | ip[2];
|
|
|
|
/* Calculate pointer to the first entry to be inspected */
|
|
tbl = &lpm->tbl24[tbl24_index];
|
|
|
|
do {
|
|
/* Continue inspecting following levels until success or failure */
|
|
status = lookup_step(lpm, tbl, &tbl_next, ip, first_byte++, next_hop);
|
|
tbl = tbl_next;
|
|
} while (status == 1);
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Looks up a group of IP addresses
|
|
*/
|
|
int
|
|
rte_lpm6_lookup_bulk_func(const struct rte_lpm6 *lpm,
|
|
uint8_t ips[][RTE_LPM6_IPV6_ADDR_SIZE],
|
|
int32_t *next_hops, unsigned int n)
|
|
{
|
|
unsigned int i;
|
|
const struct rte_lpm6_tbl_entry *tbl;
|
|
const struct rte_lpm6_tbl_entry *tbl_next = NULL;
|
|
uint32_t tbl24_index, next_hop;
|
|
uint8_t first_byte;
|
|
int status;
|
|
|
|
/* DEBUG: Check user input arguments. */
|
|
if ((lpm == NULL) || (ips == NULL) || (next_hops == NULL))
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
first_byte = LOOKUP_FIRST_BYTE;
|
|
tbl24_index = (ips[i][0] << BYTES2_SIZE) |
|
|
(ips[i][1] << BYTE_SIZE) | ips[i][2];
|
|
|
|
/* Calculate pointer to the first entry to be inspected */
|
|
tbl = &lpm->tbl24[tbl24_index];
|
|
|
|
do {
|
|
/* Continue inspecting following levels
|
|
* until success or failure
|
|
*/
|
|
status = lookup_step(lpm, tbl, &tbl_next, ips[i],
|
|
first_byte++, &next_hop);
|
|
tbl = tbl_next;
|
|
} while (status == 1);
|
|
|
|
if (status < 0)
|
|
next_hops[i] = -1;
|
|
else
|
|
next_hops[i] = (int32_t)next_hop;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct rte_lpm6_rule *
|
|
fill_rule6(char *buffer, const uint8_t *ip, uint8_t depth, uint32_t next_hop)
|
|
{
|
|
struct rte_lpm6_rule *rule = (struct rte_lpm6_rule *)buffer;
|
|
|
|
ip6_copy_addr((uint8_t *)&rule->ip, ip);
|
|
rule->depth = depth;
|
|
rule->next_hop = next_hop;
|
|
|
|
return (rule);
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* Look for a rule in the high-level rules table
|
|
*/
|
|
int
|
|
rte_lpm6_is_rule_present(struct rte_lpm6 *lpm, const uint8_t *ip, uint8_t depth,
|
|
uint32_t *next_hop)
|
|
{
|
|
uint8_t masked_ip[RTE_LPM6_IPV6_ADDR_SIZE];
|
|
|
|
/* Check user arguments. */
|
|
if ((lpm == NULL) || next_hop == NULL || ip == NULL ||
|
|
(depth < 1) || (depth > RTE_LPM6_MAX_DEPTH))
|
|
return -EINVAL;
|
|
|
|
/* Copy the IP and mask it to avoid modifying user's input data. */
|
|
ip6_copy_addr(masked_ip, ip);
|
|
ip6_mask_addr(masked_ip, depth);
|
|
|
|
return rule_find(lpm, masked_ip, depth, next_hop);
|
|
}
|
|
|
|
/*
|
|
* Delete a rule from the rule table.
|
|
* NOTE: Valid range for depth parameter is 1 .. 128 inclusive.
|
|
* return
|
|
* 0 on success
|
|
* <0 on failure
|
|
*/
|
|
static inline int
|
|
rule_delete(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth)
|
|
{
|
|
int ret;
|
|
struct rte_lpm6_rule_key rule_key;
|
|
|
|
/* init rule key */
|
|
rule_key_init(&rule_key, ip, depth);
|
|
|
|
/* delete the rule */
|
|
ret = rte_hash_del_key(lpm->rules_tbl, (void *) &rule_key);
|
|
if (ret >= 0)
|
|
lpm->used_rules--;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Deletes a group of rules
|
|
*
|
|
* Note that the function rebuilds the lpm table,
|
|
* rather than doing incremental updates like
|
|
* the regular delete function
|
|
*/
|
|
int
|
|
rte_lpm6_delete_bulk_func(struct rte_lpm6 *lpm,
|
|
uint8_t ips[][RTE_LPM6_IPV6_ADDR_SIZE], uint8_t *depths,
|
|
unsigned n)
|
|
{
|
|
uint8_t masked_ip[RTE_LPM6_IPV6_ADDR_SIZE];
|
|
unsigned i;
|
|
|
|
/* Check input arguments. */
|
|
if ((lpm == NULL) || (ips == NULL) || (depths == NULL))
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
ip6_copy_addr(masked_ip, ips[i]);
|
|
ip6_mask_addr(masked_ip, depths[i]);
|
|
rule_delete(lpm, masked_ip, depths[i]);
|
|
}
|
|
|
|
/*
|
|
* Set all the table entries to 0 (ie delete every rule
|
|
* from the data structure.
|
|
*/
|
|
memset(lpm->tbl24, 0, sizeof(lpm->tbl24));
|
|
memset(lpm->tbl8, 0, sizeof(lpm->tbl8[0])
|
|
* RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * lpm->number_tbl8s);
|
|
tbl8_pool_init(lpm);
|
|
|
|
/*
|
|
* Add every rule again (except for the ones that were removed from
|
|
* the rules table).
|
|
*/
|
|
rebuild_lpm(lpm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Delete all rules from the LPM table.
|
|
*/
|
|
void
|
|
rte_lpm6_delete_all(struct rte_lpm6 *lpm)
|
|
{
|
|
/* Zero used rules counter. */
|
|
lpm->used_rules = 0;
|
|
|
|
/* Zero tbl24. */
|
|
memset(lpm->tbl24, 0, sizeof(lpm->tbl24));
|
|
|
|
/* Zero tbl8. */
|
|
memset(lpm->tbl8, 0, sizeof(lpm->tbl8[0]) *
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * lpm->number_tbl8s);
|
|
|
|
/* init pool of free tbl8 indexes */
|
|
tbl8_pool_init(lpm);
|
|
|
|
/* Delete all rules form the rules table. */
|
|
rte_hash_reset(lpm->rules_tbl);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Convert a depth to a one byte long mask
|
|
* Example: 4 will be converted to 0xF0
|
|
*/
|
|
static uint8_t __attribute__((pure))
|
|
depth_to_mask_1b(uint8_t depth)
|
|
{
|
|
/* To calculate a mask start with a 1 on the left hand side and right
|
|
* shift while populating the left hand side with 1's
|
|
*/
|
|
return (signed char)0x80 >> (depth - 1);
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* Find a less specific rule
|
|
*/
|
|
static int
|
|
rule_find_less_specific(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth,
|
|
struct rte_lpm6_rule *rule)
|
|
{
|
|
int ret;
|
|
uint32_t next_hop;
|
|
uint8_t mask;
|
|
struct rte_lpm6_rule_key rule_key;
|
|
|
|
if (depth == 1)
|
|
return 0;
|
|
|
|
rule_key_init(&rule_key, ip, depth);
|
|
|
|
while (depth > 1) {
|
|
depth--;
|
|
|
|
/* each iteration zero one more bit of the key */
|
|
mask = depth & 7; /* depth % BYTE_SIZE */
|
|
if (mask > 0)
|
|
mask = depth_to_mask_1b(mask);
|
|
|
|
rule_key.depth = depth;
|
|
rule_key.ip[depth >> 3] &= mask;
|
|
|
|
ret = rule_find_with_key(lpm, &rule_key, &next_hop);
|
|
if (ret) {
|
|
rule->depth = depth;
|
|
ip6_copy_addr(rule->ip, rule_key.ip);
|
|
rule->next_hop = next_hop;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Find range of tbl8 cells occupied by a rule
|
|
*/
|
|
static void
|
|
rule_find_range(struct rte_lpm6 *lpm, const uint8_t *ip, uint8_t depth,
|
|
struct rte_lpm6_tbl_entry **from,
|
|
struct rte_lpm6_tbl_entry **to,
|
|
uint32_t *out_tbl_ind)
|
|
{
|
|
uint32_t ind;
|
|
uint32_t first_3bytes = (uint32_t)ip[0] << 16 | ip[1] << 8 | ip[2];
|
|
|
|
if (depth <= 24) {
|
|
/* rule is within the top level */
|
|
ind = first_3bytes;
|
|
*from = &lpm->tbl24[ind];
|
|
ind += (1 << (24 - depth)) - 1;
|
|
*to = &lpm->tbl24[ind];
|
|
*out_tbl_ind = TBL24_IND;
|
|
} else {
|
|
/* top level entry */
|
|
struct rte_lpm6_tbl_entry *tbl = &lpm->tbl24[first_3bytes];
|
|
assert(tbl->ext_entry == 1);
|
|
/* first tbl8 */
|
|
uint32_t tbl_ind = tbl->lpm6_tbl8_gindex;
|
|
tbl = &lpm->tbl8[tbl_ind *
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES];
|
|
/* current ip byte, the top level is already behind */
|
|
uint8_t byte = 3;
|
|
/* minus top level */
|
|
depth -= 24;
|
|
|
|
/* iterate through levels (tbl8s)
|
|
* until we reach the last one
|
|
*/
|
|
while (depth > 8) {
|
|
tbl += ip[byte];
|
|
assert(tbl->ext_entry == 1);
|
|
/* go to the next level/tbl8 */
|
|
tbl_ind = tbl->lpm6_tbl8_gindex;
|
|
tbl = &lpm->tbl8[tbl_ind *
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES];
|
|
byte += 1;
|
|
depth -= 8;
|
|
}
|
|
|
|
/* last level/tbl8 */
|
|
ind = ip[byte] & depth_to_mask_1b(depth);
|
|
*from = &tbl[ind];
|
|
ind += (1 << (8 - depth)) - 1;
|
|
*to = &tbl[ind];
|
|
*out_tbl_ind = tbl_ind;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove a table from the LPM tree
|
|
*/
|
|
static void
|
|
remove_tbl(struct rte_lpm6 *lpm, struct rte_lpm_tbl8_hdr *tbl_hdr,
|
|
uint32_t tbl_ind, struct rte_lpm6_rule *lsp_rule)
|
|
{
|
|
struct rte_lpm6_tbl_entry *owner_entry;
|
|
|
|
if (tbl_hdr->owner_tbl_ind == TBL24_IND)
|
|
owner_entry = &lpm->tbl24[tbl_hdr->owner_entry_ind];
|
|
else {
|
|
uint32_t owner_tbl_ind = tbl_hdr->owner_tbl_ind;
|
|
owner_entry = &lpm->tbl8[
|
|
owner_tbl_ind * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES +
|
|
tbl_hdr->owner_entry_ind];
|
|
|
|
struct rte_lpm_tbl8_hdr *owner_tbl_hdr =
|
|
&lpm->tbl8_hdrs[owner_tbl_ind];
|
|
if (--owner_tbl_hdr->ref_cnt == 0)
|
|
remove_tbl(lpm, owner_tbl_hdr, owner_tbl_ind, lsp_rule);
|
|
}
|
|
|
|
assert(owner_entry->ext_entry == 1);
|
|
|
|
/* unlink the table */
|
|
if (lsp_rule != NULL) {
|
|
struct rte_lpm6_tbl_entry new_tbl_entry = {
|
|
.next_hop = lsp_rule->next_hop,
|
|
.depth = lsp_rule->depth,
|
|
.valid = VALID,
|
|
.valid_group = VALID,
|
|
.ext_entry = 0
|
|
};
|
|
|
|
*owner_entry = new_tbl_entry;
|
|
} else {
|
|
struct rte_lpm6_tbl_entry new_tbl_entry = {
|
|
.next_hop = 0,
|
|
.depth = 0,
|
|
.valid = INVALID,
|
|
.valid_group = INVALID,
|
|
.ext_entry = 0
|
|
};
|
|
|
|
*owner_entry = new_tbl_entry;
|
|
}
|
|
|
|
/* return the table to the pool */
|
|
tbl8_put(lpm, tbl_ind);
|
|
}
|
|
|
|
/*
|
|
* Deletes a rule
|
|
*/
|
|
int
|
|
rte_lpm6_delete(struct rte_lpm6 *lpm, const uint8_t *ip, uint8_t depth,
|
|
struct rte_lpm6_rule *lsp_rule)
|
|
{
|
|
uint8_t masked_ip[RTE_LPM6_IPV6_ADDR_SIZE];
|
|
//struct rte_lpm6_rule lsp_rule_obj;
|
|
//struct rte_lpm6_rule *lsp_rule;
|
|
//int ret;
|
|
uint32_t tbl_ind;
|
|
struct rte_lpm6_tbl_entry *from, *to;
|
|
|
|
/* Check input arguments. */
|
|
if ((lpm == NULL) || (depth < 1) || (depth > RTE_LPM6_MAX_DEPTH))
|
|
return -EINVAL;
|
|
|
|
/* Copy the IP and mask it to avoid modifying user's input data. */
|
|
ip6_copy_addr(masked_ip, ip);
|
|
ip6_mask_addr(masked_ip, depth);
|
|
|
|
#if 0
|
|
/* Delete the rule from the rule table. */
|
|
ret = rule_delete(lpm, masked_ip, depth);
|
|
if (ret < 0)
|
|
return -ENOENT;
|
|
#endif
|
|
|
|
/* find rule cells */
|
|
rule_find_range(lpm, masked_ip, depth, &from, &to, &tbl_ind);
|
|
|
|
#if 0
|
|
/* find a less specific rule (a rule with smaller depth)
|
|
* note: masked_ip will be modified, don't use it anymore
|
|
*/
|
|
ret = rule_find_less_specific(lpm, masked_ip, depth,
|
|
&lsp_rule_obj);
|
|
lsp_rule = ret ? &lsp_rule_obj : NULL;
|
|
#endif
|
|
/* decrement the table rule counter,
|
|
* note that tbl24 doesn't have a header
|
|
*/
|
|
if (tbl_ind != TBL24_IND) {
|
|
struct rte_lpm_tbl8_hdr *tbl_hdr = &lpm->tbl8_hdrs[tbl_ind];
|
|
if (--tbl_hdr->ref_cnt == 0) {
|
|
/* remove the table */
|
|
remove_tbl(lpm, tbl_hdr, tbl_ind, lsp_rule);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* iterate rule cells */
|
|
for (; from <= to; from++)
|
|
if (from->ext_entry == 1) {
|
|
/* reference to a more specific space
|
|
* of the prefix/rule. Entries in a more
|
|
* specific space that are not used by
|
|
* a more specific prefix must be occupied
|
|
* by the prefix
|
|
*/
|
|
if (lsp_rule != NULL)
|
|
expand_rule(lpm,
|
|
from->lpm6_tbl8_gindex *
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES,
|
|
depth, lsp_rule->depth,
|
|
lsp_rule->next_hop, VALID);
|
|
else
|
|
/* since the prefix has no less specific prefix,
|
|
* its more specific space must be invalidated
|
|
*/
|
|
expand_rule(lpm,
|
|
from->lpm6_tbl8_gindex *
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES,
|
|
depth, 0, 0, INVALID);
|
|
} else if (from->depth == depth) {
|
|
/* entry is not a reference and belongs to the prefix */
|
|
if (lsp_rule != NULL) {
|
|
struct rte_lpm6_tbl_entry new_tbl_entry = {
|
|
.next_hop = lsp_rule->next_hop,
|
|
.depth = lsp_rule->depth,
|
|
.valid = VALID,
|
|
.valid_group = VALID,
|
|
.ext_entry = 0
|
|
};
|
|
|
|
*from = new_tbl_entry;
|
|
} else {
|
|
struct rte_lpm6_tbl_entry new_tbl_entry = {
|
|
.next_hop = 0,
|
|
.depth = 0,
|
|
.valid = INVALID,
|
|
.valid_group = INVALID,
|
|
.ext_entry = 0
|
|
};
|
|
|
|
*from = new_tbl_entry;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|