freebsd-dev/sys/arm/sa11x0/assabet_machdep.c
2006-06-07 11:28:17 +00:00

461 lines
14 KiB
C

/* $NetBSD: hpc_machdep.c,v 1.70 2003/09/16 08:18:22 agc Exp $ */
/*-
* Copyright (c) 1994-1998 Mark Brinicombe.
* Copyright (c) 1994 Brini.
* All rights reserved.
*
* This code is derived from software written for Brini by Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Brini.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* RiscBSD kernel project
*
* machdep.c
*
* Machine dependant functions for kernel setup
*
* This file needs a lot of work.
*
* Created : 17/09/94
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_md.h"
#define _ARM32_BUS_DMA_PRIVATE
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/signalvar.h>
#include <sys/imgact.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/ptrace.h>
#include <sys/cons.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/buf.h>
#include <sys/exec.h>
#include <sys/kdb.h>
#include <machine/reg.h>
#include <machine/cpu.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/vm_map.h>
#include <vm/vnode_pager.h>
#include <machine/pmap.h>
#include <machine/vmparam.h>
#include <machine/pcb.h>
#include <machine/undefined.h>
#include <machine/machdep.h>
#include <machine/metadata.h>
#include <machine/armreg.h>
#include <machine/bus.h>
#include <sys/reboot.h>
#include <arm/sa11x0/sa11x0_reg.h>
#define MDROOT_ADDR 0xd0400000
#define KERNEL_PT_VMEM 0 /* Page table for mapping video memory */
#define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
#define KERNEL_PT_IO 3 /* Page table for mapping IO */
#define KERNEL_PT_IRQ 2 /* Page table for mapping irq handler */
#define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
#define KERNEL_PT_L1 4 /* Page table for mapping l1pt */
#define KERNEL_PT_VMDATA 5 /* Page tables for mapping kernel VM */
#define KERNEL_PT_VMDATA_NUM 7 /* start with 16MB of KVM */
#define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
/* Define various stack sizes in pages */
#define IRQ_STACK_SIZE 1
#define ABT_STACK_SIZE 1
#ifdef IPKDB
#define UND_STACK_SIZE 2
#else
#define UND_STACK_SIZE 1
#endif
#define KERNEL_VM_BASE (KERNBASE + 0x00100000)
#define KERNEL_VM_SIZE 0x05000000
extern u_int data_abort_handler_address;
extern u_int prefetch_abort_handler_address;
extern u_int undefined_handler_address;
struct pv_addr kernel_pt_table[NUM_KERNEL_PTS];
extern void *_end;
extern vm_offset_t sa1110_uart_vaddr;
extern vm_offset_t sa1_cache_clean_addr;
extern int *end;
struct pcpu __pcpu;
struct pcpu *pcpup = &__pcpu;
#ifndef MD_ROOT_SIZE
#define MD_ROOT_SIZE 65535
#endif
/* Physical and virtual addresses for some global pages */
vm_paddr_t phys_avail[10];
vm_paddr_t dump_avail[4];
vm_paddr_t physical_start;
vm_paddr_t physical_end;
vm_paddr_t physical_freestart;
vm_offset_t physical_pages;
vm_offset_t clean_sva, clean_eva;
struct pv_addr systempage;
struct pv_addr irqstack;
struct pv_addr undstack;
struct pv_addr abtstack;
struct pv_addr kernelstack;
static struct trapframe proc0_tf;
/* Static device mappings. */
static const struct pmap_devmap assabet_devmap[] = {
/*
* Map the on-board devices VA == PA so that we can access them
* with the MMU on or off.
*/
{
SACOM1_VBASE,
SACOM1_BASE,
SACOM1_SIZE,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{
SAIPIC_BASE,
SAIPIC_BASE,
SAIPIC_SIZE,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{
0,
0,
0,
0,
0,
}
};
struct arm32_dma_range *
bus_dma_get_range(void)
{
return (NULL);
}
int
bus_dma_get_range_nb(void)
{
return (0);
}
void
cpu_reset()
{
cpu_halt();
while (1);
}
#define CPU_SA110_CACHE_CLEAN_SIZE (0x4000 * 2)
void *
initarm(void *arg, void *arg2)
{
struct pcpu *pc;
struct pv_addr kernel_l1pt;
struct pv_addr md_addr;
struct pv_addr md_bla;
int loop;
u_int kerneldatasize, symbolsize;
u_int l1pagetable;
vm_offset_t freemempos;
vm_offset_t lastalloced;
vm_size_t pt_size;
int i = 0;
uint32_t fake_preload[35];
uint32_t memsize = 32 * 1024 * 1024;
sa1110_uart_vaddr = SACOM1_VBASE;
boothowto = RB_VERBOSE | RB_SINGLE;
cninit();
set_cpufuncs();
fake_preload[i++] = MODINFO_NAME;
fake_preload[i++] = strlen("elf kernel") + 1;
strcpy((char*)&fake_preload[i++], "elf kernel");
i += 2;
fake_preload[i++] = MODINFO_TYPE;
fake_preload[i++] = strlen("elf kernel") + 1;
strcpy((char*)&fake_preload[i++], "elf kernel");
i += 2;
fake_preload[i++] = MODINFO_ADDR;
fake_preload[i++] = sizeof(vm_offset_t);
fake_preload[i++] = KERNBASE;
fake_preload[i++] = MODINFO_SIZE;
fake_preload[i++] = sizeof(uint32_t);
fake_preload[i++] = (uint32_t)&end - KERNBASE;
fake_preload[i++] = MODINFO_NAME;
fake_preload[i++] = strlen("md root") + 1;
strcpy((char*)&fake_preload[i++], "md root");
i += 1;
fake_preload[i++] = MODINFO_TYPE;
fake_preload[i++] = strlen("md_image") + 1;
strcpy((char*)&fake_preload[i++], "md_image");
i += 2;
fake_preload[i++] = MODINFO_ADDR;
fake_preload[i++] = sizeof(uint32_t);
fake_preload[i++] = MDROOT_ADDR;
fake_preload[i++] = MODINFO_SIZE;
fake_preload[i++] = sizeof(uint32_t);
fake_preload[i++] = MD_ROOT_SIZE * 1024;
fake_preload[i++] = 0;
fake_preload[i] = 0;
preload_metadata = (void *)fake_preload;
physmem = memsize / PAGE_SIZE;
pc = &__pcpu;
pcpu_init(pc, 0, sizeof(struct pcpu));
PCPU_SET(curthread, &thread0);
physical_start = (vm_offset_t) KERNBASE;
physical_end = (vm_offset_t) &end;
physical_freestart = (((vm_offset_t)physical_end) + PAGE_MASK) & ~PAGE_MASK;
md_addr.pv_va = md_addr.pv_pa = MDROOT_ADDR;
#define KERNEL_TEXT_BASE (KERNBASE + 0x00040000)
kerneldatasize = (u_int32_t)&end - (u_int32_t)KERNEL_TEXT_BASE;
symbolsize = 0;
freemempos = (vm_offset_t)round_page(physical_freestart);
memset((void *)freemempos, 0, 256*1024);
/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np) \
alloc_pages((var).pv_pa, (np)); \
(var).pv_va = (var).pv_pa;
#define alloc_pages(var, np) \
(var) = freemempos; \
freemempos += ((np) * PAGE_SIZE);\
memset((char *)(var), 0, ((np) * PAGE_SIZE));
while ((freemempos & (L1_TABLE_SIZE - 1)) != 0)
freemempos += PAGE_SIZE;
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
valloc_pages(md_bla, L2_TABLE_SIZE / PAGE_SIZE);
alloc_pages(sa1_cache_clean_addr, CPU_SA110_CACHE_CLEAN_SIZE / PAGE_SIZE);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
valloc_pages(kernel_pt_table[loop],
L2_TABLE_SIZE / PAGE_SIZE);
} else {
kernel_pt_table[loop].pv_pa = freemempos +
(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
L2_TABLE_SIZE_REAL;
kernel_pt_table[loop].pv_va =
kernel_pt_table[loop].pv_pa;
}
}
valloc_pages(systempage, 1);
/*
* Allocate a page for the system page mapped to V0x00000000
* This page will just contain the system vectors and can be
* shared by all processes.
*/
pt_size = round_page(freemempos) - physical_freestart;
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, KSTACK_PAGES);
lastalloced = kernelstack.pv_va;
/*
* Allocate memory for the l1 and l2 page tables. The scheme to avoid
* wasting memory by allocating the l1pt on the first 16k memory was
* taken from NetBSD rpc_machdep.c. NKPT should be greater than 12 for
* this to work (which is supposed to be the case).
*/
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_pa;
/* Map the L2 pages tables in the L1 page table */
pmap_link_l2pt(l1pagetable, 0x00000000,
&kernel_pt_table[KERNEL_PT_SYS]);
pmap_link_l2pt(l1pagetable, KERNBASE,
&kernel_pt_table[KERNEL_PT_KERNEL]);
pmap_link_l2pt(l1pagetable, 0xd0000000,
&kernel_pt_table[KERNEL_PT_IO]);
pmap_link_l2pt(l1pagetable, lastalloced & ~((L1_S_SIZE * 4) - 1),
&kernel_pt_table[KERNEL_PT_L1]);
pmap_link_l2pt(l1pagetable, 0x90000000, &kernel_pt_table[KERNEL_PT_IRQ]);
pmap_link_l2pt(l1pagetable, MDROOT_ADDR,
&md_bla);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00100000,
&kernel_pt_table[KERNEL_PT_VMDATA + loop]);
pmap_map_chunk(l1pagetable, KERNBASE, KERNBASE,
((uint32_t)&end - KERNBASE), VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
/* Map the stack pages */
pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, md_addr.pv_va, md_addr.pv_pa,
MD_ROOT_SIZE * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
}
pmap_map_chunk(l1pagetable, md_bla.pv_va, md_bla.pv_pa, L2_TABLE_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
/* Map the vector page. */
pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
/* Map the statically mapped devices. */
pmap_devmap_bootstrap(l1pagetable, assabet_devmap);
pmap_map_chunk(l1pagetable, sa1_cache_clean_addr, 0xf0000000,
CPU_SA110_CACHE_CLEAN_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
undefined_init();
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
setttb(kernel_l1pt.pv_pa);
cpu_tlb_flushID();
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
set_stackptr(PSR_IRQ32_MODE,
irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_ABT32_MODE,
abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_UND32_MODE,
undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
/*
* We must now clean the cache again....
* Cleaning may be done by reading new data to displace any
* dirty data in the cache. This will have happened in setttb()
* but since we are boot strapping the addresses used for the read
* may have just been remapped and thus the cache could be out
* of sync. A re-clean after the switch will cure this.
* After booting there are no gross reloations of the kernel thus
* this problem will not occur after initarm().
*/
cpu_idcache_wbinv_all();
bootverbose = 1;
/* Set stack for exception handlers */
proc_linkup(&proc0, &ksegrp0, &thread0);
thread0.td_kstack = kernelstack.pv_va;
thread0.td_pcb = (struct pcb *)
(thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
thread0.td_pcb->pcb_flags = 0;
thread0.td_frame = &proc0_tf;
/* Enable MMU, I-cache, D-cache, write buffer. */
cpufunc_control(0x337f, 0x107d);
arm_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
pmap_curmaxkvaddr = freemempos + KERNEL_PT_VMDATA_NUM * 0x400000;
pmap_bootstrap(freemempos,
0xd0000000, &kernel_l1pt);
mutex_init();
dump_avail[0] = phys_avail[0] = round_page(virtual_avail);
dump_avail[1] = phys_avail[1] = 0xc0000000 + 0x02000000 - 1;
dump_avail[2] = phys_avail[2] = 0;
dump_avail[3] = phys_avail[3] = 0;
/* Do basic tuning, hz etc */
init_param1();
init_param2(physmem);
kdb_init();
avail_end = 0xc0000000 + memsize - 1;
return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
sizeof(struct pcb)));
}