freebsd-dev/usr.sbin/bhyve/mem.c
John Baldwin 1b52cd4553 Add support for writing to guest memory in the debug server.
- Add a write_mem counterpart to read_mem to handle writes to MMIO.
- Add support for the GDB 'M' packet to write bytes to the guest's
  memory.  For MMIO writes, attempt to batch writes up into words.
  This is imprecise, but if you write a single 2 or 4-byte aligned
  word, it should be treated as a single MMIO write operation.
- While here, tidy up the parsing of the 'm' command used for reading
  memory to match 'M'.

Reviewed by:	markj, Scott Phillips <d.scott.phillips@intel.com>
MFC after:	2 weeks
Differential Revision:	https://reviews.freebsd.org/D20307
2019-05-24 00:34:13 +00:00

375 lines
8.8 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2012 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Memory ranges are represented with an RB tree. On insertion, the range
* is checked for overlaps. On lookup, the key has the same base and limit
* so it can be searched within the range.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/tree.h>
#include <machine/vmm.h>
#include <machine/vmm_instruction_emul.h>
#include <assert.h>
#include <err.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include "mem.h"
struct mmio_rb_range {
RB_ENTRY(mmio_rb_range) mr_link; /* RB tree links */
struct mem_range mr_param;
uint64_t mr_base;
uint64_t mr_end;
};
struct mmio_rb_tree;
RB_PROTOTYPE(mmio_rb_tree, mmio_rb_range, mr_link, mmio_rb_range_compare);
RB_HEAD(mmio_rb_tree, mmio_rb_range) mmio_rb_root, mmio_rb_fallback;
/*
* Per-vCPU cache. Since most accesses from a vCPU will be to
* consecutive addresses in a range, it makes sense to cache the
* result of a lookup.
*/
static struct mmio_rb_range *mmio_hint[VM_MAXCPU];
static pthread_rwlock_t mmio_rwlock;
static int
mmio_rb_range_compare(struct mmio_rb_range *a, struct mmio_rb_range *b)
{
if (a->mr_end < b->mr_base)
return (-1);
else if (a->mr_base > b->mr_end)
return (1);
return (0);
}
static int
mmio_rb_lookup(struct mmio_rb_tree *rbt, uint64_t addr,
struct mmio_rb_range **entry)
{
struct mmio_rb_range find, *res;
find.mr_base = find.mr_end = addr;
res = RB_FIND(mmio_rb_tree, rbt, &find);
if (res != NULL) {
*entry = res;
return (0);
}
return (ENOENT);
}
static int
mmio_rb_add(struct mmio_rb_tree *rbt, struct mmio_rb_range *new)
{
struct mmio_rb_range *overlap;
overlap = RB_INSERT(mmio_rb_tree, rbt, new);
if (overlap != NULL) {
#ifdef RB_DEBUG
printf("overlap detected: new %lx:%lx, tree %lx:%lx\n",
new->mr_base, new->mr_end,
overlap->mr_base, overlap->mr_end);
#endif
return (EEXIST);
}
return (0);
}
#if 0
static void
mmio_rb_dump(struct mmio_rb_tree *rbt)
{
int perror;
struct mmio_rb_range *np;
pthread_rwlock_rdlock(&mmio_rwlock);
RB_FOREACH(np, mmio_rb_tree, rbt) {
printf(" %lx:%lx, %s\n", np->mr_base, np->mr_end,
np->mr_param.name);
}
perror = pthread_rwlock_unlock(&mmio_rwlock);
assert(perror == 0);
}
#endif
RB_GENERATE(mmio_rb_tree, mmio_rb_range, mr_link, mmio_rb_range_compare);
typedef int (mem_cb_t)(struct vmctx *ctx, int vcpu, uint64_t gpa,
struct mem_range *mr, void *arg);
static int
mem_read(void *ctx, int vcpu, uint64_t gpa, uint64_t *rval, int size, void *arg)
{
int error;
struct mem_range *mr = arg;
error = (*mr->handler)(ctx, vcpu, MEM_F_READ, gpa, size,
rval, mr->arg1, mr->arg2);
return (error);
}
static int
mem_write(void *ctx, int vcpu, uint64_t gpa, uint64_t wval, int size, void *arg)
{
int error;
struct mem_range *mr = arg;
error = (*mr->handler)(ctx, vcpu, MEM_F_WRITE, gpa, size,
&wval, mr->arg1, mr->arg2);
return (error);
}
static int
access_memory(struct vmctx *ctx, int vcpu, uint64_t paddr, mem_cb_t *cb,
void *arg)
{
struct mmio_rb_range *entry;
int err, perror, immutable;
pthread_rwlock_rdlock(&mmio_rwlock);
/*
* First check the per-vCPU cache
*/
if (mmio_hint[vcpu] &&
paddr >= mmio_hint[vcpu]->mr_base &&
paddr <= mmio_hint[vcpu]->mr_end) {
entry = mmio_hint[vcpu];
} else
entry = NULL;
if (entry == NULL) {
if (mmio_rb_lookup(&mmio_rb_root, paddr, &entry) == 0) {
/* Update the per-vCPU cache */
mmio_hint[vcpu] = entry;
} else if (mmio_rb_lookup(&mmio_rb_fallback, paddr, &entry)) {
perror = pthread_rwlock_unlock(&mmio_rwlock);
assert(perror == 0);
return (ESRCH);
}
}
assert(entry != NULL);
/*
* An 'immutable' memory range is guaranteed to be never removed
* so there is no need to hold 'mmio_rwlock' while calling the
* handler.
*
* XXX writes to the PCIR_COMMAND register can cause register_mem()
* to be called. If the guest is using PCI extended config space
* to modify the PCIR_COMMAND register then register_mem() can
* deadlock on 'mmio_rwlock'. However by registering the extended
* config space window as 'immutable' the deadlock can be avoided.
*/
immutable = (entry->mr_param.flags & MEM_F_IMMUTABLE);
if (immutable) {
perror = pthread_rwlock_unlock(&mmio_rwlock);
assert(perror == 0);
}
err = cb(ctx, vcpu, paddr, &entry->mr_param, arg);
if (!immutable) {
perror = pthread_rwlock_unlock(&mmio_rwlock);
assert(perror == 0);
}
return (err);
}
struct emulate_mem_args {
struct vie *vie;
struct vm_guest_paging *paging;
};
static int
emulate_mem_cb(struct vmctx *ctx, int vcpu, uint64_t paddr, struct mem_range *mr,
void *arg)
{
struct emulate_mem_args *ema;
ema = arg;
return (vmm_emulate_instruction(ctx, vcpu, paddr, ema->vie, ema->paging,
mem_read, mem_write, mr));
}
int
emulate_mem(struct vmctx *ctx, int vcpu, uint64_t paddr, struct vie *vie,
struct vm_guest_paging *paging)
{
struct emulate_mem_args ema;
ema.vie = vie;
ema.paging = paging;
return (access_memory(ctx, vcpu, paddr, emulate_mem_cb, &ema));
}
struct rw_mem_args {
uint64_t *val;
int size;
int operation;
};
static int
rw_mem_cb(struct vmctx *ctx, int vcpu, uint64_t paddr, struct mem_range *mr,
void *arg)
{
struct rw_mem_args *rma;
rma = arg;
return (mr->handler(ctx, vcpu, rma->operation, paddr, rma->size,
rma->val, mr->arg1, mr->arg2));
}
int
read_mem(struct vmctx *ctx, int vcpu, uint64_t gpa, uint64_t *rval, int size)
{
struct rw_mem_args rma;
rma.val = rval;
rma.size = size;
rma.operation = MEM_F_READ;
return (access_memory(ctx, vcpu, gpa, rw_mem_cb, &rma));
}
int
write_mem(struct vmctx *ctx, int vcpu, uint64_t gpa, uint64_t wval, int size)
{
struct rw_mem_args rma;
rma.val = &wval;
rma.size = size;
rma.operation = MEM_F_WRITE;
return (access_memory(ctx, vcpu, gpa, rw_mem_cb, &rma));
}
static int
register_mem_int(struct mmio_rb_tree *rbt, struct mem_range *memp)
{
struct mmio_rb_range *entry, *mrp;
int err, perror;
err = 0;
mrp = malloc(sizeof(struct mmio_rb_range));
if (mrp == NULL) {
warn("%s: couldn't allocate memory for mrp\n",
__func__);
err = ENOMEM;
} else {
mrp->mr_param = *memp;
mrp->mr_base = memp->base;
mrp->mr_end = memp->base + memp->size - 1;
pthread_rwlock_wrlock(&mmio_rwlock);
if (mmio_rb_lookup(rbt, memp->base, &entry) != 0)
err = mmio_rb_add(rbt, mrp);
perror = pthread_rwlock_unlock(&mmio_rwlock);
assert(perror == 0);
if (err)
free(mrp);
}
return (err);
}
int
register_mem(struct mem_range *memp)
{
return (register_mem_int(&mmio_rb_root, memp));
}
int
register_mem_fallback(struct mem_range *memp)
{
return (register_mem_int(&mmio_rb_fallback, memp));
}
int
unregister_mem(struct mem_range *memp)
{
struct mem_range *mr;
struct mmio_rb_range *entry = NULL;
int err, perror, i;
pthread_rwlock_wrlock(&mmio_rwlock);
err = mmio_rb_lookup(&mmio_rb_root, memp->base, &entry);
if (err == 0) {
mr = &entry->mr_param;
assert(mr->name == memp->name);
assert(mr->base == memp->base && mr->size == memp->size);
assert((mr->flags & MEM_F_IMMUTABLE) == 0);
RB_REMOVE(mmio_rb_tree, &mmio_rb_root, entry);
/* flush Per-vCPU cache */
for (i=0; i < VM_MAXCPU; i++) {
if (mmio_hint[i] == entry)
mmio_hint[i] = NULL;
}
}
perror = pthread_rwlock_unlock(&mmio_rwlock);
assert(perror == 0);
if (entry)
free(entry);
return (err);
}
void
init_mem(void)
{
RB_INIT(&mmio_rb_root);
RB_INIT(&mmio_rb_fallback);
pthread_rwlock_init(&mmio_rwlock, NULL);
}