8a1b9b6ad4
here but it includes completed 802.11g, WPA, 802.11i, 802.1x, WME/WMM, AP-side power-save, crypto plugin framework, authenticator plugin framework, and access control plugin frameowrk.
560 lines
16 KiB
C
560 lines
16 KiB
C
/*-
|
|
* Copyright (c) 2001 Atsushi Onoe
|
|
* Copyright (c) 2002-2004 Sam Leffler, Errno Consulting
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* Alternatively, this software may be distributed under the terms of the
|
|
* GNU General Public License ("GPL") version 2 as published by the Free
|
|
* Software Foundation.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* IEEE 802.11 generic crypto support.
|
|
*/
|
|
#include <sys/param.h>
|
|
#include <sys/mbuf.h>
|
|
|
|
#include <sys/socket.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_media.h>
|
|
#include <net/ethernet.h> /* XXX ETHER_HDR_LEN */
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
|
|
/*
|
|
* Table of registered cipher modules.
|
|
*/
|
|
static const struct ieee80211_cipher *ciphers[IEEE80211_CIPHER_MAX];
|
|
|
|
static int _ieee80211_crypto_delkey(struct ieee80211com *,
|
|
struct ieee80211_key *);
|
|
|
|
/*
|
|
* Default "null" key management routines.
|
|
*/
|
|
static int
|
|
null_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
|
|
{
|
|
return IEEE80211_KEYIX_NONE;
|
|
}
|
|
static int
|
|
null_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
|
|
{
|
|
return 1;
|
|
}
|
|
static int
|
|
null_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
|
|
const u_int8_t mac[IEEE80211_ADDR_LEN])
|
|
{
|
|
return 1;
|
|
}
|
|
static void null_key_update(struct ieee80211com *ic) {}
|
|
|
|
/*
|
|
* Write-arounds for common operations.
|
|
*/
|
|
static __inline void
|
|
cipher_detach(struct ieee80211_key *key)
|
|
{
|
|
key->wk_cipher->ic_detach(key);
|
|
}
|
|
|
|
static __inline void *
|
|
cipher_attach(struct ieee80211com *ic, struct ieee80211_key *key)
|
|
{
|
|
return key->wk_cipher->ic_attach(ic, key);
|
|
}
|
|
|
|
/*
|
|
* Wrappers for driver key management methods.
|
|
*/
|
|
static __inline int
|
|
dev_key_alloc(struct ieee80211com *ic,
|
|
const struct ieee80211_key *key)
|
|
{
|
|
return ic->ic_crypto.cs_key_alloc(ic, key);
|
|
}
|
|
|
|
static __inline int
|
|
dev_key_delete(struct ieee80211com *ic,
|
|
const struct ieee80211_key *key)
|
|
{
|
|
return ic->ic_crypto.cs_key_delete(ic, key);
|
|
}
|
|
|
|
static __inline int
|
|
dev_key_set(struct ieee80211com *ic, const struct ieee80211_key *key,
|
|
const u_int8_t mac[IEEE80211_ADDR_LEN])
|
|
{
|
|
return ic->ic_crypto.cs_key_set(ic, key, mac);
|
|
}
|
|
|
|
/*
|
|
* Setup crypto support.
|
|
*/
|
|
void
|
|
ieee80211_crypto_attach(struct ieee80211com *ic)
|
|
{
|
|
struct ieee80211_crypto_state *cs = &ic->ic_crypto;
|
|
int i;
|
|
|
|
/* NB: we assume everything is pre-zero'd */
|
|
cs->cs_def_txkey = IEEE80211_KEYIX_NONE;
|
|
ciphers[IEEE80211_CIPHER_NONE] = &ieee80211_cipher_none;
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++)
|
|
ieee80211_crypto_resetkey(ic, &cs->cs_nw_keys[i], i);
|
|
/*
|
|
* Initialize the driver key support routines to noop entries.
|
|
* This is useful especially for the cipher test modules.
|
|
*/
|
|
cs->cs_key_alloc = null_key_alloc;
|
|
cs->cs_key_set = null_key_set;
|
|
cs->cs_key_delete = null_key_delete;
|
|
cs->cs_key_update_begin = null_key_update;
|
|
cs->cs_key_update_end = null_key_update;
|
|
}
|
|
|
|
/*
|
|
* Teardown crypto support.
|
|
*/
|
|
void
|
|
ieee80211_crypto_detach(struct ieee80211com *ic)
|
|
{
|
|
ieee80211_crypto_delglobalkeys(ic);
|
|
}
|
|
|
|
/*
|
|
* Register a crypto cipher module.
|
|
*/
|
|
void
|
|
ieee80211_crypto_register(const struct ieee80211_cipher *cip)
|
|
{
|
|
if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) {
|
|
printf("%s: cipher %s has an invalid cipher index %u\n",
|
|
__func__, cip->ic_name, cip->ic_cipher);
|
|
return;
|
|
}
|
|
if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) {
|
|
printf("%s: cipher %s registered with a different template\n",
|
|
__func__, cip->ic_name);
|
|
return;
|
|
}
|
|
ciphers[cip->ic_cipher] = cip;
|
|
}
|
|
|
|
/*
|
|
* Unregister a crypto cipher module.
|
|
*/
|
|
void
|
|
ieee80211_crypto_unregister(const struct ieee80211_cipher *cip)
|
|
{
|
|
if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) {
|
|
printf("%s: cipher %s has an invalid cipher index %u\n",
|
|
__func__, cip->ic_name, cip->ic_cipher);
|
|
return;
|
|
}
|
|
if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) {
|
|
printf("%s: cipher %s registered with a different template\n",
|
|
__func__, cip->ic_name);
|
|
return;
|
|
}
|
|
/* NB: don't complain about not being registered */
|
|
/* XXX disallow if references */
|
|
ciphers[cip->ic_cipher] = NULL;
|
|
}
|
|
|
|
int
|
|
ieee80211_crypto_available(u_int cipher)
|
|
{
|
|
return cipher < IEEE80211_CIPHER_MAX && ciphers[cipher] != NULL;
|
|
}
|
|
|
|
/* XXX well-known names! */
|
|
static const char *cipher_modnames[] = {
|
|
"wlan_wep", /* IEEE80211_CIPHER_WEP */
|
|
"wlan_tkip", /* IEEE80211_CIPHER_TKIP */
|
|
"wlan_aes_ocb", /* IEEE80211_CIPHER_AES_OCB */
|
|
"wlan_ccmp", /* IEEE80211_CIPHER_AES_CCM */
|
|
"wlan_ckip", /* IEEE80211_CIPHER_CKIP */
|
|
};
|
|
|
|
/*
|
|
* Establish a relationship between the specified key and cipher
|
|
* and, if not a global key, allocate a hardware index from the
|
|
* driver. Note that we may be called for global keys but they
|
|
* should have a key index already setup so the only work done
|
|
* is to setup the cipher reference.
|
|
*
|
|
* This must be the first call applied to a key; all the other key
|
|
* routines assume wk_cipher is setup.
|
|
*
|
|
* Locking must be handled by the caller using:
|
|
* ieee80211_key_update_begin(ic);
|
|
* ieee80211_key_update_end(ic);
|
|
*/
|
|
int
|
|
ieee80211_crypto_newkey(struct ieee80211com *ic,
|
|
int cipher, struct ieee80211_key *key)
|
|
{
|
|
#define N(a) (sizeof(a) / sizeof(a[0]))
|
|
const struct ieee80211_cipher *cip;
|
|
void *keyctx;
|
|
int oflags;
|
|
|
|
/*
|
|
* Validate cipher and set reference to cipher routines.
|
|
*/
|
|
if (cipher >= IEEE80211_CIPHER_MAX) {
|
|
IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
|
|
"%s: invalid cipher %u\n", __func__, cipher);
|
|
ic->ic_stats.is_crypto_badcipher++;
|
|
return 0;
|
|
}
|
|
cip = ciphers[cipher];
|
|
if (cip == NULL) {
|
|
/*
|
|
* Auto-load cipher module if we have a well-known name
|
|
* for it. It might be better to use string names rather
|
|
* than numbers and craft a module name based on the cipher
|
|
* name; e.g. wlan_cipher_<cipher-name>.
|
|
*/
|
|
if (cipher < N(cipher_modnames)) {
|
|
IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
|
|
"%s: unregistered cipher %u, load module %s\n",
|
|
__func__, cipher, cipher_modnames[cipher]);
|
|
ieee80211_load_module(cipher_modnames[cipher]);
|
|
/*
|
|
* If cipher module loaded it should immediately
|
|
* call ieee80211_crypto_register which will fill
|
|
* in the entry in the ciphers array.
|
|
*/
|
|
cip = ciphers[cipher];
|
|
}
|
|
if (cip == NULL) {
|
|
IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
|
|
"%s: unable to load cipher %u, module %s\n",
|
|
__func__, cipher,
|
|
cipher < N(cipher_modnames) ?
|
|
cipher_modnames[cipher] : "<unknown>");
|
|
ic->ic_stats.is_crypto_nocipher++;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
oflags = key->wk_flags;
|
|
/*
|
|
* If the hardware does not support the cipher then
|
|
* fallback to a host-based implementation.
|
|
*/
|
|
key->wk_flags &= ~(IEEE80211_KEY_SWCRYPT|IEEE80211_KEY_SWMIC);
|
|
if ((ic->ic_caps & (1<<cipher)) == 0) {
|
|
IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
|
|
"%s: no h/w support for cipher %s, falling back to s/w\n",
|
|
__func__, cip->ic_name);
|
|
key->wk_flags |= IEEE80211_KEY_SWCRYPT;
|
|
}
|
|
/*
|
|
* Hardware TKIP with software MIC is an important
|
|
* combination; we handle it by flagging each key,
|
|
* the cipher modules honor it.
|
|
*/
|
|
if (cipher == IEEE80211_CIPHER_TKIP &&
|
|
(ic->ic_caps & IEEE80211_C_TKIPMIC) == 0) {
|
|
IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
|
|
"%s: no h/w support for TKIP MIC, falling back to s/w\n",
|
|
__func__);
|
|
key->wk_flags |= IEEE80211_KEY_SWMIC;
|
|
}
|
|
|
|
/*
|
|
* Bind cipher to key instance. Note we do this
|
|
* after checking the device capabilities so the
|
|
* cipher module can optimize space usage based on
|
|
* whether or not it needs to do the cipher work.
|
|
*/
|
|
if (key->wk_cipher != cip || key->wk_flags != oflags) {
|
|
again:
|
|
keyctx = cip->ic_attach(ic, key);
|
|
if (keyctx == NULL) {
|
|
IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
|
|
"%s: unable to attach cipher %s\n",
|
|
__func__, cip->ic_name);
|
|
key->wk_flags = oflags; /* restore old flags */
|
|
ic->ic_stats.is_crypto_attachfail++;
|
|
return 0;
|
|
}
|
|
cipher_detach(key);
|
|
key->wk_cipher = cip; /* XXX refcnt? */
|
|
key->wk_private = keyctx;
|
|
}
|
|
|
|
/*
|
|
* Ask the driver for a key index if we don't have one.
|
|
* Note that entries in the global key table always have
|
|
* an index; this means it's safe to call this routine
|
|
* for these entries just to setup the reference to the
|
|
* cipher template. Note also that when using software
|
|
* crypto we also call the driver to give us a key index.
|
|
*/
|
|
if (key->wk_keyix == IEEE80211_KEYIX_NONE) {
|
|
key->wk_keyix = dev_key_alloc(ic, key);
|
|
if (key->wk_keyix == IEEE80211_KEYIX_NONE) {
|
|
/*
|
|
* Driver has no room; fallback to doing crypto
|
|
* in the host. We change the flags and start the
|
|
* procedure over. If we get back here then there's
|
|
* no hope and we bail. Note that this can leave
|
|
* the key in a inconsistent state if the caller
|
|
* continues to use it.
|
|
*/
|
|
if ((key->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
|
|
ic->ic_stats.is_crypto_swfallback++;
|
|
IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
|
|
"%s: no h/w resources for cipher %s, "
|
|
"falling back to s/w\n", __func__,
|
|
cip->ic_name);
|
|
oflags = key->wk_flags;
|
|
key->wk_flags |= IEEE80211_KEY_SWCRYPT;
|
|
if (cipher == IEEE80211_CIPHER_TKIP)
|
|
key->wk_flags |= IEEE80211_KEY_SWMIC;
|
|
goto again;
|
|
}
|
|
ic->ic_stats.is_crypto_keyfail++;
|
|
IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
|
|
"%s: unable to setup cipher %s\n",
|
|
__func__, cip->ic_name);
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Remove the key (no locking, for internal use).
|
|
*/
|
|
static int
|
|
_ieee80211_crypto_delkey(struct ieee80211com *ic, struct ieee80211_key *key)
|
|
{
|
|
u_int16_t keyix;
|
|
|
|
KASSERT(key->wk_cipher != NULL, ("No cipher!"));
|
|
|
|
keyix = key->wk_keyix;
|
|
if (keyix != IEEE80211_KEYIX_NONE) {
|
|
/*
|
|
* Remove hardware entry.
|
|
*/
|
|
/* XXX key cache */
|
|
if (!dev_key_delete(ic, key)) {
|
|
IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
|
|
"%s: driver did not delete key index %u\n",
|
|
__func__, keyix);
|
|
ic->ic_stats.is_crypto_delkey++;
|
|
/* XXX recovery? */
|
|
}
|
|
}
|
|
cipher_detach(key);
|
|
memset(key, 0, sizeof(*key));
|
|
key->wk_cipher = &ieee80211_cipher_none;
|
|
key->wk_private = cipher_attach(ic, key);
|
|
/* NB: cannot depend on key index to decide this */
|
|
if (&ic->ic_nw_keys[0] <= key &&
|
|
key < &ic->ic_nw_keys[IEEE80211_WEP_NKID])
|
|
key->wk_keyix = keyix; /* preserve shared key state */
|
|
else
|
|
key->wk_keyix = IEEE80211_KEYIX_NONE;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Remove the specified key.
|
|
*/
|
|
int
|
|
ieee80211_crypto_delkey(struct ieee80211com *ic, struct ieee80211_key *key)
|
|
{
|
|
int status;
|
|
|
|
ieee80211_key_update_begin(ic);
|
|
status = _ieee80211_crypto_delkey(ic, key);
|
|
ieee80211_key_update_end(ic);
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Clear the global key table.
|
|
*/
|
|
void
|
|
ieee80211_crypto_delglobalkeys(struct ieee80211com *ic)
|
|
{
|
|
int i;
|
|
|
|
ieee80211_key_update_begin(ic);
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++)
|
|
(void) _ieee80211_crypto_delkey(ic, &ic->ic_nw_keys[i]);
|
|
ieee80211_key_update_end(ic);
|
|
}
|
|
|
|
/*
|
|
* Set the contents of the specified key.
|
|
*
|
|
* Locking must be handled by the caller using:
|
|
* ieee80211_key_update_begin(ic);
|
|
* ieee80211_key_update_end(ic);
|
|
*/
|
|
int
|
|
ieee80211_crypto_setkey(struct ieee80211com *ic, struct ieee80211_key *key,
|
|
const u_int8_t macaddr[IEEE80211_ADDR_LEN])
|
|
{
|
|
const struct ieee80211_cipher *cip = key->wk_cipher;
|
|
|
|
KASSERT(cip != NULL, ("No cipher!"));
|
|
|
|
/*
|
|
* Give cipher a chance to validate key contents.
|
|
* XXX should happen before modifying state.
|
|
*/
|
|
if (!cip->ic_setkey(key)) {
|
|
IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
|
|
"%s: cipher %s rejected key index %u len %u flags 0x%x\n",
|
|
__func__, cip->ic_name, key->wk_keyix,
|
|
key->wk_keylen, key->wk_flags);
|
|
ic->ic_stats.is_crypto_setkey_cipher++;
|
|
return 0;
|
|
}
|
|
if (key->wk_keyix == IEEE80211_KEYIX_NONE) {
|
|
/* XXX nothing allocated, should not happen */
|
|
IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
|
|
"%s: no key index; should not happen!\n", __func__);
|
|
ic->ic_stats.is_crypto_setkey_nokey++;
|
|
return 0;
|
|
}
|
|
return dev_key_set(ic, key, macaddr);
|
|
}
|
|
|
|
/*
|
|
* Add privacy headers appropriate for the specified key.
|
|
*/
|
|
struct ieee80211_key *
|
|
ieee80211_crypto_encap(struct ieee80211com *ic,
|
|
struct ieee80211_node *ni, struct mbuf *m)
|
|
{
|
|
struct ieee80211_key *k;
|
|
struct ieee80211_frame *wh;
|
|
const struct ieee80211_cipher *cip;
|
|
u_int8_t keyix;
|
|
|
|
/*
|
|
* Multicast traffic always uses the multicast key.
|
|
* Otherwise if a unicast key is set we use that and
|
|
* it is always key index 0. When no unicast key is
|
|
* set we fall back to the default transmit key.
|
|
*/
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
|
|
ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
|
|
if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE) {
|
|
IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
|
|
"%s: No default xmit key for frame to %s\n",
|
|
__func__, ether_sprintf(wh->i_addr1));
|
|
ic->ic_stats.is_tx_nodefkey++;
|
|
return NULL;
|
|
}
|
|
keyix = ic->ic_def_txkey;
|
|
k = &ic->ic_nw_keys[ic->ic_def_txkey];
|
|
} else {
|
|
keyix = 0;
|
|
k = &ni->ni_ucastkey;
|
|
}
|
|
cip = k->wk_cipher;
|
|
return (cip->ic_encap(k, m, keyix<<6) ? k : NULL);
|
|
}
|
|
|
|
/*
|
|
* Validate and strip privacy headers (and trailer) for a
|
|
* received frame that has the WEP/Privacy bit set.
|
|
*/
|
|
struct ieee80211_key *
|
|
ieee80211_crypto_decap(struct ieee80211com *ic,
|
|
struct ieee80211_node *ni, struct mbuf *m)
|
|
{
|
|
#define IEEE80211_WEP_HDRLEN (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN)
|
|
#define IEEE80211_WEP_MINLEN \
|
|
(sizeof(struct ieee80211_frame) + ETHER_HDR_LEN + \
|
|
IEEE80211_WEP_HDRLEN + IEEE80211_WEP_CRCLEN)
|
|
struct ieee80211_key *k;
|
|
struct ieee80211_frame *wh;
|
|
const struct ieee80211_cipher *cip;
|
|
u_int8_t *ivp;
|
|
u_int8_t keyid;
|
|
int hdrlen;
|
|
|
|
/* NB: this minimum size data frame could be bigger */
|
|
if (m->m_pkthdr.len < IEEE80211_WEP_MINLEN) {
|
|
IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
|
|
"%s: WEP data frame too short, len %u\n",
|
|
__func__, m->m_pkthdr.len);
|
|
ic->ic_stats.is_rx_tooshort++; /* XXX need unique stat? */
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Locate the key. If unicast and there is no unicast
|
|
* key then we fall back to the key id in the header.
|
|
* This assumes unicast keys are only configured when
|
|
* the key id in the header is meaningless (typically 0).
|
|
*/
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
hdrlen = ieee80211_hdrsize(wh);
|
|
ivp = mtod(m, u_int8_t *) + hdrlen; /* XXX contig */
|
|
keyid = ivp[IEEE80211_WEP_IVLEN];
|
|
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
|
|
ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none)
|
|
k = &ic->ic_nw_keys[keyid >> 6];
|
|
else
|
|
k = &ni->ni_ucastkey;
|
|
|
|
/*
|
|
* Insure crypto header is contiguous for all decap work.
|
|
*/
|
|
cip = k->wk_cipher;
|
|
if (m->m_len < hdrlen + cip->ic_header &&
|
|
(m = m_pullup(m, hdrlen + cip->ic_header)) == NULL) {
|
|
IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
|
|
"[%s] unable to pullup %s header\n",
|
|
ether_sprintf(wh->i_addr2), cip->ic_name);
|
|
ic->ic_stats.is_rx_wepfail++; /* XXX */
|
|
return 0;
|
|
}
|
|
|
|
return (cip->ic_decap(k, m) ? k : NULL);
|
|
#undef IEEE80211_WEP_MINLEN
|
|
#undef IEEE80211_WEP_HDRLEN
|
|
}
|