freebsd-dev/sys/powerpc/aim/mmu_oea.c
Nathan Whitehorn 0081393d79 Do not rely on firmware having pre-enabled the MMU in a reasonable way for
late boot: enable it explicitly after installing the page tables. If booting
from an FDT, also make sure to escape the firmware's MMU context early
before overwriting firmware page tables.

Approved by:	re (gjb)
2016-06-29 14:40:43 +00:00

2706 lines
69 KiB
C

/*-
* Copyright (c) 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (C) 1995, 1996 Wolfgang Solfrank.
* Copyright (C) 1995, 1996 TooLs GmbH.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by TooLs GmbH.
* 4. The name of TooLs GmbH may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
*/
/*-
* Copyright (C) 2001 Benno Rice.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Manages physical address maps.
*
* Since the information managed by this module is also stored by the
* logical address mapping module, this module may throw away valid virtual
* to physical mappings at almost any time. However, invalidations of
* mappings must be done as requested.
*
* In order to cope with hardware architectures which make virtual to
* physical map invalidates expensive, this module may delay invalidate
* reduced protection operations until such time as they are actually
* necessary. This module is given full information as to which processors
* are currently using which maps, and to when physical maps must be made
* correct.
*/
#include "opt_kstack_pages.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <sys/queue.h>
#include <sys/cpuset.h>
#include <sys/kerneldump.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/msgbuf.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/vmmeter.h>
#include <dev/ofw/openfirm.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/vm_pageout.h>
#include <vm/uma.h>
#include <machine/cpu.h>
#include <machine/platform.h>
#include <machine/bat.h>
#include <machine/frame.h>
#include <machine/md_var.h>
#include <machine/psl.h>
#include <machine/pte.h>
#include <machine/smp.h>
#include <machine/sr.h>
#include <machine/mmuvar.h>
#include <machine/trap.h>
#include "mmu_if.h"
#define MOEA_DEBUG
#define TODO panic("%s: not implemented", __func__);
#define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4))
#define VSID_TO_SR(vsid) ((vsid) & 0xf)
#define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff)
struct ofw_map {
vm_offset_t om_va;
vm_size_t om_len;
vm_offset_t om_pa;
u_int om_mode;
};
extern unsigned char _etext[];
extern unsigned char _end[];
/*
* Map of physical memory regions.
*/
static struct mem_region *regions;
static struct mem_region *pregions;
static u_int phys_avail_count;
static int regions_sz, pregions_sz;
static struct ofw_map *translations;
/*
* Lock for the pteg and pvo tables.
*/
struct mtx moea_table_mutex;
struct mtx moea_vsid_mutex;
/* tlbie instruction synchronization */
static struct mtx tlbie_mtx;
/*
* PTEG data.
*/
static struct pteg *moea_pteg_table;
u_int moea_pteg_count;
u_int moea_pteg_mask;
/*
* PVO data.
*/
struct pvo_head *moea_pvo_table; /* pvo entries by pteg index */
struct pvo_head moea_pvo_kunmanaged =
LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged); /* list of unmanaged pages */
static struct rwlock_padalign pvh_global_lock;
uma_zone_t moea_upvo_zone; /* zone for pvo entries for unmanaged pages */
uma_zone_t moea_mpvo_zone; /* zone for pvo entries for managed pages */
#define BPVO_POOL_SIZE 32768
static struct pvo_entry *moea_bpvo_pool;
static int moea_bpvo_pool_index = 0;
#define VSID_NBPW (sizeof(u_int32_t) * 8)
static u_int moea_vsid_bitmap[NPMAPS / VSID_NBPW];
static boolean_t moea_initialized = FALSE;
/*
* Statistics.
*/
u_int moea_pte_valid = 0;
u_int moea_pte_overflow = 0;
u_int moea_pte_replacements = 0;
u_int moea_pvo_entries = 0;
u_int moea_pvo_enter_calls = 0;
u_int moea_pvo_remove_calls = 0;
u_int moea_pte_spills = 0;
SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
0, "");
SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
&moea_pte_overflow, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
&moea_pte_replacements, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
0, "");
SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
&moea_pvo_enter_calls, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
&moea_pvo_remove_calls, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
&moea_pte_spills, 0, "");
/*
* Allocate physical memory for use in moea_bootstrap.
*/
static vm_offset_t moea_bootstrap_alloc(vm_size_t, u_int);
/*
* PTE calls.
*/
static int moea_pte_insert(u_int, struct pte *);
/*
* PVO calls.
*/
static int moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
vm_offset_t, vm_paddr_t, u_int, int);
static void moea_pvo_remove(struct pvo_entry *, int);
static struct pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
static struct pte *moea_pvo_to_pte(const struct pvo_entry *, int);
/*
* Utility routines.
*/
static int moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
vm_prot_t, u_int, int8_t);
static void moea_syncicache(vm_paddr_t, vm_size_t);
static boolean_t moea_query_bit(vm_page_t, int);
static u_int moea_clear_bit(vm_page_t, int);
static void moea_kremove(mmu_t, vm_offset_t);
int moea_pte_spill(vm_offset_t);
/*
* Kernel MMU interface
*/
void moea_clear_modify(mmu_t, vm_page_t);
void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
void moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
vm_page_t *mb, vm_offset_t b_offset, int xfersize);
int moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int,
int8_t);
void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
vm_prot_t);
void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
void moea_init(mmu_t);
boolean_t moea_is_modified(mmu_t, vm_page_t);
boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
boolean_t moea_is_referenced(mmu_t, vm_page_t);
int moea_ts_referenced(mmu_t, vm_page_t);
vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
int moea_page_wired_mappings(mmu_t, vm_page_t);
void moea_pinit(mmu_t, pmap_t);
void moea_pinit0(mmu_t, pmap_t);
void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
void moea_qremove(mmu_t, vm_offset_t, int);
void moea_release(mmu_t, pmap_t);
void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
void moea_remove_all(mmu_t, vm_page_t);
void moea_remove_write(mmu_t, vm_page_t);
void moea_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
void moea_zero_page(mmu_t, vm_page_t);
void moea_zero_page_area(mmu_t, vm_page_t, int, int);
void moea_zero_page_idle(mmu_t, vm_page_t);
void moea_activate(mmu_t, struct thread *);
void moea_deactivate(mmu_t, struct thread *);
void moea_cpu_bootstrap(mmu_t, int);
void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
void *moea_mapdev(mmu_t, vm_paddr_t, vm_size_t);
void *moea_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
vm_paddr_t moea_kextract(mmu_t, vm_offset_t);
void moea_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
void moea_kenter(mmu_t, vm_offset_t, vm_paddr_t);
void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
boolean_t moea_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
void moea_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va);
void moea_scan_init(mmu_t mmu);
vm_offset_t moea_quick_enter_page(mmu_t mmu, vm_page_t m);
void moea_quick_remove_page(mmu_t mmu, vm_offset_t addr);
static mmu_method_t moea_methods[] = {
MMUMETHOD(mmu_clear_modify, moea_clear_modify),
MMUMETHOD(mmu_copy_page, moea_copy_page),
MMUMETHOD(mmu_copy_pages, moea_copy_pages),
MMUMETHOD(mmu_enter, moea_enter),
MMUMETHOD(mmu_enter_object, moea_enter_object),
MMUMETHOD(mmu_enter_quick, moea_enter_quick),
MMUMETHOD(mmu_extract, moea_extract),
MMUMETHOD(mmu_extract_and_hold, moea_extract_and_hold),
MMUMETHOD(mmu_init, moea_init),
MMUMETHOD(mmu_is_modified, moea_is_modified),
MMUMETHOD(mmu_is_prefaultable, moea_is_prefaultable),
MMUMETHOD(mmu_is_referenced, moea_is_referenced),
MMUMETHOD(mmu_ts_referenced, moea_ts_referenced),
MMUMETHOD(mmu_map, moea_map),
MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
MMUMETHOD(mmu_pinit, moea_pinit),
MMUMETHOD(mmu_pinit0, moea_pinit0),
MMUMETHOD(mmu_protect, moea_protect),
MMUMETHOD(mmu_qenter, moea_qenter),
MMUMETHOD(mmu_qremove, moea_qremove),
MMUMETHOD(mmu_release, moea_release),
MMUMETHOD(mmu_remove, moea_remove),
MMUMETHOD(mmu_remove_all, moea_remove_all),
MMUMETHOD(mmu_remove_write, moea_remove_write),
MMUMETHOD(mmu_sync_icache, moea_sync_icache),
MMUMETHOD(mmu_unwire, moea_unwire),
MMUMETHOD(mmu_zero_page, moea_zero_page),
MMUMETHOD(mmu_zero_page_area, moea_zero_page_area),
MMUMETHOD(mmu_zero_page_idle, moea_zero_page_idle),
MMUMETHOD(mmu_activate, moea_activate),
MMUMETHOD(mmu_deactivate, moea_deactivate),
MMUMETHOD(mmu_page_set_memattr, moea_page_set_memattr),
MMUMETHOD(mmu_quick_enter_page, moea_quick_enter_page),
MMUMETHOD(mmu_quick_remove_page, moea_quick_remove_page),
/* Internal interfaces */
MMUMETHOD(mmu_bootstrap, moea_bootstrap),
MMUMETHOD(mmu_cpu_bootstrap, moea_cpu_bootstrap),
MMUMETHOD(mmu_mapdev_attr, moea_mapdev_attr),
MMUMETHOD(mmu_mapdev, moea_mapdev),
MMUMETHOD(mmu_unmapdev, moea_unmapdev),
MMUMETHOD(mmu_kextract, moea_kextract),
MMUMETHOD(mmu_kenter, moea_kenter),
MMUMETHOD(mmu_kenter_attr, moea_kenter_attr),
MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
MMUMETHOD(mmu_scan_init, moea_scan_init),
MMUMETHOD(mmu_dumpsys_map, moea_dumpsys_map),
{ 0, 0 }
};
MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
static __inline uint32_t
moea_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
{
uint32_t pte_lo;
int i;
if (ma != VM_MEMATTR_DEFAULT) {
switch (ma) {
case VM_MEMATTR_UNCACHEABLE:
return (PTE_I | PTE_G);
case VM_MEMATTR_CACHEABLE:
return (PTE_M);
case VM_MEMATTR_WRITE_COMBINING:
case VM_MEMATTR_WRITE_BACK:
case VM_MEMATTR_PREFETCHABLE:
return (PTE_I);
case VM_MEMATTR_WRITE_THROUGH:
return (PTE_W | PTE_M);
}
}
/*
* Assume the page is cache inhibited and access is guarded unless
* it's in our available memory array.
*/
pte_lo = PTE_I | PTE_G;
for (i = 0; i < pregions_sz; i++) {
if ((pa >= pregions[i].mr_start) &&
(pa < (pregions[i].mr_start + pregions[i].mr_size))) {
pte_lo = PTE_M;
break;
}
}
return pte_lo;
}
static void
tlbie(vm_offset_t va)
{
mtx_lock_spin(&tlbie_mtx);
__asm __volatile("ptesync");
__asm __volatile("tlbie %0" :: "r"(va));
__asm __volatile("eieio; tlbsync; ptesync");
mtx_unlock_spin(&tlbie_mtx);
}
static void
tlbia(void)
{
vm_offset_t va;
for (va = 0; va < 0x00040000; va += 0x00001000) {
__asm __volatile("tlbie %0" :: "r"(va));
powerpc_sync();
}
__asm __volatile("tlbsync");
powerpc_sync();
}
static __inline int
va_to_sr(u_int *sr, vm_offset_t va)
{
return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
}
static __inline u_int
va_to_pteg(u_int sr, vm_offset_t addr)
{
u_int hash;
hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
ADDR_PIDX_SHFT);
return (hash & moea_pteg_mask);
}
static __inline struct pvo_head *
vm_page_to_pvoh(vm_page_t m)
{
return (&m->md.mdpg_pvoh);
}
static __inline void
moea_attr_clear(vm_page_t m, int ptebit)
{
rw_assert(&pvh_global_lock, RA_WLOCKED);
m->md.mdpg_attrs &= ~ptebit;
}
static __inline int
moea_attr_fetch(vm_page_t m)
{
return (m->md.mdpg_attrs);
}
static __inline void
moea_attr_save(vm_page_t m, int ptebit)
{
rw_assert(&pvh_global_lock, RA_WLOCKED);
m->md.mdpg_attrs |= ptebit;
}
static __inline int
moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
{
if (pt->pte_hi == pvo_pt->pte_hi)
return (1);
return (0);
}
static __inline int
moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
{
return (pt->pte_hi & ~PTE_VALID) ==
(((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
((va >> ADDR_API_SHFT) & PTE_API) | which);
}
static __inline void
moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
{
mtx_assert(&moea_table_mutex, MA_OWNED);
/*
* Construct a PTE. Default to IMB initially. Valid bit only gets
* set when the real pte is set in memory.
*
* Note: Don't set the valid bit for correct operation of tlb update.
*/
pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
(((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
pt->pte_lo = pte_lo;
}
static __inline void
moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
{
mtx_assert(&moea_table_mutex, MA_OWNED);
pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
}
static __inline void
moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
{
mtx_assert(&moea_table_mutex, MA_OWNED);
/*
* As shown in Section 7.6.3.2.3
*/
pt->pte_lo &= ~ptebit;
tlbie(va);
}
static __inline void
moea_pte_set(struct pte *pt, struct pte *pvo_pt)
{
mtx_assert(&moea_table_mutex, MA_OWNED);
pvo_pt->pte_hi |= PTE_VALID;
/*
* Update the PTE as defined in section 7.6.3.1.
* Note that the REF/CHG bits are from pvo_pt and thus should have
* been saved so this routine can restore them (if desired).
*/
pt->pte_lo = pvo_pt->pte_lo;
powerpc_sync();
pt->pte_hi = pvo_pt->pte_hi;
powerpc_sync();
moea_pte_valid++;
}
static __inline void
moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
{
mtx_assert(&moea_table_mutex, MA_OWNED);
pvo_pt->pte_hi &= ~PTE_VALID;
/*
* Force the reg & chg bits back into the PTEs.
*/
powerpc_sync();
/*
* Invalidate the pte.
*/
pt->pte_hi &= ~PTE_VALID;
tlbie(va);
/*
* Save the reg & chg bits.
*/
moea_pte_synch(pt, pvo_pt);
moea_pte_valid--;
}
static __inline void
moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
{
/*
* Invalidate the PTE
*/
moea_pte_unset(pt, pvo_pt, va);
moea_pte_set(pt, pvo_pt);
}
/*
* Quick sort callout for comparing memory regions.
*/
static int om_cmp(const void *a, const void *b);
static int
om_cmp(const void *a, const void *b)
{
const struct ofw_map *mapa;
const struct ofw_map *mapb;
mapa = a;
mapb = b;
if (mapa->om_pa < mapb->om_pa)
return (-1);
else if (mapa->om_pa > mapb->om_pa)
return (1);
else
return (0);
}
void
moea_cpu_bootstrap(mmu_t mmup, int ap)
{
u_int sdr;
int i;
if (ap) {
powerpc_sync();
__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
isync();
__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
isync();
}
__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
isync();
__asm __volatile("mtibatu 1,%0" :: "r"(0));
__asm __volatile("mtdbatu 2,%0" :: "r"(0));
__asm __volatile("mtibatu 2,%0" :: "r"(0));
__asm __volatile("mtdbatu 3,%0" :: "r"(0));
__asm __volatile("mtibatu 3,%0" :: "r"(0));
isync();
for (i = 0; i < 16; i++)
mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
powerpc_sync();
sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
__asm __volatile("mtsdr1 %0" :: "r"(sdr));
isync();
tlbia();
}
void
moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
{
ihandle_t mmui;
phandle_t chosen, mmu;
int sz;
int i, j;
vm_size_t size, physsz, hwphyssz;
vm_offset_t pa, va, off;
void *dpcpu;
register_t msr;
/*
* Set up BAT0 to map the lowest 256 MB area
*/
battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
/*
* Map PCI memory space.
*/
battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
/*
* Map obio devices.
*/
battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
/*
* Use an IBAT and a DBAT to map the bottom segment of memory
* where we are. Turn off instruction relocation temporarily
* to prevent faults while reprogramming the IBAT.
*/
msr = mfmsr();
mtmsr(msr & ~PSL_IR);
__asm (".balign 32; \n"
"mtibatu 0,%0; mtibatl 0,%1; isync; \n"
"mtdbatu 0,%0; mtdbatl 0,%1; isync"
:: "r"(battable[0].batu), "r"(battable[0].batl));
mtmsr(msr);
/* map pci space */
__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
isync();
/* set global direct map flag */
hw_direct_map = 1;
mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
for (i = 0; i < pregions_sz; i++) {
vm_offset_t pa;
vm_offset_t end;
CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
pregions[i].mr_start,
pregions[i].mr_start + pregions[i].mr_size,
pregions[i].mr_size);
/*
* Install entries into the BAT table to allow all
* of physmem to be convered by on-demand BAT entries.
* The loop will sometimes set the same battable element
* twice, but that's fine since they won't be used for
* a while yet.
*/
pa = pregions[i].mr_start & 0xf0000000;
end = pregions[i].mr_start + pregions[i].mr_size;
do {
u_int n = pa >> ADDR_SR_SHFT;
battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
pa += SEGMENT_LENGTH;
} while (pa < end);
}
if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
panic("moea_bootstrap: phys_avail too small");
phys_avail_count = 0;
physsz = 0;
hwphyssz = 0;
TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
regions[i].mr_start + regions[i].mr_size,
regions[i].mr_size);
if (hwphyssz != 0 &&
(physsz + regions[i].mr_size) >= hwphyssz) {
if (physsz < hwphyssz) {
phys_avail[j] = regions[i].mr_start;
phys_avail[j + 1] = regions[i].mr_start +
hwphyssz - physsz;
physsz = hwphyssz;
phys_avail_count++;
}
break;
}
phys_avail[j] = regions[i].mr_start;
phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
phys_avail_count++;
physsz += regions[i].mr_size;
}
/* Check for overlap with the kernel and exception vectors */
for (j = 0; j < 2*phys_avail_count; j+=2) {
if (phys_avail[j] < EXC_LAST)
phys_avail[j] += EXC_LAST;
if (kernelstart >= phys_avail[j] &&
kernelstart < phys_avail[j+1]) {
if (kernelend < phys_avail[j+1]) {
phys_avail[2*phys_avail_count] =
(kernelend & ~PAGE_MASK) + PAGE_SIZE;
phys_avail[2*phys_avail_count + 1] =
phys_avail[j+1];
phys_avail_count++;
}
phys_avail[j+1] = kernelstart & ~PAGE_MASK;
}
if (kernelend >= phys_avail[j] &&
kernelend < phys_avail[j+1]) {
if (kernelstart > phys_avail[j]) {
phys_avail[2*phys_avail_count] = phys_avail[j];
phys_avail[2*phys_avail_count + 1] =
kernelstart & ~PAGE_MASK;
phys_avail_count++;
}
phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
}
}
physmem = btoc(physsz);
/*
* Allocate PTEG table.
*/
#ifdef PTEGCOUNT
moea_pteg_count = PTEGCOUNT;
#else
moea_pteg_count = 0x1000;
while (moea_pteg_count < physmem)
moea_pteg_count <<= 1;
moea_pteg_count >>= 1;
#endif /* PTEGCOUNT */
size = moea_pteg_count * sizeof(struct pteg);
CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
size);
moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
moea_pteg_mask = moea_pteg_count - 1;
/*
* Allocate pv/overflow lists.
*/
size = sizeof(struct pvo_head) * moea_pteg_count;
moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
PAGE_SIZE);
CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
for (i = 0; i < moea_pteg_count; i++)
LIST_INIT(&moea_pvo_table[i]);
/*
* Initialize the lock that synchronizes access to the pteg and pvo
* tables.
*/
mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
MTX_RECURSE);
mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
/*
* Initialise the unmanaged pvo pool.
*/
moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
moea_bpvo_pool_index = 0;
/*
* Make sure kernel vsid is allocated as well as VSID 0.
*/
moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
moea_vsid_bitmap[0] |= 1;
/*
* Initialize the kernel pmap (which is statically allocated).
*/
PMAP_LOCK_INIT(kernel_pmap);
for (i = 0; i < 16; i++)
kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
CPU_FILL(&kernel_pmap->pm_active);
RB_INIT(&kernel_pmap->pmap_pvo);
/*
* Initialize the global pv list lock.
*/
rw_init(&pvh_global_lock, "pmap pv global");
/*
* Set up the Open Firmware mappings
*/
chosen = OF_finddevice("/chosen");
if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
(mmu = OF_instance_to_package(mmui)) != -1 &&
(sz = OF_getproplen(mmu, "translations")) != -1) {
translations = NULL;
for (i = 0; phys_avail[i] != 0; i += 2) {
if (phys_avail[i + 1] >= sz) {
translations = (struct ofw_map *)phys_avail[i];
break;
}
}
if (translations == NULL)
panic("moea_bootstrap: no space to copy translations");
bzero(translations, sz);
if (OF_getprop(mmu, "translations", translations, sz) == -1)
panic("moea_bootstrap: can't get ofw translations");
CTR0(KTR_PMAP, "moea_bootstrap: translations");
sz /= sizeof(*translations);
qsort(translations, sz, sizeof (*translations), om_cmp);
for (i = 0; i < sz; i++) {
CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
translations[i].om_pa, translations[i].om_va,
translations[i].om_len);
/*
* If the mapping is 1:1, let the RAM and device
* on-demand BAT tables take care of the translation.
*/
if (translations[i].om_va == translations[i].om_pa)
continue;
/* Enter the pages */
for (off = 0; off < translations[i].om_len;
off += PAGE_SIZE)
moea_kenter(mmup, translations[i].om_va + off,
translations[i].om_pa + off);
}
}
/*
* Calculate the last available physical address.
*/
for (i = 0; phys_avail[i + 2] != 0; i += 2)
;
Maxmem = powerpc_btop(phys_avail[i + 1]);
moea_cpu_bootstrap(mmup,0);
mtmsr(mfmsr() | PSL_DR | PSL_IR);
pmap_bootstrapped++;
/*
* Set the start and end of kva.
*/
virtual_avail = VM_MIN_KERNEL_ADDRESS;
virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
/*
* Allocate a kernel stack with a guard page for thread0 and map it
* into the kernel page map.
*/
pa = moea_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
virtual_avail = va + kstack_pages * PAGE_SIZE;
CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
thread0.td_kstack = va;
thread0.td_kstack_pages = kstack_pages;
for (i = 0; i < kstack_pages; i++) {
moea_kenter(mmup, va, pa);
pa += PAGE_SIZE;
va += PAGE_SIZE;
}
/*
* Allocate virtual address space for the message buffer.
*/
pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
msgbufp = (struct msgbuf *)virtual_avail;
va = virtual_avail;
virtual_avail += round_page(msgbufsize);
while (va < virtual_avail) {
moea_kenter(mmup, va, pa);
pa += PAGE_SIZE;
va += PAGE_SIZE;
}
/*
* Allocate virtual address space for the dynamic percpu area.
*/
pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
dpcpu = (void *)virtual_avail;
va = virtual_avail;
virtual_avail += DPCPU_SIZE;
while (va < virtual_avail) {
moea_kenter(mmup, va, pa);
pa += PAGE_SIZE;
va += PAGE_SIZE;
}
dpcpu_init(dpcpu, 0);
}
/*
* Activate a user pmap. The pmap must be activated before it's address
* space can be accessed in any way.
*/
void
moea_activate(mmu_t mmu, struct thread *td)
{
pmap_t pm, pmr;
/*
* Load all the data we need up front to encourage the compiler to
* not issue any loads while we have interrupts disabled below.
*/
pm = &td->td_proc->p_vmspace->vm_pmap;
pmr = pm->pmap_phys;
CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
PCPU_SET(curpmap, pmr);
mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
}
void
moea_deactivate(mmu_t mmu, struct thread *td)
{
pmap_t pm;
pm = &td->td_proc->p_vmspace->vm_pmap;
CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
PCPU_SET(curpmap, NULL);
}
void
moea_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
{
struct pvo_entry key, *pvo;
PMAP_LOCK(pm);
key.pvo_vaddr = sva;
for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
pvo != NULL && PVO_VADDR(pvo) < eva;
pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
panic("moea_unwire: pvo %p is missing PVO_WIRED", pvo);
pvo->pvo_vaddr &= ~PVO_WIRED;
pm->pm_stats.wired_count--;
}
PMAP_UNLOCK(pm);
}
void
moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
{
vm_offset_t dst;
vm_offset_t src;
dst = VM_PAGE_TO_PHYS(mdst);
src = VM_PAGE_TO_PHYS(msrc);
bcopy((void *)src, (void *)dst, PAGE_SIZE);
}
void
moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
vm_page_t *mb, vm_offset_t b_offset, int xfersize)
{
void *a_cp, *b_cp;
vm_offset_t a_pg_offset, b_pg_offset;
int cnt;
while (xfersize > 0) {
a_pg_offset = a_offset & PAGE_MASK;
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
a_pg_offset;
b_pg_offset = b_offset & PAGE_MASK;
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
b_pg_offset;
bcopy(a_cp, b_cp, cnt);
a_offset += cnt;
b_offset += cnt;
xfersize -= cnt;
}
}
/*
* Zero a page of physical memory by temporarily mapping it into the tlb.
*/
void
moea_zero_page(mmu_t mmu, vm_page_t m)
{
vm_offset_t off, pa = VM_PAGE_TO_PHYS(m);
for (off = 0; off < PAGE_SIZE; off += cacheline_size)
__asm __volatile("dcbz 0,%0" :: "r"(pa + off));
}
void
moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
{
vm_offset_t pa = VM_PAGE_TO_PHYS(m);
void *va = (void *)(pa + off);
bzero(va, size);
}
void
moea_zero_page_idle(mmu_t mmu, vm_page_t m)
{
moea_zero_page(mmu, m);
}
vm_offset_t
moea_quick_enter_page(mmu_t mmu, vm_page_t m)
{
return (VM_PAGE_TO_PHYS(m));
}
void
moea_quick_remove_page(mmu_t mmu, vm_offset_t addr)
{
}
/*
* Map the given physical page at the specified virtual address in the
* target pmap with the protection requested. If specified the page
* will be wired down.
*/
int
moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
u_int flags, int8_t psind)
{
int error;
for (;;) {
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
error = moea_enter_locked(pmap, va, m, prot, flags, psind);
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
if (error != ENOMEM)
return (KERN_SUCCESS);
if ((flags & PMAP_ENTER_NOSLEEP) != 0)
return (KERN_RESOURCE_SHORTAGE);
VM_OBJECT_ASSERT_UNLOCKED(m->object);
VM_WAIT;
}
}
/*
* Map the given physical page at the specified virtual address in the
* target pmap with the protection requested. If specified the page
* will be wired down.
*
* The global pvh and pmap must be locked.
*/
static int
moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
u_int flags, int8_t psind __unused)
{
struct pvo_head *pvo_head;
uma_zone_t zone;
u_int pte_lo, pvo_flags;
int error;
if (pmap_bootstrapped)
rw_assert(&pvh_global_lock, RA_WLOCKED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
VM_OBJECT_ASSERT_LOCKED(m->object);
if ((m->oflags & VPO_UNMANAGED) != 0 || !moea_initialized) {
pvo_head = &moea_pvo_kunmanaged;
zone = moea_upvo_zone;
pvo_flags = 0;
} else {
pvo_head = vm_page_to_pvoh(m);
zone = moea_mpvo_zone;
pvo_flags = PVO_MANAGED;
}
pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
if (prot & VM_PROT_WRITE) {
pte_lo |= PTE_BW;
if (pmap_bootstrapped &&
(m->oflags & VPO_UNMANAGED) == 0)
vm_page_aflag_set(m, PGA_WRITEABLE);
} else
pte_lo |= PTE_BR;
if ((flags & PMAP_ENTER_WIRED) != 0)
pvo_flags |= PVO_WIRED;
error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
pte_lo, pvo_flags);
/*
* Flush the real page from the instruction cache. This has be done
* for all user mappings to prevent information leakage via the
* instruction cache. moea_pvo_enter() returns ENOENT for the first
* mapping for a page.
*/
if (pmap != kernel_pmap && error == ENOENT &&
(pte_lo & (PTE_I | PTE_G)) == 0)
moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
return (error);
}
/*
* Maps a sequence of resident pages belonging to the same object.
* The sequence begins with the given page m_start. This page is
* mapped at the given virtual address start. Each subsequent page is
* mapped at a virtual address that is offset from start by the same
* amount as the page is offset from m_start within the object. The
* last page in the sequence is the page with the largest offset from
* m_start that can be mapped at a virtual address less than the given
* virtual address end. Not every virtual page between start and end
* is mapped; only those for which a resident page exists with the
* corresponding offset from m_start are mapped.
*/
void
moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
vm_page_t m_start, vm_prot_t prot)
{
vm_page_t m;
vm_pindex_t diff, psize;
VM_OBJECT_ASSERT_LOCKED(m_start->object);
psize = atop(end - start);
m = m_start;
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pm);
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
moea_enter_locked(pm, start + ptoa(diff), m, prot &
(VM_PROT_READ | VM_PROT_EXECUTE), 0, 0);
m = TAILQ_NEXT(m, listq);
}
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pm);
}
void
moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
vm_prot_t prot)
{
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pm);
moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
0, 0);
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pm);
}
vm_paddr_t
moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
{
struct pvo_entry *pvo;
vm_paddr_t pa;
PMAP_LOCK(pm);
pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
if (pvo == NULL)
pa = 0;
else
pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
PMAP_UNLOCK(pm);
return (pa);
}
/*
* Atomically extract and hold the physical page with the given
* pmap and virtual address pair if that mapping permits the given
* protection.
*/
vm_page_t
moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
{
struct pvo_entry *pvo;
vm_page_t m;
vm_paddr_t pa;
m = NULL;
pa = 0;
PMAP_LOCK(pmap);
retry:
pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
(prot & VM_PROT_WRITE) == 0)) {
if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
goto retry;
m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
vm_page_hold(m);
}
PA_UNLOCK_COND(pa);
PMAP_UNLOCK(pmap);
return (m);
}
void
moea_init(mmu_t mmu)
{
moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
UMA_ZONE_VM | UMA_ZONE_NOFREE);
moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
UMA_ZONE_VM | UMA_ZONE_NOFREE);
moea_initialized = TRUE;
}
boolean_t
moea_is_referenced(mmu_t mmu, vm_page_t m)
{
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea_is_referenced: page %p is not managed", m));
rw_wlock(&pvh_global_lock);
rv = moea_query_bit(m, PTE_REF);
rw_wunlock(&pvh_global_lock);
return (rv);
}
boolean_t
moea_is_modified(mmu_t mmu, vm_page_t m)
{
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea_is_modified: page %p is not managed", m));
/*
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
* concurrently set while the object is locked. Thus, if PGA_WRITEABLE
* is clear, no PTEs can have PTE_CHG set.
*/
VM_OBJECT_ASSERT_WLOCKED(m->object);
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
return (FALSE);
rw_wlock(&pvh_global_lock);
rv = moea_query_bit(m, PTE_CHG);
rw_wunlock(&pvh_global_lock);
return (rv);
}
boolean_t
moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
{
struct pvo_entry *pvo;
boolean_t rv;
PMAP_LOCK(pmap);
pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
PMAP_UNLOCK(pmap);
return (rv);
}
void
moea_clear_modify(mmu_t mmu, vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea_clear_modify: page %p is not managed", m));
VM_OBJECT_ASSERT_WLOCKED(m->object);
KASSERT(!vm_page_xbusied(m),
("moea_clear_modify: page %p is exclusive busy", m));
/*
* If the page is not PGA_WRITEABLE, then no PTEs can have PTE_CHG
* set. If the object containing the page is locked and the page is
* not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
*/
if ((m->aflags & PGA_WRITEABLE) == 0)
return;
rw_wlock(&pvh_global_lock);
moea_clear_bit(m, PTE_CHG);
rw_wunlock(&pvh_global_lock);
}
/*
* Clear the write and modified bits in each of the given page's mappings.
*/
void
moea_remove_write(mmu_t mmu, vm_page_t m)
{
struct pvo_entry *pvo;
struct pte *pt;
pmap_t pmap;
u_int lo;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea_remove_write: page %p is not managed", m));
/*
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
* set by another thread while the object is locked. Thus,
* if PGA_WRITEABLE is clear, no page table entries need updating.
*/
VM_OBJECT_ASSERT_WLOCKED(m->object);
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
return;
rw_wlock(&pvh_global_lock);
lo = moea_attr_fetch(m);
powerpc_sync();
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
pmap = pvo->pvo_pmap;
PMAP_LOCK(pmap);
if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
pt = moea_pvo_to_pte(pvo, -1);
pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
pvo->pvo_pte.pte.pte_lo |= PTE_BR;
if (pt != NULL) {
moea_pte_synch(pt, &pvo->pvo_pte.pte);
lo |= pvo->pvo_pte.pte.pte_lo;
pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
moea_pte_change(pt, &pvo->pvo_pte.pte,
pvo->pvo_vaddr);
mtx_unlock(&moea_table_mutex);
}
}
PMAP_UNLOCK(pmap);
}
if ((lo & PTE_CHG) != 0) {
moea_attr_clear(m, PTE_CHG);
vm_page_dirty(m);
}
vm_page_aflag_clear(m, PGA_WRITEABLE);
rw_wunlock(&pvh_global_lock);
}
/*
* moea_ts_referenced:
*
* Return a count of reference bits for a page, clearing those bits.
* It is not necessary for every reference bit to be cleared, but it
* is necessary that 0 only be returned when there are truly no
* reference bits set.
*
* XXX: The exact number of bits to check and clear is a matter that
* should be tested and standardized at some point in the future for
* optimal aging of shared pages.
*/
int
moea_ts_referenced(mmu_t mmu, vm_page_t m)
{
int count;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea_ts_referenced: page %p is not managed", m));
rw_wlock(&pvh_global_lock);
count = moea_clear_bit(m, PTE_REF);
rw_wunlock(&pvh_global_lock);
return (count);
}
/*
* Modify the WIMG settings of all mappings for a page.
*/
void
moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
{
struct pvo_entry *pvo;
struct pvo_head *pvo_head;
struct pte *pt;
pmap_t pmap;
u_int lo;
if ((m->oflags & VPO_UNMANAGED) != 0) {
m->md.mdpg_cache_attrs = ma;
return;
}
rw_wlock(&pvh_global_lock);
pvo_head = vm_page_to_pvoh(m);
lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
pmap = pvo->pvo_pmap;
PMAP_LOCK(pmap);
pt = moea_pvo_to_pte(pvo, -1);
pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
pvo->pvo_pte.pte.pte_lo |= lo;
if (pt != NULL) {
moea_pte_change(pt, &pvo->pvo_pte.pte,
pvo->pvo_vaddr);
if (pvo->pvo_pmap == kernel_pmap)
isync();
}
mtx_unlock(&moea_table_mutex);
PMAP_UNLOCK(pmap);
}
m->md.mdpg_cache_attrs = ma;
rw_wunlock(&pvh_global_lock);
}
/*
* Map a wired page into kernel virtual address space.
*/
void
moea_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
{
moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
}
void
moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
{
u_int pte_lo;
int error;
#if 0
if (va < VM_MIN_KERNEL_ADDRESS)
panic("moea_kenter: attempt to enter non-kernel address %#x",
va);
#endif
pte_lo = moea_calc_wimg(pa, ma);
PMAP_LOCK(kernel_pmap);
error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
&moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
if (error != 0 && error != ENOENT)
panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
pa, error);
PMAP_UNLOCK(kernel_pmap);
}
/*
* Extract the physical page address associated with the given kernel virtual
* address.
*/
vm_paddr_t
moea_kextract(mmu_t mmu, vm_offset_t va)
{
struct pvo_entry *pvo;
vm_paddr_t pa;
/*
* Allow direct mappings on 32-bit OEA
*/
if (va < VM_MIN_KERNEL_ADDRESS) {
return (va);
}
PMAP_LOCK(kernel_pmap);
pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
PMAP_UNLOCK(kernel_pmap);
return (pa);
}
/*
* Remove a wired page from kernel virtual address space.
*/
void
moea_kremove(mmu_t mmu, vm_offset_t va)
{
moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
}
/*
* Map a range of physical addresses into kernel virtual address space.
*
* The value passed in *virt is a suggested virtual address for the mapping.
* Architectures which can support a direct-mapped physical to virtual region
* can return the appropriate address within that region, leaving '*virt'
* unchanged. We cannot and therefore do not; *virt is updated with the
* first usable address after the mapped region.
*/
vm_offset_t
moea_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
vm_paddr_t pa_end, int prot)
{
vm_offset_t sva, va;
sva = *virt;
va = sva;
for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
moea_kenter(mmu, va, pa_start);
*virt = va;
return (sva);
}
/*
* Returns true if the pmap's pv is one of the first
* 16 pvs linked to from this page. This count may
* be changed upwards or downwards in the future; it
* is only necessary that true be returned for a small
* subset of pmaps for proper page aging.
*/
boolean_t
moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
{
int loops;
struct pvo_entry *pvo;
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("moea_page_exists_quick: page %p is not managed", m));
loops = 0;
rv = FALSE;
rw_wlock(&pvh_global_lock);
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
if (pvo->pvo_pmap == pmap) {
rv = TRUE;
break;
}
if (++loops >= 16)
break;
}
rw_wunlock(&pvh_global_lock);
return (rv);
}
/*
* Return the number of managed mappings to the given physical page
* that are wired.
*/
int
moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
{
struct pvo_entry *pvo;
int count;
count = 0;
if ((m->oflags & VPO_UNMANAGED) != 0)
return (count);
rw_wlock(&pvh_global_lock);
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
count++;
rw_wunlock(&pvh_global_lock);
return (count);
}
static u_int moea_vsidcontext;
void
moea_pinit(mmu_t mmu, pmap_t pmap)
{
int i, mask;
u_int entropy;
KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
RB_INIT(&pmap->pmap_pvo);
entropy = 0;
__asm __volatile("mftb %0" : "=r"(entropy));
if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
== NULL) {
pmap->pmap_phys = pmap;
}
mtx_lock(&moea_vsid_mutex);
/*
* Allocate some segment registers for this pmap.
*/
for (i = 0; i < NPMAPS; i += VSID_NBPW) {
u_int hash, n;
/*
* Create a new value by mutiplying by a prime and adding in
* entropy from the timebase register. This is to make the
* VSID more random so that the PT hash function collides
* less often. (Note that the prime casues gcc to do shifts
* instead of a multiply.)
*/
moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
hash = moea_vsidcontext & (NPMAPS - 1);
if (hash == 0) /* 0 is special, avoid it */
continue;
n = hash >> 5;
mask = 1 << (hash & (VSID_NBPW - 1));
hash = (moea_vsidcontext & 0xfffff);
if (moea_vsid_bitmap[n] & mask) { /* collision? */
/* anything free in this bucket? */
if (moea_vsid_bitmap[n] == 0xffffffff) {
entropy = (moea_vsidcontext >> 20);
continue;
}
i = ffs(~moea_vsid_bitmap[n]) - 1;
mask = 1 << i;
hash &= rounddown2(0xfffff, VSID_NBPW);
hash |= i;
}
KASSERT(!(moea_vsid_bitmap[n] & mask),
("Allocating in-use VSID group %#x\n", hash));
moea_vsid_bitmap[n] |= mask;
for (i = 0; i < 16; i++)
pmap->pm_sr[i] = VSID_MAKE(i, hash);
mtx_unlock(&moea_vsid_mutex);
return;
}
mtx_unlock(&moea_vsid_mutex);
panic("moea_pinit: out of segments");
}
/*
* Initialize the pmap associated with process 0.
*/
void
moea_pinit0(mmu_t mmu, pmap_t pm)
{
PMAP_LOCK_INIT(pm);
moea_pinit(mmu, pm);
bzero(&pm->pm_stats, sizeof(pm->pm_stats));
}
/*
* Set the physical protection on the specified range of this map as requested.
*/
void
moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
vm_prot_t prot)
{
struct pvo_entry *pvo, *tpvo, key;
struct pte *pt;
KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
("moea_protect: non current pmap"));
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
moea_remove(mmu, pm, sva, eva);
return;
}
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pm);
key.pvo_vaddr = sva;
for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
/*
* Grab the PTE pointer before we diddle with the cached PTE
* copy.
*/
pt = moea_pvo_to_pte(pvo, -1);
/*
* Change the protection of the page.
*/
pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
pvo->pvo_pte.pte.pte_lo |= PTE_BR;
/*
* If the PVO is in the page table, update that pte as well.
*/
if (pt != NULL) {
moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
mtx_unlock(&moea_table_mutex);
}
}
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pm);
}
/*
* Map a list of wired pages into kernel virtual address space. This is
* intended for temporary mappings which do not need page modification or
* references recorded. Existing mappings in the region are overwritten.
*/
void
moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
{
vm_offset_t va;
va = sva;
while (count-- > 0) {
moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
va += PAGE_SIZE;
m++;
}
}
/*
* Remove page mappings from kernel virtual address space. Intended for
* temporary mappings entered by moea_qenter.
*/
void
moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
{
vm_offset_t va;
va = sva;
while (count-- > 0) {
moea_kremove(mmu, va);
va += PAGE_SIZE;
}
}
void
moea_release(mmu_t mmu, pmap_t pmap)
{
int idx, mask;
/*
* Free segment register's VSID
*/
if (pmap->pm_sr[0] == 0)
panic("moea_release");
mtx_lock(&moea_vsid_mutex);
idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
mask = 1 << (idx % VSID_NBPW);
idx /= VSID_NBPW;
moea_vsid_bitmap[idx] &= ~mask;
mtx_unlock(&moea_vsid_mutex);
}
/*
* Remove the given range of addresses from the specified map.
*/
void
moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
{
struct pvo_entry *pvo, *tpvo, key;
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pm);
key.pvo_vaddr = sva;
for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
moea_pvo_remove(pvo, -1);
}
PMAP_UNLOCK(pm);
rw_wunlock(&pvh_global_lock);
}
/*
* Remove physical page from all pmaps in which it resides. moea_pvo_remove()
* will reflect changes in pte's back to the vm_page.
*/
void
moea_remove_all(mmu_t mmu, vm_page_t m)
{
struct pvo_head *pvo_head;
struct pvo_entry *pvo, *next_pvo;
pmap_t pmap;
rw_wlock(&pvh_global_lock);
pvo_head = vm_page_to_pvoh(m);
for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
next_pvo = LIST_NEXT(pvo, pvo_vlink);
pmap = pvo->pvo_pmap;
PMAP_LOCK(pmap);
moea_pvo_remove(pvo, -1);
PMAP_UNLOCK(pmap);
}
if ((m->aflags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) {
moea_attr_clear(m, PTE_CHG);
vm_page_dirty(m);
}
vm_page_aflag_clear(m, PGA_WRITEABLE);
rw_wunlock(&pvh_global_lock);
}
/*
* Allocate a physical page of memory directly from the phys_avail map.
* Can only be called from moea_bootstrap before avail start and end are
* calculated.
*/
static vm_offset_t
moea_bootstrap_alloc(vm_size_t size, u_int align)
{
vm_offset_t s, e;
int i, j;
size = round_page(size);
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
if (align != 0)
s = roundup2(phys_avail[i], align);
else
s = phys_avail[i];
e = s + size;
if (s < phys_avail[i] || e > phys_avail[i + 1])
continue;
if (s == phys_avail[i]) {
phys_avail[i] += size;
} else if (e == phys_avail[i + 1]) {
phys_avail[i + 1] -= size;
} else {
for (j = phys_avail_count * 2; j > i; j -= 2) {
phys_avail[j] = phys_avail[j - 2];
phys_avail[j + 1] = phys_avail[j - 1];
}
phys_avail[i + 3] = phys_avail[i + 1];
phys_avail[i + 1] = s;
phys_avail[i + 2] = e;
phys_avail_count++;
}
return (s);
}
panic("moea_bootstrap_alloc: could not allocate memory");
}
static void
moea_syncicache(vm_paddr_t pa, vm_size_t len)
{
__syncicache((void *)pa, len);
}
static int
moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
vm_offset_t va, vm_paddr_t pa, u_int pte_lo, int flags)
{
struct pvo_entry *pvo;
u_int sr;
int first;
u_int ptegidx;
int i;
int bootstrap;
moea_pvo_enter_calls++;
first = 0;
bootstrap = 0;
/*
* Compute the PTE Group index.
*/
va &= ~ADDR_POFF;
sr = va_to_sr(pm->pm_sr, va);
ptegidx = va_to_pteg(sr, va);
/*
* Remove any existing mapping for this page. Reuse the pvo entry if
* there is a mapping.
*/
mtx_lock(&moea_table_mutex);
LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
(pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
(pte_lo & PTE_PP)) {
/*
* The PTE is not changing. Instead, this may
* be a request to change the mapping's wired
* attribute.
*/
mtx_unlock(&moea_table_mutex);
if ((flags & PVO_WIRED) != 0 &&
(pvo->pvo_vaddr & PVO_WIRED) == 0) {
pvo->pvo_vaddr |= PVO_WIRED;
pm->pm_stats.wired_count++;
} else if ((flags & PVO_WIRED) == 0 &&
(pvo->pvo_vaddr & PVO_WIRED) != 0) {
pvo->pvo_vaddr &= ~PVO_WIRED;
pm->pm_stats.wired_count--;
}
return (0);
}
moea_pvo_remove(pvo, -1);
break;
}
}
/*
* If we aren't overwriting a mapping, try to allocate.
*/
if (moea_initialized) {
pvo = uma_zalloc(zone, M_NOWAIT);
} else {
if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
moea_bpvo_pool_index, BPVO_POOL_SIZE,
BPVO_POOL_SIZE * sizeof(struct pvo_entry));
}
pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
moea_bpvo_pool_index++;
bootstrap = 1;
}
if (pvo == NULL) {
mtx_unlock(&moea_table_mutex);
return (ENOMEM);
}
moea_pvo_entries++;
pvo->pvo_vaddr = va;
pvo->pvo_pmap = pm;
LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
pvo->pvo_vaddr &= ~ADDR_POFF;
if (flags & PVO_WIRED)
pvo->pvo_vaddr |= PVO_WIRED;
if (pvo_head != &moea_pvo_kunmanaged)
pvo->pvo_vaddr |= PVO_MANAGED;
if (bootstrap)
pvo->pvo_vaddr |= PVO_BOOTSTRAP;
moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
/*
* Add to pmap list
*/
RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
/*
* Remember if the list was empty and therefore will be the first
* item.
*/
if (LIST_FIRST(pvo_head) == NULL)
first = 1;
LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
if (pvo->pvo_vaddr & PVO_WIRED)
pm->pm_stats.wired_count++;
pm->pm_stats.resident_count++;
i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
KASSERT(i < 8, ("Invalid PTE index"));
if (i >= 0) {
PVO_PTEGIDX_SET(pvo, i);
} else {
panic("moea_pvo_enter: overflow");
moea_pte_overflow++;
}
mtx_unlock(&moea_table_mutex);
return (first ? ENOENT : 0);
}
static void
moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
{
struct pte *pt;
/*
* If there is an active pte entry, we need to deactivate it (and
* save the ref & cfg bits).
*/
pt = moea_pvo_to_pte(pvo, pteidx);
if (pt != NULL) {
moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
mtx_unlock(&moea_table_mutex);
PVO_PTEGIDX_CLR(pvo);
} else {
moea_pte_overflow--;
}
/*
* Update our statistics.
*/
pvo->pvo_pmap->pm_stats.resident_count--;
if (pvo->pvo_vaddr & PVO_WIRED)
pvo->pvo_pmap->pm_stats.wired_count--;
/*
* Save the REF/CHG bits into their cache if the page is managed.
*/
if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
struct vm_page *pg;
pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
if (pg != NULL) {
moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
(PTE_REF | PTE_CHG));
}
}
/*
* Remove this PVO from the PV and pmap lists.
*/
LIST_REMOVE(pvo, pvo_vlink);
RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
/*
* Remove this from the overflow list and return it to the pool
* if we aren't going to reuse it.
*/
LIST_REMOVE(pvo, pvo_olink);
if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
moea_upvo_zone, pvo);
moea_pvo_entries--;
moea_pvo_remove_calls++;
}
static __inline int
moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
{
int pteidx;
/*
* We can find the actual pte entry without searching by grabbing
* the PTEG index from 3 unused bits in pte_lo[11:9] and by
* noticing the HID bit.
*/
pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
pteidx ^= moea_pteg_mask * 8;
return (pteidx);
}
static struct pvo_entry *
moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
{
struct pvo_entry *pvo;
int ptegidx;
u_int sr;
va &= ~ADDR_POFF;
sr = va_to_sr(pm->pm_sr, va);
ptegidx = va_to_pteg(sr, va);
mtx_lock(&moea_table_mutex);
LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
if (pteidx_p)
*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
break;
}
}
mtx_unlock(&moea_table_mutex);
return (pvo);
}
static struct pte *
moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
{
struct pte *pt;
/*
* If we haven't been supplied the ptegidx, calculate it.
*/
if (pteidx == -1) {
int ptegidx;
u_int sr;
sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
pteidx = moea_pvo_pte_index(pvo, ptegidx);
}
pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
mtx_lock(&moea_table_mutex);
if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
"valid pte index", pvo);
}
if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
"pvo but no valid pte", pvo);
}
if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
panic("moea_pvo_to_pte: pvo %p has valid pte in "
"moea_pteg_table %p but invalid in pvo", pvo, pt);
}
if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
!= 0) {
panic("moea_pvo_to_pte: pvo %p pte does not match "
"pte %p in moea_pteg_table", pvo, pt);
}
mtx_assert(&moea_table_mutex, MA_OWNED);
return (pt);
}
if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
"moea_pteg_table but valid in pvo: %8x, %8x", pvo, pt, pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
}
mtx_unlock(&moea_table_mutex);
return (NULL);
}
/*
* XXX: THIS STUFF SHOULD BE IN pte.c?
*/
int
moea_pte_spill(vm_offset_t addr)
{
struct pvo_entry *source_pvo, *victim_pvo;
struct pvo_entry *pvo;
int ptegidx, i, j;
u_int sr;
struct pteg *pteg;
struct pte *pt;
moea_pte_spills++;
sr = mfsrin(addr);
ptegidx = va_to_pteg(sr, addr);
/*
* Have to substitute some entry. Use the primary hash for this.
* Use low bits of timebase as random generator.
*/
pteg = &moea_pteg_table[ptegidx];
mtx_lock(&moea_table_mutex);
__asm __volatile("mftb %0" : "=r"(i));
i &= 7;
pt = &pteg->pt[i];
source_pvo = NULL;
victim_pvo = NULL;
LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
/*
* We need to find a pvo entry for this address.
*/
if (source_pvo == NULL &&
moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
/*
* Now found an entry to be spilled into the pteg.
* The PTE is now valid, so we know it's active.
*/
j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
if (j >= 0) {
PVO_PTEGIDX_SET(pvo, j);
moea_pte_overflow--;
mtx_unlock(&moea_table_mutex);
return (1);
}
source_pvo = pvo;
if (victim_pvo != NULL)
break;
}
/*
* We also need the pvo entry of the victim we are replacing
* so save the R & C bits of the PTE.
*/
if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
victim_pvo = pvo;
if (source_pvo != NULL)
break;
}
}
if (source_pvo == NULL) {
mtx_unlock(&moea_table_mutex);
return (0);
}
if (victim_pvo == NULL) {
if ((pt->pte_hi & PTE_HID) == 0)
panic("moea_pte_spill: victim p-pte (%p) has no pvo"
"entry", pt);
/*
* If this is a secondary PTE, we need to search it's primary
* pvo bucket for the matching PVO.
*/
LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
pvo_olink) {
/*
* We also need the pvo entry of the victim we are
* replacing so save the R & C bits of the PTE.
*/
if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
victim_pvo = pvo;
break;
}
}
if (victim_pvo == NULL)
panic("moea_pte_spill: victim s-pte (%p) has no pvo"
"entry", pt);
}
/*
* We are invalidating the TLB entry for the EA we are replacing even
* though it's valid. If we don't, we lose any ref/chg bit changes
* contained in the TLB entry.
*/
source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
moea_pte_set(pt, &source_pvo->pvo_pte.pte);
PVO_PTEGIDX_CLR(victim_pvo);
PVO_PTEGIDX_SET(source_pvo, i);
moea_pte_replacements++;
mtx_unlock(&moea_table_mutex);
return (1);
}
static __inline struct pvo_entry *
moea_pte_spillable_ident(u_int ptegidx)
{
struct pte *pt;
struct pvo_entry *pvo_walk, *pvo = NULL;
LIST_FOREACH(pvo_walk, &moea_pvo_table[ptegidx], pvo_olink) {
if (pvo_walk->pvo_vaddr & PVO_WIRED)
continue;
if (!(pvo_walk->pvo_pte.pte.pte_hi & PTE_VALID))
continue;
pt = moea_pvo_to_pte(pvo_walk, -1);
if (pt == NULL)
continue;
pvo = pvo_walk;
mtx_unlock(&moea_table_mutex);
if (!(pt->pte_lo & PTE_REF))
return (pvo_walk);
}
return (pvo);
}
static int
moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
{
struct pte *pt;
struct pvo_entry *victim_pvo;
int i;
int victim_idx;
u_int pteg_bkpidx = ptegidx;
mtx_assert(&moea_table_mutex, MA_OWNED);
/*
* First try primary hash.
*/
for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
if ((pt->pte_hi & PTE_VALID) == 0) {
pvo_pt->pte_hi &= ~PTE_HID;
moea_pte_set(pt, pvo_pt);
return (i);
}
}
/*
* Now try secondary hash.
*/
ptegidx ^= moea_pteg_mask;
for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
if ((pt->pte_hi & PTE_VALID) == 0) {
pvo_pt->pte_hi |= PTE_HID;
moea_pte_set(pt, pvo_pt);
return (i);
}
}
/* Try again, but this time try to force a PTE out. */
ptegidx = pteg_bkpidx;
victim_pvo = moea_pte_spillable_ident(ptegidx);
if (victim_pvo == NULL) {
ptegidx ^= moea_pteg_mask;
victim_pvo = moea_pte_spillable_ident(ptegidx);
}
if (victim_pvo == NULL) {
panic("moea_pte_insert: overflow");
return (-1);
}
victim_idx = moea_pvo_pte_index(victim_pvo, ptegidx);
if (pteg_bkpidx == ptegidx)
pvo_pt->pte_hi &= ~PTE_HID;
else
pvo_pt->pte_hi |= PTE_HID;
/*
* Synchronize the sacrifice PTE with its PVO, then mark both
* invalid. The PVO will be reused when/if the VM system comes
* here after a fault.
*/
pt = &moea_pteg_table[victim_idx >> 3].pt[victim_idx & 7];
if (pt->pte_hi != victim_pvo->pvo_pte.pte.pte_hi)
panic("Victim PVO doesn't match PTE! PVO: %8x, PTE: %8x", victim_pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
/*
* Set the new PTE.
*/
moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
PVO_PTEGIDX_CLR(victim_pvo);
moea_pte_overflow++;
moea_pte_set(pt, pvo_pt);
return (victim_idx & 7);
}
static boolean_t
moea_query_bit(vm_page_t m, int ptebit)
{
struct pvo_entry *pvo;
struct pte *pt;
rw_assert(&pvh_global_lock, RA_WLOCKED);
if (moea_attr_fetch(m) & ptebit)
return (TRUE);
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
/*
* See if we saved the bit off. If so, cache it and return
* success.
*/
if (pvo->pvo_pte.pte.pte_lo & ptebit) {
moea_attr_save(m, ptebit);
return (TRUE);
}
}
/*
* No luck, now go through the hard part of looking at the PTEs
* themselves. Sync so that any pending REF/CHG bits are flushed to
* the PTEs.
*/
powerpc_sync();
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
/*
* See if this pvo has a valid PTE. if so, fetch the
* REF/CHG bits from the valid PTE. If the appropriate
* ptebit is set, cache it and return success.
*/
pt = moea_pvo_to_pte(pvo, -1);
if (pt != NULL) {
moea_pte_synch(pt, &pvo->pvo_pte.pte);
mtx_unlock(&moea_table_mutex);
if (pvo->pvo_pte.pte.pte_lo & ptebit) {
moea_attr_save(m, ptebit);
return (TRUE);
}
}
}
return (FALSE);
}
static u_int
moea_clear_bit(vm_page_t m, int ptebit)
{
u_int count;
struct pvo_entry *pvo;
struct pte *pt;
rw_assert(&pvh_global_lock, RA_WLOCKED);
/*
* Clear the cached value.
*/
moea_attr_clear(m, ptebit);
/*
* Sync so that any pending REF/CHG bits are flushed to the PTEs (so
* we can reset the right ones). note that since the pvo entries and
* list heads are accessed via BAT0 and are never placed in the page
* table, we don't have to worry about further accesses setting the
* REF/CHG bits.
*/
powerpc_sync();
/*
* For each pvo entry, clear the pvo's ptebit. If this pvo has a
* valid pte clear the ptebit from the valid pte.
*/
count = 0;
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
pt = moea_pvo_to_pte(pvo, -1);
if (pt != NULL) {
moea_pte_synch(pt, &pvo->pvo_pte.pte);
if (pvo->pvo_pte.pte.pte_lo & ptebit) {
count++;
moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
}
mtx_unlock(&moea_table_mutex);
}
pvo->pvo_pte.pte.pte_lo &= ~ptebit;
}
return (count);
}
/*
* Return true if the physical range is encompassed by the battable[idx]
*/
static int
moea_bat_mapped(int idx, vm_paddr_t pa, vm_size_t size)
{
u_int prot;
u_int32_t start;
u_int32_t end;
u_int32_t bat_ble;
/*
* Return immediately if not a valid mapping
*/
if (!(battable[idx].batu & BAT_Vs))
return (EINVAL);
/*
* The BAT entry must be cache-inhibited, guarded, and r/w
* so it can function as an i/o page
*/
prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
if (prot != (BAT_I|BAT_G|BAT_PP_RW))
return (EPERM);
/*
* The address should be within the BAT range. Assume that the
* start address in the BAT has the correct alignment (thus
* not requiring masking)
*/
start = battable[idx].batl & BAT_PBS;
bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
end = start | (bat_ble << 15) | 0x7fff;
if ((pa < start) || ((pa + size) > end))
return (ERANGE);
return (0);
}
boolean_t
moea_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
{
int i;
/*
* This currently does not work for entries that
* overlap 256M BAT segments.
*/
for(i = 0; i < 16; i++)
if (moea_bat_mapped(i, pa, size) == 0)
return (0);
return (EFAULT);
}
/*
* Map a set of physical memory pages into the kernel virtual
* address space. Return a pointer to where it is mapped. This
* routine is intended to be used for mapping device memory,
* NOT real memory.
*/
void *
moea_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
{
return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
}
void *
moea_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
{
vm_offset_t va, tmpva, ppa, offset;
int i;
ppa = trunc_page(pa);
offset = pa & PAGE_MASK;
size = roundup(offset + size, PAGE_SIZE);
/*
* If the physical address lies within a valid BAT table entry,
* return the 1:1 mapping. This currently doesn't work
* for regions that overlap 256M BAT segments.
*/
for (i = 0; i < 16; i++) {
if (moea_bat_mapped(i, pa, size) == 0)
return ((void *) pa);
}
va = kva_alloc(size);
if (!va)
panic("moea_mapdev: Couldn't alloc kernel virtual memory");
for (tmpva = va; size > 0;) {
moea_kenter_attr(mmu, tmpva, ppa, ma);
tlbie(tmpva);
size -= PAGE_SIZE;
tmpva += PAGE_SIZE;
ppa += PAGE_SIZE;
}
return ((void *)(va + offset));
}
void
moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
{
vm_offset_t base, offset;
/*
* If this is outside kernel virtual space, then it's a
* battable entry and doesn't require unmapping
*/
if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
base = trunc_page(va);
offset = va & PAGE_MASK;
size = roundup(offset + size, PAGE_SIZE);
kva_free(base, size);
}
}
static void
moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
{
struct pvo_entry *pvo;
vm_offset_t lim;
vm_paddr_t pa;
vm_size_t len;
PMAP_LOCK(pm);
while (sz > 0) {
lim = round_page(va);
len = MIN(lim - va, sz);
pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
if (pvo != NULL) {
pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
(va & ADDR_POFF);
moea_syncicache(pa, len);
}
va += len;
sz -= len;
}
PMAP_UNLOCK(pm);
}
void
moea_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
{
*va = (void *)pa;
}
extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
void
moea_scan_init(mmu_t mmu)
{
struct pvo_entry *pvo;
vm_offset_t va;
int i;
if (!do_minidump) {
/* Initialize phys. segments for dumpsys(). */
memset(&dump_map, 0, sizeof(dump_map));
mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
for (i = 0; i < pregions_sz; i++) {
dump_map[i].pa_start = pregions[i].mr_start;
dump_map[i].pa_size = pregions[i].mr_size;
}
return;
}
/* Virtual segments for minidumps: */
memset(&dump_map, 0, sizeof(dump_map));
/* 1st: kernel .data and .bss. */
dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
dump_map[0].pa_size =
round_page((uintptr_t)_end) - dump_map[0].pa_start;
/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr;
dump_map[1].pa_size = round_page(msgbufp->msg_size);
/* 3rd: kernel VM. */
va = dump_map[1].pa_start + dump_map[1].pa_size;
/* Find start of next chunk (from va). */
while (va < virtual_end) {
/* Don't dump the buffer cache. */
if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
va = kmi.buffer_eva;
continue;
}
pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID))
break;
va += PAGE_SIZE;
}
if (va < virtual_end) {
dump_map[2].pa_start = va;
va += PAGE_SIZE;
/* Find last page in chunk. */
while (va < virtual_end) {
/* Don't run into the buffer cache. */
if (va == kmi.buffer_sva)
break;
pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF,
NULL);
if (pvo == NULL ||
!(pvo->pvo_pte.pte.pte_hi & PTE_VALID))
break;
va += PAGE_SIZE;
}
dump_map[2].pa_size = va - dump_map[2].pa_start;
}
}