freebsd-dev/sys/netinet/udp_usrreq.c
Robert Watson 59b8854eee Modify UDP to use sosend_dgram() instead of sosend(). This allows
for signicantly optimized UDP socket I/O when using a single UDP
socket from many threads or processes that share it, by avoiding
significant locking and other overhead in the general sosend()
path that isn't necessary for simple datagram sockets.  Specifically,
this change results in a significant performance improvement for
threaded name service in BIND9 under load.

Suggested by:	Jinmei_Tatsuya at isc dot org
2006-05-06 11:24:59 +00:00

1126 lines
28 KiB
C

/*-
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95
* $FreeBSD$
*/
#include "opt_ipfw.h"
#include "opt_ipsec.h"
#include "opt_inet6.h"
#include "opt_mac.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/domain.h>
#include <sys/eventhandler.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mac.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <vm/uma.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#ifdef INET6
#include <netinet/ip6.h>
#endif
#include <netinet/ip_icmp.h>
#include <netinet/icmp_var.h>
#include <netinet/ip_var.h>
#include <netinet/ip_options.h>
#ifdef INET6
#include <netinet6/ip6_var.h>
#endif
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#ifdef FAST_IPSEC
#include <netipsec/ipsec.h>
#endif /*FAST_IPSEC*/
#ifdef IPSEC
#include <netinet6/ipsec.h>
#endif /*IPSEC*/
#include <machine/in_cksum.h>
/*
* UDP protocol implementation.
* Per RFC 768, August, 1980.
*/
#ifndef COMPAT_42
static int udpcksum = 1;
#else
static int udpcksum = 0; /* XXX */
#endif
SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW,
&udpcksum, 0, "");
int log_in_vain = 0;
SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
&log_in_vain, 0, "Log all incoming UDP packets");
static int blackhole = 0;
SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW,
&blackhole, 0, "Do not send port unreachables for refused connects");
static int strict_mcast_mship = 0;
SYSCTL_INT(_net_inet_udp, OID_AUTO, strict_mcast_mship, CTLFLAG_RW,
&strict_mcast_mship, 0, "Only send multicast to member sockets");
struct inpcbhead udb; /* from udp_var.h */
#define udb6 udb /* for KAME src sync over BSD*'s */
struct inpcbinfo udbinfo;
#ifndef UDBHASHSIZE
#define UDBHASHSIZE 16
#endif
struct udpstat udpstat; /* from udp_var.h */
SYSCTL_STRUCT(_net_inet_udp, UDPCTL_STATS, stats, CTLFLAG_RW,
&udpstat, udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
static void udp_append(struct inpcb *last, struct ip *ip, struct mbuf *n,
int off, struct sockaddr_in *udp_in);
static void udp_detach(struct socket *so);
static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
struct mbuf *, struct thread *);
static void
udp_zone_change(void *tag)
{
uma_zone_set_max(udbinfo.ipi_zone, maxsockets);
}
void
udp_init()
{
INP_INFO_LOCK_INIT(&udbinfo, "udp");
LIST_INIT(&udb);
udbinfo.listhead = &udb;
udbinfo.hashbase = hashinit(UDBHASHSIZE, M_PCB, &udbinfo.hashmask);
udbinfo.porthashbase = hashinit(UDBHASHSIZE, M_PCB,
&udbinfo.porthashmask);
udbinfo.ipi_zone = uma_zcreate("udpcb", sizeof(struct inpcb), NULL,
NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
uma_zone_set_max(udbinfo.ipi_zone, maxsockets);
EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
EVENTHANDLER_PRI_ANY);
}
void
udp_input(m, off)
register struct mbuf *m;
int off;
{
int iphlen = off;
register struct ip *ip;
register struct udphdr *uh;
register struct inpcb *inp;
int len;
struct ip save_ip;
struct sockaddr_in udp_in;
#ifdef IPFIREWALL_FORWARD
struct m_tag *fwd_tag;
#endif
udpstat.udps_ipackets++;
/*
* Strip IP options, if any; should skip this,
* make available to user, and use on returned packets,
* but we don't yet have a way to check the checksum
* with options still present.
*/
if (iphlen > sizeof (struct ip)) {
ip_stripoptions(m, (struct mbuf *)0);
iphlen = sizeof(struct ip);
}
/*
* Get IP and UDP header together in first mbuf.
*/
ip = mtod(m, struct ip *);
if (m->m_len < iphlen + sizeof(struct udphdr)) {
if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == 0) {
udpstat.udps_hdrops++;
return;
}
ip = mtod(m, struct ip *);
}
uh = (struct udphdr *)((caddr_t)ip + iphlen);
/* destination port of 0 is illegal, based on RFC768. */
if (uh->uh_dport == 0)
goto badunlocked;
/*
* Construct sockaddr format source address.
* Stuff source address and datagram in user buffer.
*/
bzero(&udp_in, sizeof(udp_in));
udp_in.sin_len = sizeof(udp_in);
udp_in.sin_family = AF_INET;
udp_in.sin_port = uh->uh_sport;
udp_in.sin_addr = ip->ip_src;
/*
* Make mbuf data length reflect UDP length.
* If not enough data to reflect UDP length, drop.
*/
len = ntohs((u_short)uh->uh_ulen);
if (ip->ip_len != len) {
if (len > ip->ip_len || len < sizeof(struct udphdr)) {
udpstat.udps_badlen++;
goto badunlocked;
}
m_adj(m, len - ip->ip_len);
/* ip->ip_len = len; */
}
/*
* Save a copy of the IP header in case we want restore it
* for sending an ICMP error message in response.
*/
if (!blackhole)
save_ip = *ip;
/*
* Checksum extended UDP header and data.
*/
if (uh->uh_sum) {
if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
uh->uh_sum = m->m_pkthdr.csum_data;
else
uh->uh_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htonl((u_short)len +
m->m_pkthdr.csum_data + IPPROTO_UDP));
uh->uh_sum ^= 0xffff;
} else {
char b[9];
bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
bzero(((struct ipovly *)ip)->ih_x1, 9);
((struct ipovly *)ip)->ih_len = uh->uh_ulen;
uh->uh_sum = in_cksum(m, len + sizeof (struct ip));
bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
}
if (uh->uh_sum) {
udpstat.udps_badsum++;
m_freem(m);
return;
}
} else
udpstat.udps_nosum++;
#ifdef IPFIREWALL_FORWARD
/* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */
fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
if (fwd_tag != NULL) {
struct sockaddr_in *next_hop;
/* Do the hack. */
next_hop = (struct sockaddr_in *)(fwd_tag + 1);
ip->ip_dst = next_hop->sin_addr;
uh->uh_dport = ntohs(next_hop->sin_port);
/* Remove the tag from the packet. We don't need it anymore. */
m_tag_delete(m, fwd_tag);
}
#endif
INP_INFO_RLOCK(&udbinfo);
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
struct inpcb *last;
/*
* Deliver a multicast or broadcast datagram to *all* sockets
* for which the local and remote addresses and ports match
* those of the incoming datagram. This allows more than
* one process to receive multi/broadcasts on the same port.
* (This really ought to be done for unicast datagrams as
* well, but that would cause problems with existing
* applications that open both address-specific sockets and
* a wildcard socket listening to the same port -- they would
* end up receiving duplicates of every unicast datagram.
* Those applications open the multiple sockets to overcome an
* inadequacy of the UDP socket interface, but for backwards
* compatibility we avoid the problem here rather than
* fixing the interface. Maybe 4.5BSD will remedy this?)
*/
/*
* Locate pcb(s) for datagram.
* (Algorithm copied from raw_intr().)
*/
last = NULL;
LIST_FOREACH(inp, &udb, inp_list) {
if (inp->inp_lport != uh->uh_dport)
continue;
#ifdef INET6
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_laddr.s_addr != INADDR_ANY) {
if (inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
continue;
}
if (inp->inp_faddr.s_addr != INADDR_ANY) {
if (inp->inp_faddr.s_addr !=
ip->ip_src.s_addr ||
inp->inp_fport != uh->uh_sport)
continue;
}
INP_LOCK(inp);
/*
* Check multicast packets to make sure they are only
* sent to sockets with multicast memberships for the
* packet's destination address and arrival interface
*/
#define MSHIP(_inp, n) ((_inp)->inp_moptions->imo_membership[(n)])
#define NMSHIPS(_inp) ((_inp)->inp_moptions->imo_num_memberships)
if (strict_mcast_mship && inp->inp_moptions != NULL) {
int mship, foundmship = 0;
for (mship = 0; mship < NMSHIPS(inp); mship++) {
if (MSHIP(inp, mship)->inm_addr.s_addr
== ip->ip_dst.s_addr &&
MSHIP(inp, mship)->inm_ifp
== m->m_pkthdr.rcvif) {
foundmship = 1;
break;
}
}
if (foundmship == 0) {
INP_UNLOCK(inp);
continue;
}
}
#undef NMSHIPS
#undef MSHIP
if (last != NULL) {
struct mbuf *n;
n = m_copy(m, 0, M_COPYALL);
if (n != NULL)
udp_append(last, ip, n,
iphlen +
sizeof(struct udphdr),
&udp_in);
INP_UNLOCK(last);
}
last = inp;
/*
* Don't look for additional matches if this one does
* not have either the SO_REUSEPORT or SO_REUSEADDR
* socket options set. This heuristic avoids searching
* through all pcbs in the common case of a non-shared
* port. It * assumes that an application will never
* clear these options after setting them.
*/
if ((last->inp_socket->so_options&(SO_REUSEPORT|SO_REUSEADDR)) == 0)
break;
}
if (last == NULL) {
/*
* No matching pcb found; discard datagram.
* (No need to send an ICMP Port Unreachable
* for a broadcast or multicast datgram.)
*/
udpstat.udps_noportbcast++;
goto badheadlocked;
}
udp_append(last, ip, m, iphlen + sizeof(struct udphdr),
&udp_in);
INP_UNLOCK(last);
INP_INFO_RUNLOCK(&udbinfo);
return;
}
/*
* Locate pcb for datagram.
*/
inp = in_pcblookup_hash(&udbinfo, ip->ip_src, uh->uh_sport,
ip->ip_dst, uh->uh_dport, 1, m->m_pkthdr.rcvif);
if (inp == NULL) {
if (log_in_vain) {
char buf[4*sizeof "123"];
strcpy(buf, inet_ntoa(ip->ip_dst));
log(LOG_INFO,
"Connection attempt to UDP %s:%d from %s:%d\n",
buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src),
ntohs(uh->uh_sport));
}
udpstat.udps_noport++;
if (m->m_flags & (M_BCAST | M_MCAST)) {
udpstat.udps_noportbcast++;
goto badheadlocked;
}
if (blackhole)
goto badheadlocked;
if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
goto badheadlocked;
*ip = save_ip;
ip->ip_len += iphlen;
icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
INP_INFO_RUNLOCK(&udbinfo);
return;
}
INP_LOCK(inp);
/* Check the minimum TTL for socket. */
if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl)
goto badheadlocked;
udp_append(inp, ip, m, iphlen + sizeof(struct udphdr), &udp_in);
INP_UNLOCK(inp);
INP_INFO_RUNLOCK(&udbinfo);
return;
badheadlocked:
if (inp)
INP_UNLOCK(inp);
INP_INFO_RUNLOCK(&udbinfo);
badunlocked:
m_freem(m);
return;
}
/*
* Subroutine of udp_input(), which appends the provided mbuf chain to the
* passed pcb/socket. The caller must provide a sockaddr_in via udp_in that
* contains the source address. If the socket ends up being an IPv6 socket,
* udp_append() will convert to a sockaddr_in6 before passing the address
* into the socket code.
*/
static void
udp_append(inp, ip, n, off, udp_in)
struct inpcb *inp;
struct ip *ip;
struct mbuf *n;
int off;
struct sockaddr_in *udp_in;
{
struct sockaddr *append_sa;
struct socket *so;
struct mbuf *opts = 0;
#ifdef INET6
struct sockaddr_in6 udp_in6;
#endif
INP_LOCK_ASSERT(inp);
#if defined(IPSEC) || defined(FAST_IPSEC)
/* check AH/ESP integrity. */
if (ipsec4_in_reject(n, inp)) {
#ifdef IPSEC
ipsecstat.in_polvio++;
#endif /*IPSEC*/
m_freem(n);
return;
}
#endif /*IPSEC || FAST_IPSEC*/
#ifdef MAC
if (mac_check_inpcb_deliver(inp, n) != 0) {
m_freem(n);
return;
}
#endif
if (inp->inp_flags & INP_CONTROLOPTS ||
inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
#ifdef INET6
if (inp->inp_vflag & INP_IPV6) {
int savedflags;
savedflags = inp->inp_flags;
inp->inp_flags &= ~INP_UNMAPPABLEOPTS;
ip6_savecontrol(inp, n, &opts);
inp->inp_flags = savedflags;
} else
#endif
ip_savecontrol(inp, &opts, ip, n);
}
#ifdef INET6
if (inp->inp_vflag & INP_IPV6) {
bzero(&udp_in6, sizeof(udp_in6));
udp_in6.sin6_len = sizeof(udp_in6);
udp_in6.sin6_family = AF_INET6;
in6_sin_2_v4mapsin6(udp_in, &udp_in6);
append_sa = (struct sockaddr *)&udp_in6;
} else
#endif
append_sa = (struct sockaddr *)udp_in;
m_adj(n, off);
so = inp->inp_socket;
SOCKBUF_LOCK(&so->so_rcv);
if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
m_freem(n);
if (opts)
m_freem(opts);
udpstat.udps_fullsock++;
SOCKBUF_UNLOCK(&so->so_rcv);
} else
sorwakeup_locked(so);
}
/*
* Notify a udp user of an asynchronous error;
* just wake up so that he can collect error status.
*/
struct inpcb *
udp_notify(inp, errno)
register struct inpcb *inp;
int errno;
{
inp->inp_socket->so_error = errno;
sorwakeup(inp->inp_socket);
sowwakeup(inp->inp_socket);
return inp;
}
void
udp_ctlinput(cmd, sa, vip)
int cmd;
struct sockaddr *sa;
void *vip;
{
struct ip *ip = vip;
struct udphdr *uh;
struct inpcb *(*notify)(struct inpcb *, int) = udp_notify;
struct in_addr faddr;
struct inpcb *inp;
faddr = ((struct sockaddr_in *)sa)->sin_addr;
if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
return;
/*
* Redirects don't need to be handled up here.
*/
if (PRC_IS_REDIRECT(cmd))
return;
/*
* Hostdead is ugly because it goes linearly through all PCBs.
* XXX: We never get this from ICMP, otherwise it makes an
* excellent DoS attack on machines with many connections.
*/
if (cmd == PRC_HOSTDEAD)
ip = 0;
else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
return;
if (ip) {
uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
INP_INFO_RLOCK(&udbinfo);
inp = in_pcblookup_hash(&udbinfo, faddr, uh->uh_dport,
ip->ip_src, uh->uh_sport, 0, NULL);
if (inp != NULL) {
INP_LOCK(inp);
if (inp->inp_socket != NULL) {
(*notify)(inp, inetctlerrmap[cmd]);
}
INP_UNLOCK(inp);
}
INP_INFO_RUNLOCK(&udbinfo);
} else
in_pcbnotifyall(&udbinfo, faddr, inetctlerrmap[cmd], notify);
}
static int
udp_pcblist(SYSCTL_HANDLER_ARGS)
{
int error, i, n;
struct inpcb *inp, **inp_list;
inp_gen_t gencnt;
struct xinpgen xig;
/*
* The process of preparing the TCB list is too time-consuming and
* resource-intensive to repeat twice on every request.
*/
if (req->oldptr == 0) {
n = udbinfo.ipi_count;
req->oldidx = 2 * (sizeof xig)
+ (n + n/8) * sizeof(struct xinpcb);
return 0;
}
if (req->newptr != 0)
return EPERM;
/*
* OK, now we're committed to doing something.
*/
INP_INFO_RLOCK(&udbinfo);
gencnt = udbinfo.ipi_gencnt;
n = udbinfo.ipi_count;
INP_INFO_RUNLOCK(&udbinfo);
error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
+ n * sizeof(struct xinpcb));
if (error != 0)
return (error);
xig.xig_len = sizeof xig;
xig.xig_count = n;
xig.xig_gen = gencnt;
xig.xig_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xig, sizeof xig);
if (error)
return error;
inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
if (inp_list == 0)
return ENOMEM;
INP_INFO_RLOCK(&udbinfo);
for (inp = LIST_FIRST(udbinfo.listhead), i = 0; inp && i < n;
inp = LIST_NEXT(inp, inp_list)) {
INP_LOCK(inp);
if (inp->inp_gencnt <= gencnt &&
cr_canseesocket(req->td->td_ucred, inp->inp_socket) == 0)
inp_list[i++] = inp;
INP_UNLOCK(inp);
}
INP_INFO_RUNLOCK(&udbinfo);
n = i;
error = 0;
for (i = 0; i < n; i++) {
inp = inp_list[i];
if (inp->inp_gencnt <= gencnt) {
struct xinpcb xi;
bzero(&xi, sizeof(xi));
xi.xi_len = sizeof xi;
/* XXX should avoid extra copy */
bcopy(inp, &xi.xi_inp, sizeof *inp);
if (inp->inp_socket)
sotoxsocket(inp->inp_socket, &xi.xi_socket);
xi.xi_inp.inp_gencnt = inp->inp_gencnt;
error = SYSCTL_OUT(req, &xi, sizeof xi);
}
}
if (!error) {
/*
* Give the user an updated idea of our state.
* If the generation differs from what we told
* her before, she knows that something happened
* while we were processing this request, and it
* might be necessary to retry.
*/
INP_INFO_RLOCK(&udbinfo);
xig.xig_gen = udbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
xig.xig_count = udbinfo.ipi_count;
INP_INFO_RUNLOCK(&udbinfo);
error = SYSCTL_OUT(req, &xig, sizeof xig);
}
free(inp_list, M_TEMP);
return error;
}
SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
udp_pcblist, "S,xinpcb", "List of active UDP sockets");
static int
udp_getcred(SYSCTL_HANDLER_ARGS)
{
struct xucred xuc;
struct sockaddr_in addrs[2];
struct inpcb *inp;
int error;
error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
if (error)
return (error);
error = SYSCTL_IN(req, addrs, sizeof(addrs));
if (error)
return (error);
INP_INFO_RLOCK(&udbinfo);
inp = in_pcblookup_hash(&udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
addrs[0].sin_addr, addrs[0].sin_port, 1, NULL);
if (inp == NULL || inp->inp_socket == NULL) {
error = ENOENT;
goto out;
}
error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
if (error)
goto out;
cru2x(inp->inp_socket->so_cred, &xuc);
out:
INP_INFO_RUNLOCK(&udbinfo);
if (error == 0)
error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
return (error);
}
SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
static int
udp_output(inp, m, addr, control, td)
register struct inpcb *inp;
struct mbuf *m;
struct sockaddr *addr;
struct mbuf *control;
struct thread *td;
{
register struct udpiphdr *ui;
register int len = m->m_pkthdr.len;
struct in_addr faddr, laddr;
struct cmsghdr *cm;
struct sockaddr_in *sin, src;
int error = 0;
int ipflags;
u_short fport, lport;
int unlock_udbinfo;
/*
* udp_output() may need to temporarily bind or connect the current
* inpcb. As such, we don't know up front what inpcb locks we will
* need. Do any work to decide what is needed up front before
* acquiring locks.
*/
if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
if (control)
m_freem(control);
m_freem(m);
return EMSGSIZE;
}
src.sin_addr.s_addr = INADDR_ANY;
if (control != NULL) {
/*
* XXX: Currently, we assume all the optional information
* is stored in a single mbuf.
*/
if (control->m_next) {
m_freem(control);
m_freem(m);
return EINVAL;
}
for (; control->m_len > 0;
control->m_data += CMSG_ALIGN(cm->cmsg_len),
control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
cm = mtod(control, struct cmsghdr *);
if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 ||
cm->cmsg_len > control->m_len) {
error = EINVAL;
break;
}
if (cm->cmsg_level != IPPROTO_IP)
continue;
switch (cm->cmsg_type) {
case IP_SENDSRCADDR:
if (cm->cmsg_len !=
CMSG_LEN(sizeof(struct in_addr))) {
error = EINVAL;
break;
}
bzero(&src, sizeof(src));
src.sin_family = AF_INET;
src.sin_len = sizeof(src);
src.sin_port = inp->inp_lport;
src.sin_addr = *(struct in_addr *)CMSG_DATA(cm);
break;
default:
error = ENOPROTOOPT;
break;
}
if (error)
break;
}
m_freem(control);
}
if (error) {
m_freem(m);
return error;
}
if (src.sin_addr.s_addr != INADDR_ANY ||
addr != NULL) {
INP_INFO_WLOCK(&udbinfo);
unlock_udbinfo = 1;
} else
unlock_udbinfo = 0;
INP_LOCK(inp);
#ifdef MAC
mac_create_mbuf_from_inpcb(inp, m);
#endif
laddr = inp->inp_laddr;
lport = inp->inp_lport;
if (src.sin_addr.s_addr != INADDR_ANY) {
if (lport == 0) {
error = EINVAL;
goto release;
}
error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
&laddr.s_addr, &lport, td->td_ucred);
if (error)
goto release;
}
if (addr) {
sin = (struct sockaddr_in *)addr;
if (jailed(td->td_ucred))
prison_remote_ip(td->td_ucred, 0, &sin->sin_addr.s_addr);
if (inp->inp_faddr.s_addr != INADDR_ANY) {
error = EISCONN;
goto release;
}
error = in_pcbconnect_setup(inp, addr, &laddr.s_addr, &lport,
&faddr.s_addr, &fport, NULL, td->td_ucred);
if (error)
goto release;
/* Commit the local port if newly assigned. */
if (inp->inp_laddr.s_addr == INADDR_ANY &&
inp->inp_lport == 0) {
/*
* Remember addr if jailed, to prevent rebinding.
*/
if (jailed(td->td_ucred))
inp->inp_laddr = laddr;
inp->inp_lport = lport;
if (in_pcbinshash(inp) != 0) {
inp->inp_lport = 0;
error = EAGAIN;
goto release;
}
inp->inp_flags |= INP_ANONPORT;
}
} else {
faddr = inp->inp_faddr;
fport = inp->inp_fport;
if (faddr.s_addr == INADDR_ANY) {
error = ENOTCONN;
goto release;
}
}
/*
* Calculate data length and get a mbuf for UDP, IP, and possible
* link-layer headers. Immediate slide the data pointer back forward
* since we won't use that space at this layer.
*/
M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_DONTWAIT);
if (m == NULL) {
error = ENOBUFS;
goto release;
}
m->m_data += max_linkhdr;
m->m_len -= max_linkhdr;
m->m_pkthdr.len -= max_linkhdr;
/*
* Fill in mbuf with extended UDP header
* and addresses and length put into network format.
*/
ui = mtod(m, struct udpiphdr *);
bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */
ui->ui_pr = IPPROTO_UDP;
ui->ui_src = laddr;
ui->ui_dst = faddr;
ui->ui_sport = lport;
ui->ui_dport = fport;
ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
/*
* Set the Don't Fragment bit in the IP header.
*/
if (inp->inp_flags & INP_DONTFRAG) {
struct ip *ip;
ip = (struct ip *)&ui->ui_i;
ip->ip_off |= IP_DF;
}
ipflags = 0;
if (inp->inp_socket->so_options & SO_DONTROUTE)
ipflags |= IP_ROUTETOIF;
if (inp->inp_socket->so_options & SO_BROADCAST)
ipflags |= IP_ALLOWBROADCAST;
if (inp->inp_vflag & INP_ONESBCAST)
ipflags |= IP_SENDONES;
/*
* Set up checksum and output datagram.
*/
if (udpcksum) {
if (inp->inp_vflag & INP_ONESBCAST)
faddr.s_addr = INADDR_BROADCAST;
ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
htons((u_short)len + sizeof(struct udphdr) + IPPROTO_UDP));
m->m_pkthdr.csum_flags = CSUM_UDP;
m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
} else {
ui->ui_sum = 0;
}
((struct ip *)ui)->ip_len = sizeof (struct udpiphdr) + len;
((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */
((struct ip *)ui)->ip_tos = inp->inp_ip_tos; /* XXX */
udpstat.udps_opackets++;
if (unlock_udbinfo)
INP_INFO_WUNLOCK(&udbinfo);
error = ip_output(m, inp->inp_options, NULL, ipflags,
inp->inp_moptions, inp);
INP_UNLOCK(inp);
return (error);
release:
INP_UNLOCK(inp);
if (unlock_udbinfo)
INP_INFO_WUNLOCK(&udbinfo);
m_freem(m);
return (error);
}
u_long udp_sendspace = 9216; /* really max datagram size */
/* 40 1K datagrams */
SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
&udp_sendspace, 0, "Maximum outgoing UDP datagram size");
u_long udp_recvspace = 40 * (1024 +
#ifdef INET6
sizeof(struct sockaddr_in6)
#else
sizeof(struct sockaddr_in)
#endif
);
SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
&udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
static void
udp_abort(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
INP_INFO_WLOCK(&udbinfo);
INP_LOCK(inp);
soisdisconnected(so);
in_pcbdetach(inp);
in_pcbfree(inp);
INP_INFO_WUNLOCK(&udbinfo);
}
static int
udp_attach(struct socket *so, int proto, struct thread *td)
{
struct inpcb *inp;
int error;
inp = sotoinpcb(so);
KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
INP_INFO_WLOCK(&udbinfo);
error = soreserve(so, udp_sendspace, udp_recvspace);
if (error) {
INP_INFO_WUNLOCK(&udbinfo);
return error;
}
error = in_pcballoc(so, &udbinfo, "udpinp");
if (error) {
INP_INFO_WUNLOCK(&udbinfo);
return error;
}
inp = (struct inpcb *)so->so_pcb;
INP_LOCK(inp);
INP_INFO_WUNLOCK(&udbinfo);
inp->inp_vflag |= INP_IPV4;
inp->inp_ip_ttl = ip_defttl;
INP_UNLOCK(inp);
return 0;
}
static int
udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct inpcb *inp;
int error;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
INP_INFO_WLOCK(&udbinfo);
INP_LOCK(inp);
error = in_pcbbind(inp, nam, td->td_ucred);
INP_UNLOCK(inp);
INP_INFO_WUNLOCK(&udbinfo);
return error;
}
static int
udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct inpcb *inp;
int error;
struct sockaddr_in *sin;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
INP_INFO_WLOCK(&udbinfo);
INP_LOCK(inp);
if (inp->inp_faddr.s_addr != INADDR_ANY) {
INP_UNLOCK(inp);
INP_INFO_WUNLOCK(&udbinfo);
return EISCONN;
}
sin = (struct sockaddr_in *)nam;
if (jailed(td->td_ucred))
prison_remote_ip(td->td_ucred, 0, &sin->sin_addr.s_addr);
error = in_pcbconnect(inp, nam, td->td_ucred);
if (error == 0)
soisconnected(so);
INP_UNLOCK(inp);
INP_INFO_WUNLOCK(&udbinfo);
return error;
}
static void
udp_detach(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
INP_INFO_WLOCK(&udbinfo);
INP_LOCK(inp);
in_pcbdetach(inp);
in_pcbfree(inp);
INP_INFO_WUNLOCK(&udbinfo);
}
static int
udp_disconnect(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
INP_INFO_WLOCK(&udbinfo);
INP_LOCK(inp);
if (inp->inp_faddr.s_addr == INADDR_ANY) {
INP_INFO_WUNLOCK(&udbinfo);
INP_UNLOCK(inp);
return ENOTCONN;
}
in_pcbdisconnect(inp);
inp->inp_laddr.s_addr = INADDR_ANY;
INP_UNLOCK(inp);
INP_INFO_WUNLOCK(&udbinfo);
so->so_state &= ~SS_ISCONNECTED; /* XXX */
return 0;
}
static int
udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
struct mbuf *control, struct thread *td)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_send: inp == NULL"));
return udp_output(inp, m, addr, control, td);
}
int
udp_shutdown(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
INP_LOCK(inp);
socantsendmore(so);
INP_UNLOCK(inp);
return 0;
}
/*
* This is the wrapper function for in_setsockaddr. We just pass down
* the pcbinfo for in_setsockaddr to lock. We don't want to do the locking
* here because in_setsockaddr will call malloc and might block.
*/
static int
udp_sockaddr(struct socket *so, struct sockaddr **nam)
{
return (in_setsockaddr(so, nam, &udbinfo));
}
/*
* This is the wrapper function for in_setpeeraddr. We just pass down
* the pcbinfo for in_setpeeraddr to lock.
*/
static int
udp_peeraddr(struct socket *so, struct sockaddr **nam)
{
return (in_setpeeraddr(so, nam, &udbinfo));
}
struct pr_usrreqs udp_usrreqs = {
.pru_abort = udp_abort,
.pru_attach = udp_attach,
.pru_bind = udp_bind,
.pru_connect = udp_connect,
.pru_control = in_control,
.pru_detach = udp_detach,
.pru_disconnect = udp_disconnect,
.pru_peeraddr = udp_peeraddr,
.pru_send = udp_send,
.pru_sosend = sosend_dgram,
.pru_shutdown = udp_shutdown,
.pru_sockaddr = udp_sockaddr,
.pru_sosetlabel = in_pcbsosetlabel
};