freebsd-dev/sys/dev/ath/ath_hal/ar5211/ar5211_reset.c
2017-12-08 15:57:29 +00:00

2123 lines
63 KiB
C

/*-
* SPDX-License-Identifier: ISC
*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2006 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
/*
* Chips specific device attachment and device info collection
* Connects Init Reg Vectors, EEPROM Data, and device Functions.
*/
#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"
#include "ar5211/ar5211.h"
#include "ar5211/ar5211reg.h"
#include "ar5211/ar5211phy.h"
#include "ah_eeprom_v3.h"
/* Add static register initialization vectors */
#include "ar5211/boss.ini"
/*
* Structure to hold 11b tuning information for Beanie/Sombrero
* 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
*/
typedef struct {
uint32_t refClkSel; /* reference clock, 1 for 16 MHz */
uint32_t channelSelect; /* P[7:4]S[3:0] bits */
uint16_t channel5111; /* 11a channel for 5111 */
} CHAN_INFO_2GHZ;
#define CI_2GHZ_INDEX_CORRECTION 19
static const CHAN_INFO_2GHZ chan2GHzData[] = {
{ 1, 0x46, 96 }, /* 2312 -19 */
{ 1, 0x46, 97 }, /* 2317 -18 */
{ 1, 0x46, 98 }, /* 2322 -17 */
{ 1, 0x46, 99 }, /* 2327 -16 */
{ 1, 0x46, 100 }, /* 2332 -15 */
{ 1, 0x46, 101 }, /* 2337 -14 */
{ 1, 0x46, 102 }, /* 2342 -13 */
{ 1, 0x46, 103 }, /* 2347 -12 */
{ 1, 0x46, 104 }, /* 2352 -11 */
{ 1, 0x46, 105 }, /* 2357 -10 */
{ 1, 0x46, 106 }, /* 2362 -9 */
{ 1, 0x46, 107 }, /* 2367 -8 */
{ 1, 0x46, 108 }, /* 2372 -7 */
/* index -6 to 0 are pad to make this a nolookup table */
{ 1, 0x46, 116 }, /* -6 */
{ 1, 0x46, 116 }, /* -5 */
{ 1, 0x46, 116 }, /* -4 */
{ 1, 0x46, 116 }, /* -3 */
{ 1, 0x46, 116 }, /* -2 */
{ 1, 0x46, 116 }, /* -1 */
{ 1, 0x46, 116 }, /* 0 */
{ 1, 0x46, 116 }, /* 2412 1 */
{ 1, 0x46, 117 }, /* 2417 2 */
{ 1, 0x46, 118 }, /* 2422 3 */
{ 1, 0x46, 119 }, /* 2427 4 */
{ 1, 0x46, 120 }, /* 2432 5 */
{ 1, 0x46, 121 }, /* 2437 6 */
{ 1, 0x46, 122 }, /* 2442 7 */
{ 1, 0x46, 123 }, /* 2447 8 */
{ 1, 0x46, 124 }, /* 2452 9 */
{ 1, 0x46, 125 }, /* 2457 10 */
{ 1, 0x46, 126 }, /* 2462 11 */
{ 1, 0x46, 127 }, /* 2467 12 */
{ 1, 0x46, 128 }, /* 2472 13 */
{ 1, 0x44, 124 }, /* 2484 14 */
{ 1, 0x46, 136 }, /* 2512 15 */
{ 1, 0x46, 140 }, /* 2532 16 */
{ 1, 0x46, 144 }, /* 2552 17 */
{ 1, 0x46, 148 }, /* 2572 18 */
{ 1, 0x46, 152 }, /* 2592 19 */
{ 1, 0x46, 156 }, /* 2612 20 */
{ 1, 0x46, 160 }, /* 2632 21 */
{ 1, 0x46, 164 }, /* 2652 22 */
{ 1, 0x46, 168 }, /* 2672 23 */
{ 1, 0x46, 172 }, /* 2692 24 */
{ 1, 0x46, 176 }, /* 2712 25 */
{ 1, 0x46, 180 } /* 2732 26 */
};
/* Power timeouts in usec to wait for chip to wake-up. */
#define POWER_UP_TIME 2000
#define DELAY_PLL_SETTLE 300 /* 300 us */
#define DELAY_BASE_ACTIVATE 100 /* 100 us */
#define NUM_RATES 8
static HAL_BOOL ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask);
static HAL_BOOL ar5211SetChannel(struct ath_hal *,
const struct ieee80211_channel *);
static int16_t ar5211RunNoiseFloor(struct ath_hal *,
uint8_t runTime, int16_t startingNF);
static HAL_BOOL ar5211IsNfGood(struct ath_hal *,
struct ieee80211_channel *chan);
static HAL_BOOL ar5211SetRf6and7(struct ath_hal *,
const struct ieee80211_channel *chan);
static HAL_BOOL ar5211SetBoardValues(struct ath_hal *,
const struct ieee80211_channel *chan);
static void ar5211SetPowerTable(struct ath_hal *,
PCDACS_EEPROM *pSrcStruct, uint16_t channel);
static HAL_BOOL ar5211SetTransmitPower(struct ath_hal *,
const struct ieee80211_channel *);
static void ar5211SetRateTable(struct ath_hal *,
RD_EDGES_POWER *pRdEdgesPower, TRGT_POWER_INFO *pPowerInfo,
uint16_t numChannels, const struct ieee80211_channel *chan);
static uint16_t ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
const PCDACS_EEPROM *pSrcStruct);
static HAL_BOOL ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
static uint16_t ar5211GetInterpolatedValue(uint16_t target,
uint16_t srcLeft, uint16_t srcRight,
uint16_t targetLeft, uint16_t targetRight, HAL_BOOL scaleUp);
static void ar5211GetLowerUpperValues(uint16_t value,
const uint16_t *pList, uint16_t listSize,
uint16_t *pLowerValue, uint16_t *pUpperValue);
static void ar5211GetLowerUpperPcdacs(uint16_t pcdac,
uint16_t channel, const PCDACS_EEPROM *pSrcStruct,
uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
static void ar5211SetRfgain(struct ath_hal *, const GAIN_VALUES *);
static void ar5211RequestRfgain(struct ath_hal *);
static HAL_BOOL ar5211InvalidGainReadback(struct ath_hal *, GAIN_VALUES *);
static HAL_BOOL ar5211IsGainAdjustNeeded(struct ath_hal *, const GAIN_VALUES *);
static int32_t ar5211AdjustGain(struct ath_hal *, GAIN_VALUES *);
static void ar5211SetOperatingMode(struct ath_hal *, int opmode);
/*
* Places the device in and out of reset and then places sane
* values in the registers based on EEPROM config, initialization
* vectors (as determined by the mode), and station configuration
*
* bChannelChange is used to preserve DMA/PCU registers across
* a HW Reset during channel change.
*/
HAL_BOOL
ar5211Reset(struct ath_hal *ah, HAL_OPMODE opmode,
struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
HAL_RESET_TYPE resetType,
HAL_STATUS *status)
{
uint32_t softLedCfg, softLedState;
#define N(a) (sizeof (a) /sizeof (a[0]))
#define FAIL(_code) do { ecode = _code; goto bad; } while (0)
struct ath_hal_5211 *ahp = AH5211(ah);
HAL_CHANNEL_INTERNAL *ichan;
uint32_t i, ledstate;
HAL_STATUS ecode;
int q;
uint32_t data, synthDelay;
uint32_t macStaId1;
uint16_t modesIndex = 0, freqIndex = 0;
uint32_t saveFrameSeqCount[AR_NUM_DCU];
uint32_t saveTsfLow = 0, saveTsfHigh = 0;
uint32_t saveDefAntenna;
HALDEBUG(ah, HAL_DEBUG_RESET,
"%s: opmode %u channel %u/0x%x %s channel\n",
__func__, opmode, chan->ic_freq, chan->ic_flags,
bChannelChange ? "change" : "same");
OS_MARK(ah, AH_MARK_RESET, bChannelChange);
/*
* Map public channel to private.
*/
ichan = ath_hal_checkchannel(ah, chan);
if (ichan == AH_NULL)
FAIL(HAL_EINVAL);
switch (opmode) {
case HAL_M_STA:
case HAL_M_IBSS:
case HAL_M_HOSTAP:
case HAL_M_MONITOR:
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: invalid operating mode %u\n", __func__, opmode);
FAIL(HAL_EINVAL);
break;
}
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
/* Preserve certain DMA hardware registers on a channel change */
if (bChannelChange) {
/*
* Need to save/restore the TSF because of an issue
* that accelerates the TSF during a chip reset.
*
* We could use system timer routines to more
* accurately restore the TSF, but
* 1. Timer routines on certain platforms are
* not accurate enough (e.g. 1 ms resolution).
* 2. It would still not be accurate.
*
* The most important aspect of this workaround,
* is that, after reset, the TSF is behind
* other STAs TSFs. This will allow the STA to
* properly resynchronize its TSF in adhoc mode.
*/
saveTsfLow = OS_REG_READ(ah, AR_TSF_L32);
saveTsfHigh = OS_REG_READ(ah, AR_TSF_U32);
/* Read frame sequence count */
if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
saveFrameSeqCount[0] = OS_REG_READ(ah, AR_D0_SEQNUM);
} else {
for (i = 0; i < AR_NUM_DCU; i++)
saveFrameSeqCount[i] = OS_REG_READ(ah, AR_DSEQNUM(i));
}
if (!IEEE80211_IS_CHAN_DFS(chan))
chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
}
/*
* Preserve the antenna on a channel change
*/
saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
if (saveDefAntenna == 0)
saveDefAntenna = 1;
/* Save hardware flag before chip reset clears the register */
macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
/* Save led state from pci config register */
ledstate = OS_REG_READ(ah, AR_PCICFG) &
(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
AR_PCICFG_LEDSLOW);
softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
softLedState = OS_REG_READ(ah, AR_GPIODO);
if (!ar5211ChipReset(ah, chan)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
FAIL(HAL_EIO);
}
/* Setup the indices for the next set of register array writes */
if (IEEE80211_IS_CHAN_5GHZ(chan)) {
freqIndex = 1;
if (IEEE80211_IS_CHAN_TURBO(chan))
modesIndex = 2;
else if (IEEE80211_IS_CHAN_A(chan))
modesIndex = 1;
else {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: invalid channel %u/0x%x\n",
__func__, chan->ic_freq, chan->ic_flags);
FAIL(HAL_EINVAL);
}
} else {
freqIndex = 2;
if (IEEE80211_IS_CHAN_B(chan))
modesIndex = 3;
else if (IEEE80211_IS_CHAN_PUREG(chan))
modesIndex = 4;
else {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: invalid channel %u/0x%x\n",
__func__, chan->ic_freq, chan->ic_flags);
FAIL(HAL_EINVAL);
}
}
/* Set correct Baseband to analog shift setting to access analog chips. */
if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000007);
} else {
OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000047);
}
/* Write parameters specific to AR5211 */
if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
if (IEEE80211_IS_CHAN_2GHZ(chan) &&
AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1) {
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
uint32_t ob2GHz, db2GHz;
if (IEEE80211_IS_CHAN_CCK(chan)) {
ob2GHz = ee->ee_ob2GHz[0];
db2GHz = ee->ee_db2GHz[0];
} else {
ob2GHz = ee->ee_ob2GHz[1];
db2GHz = ee->ee_db2GHz[1];
}
ob2GHz = ath_hal_reverseBits(ob2GHz, 3);
db2GHz = ath_hal_reverseBits(db2GHz, 3);
ar5211Mode2_4[25][freqIndex] =
(ar5211Mode2_4[25][freqIndex] & ~0xC0) |
((ob2GHz << 6) & 0xC0);
ar5211Mode2_4[26][freqIndex] =
(ar5211Mode2_4[26][freqIndex] & ~0x0F) |
(((ob2GHz >> 2) & 0x1) |
((db2GHz << 1) & 0x0E));
}
for (i = 0; i < N(ar5211Mode2_4); i++)
OS_REG_WRITE(ah, ar5211Mode2_4[i][0],
ar5211Mode2_4[i][freqIndex]);
}
/* Write the analog registers 6 and 7 before other config */
ar5211SetRf6and7(ah, chan);
/* Write registers that vary across all modes */
for (i = 0; i < N(ar5211Modes); i++)
OS_REG_WRITE(ah, ar5211Modes[i][0], ar5211Modes[i][modesIndex]);
/* Write RFGain Parameters that differ between 2.4 and 5 GHz */
for (i = 0; i < N(ar5211BB_RfGain); i++)
OS_REG_WRITE(ah, ar5211BB_RfGain[i][0], ar5211BB_RfGain[i][freqIndex]);
/* Write Common Array Parameters */
for (i = 0; i < N(ar5211Common); i++) {
uint32_t reg = ar5211Common[i][0];
/* On channel change, don't reset the PCU registers */
if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
OS_REG_WRITE(ah, reg, ar5211Common[i][1]);
}
/* Fix pre-AR5211 register values, this includes AR5311s. */
if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
/*
* The TX and RX latency values have changed locations
* within the USEC register in AR5211. Since they're
* set via the .ini, for both AR5211 and AR5311, they
* are written properly here for AR5311.
*/
data = OS_REG_READ(ah, AR_USEC);
/* Must be 0 for proper write in AR5311 */
HALASSERT((data & 0x00700000) == 0);
OS_REG_WRITE(ah, AR_USEC,
(data & (AR_USEC_M | AR_USEC_32_M | AR5311_USEC_TX_LAT_M)) |
((29 << AR5311_USEC_RX_LAT_S) & AR5311_USEC_RX_LAT_M));
/* The following registers exist only on AR5311. */
OS_REG_WRITE(ah, AR5311_QDCLKGATE, 0);
/* Set proper ADC & DAC delays for AR5311. */
OS_REG_WRITE(ah, 0x00009878, 0x00000008);
/* Enable the PCU FIFO corruption ECO on AR5311. */
OS_REG_WRITE(ah, AR_DIAG_SW,
OS_REG_READ(ah, AR_DIAG_SW) | AR5311_DIAG_SW_USE_ECO);
}
/* Restore certain DMA hardware registers on a channel change */
if (bChannelChange) {
/* Restore TSF */
OS_REG_WRITE(ah, AR_TSF_L32, saveTsfLow);
OS_REG_WRITE(ah, AR_TSF_U32, saveTsfHigh);
if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
OS_REG_WRITE(ah, AR_D0_SEQNUM, saveFrameSeqCount[0]);
} else {
for (i = 0; i < AR_NUM_DCU; i++)
OS_REG_WRITE(ah, AR_DSEQNUM(i), saveFrameSeqCount[i]);
}
}
OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
| macStaId1
);
ar5211SetOperatingMode(ah, opmode);
/* Restore previous led state */
OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
OS_REG_WRITE(ah, AR_GPIODO, softLedState);
/* Restore previous antenna */
OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
/* Restore bmiss rssi & count thresholds */
OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
/*
* for pre-Production Oahu only.
* Disable clock gating in all DMA blocks. Helps when using
* 11B and AES but results in higher power consumption.
*/
if (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_OAHU &&
AH_PRIVATE(ah)->ah_macRev < AR_SREV_OAHU_PROD) {
OS_REG_WRITE(ah, AR_CFG,
OS_REG_READ(ah, AR_CFG) | AR_CFG_CLK_GATE_DIS);
}
/* Setup the transmit power values. */
if (!ar5211SetTransmitPower(ah, chan)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: error init'ing transmit power\n", __func__);
FAIL(HAL_EIO);
}
/*
* Configurable OFDM spoofing for 11n compatibility; used
* only when operating in station mode.
*/
if (opmode != HAL_M_HOSTAP &&
(AH_PRIVATE(ah)->ah_11nCompat & HAL_DIAG_11N_SERVICES) != 0) {
/* NB: override the .ini setting */
OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
AR_PHY_FRAME_CTL_ERR_SERV,
MS(AH_PRIVATE(ah)->ah_11nCompat, HAL_DIAG_11N_SERVICES)&1);
}
/* Setup board specific options for EEPROM version 3 */
ar5211SetBoardValues(ah, chan);
if (!ar5211SetChannel(ah, chan)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
__func__);
FAIL(HAL_EIO);
}
/* Activate the PHY */
if (AH_PRIVATE(ah)->ah_devid == AR5211_FPGA11B &&
IEEE80211_IS_CHAN_2GHZ(chan))
OS_REG_WRITE(ah, 0xd808, 0x502); /* required for FPGA */
OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
/*
* Wait for the frequency synth to settle (synth goes on
* via AR_PHY_ACTIVE_EN). Read the phy active delay register.
* Value is in 100ns increments.
*/
data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_M;
if (IEEE80211_IS_CHAN_CCK(chan)) {
synthDelay = (4 * data) / 22;
} else {
synthDelay = data / 10;
}
/*
* There is an issue if the AP starts the calibration before
* the baseband timeout completes. This could result in the
* rxclear false triggering. Add an extra delay to ensure this
* this does not happen.
*/
OS_DELAY(synthDelay + DELAY_BASE_ACTIVATE);
/* Calibrate the AGC and wait for completion. */
OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);
(void) ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0);
/* Perform noise floor and set status */
if (!ar5211CalNoiseFloor(ah, chan)) {
if (!IEEE80211_IS_CHAN_CCK(chan))
chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: noise floor calibration failed\n", __func__);
FAIL(HAL_EIO);
}
/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
if (ahp->ah_calibrationTime != 0) {
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4,
AR_PHY_TIMING_CTRL4_DO_IQCAL | (INIT_IQCAL_LOG_COUNT_MAX << AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX_S));
ahp->ah_bIQCalibration = AH_TRUE;
}
/* set 1:1 QCU to DCU mapping for all queues */
for (q = 0; q < AR_NUM_DCU; q++)
OS_REG_WRITE(ah, AR_DQCUMASK(q), 1<<q);
for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
ar5211ResetTxQueue(ah, q);
/* Setup QCU0 transmit interrupt masks (TX_ERR, TX_OK, TX_DESC, TX_URN) */
OS_REG_WRITE(ah, AR_IMR_S0,
(AR_IMR_S0_QCU_TXOK & AR_QCU_0) |
(AR_IMR_S0_QCU_TXDESC & (AR_QCU_0<<AR_IMR_S0_QCU_TXDESC_S)));
OS_REG_WRITE(ah, AR_IMR_S1, (AR_IMR_S1_QCU_TXERR & AR_QCU_0));
OS_REG_WRITE(ah, AR_IMR_S2, (AR_IMR_S2_QCU_TXURN & AR_QCU_0));
/*
* GBL_EIFS must always be written after writing
* to any QCUMASK register.
*/
OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, OS_REG_READ(ah, AR_D_GBL_IFS_EIFS));
/* Now set up the Interrupt Mask Register and save it for future use */
OS_REG_WRITE(ah, AR_IMR, INIT_INTERRUPT_MASK);
ahp->ah_maskReg = INIT_INTERRUPT_MASK;
/* Enable bus error interrupts */
OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) |
AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
/* Enable interrupts specific to AP */
if (opmode == HAL_M_HOSTAP) {
OS_REG_WRITE(ah, AR_IMR, OS_REG_READ(ah, AR_IMR) | AR_IMR_MIB);
ahp->ah_maskReg |= AR_IMR_MIB;
}
if (AH_PRIVATE(ah)->ah_rfkillEnabled)
ar5211EnableRfKill(ah);
/*
* Writing to AR_BEACON will start timers. Hence it should
* be the last register to be written. Do not reset tsf, do
* not enable beacons at this point, but preserve other values
* like beaconInterval.
*/
OS_REG_WRITE(ah, AR_BEACON,
(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
/* Restore user-specified slot time and timeouts */
if (ahp->ah_sifstime != (u_int) -1)
ar5211SetSifsTime(ah, ahp->ah_sifstime);
if (ahp->ah_slottime != (u_int) -1)
ar5211SetSlotTime(ah, ahp->ah_slottime);
if (ahp->ah_acktimeout != (u_int) -1)
ar5211SetAckTimeout(ah, ahp->ah_acktimeout);
if (ahp->ah_ctstimeout != (u_int) -1)
ar5211SetCTSTimeout(ah, ahp->ah_ctstimeout);
if (AH_PRIVATE(ah)->ah_diagreg != 0)
OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
return AH_TRUE;
bad:
if (status != AH_NULL)
*status = ecode;
return AH_FALSE;
#undef FAIL
#undef N
}
/*
* Places the PHY and Radio chips into reset. A full reset
* must be called to leave this state. The PCI/MAC/PCU are
* not placed into reset as we must receive interrupt to
* re-enable the hardware.
*/
HAL_BOOL
ar5211PhyDisable(struct ath_hal *ah)
{
return ar5211SetResetReg(ah, AR_RC_BB);
}
/*
* Places all of hardware into reset
*/
HAL_BOOL
ar5211Disable(struct ath_hal *ah)
{
if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
return AH_FALSE;
/*
* Reset the HW - PCI must be reset after the rest of the
* device has been reset.
*/
if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
return AH_FALSE;
OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
return AH_TRUE;
}
/*
* Places the hardware into reset and then pulls it out of reset
*
* Only write the PLL if we're changing to or from CCK mode
*
* Attach calls with channelFlags = 0, as the coldreset should have
* us in the correct mode and we cannot check the hwchannel flags.
*/
HAL_BOOL
ar5211ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
return AH_FALSE;
/* NB: called from attach with chan null */
if (chan != AH_NULL) {
/* Set CCK and Turbo modes correctly */
OS_REG_WRITE(ah, AR_PHY_TURBO, IEEE80211_IS_CHAN_TURBO(chan) ?
AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT : 0);
if (IEEE80211_IS_CHAN_B(chan)) {
OS_REG_WRITE(ah, AR5211_PHY_MODE,
AR5211_PHY_MODE_CCK | AR5211_PHY_MODE_RF2GHZ);
OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_44);
/* Wait for the PLL to settle */
OS_DELAY(DELAY_PLL_SETTLE);
} else if (AH_PRIVATE(ah)->ah_devid == AR5211_DEVID) {
OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_40);
OS_DELAY(DELAY_PLL_SETTLE);
OS_REG_WRITE(ah, AR5211_PHY_MODE,
AR5211_PHY_MODE_OFDM | (IEEE80211_IS_CHAN_2GHZ(chan) ?
AR5211_PHY_MODE_RF2GHZ :
AR5211_PHY_MODE_RF5GHZ));
}
}
/*
* Reset the HW - PCI must be reset after the rest of the
* device has been reset
*/
if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
return AH_FALSE;
OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
/* Bring out of sleep mode (AGAIN) */
if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
return AH_FALSE;
/* Clear warm reset register */
return ar5211SetResetReg(ah, 0);
}
/*
* Recalibrate the lower PHY chips to account for temperature/environment
* changes.
*/
HAL_BOOL
ar5211PerCalibrationN(struct ath_hal *ah, struct ieee80211_channel *chan,
u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone)
{
struct ath_hal_5211 *ahp = AH5211(ah);
HAL_CHANNEL_INTERNAL *ichan;
int32_t qCoff, qCoffDenom;
uint32_t data;
int32_t iqCorrMeas;
int32_t iCoff, iCoffDenom;
uint32_t powerMeasQ, powerMeasI;
ichan = ath_hal_checkchannel(ah, chan);
if (ichan == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: invalid channel %u/0x%x; no mapping\n",
__func__, chan->ic_freq, chan->ic_flags);
return AH_FALSE;
}
/* IQ calibration in progress. Check to see if it has finished. */
if (ahp->ah_bIQCalibration &&
!(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
/* IQ Calibration has finished. */
ahp->ah_bIQCalibration = AH_FALSE;
/* Read calibration results. */
powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
/*
* Prescale these values to remove 64-bit operation requirement at the loss
* of a little precision.
*/
iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
qCoffDenom = powerMeasQ / 64;
/* Protect against divide-by-0. */
if (iCoffDenom != 0 && qCoffDenom != 0) {
iCoff = (-iqCorrMeas) / iCoffDenom;
/* IQCORR_Q_I_COFF is a signed 6 bit number */
iCoff = iCoff & 0x3f;
qCoff = ((int32_t)powerMeasI / qCoffDenom) - 64;
/* IQCORR_Q_Q_COFF is a signed 5 bit number */
qCoff = qCoff & 0x1f;
HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasI = 0x%08x\n",
powerMeasI);
HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasQ = 0x%08x\n",
powerMeasQ);
HALDEBUG(ah, HAL_DEBUG_PERCAL, "iqCorrMeas = 0x%08x\n",
iqCorrMeas);
HALDEBUG(ah, HAL_DEBUG_PERCAL, "iCoff = %d\n",
iCoff);
HALDEBUG(ah, HAL_DEBUG_PERCAL, "qCoff = %d\n",
qCoff);
/* Write IQ */
data = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) |
AR_PHY_TIMING_CTRL4_IQCORR_ENABLE |
(((uint32_t)iCoff) << AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF_S) |
((uint32_t)qCoff);
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, data);
}
}
*isCalDone = !ahp->ah_bIQCalibration;
if (longCal) {
/* Perform noise floor and set status */
if (!ar5211IsNfGood(ah, chan)) {
/* report up and clear internal state */
chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
return AH_FALSE;
}
if (!ar5211CalNoiseFloor(ah, chan)) {
/*
* Delay 5ms before retrying the noise floor
* just to make sure, as we are in an error
* condition here.
*/
OS_DELAY(5000);
if (!ar5211CalNoiseFloor(ah, chan)) {
if (!IEEE80211_IS_CHAN_CCK(chan))
chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
return AH_FALSE;
}
}
ar5211RequestRfgain(ah);
}
return AH_TRUE;
}
HAL_BOOL
ar5211PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
HAL_BOOL *isIQdone)
{
return ar5211PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
}
HAL_BOOL
ar5211ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
/* XXX */
return AH_TRUE;
}
/*
* Writes the given reset bit mask into the reset register
*/
static HAL_BOOL
ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask)
{
uint32_t mask = resetMask ? resetMask : ~0;
HAL_BOOL rt;
(void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
OS_REG_WRITE(ah, AR_RC, resetMask);
/* need to wait at least 128 clocks when reseting PCI before read */
OS_DELAY(15);
resetMask &= AR_RC_MAC | AR_RC_BB;
mask &= AR_RC_MAC | AR_RC_BB;
rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
if ((resetMask & AR_RC_MAC) == 0) {
if (isBigEndian()) {
/*
* Set CFG, little-endian for descriptor accesses.
*/
mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD;
OS_REG_WRITE(ah, AR_CFG, mask);
} else
OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
}
return rt;
}
/*
* Takes the MHz channel value and sets the Channel value
*
* ASSUMES: Writes enabled to analog bus before AGC is active
* or by disabling the AGC.
*/
static HAL_BOOL
ar5211SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
uint32_t refClk, reg32, data2111;
int16_t chan5111, chanIEEE;
chanIEEE = chan->ic_ieee;
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
const CHAN_INFO_2GHZ* ci =
&chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
<< 5)
| (ci->refClkSel << 4);
chan5111 = ci->channel5111;
} else {
data2111 = 0;
chan5111 = chanIEEE;
}
/* Rest of the code is common for 5 GHz and 2.4 GHz. */
if (chan5111 >= 145 || (chan5111 & 0x1)) {
reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xFF;
refClk = 1;
} else {
reg32 = ath_hal_reverseBits(((chan5111 - 24) / 2), 8) & 0xFF;
refClk = 0;
}
reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
reg32 >>= 8;
OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
AH_PRIVATE(ah)->ah_curchan = chan;
return AH_TRUE;
}
static int16_t
ar5211GetNoiseFloor(struct ath_hal *ah)
{
int16_t nf;
nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
return nf;
}
/*
* Peform the noisefloor calibration for the length of time set
* in runTime (valid values 1 to 7)
*
* Returns: The NF value at the end of the given time (or 0 for failure)
*/
int16_t
ar5211RunNoiseFloor(struct ath_hal *ah, uint8_t runTime, int16_t startingNF)
{
int i, searchTime;
HALASSERT(runTime <= 7);
/* Setup noise floor run time and starting value */
OS_REG_WRITE(ah, AR_PHY(25),
(OS_REG_READ(ah, AR_PHY(25)) & ~0xFFF) |
((runTime << 9) & 0xE00) | (startingNF & 0x1FF));
/* Calibrate the noise floor */
OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF);
/* Compute the required amount of searchTime needed to finish NF */
if (runTime == 0) {
/* 8 search windows * 6.4us each */
searchTime = 8 * 7;
} else {
/* 512 * runtime search windows * 6.4us each */
searchTime = (runTime * 512) * 7;
}
/*
* Do not read noise floor until it has been updated
*
* As a guesstimate - we may only get 1/60th the time on
* the air to see search windows in a heavily congested
* network (40 us every 2400 us of time)
*/
for (i = 0; i < 60; i++) {
if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0)
break;
OS_DELAY(searchTime);
}
if (i >= 60) {
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF with runTime %d failed to end on channel %d\n",
runTime, AH_PRIVATE(ah)->ah_curchan->ic_freq);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
" PHY NF Reg state: 0x%x\n",
OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
HALDEBUG(ah, HAL_DEBUG_NFCAL,
" PHY Active Reg state: 0x%x\n",
OS_REG_READ(ah, AR_PHY_ACTIVE));
return 0;
}
return ar5211GetNoiseFloor(ah);
}
static HAL_BOOL
getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan,
int16_t *nft)
{
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
case IEEE80211_CHAN_A:
*nft = ee->ee_noiseFloorThresh[0];
break;
case IEEE80211_CHAN_B:
*nft = ee->ee_noiseFloorThresh[1];
break;
case IEEE80211_CHAN_PUREG:
*nft = ee->ee_noiseFloorThresh[2];
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
__func__, chan->ic_flags);
return AH_FALSE;
}
return AH_TRUE;
}
/*
* Read the NF and check it against the noise floor threshold
*
* Returns: TRUE if the NF is good
*/
static HAL_BOOL
ar5211IsNfGood(struct ath_hal *ah, struct ieee80211_channel *chan)
{
HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
int16_t nf, nfThresh;
if (!getNoiseFloorThresh(ah, chan, &nfThresh))
return AH_FALSE;
if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: NF did not complete in calibration window\n", __func__);
}
nf = ar5211GetNoiseFloor(ah);
if (nf > nfThresh) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: noise floor failed; detected %u, threshold %u\n",
__func__, nf, nfThresh);
/*
* NB: Don't discriminate 2.4 vs 5Ghz, if this
* happens it indicates a problem regardless
* of the band.
*/
chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
}
ichan->rawNoiseFloor = nf;
return (nf <= nfThresh);
}
/*
* Peform the noisefloor calibration and check for any constant channel
* interference.
*
* NOTE: preAR5211 have a lengthy carrier wave detection process - hence
* it is if'ed for MKK regulatory domain only.
*
* Returns: TRUE for a successful noise floor calibration; else FALSE
*/
HAL_BOOL
ar5211CalNoiseFloor(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
#define N(a) (sizeof (a) / sizeof (a[0]))
/* Check for Carrier Wave interference in MKK regulatory zone */
if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU &&
(chan->ic_flags & CHANNEL_NFCREQUIRED)) {
static const uint8_t runtime[3] = { 0, 2, 7 };
HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
int16_t nf, nfThresh;
int i;
if (!getNoiseFloorThresh(ah, chan, &nfThresh))
return AH_FALSE;
/*
* Run a quick noise floor that will hopefully
* complete (decrease delay time).
*/
for (i = 0; i < N(runtime); i++) {
nf = ar5211RunNoiseFloor(ah, runtime[i], 0);
if (nf > nfThresh) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: run failed with %u > threshold %u "
"(runtime %u)\n", __func__,
nf, nfThresh, runtime[i]);
ichan->rawNoiseFloor = 0;
} else
ichan->rawNoiseFloor = nf;
}
return (i <= N(runtime));
} else {
/* Calibrate the noise floor */
OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
OS_REG_READ(ah, AR_PHY_AGC_CONTROL) |
AR_PHY_AGC_CONTROL_NF);
}
return AH_TRUE;
#undef N
}
/*
* Adjust NF based on statistical values for 5GHz frequencies.
*/
int16_t
ar5211GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
{
static const struct {
uint16_t freqLow;
int16_t adjust;
} adjust5111[] = {
{ 5790, 11 }, /* NB: ordered high -> low */
{ 5730, 10 },
{ 5690, 9 },
{ 5660, 8 },
{ 5610, 7 },
{ 5530, 5 },
{ 5450, 4 },
{ 5379, 2 },
{ 5209, 0 }, /* XXX? bogus but doesn't matter */
{ 0, 1 },
};
int i;
for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
;
/* NB: placeholder for 5111's less severe requirement */
return adjust5111[i].adjust / 3;
}
/*
* Reads EEPROM header info from device structure and programs
* analog registers 6 and 7
*
* REQUIRES: Access to the analog device
*/
static HAL_BOOL
ar5211SetRf6and7(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
#define N(a) (sizeof (a) / sizeof (a[0]))
uint16_t freq = ath_hal_gethwchannel(ah, chan);
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
struct ath_hal_5211 *ahp = AH5211(ah);
uint16_t rfXpdGain, rfPloSel, rfPwdXpd;
uint16_t tempOB, tempDB;
uint16_t freqIndex;
int i;
freqIndex = IEEE80211_IS_CHAN_2GHZ(chan) ? 2 : 1;
/*
* TODO: This array mode correspondes with the index used
* during the read.
* For readability, this should be changed to an enum or #define
*/
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
case IEEE80211_CHAN_A:
if (freq > 4000 && freq < 5260) {
tempOB = ee->ee_ob1;
tempDB = ee->ee_db1;
} else if (freq >= 5260 && freq < 5500) {
tempOB = ee->ee_ob2;
tempDB = ee->ee_db2;
} else if (freq >= 5500 && freq < 5725) {
tempOB = ee->ee_ob3;
tempDB = ee->ee_db3;
} else if (freq >= 5725) {
tempOB = ee->ee_ob4;
tempDB = ee->ee_db4;
} else {
/* XXX panic?? */
tempOB = tempDB = 0;
}
rfXpdGain = ee->ee_xgain[0];
rfPloSel = ee->ee_xpd[0];
rfPwdXpd = !ee->ee_xpd[0];
ar5211Rf6n7[5][freqIndex] =
(ar5211Rf6n7[5][freqIndex] & ~0x10000000) |
(ee->ee_cornerCal.pd84<< 28);
ar5211Rf6n7[6][freqIndex] =
(ar5211Rf6n7[6][freqIndex] & ~0x04000000) |
(ee->ee_cornerCal.pd90 << 26);
ar5211Rf6n7[21][freqIndex] =
(ar5211Rf6n7[21][freqIndex] & ~0x08) |
(ee->ee_cornerCal.gSel << 3);
break;
case IEEE80211_CHAN_B:
tempOB = ee->ee_obFor24;
tempDB = ee->ee_dbFor24;
rfXpdGain = ee->ee_xgain[1];
rfPloSel = ee->ee_xpd[1];
rfPwdXpd = !ee->ee_xpd[1];
break;
case IEEE80211_CHAN_PUREG:
tempOB = ee->ee_obFor24g;
tempDB = ee->ee_dbFor24g;
rfXpdGain = ee->ee_xgain[2];
rfPloSel = ee->ee_xpd[2];
rfPwdXpd = !ee->ee_xpd[2];
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
__func__, chan->ic_flags);
return AH_FALSE;
}
HALASSERT(1 <= tempOB && tempOB <= 5);
HALASSERT(1 <= tempDB && tempDB <= 5);
/* Set rfXpdGain and rfPwdXpd */
ar5211Rf6n7[11][freqIndex] = (ar5211Rf6n7[11][freqIndex] & ~0xC0) |
(((ath_hal_reverseBits(rfXpdGain, 4) << 7) | (rfPwdXpd << 6)) & 0xC0);
ar5211Rf6n7[12][freqIndex] = (ar5211Rf6n7[12][freqIndex] & ~0x07) |
((ath_hal_reverseBits(rfXpdGain, 4) >> 1) & 0x07);
/* Set OB */
ar5211Rf6n7[12][freqIndex] = (ar5211Rf6n7[12][freqIndex] & ~0x80) |
((ath_hal_reverseBits(tempOB, 3) << 7) & 0x80);
ar5211Rf6n7[13][freqIndex] = (ar5211Rf6n7[13][freqIndex] & ~0x03) |
((ath_hal_reverseBits(tempOB, 3) >> 1) & 0x03);
/* Set DB */
ar5211Rf6n7[13][freqIndex] = (ar5211Rf6n7[13][freqIndex] & ~0x1C) |
((ath_hal_reverseBits(tempDB, 3) << 2) & 0x1C);
/* Set rfPloSel */
ar5211Rf6n7[17][freqIndex] = (ar5211Rf6n7[17][freqIndex] & ~0x08) |
((rfPloSel << 3) & 0x08);
/* Write the Rf registers 6 & 7 */
for (i = 0; i < N(ar5211Rf6n7); i++)
OS_REG_WRITE(ah, ar5211Rf6n7[i][0], ar5211Rf6n7[i][freqIndex]);
/* Now that we have reprogrammed rfgain value, clear the flag. */
ahp->ah_rfgainState = RFGAIN_INACTIVE;
return AH_TRUE;
#undef N
}
HAL_BOOL
ar5211SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
const struct ieee80211_channel *chan)
{
#define ANT_SWITCH_TABLE1 0x9960
#define ANT_SWITCH_TABLE2 0x9964
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
struct ath_hal_5211 *ahp = AH5211(ah);
uint32_t antSwitchA, antSwitchB;
int ix;
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
case IEEE80211_CHAN_A: ix = 0; break;
case IEEE80211_CHAN_B: ix = 1; break;
case IEEE80211_CHAN_PUREG: ix = 2; break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
__func__, chan->ic_flags);
return AH_FALSE;
}
antSwitchA = ee->ee_antennaControl[1][ix]
| (ee->ee_antennaControl[2][ix] << 6)
| (ee->ee_antennaControl[3][ix] << 12)
| (ee->ee_antennaControl[4][ix] << 18)
| (ee->ee_antennaControl[5][ix] << 24)
;
antSwitchB = ee->ee_antennaControl[6][ix]
| (ee->ee_antennaControl[7][ix] << 6)
| (ee->ee_antennaControl[8][ix] << 12)
| (ee->ee_antennaControl[9][ix] << 18)
| (ee->ee_antennaControl[10][ix] << 24)
;
/*
* For fixed antenna, give the same setting for both switch banks
*/
switch (settings) {
case HAL_ANT_FIXED_A:
antSwitchB = antSwitchA;
break;
case HAL_ANT_FIXED_B:
antSwitchA = antSwitchB;
break;
case HAL_ANT_VARIABLE:
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
__func__, settings);
return AH_FALSE;
}
ahp->ah_diversityControl = settings;
OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
return AH_TRUE;
#undef ANT_SWITCH_TABLE1
#undef ANT_SWITCH_TABLE2
}
/*
* Reads EEPROM header info and programs the device for correct operation
* given the channel value
*/
static HAL_BOOL
ar5211SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
struct ath_hal_5211 *ahp = AH5211(ah);
int arrayMode, falseDectectBackoff;
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
case IEEE80211_CHAN_A:
arrayMode = 0;
OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
AR_PHY_FRAME_CTL_TX_CLIP, ee->ee_cornerCal.clip);
break;
case IEEE80211_CHAN_B:
arrayMode = 1;
break;
case IEEE80211_CHAN_PUREG:
arrayMode = 2;
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
__func__, chan->ic_flags);
return AH_FALSE;
}
/* Set the antenna register(s) correctly for the chip revision */
if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
OS_REG_WRITE(ah, AR_PHY(68),
(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) | 0x3);
} else {
OS_REG_WRITE(ah, AR_PHY(68),
(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFC06) |
(ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
ar5211SetAntennaSwitchInternal(ah,
ahp->ah_diversityControl, chan);
/* Set the Noise Floor Thresh on ar5211 devices */
OS_REG_WRITE(ah, AR_PHY_BASE + (90 << 2),
(ee->ee_noiseFloorThresh[arrayMode] & 0x1FF) | (1<<9));
}
OS_REG_WRITE(ah, AR_PHY_BASE + (17 << 2),
(OS_REG_READ(ah, AR_PHY_BASE + (17 << 2)) & 0xFFFFC07F) |
((ee->ee_switchSettling[arrayMode] << 7) & 0x3F80));
OS_REG_WRITE(ah, AR_PHY_BASE + (18 << 2),
(OS_REG_READ(ah, AR_PHY_BASE + (18 << 2)) & 0xFFFC0FFF) |
((ee->ee_txrxAtten[arrayMode] << 12) & 0x3F000));
OS_REG_WRITE(ah, AR_PHY_BASE + (20 << 2),
(OS_REG_READ(ah, AR_PHY_BASE + (20 << 2)) & 0xFFFF0000) |
((ee->ee_pgaDesiredSize[arrayMode] << 8) & 0xFF00) |
(ee->ee_adcDesiredSize[arrayMode] & 0x00FF));
OS_REG_WRITE(ah, AR_PHY_BASE + (13 << 2),
(ee->ee_txEndToXPAOff[arrayMode] << 24) |
(ee->ee_txEndToXPAOff[arrayMode] << 16) |
(ee->ee_txFrameToXPAOn[arrayMode] << 8) |
ee->ee_txFrameToXPAOn[arrayMode]);
OS_REG_WRITE(ah, AR_PHY_BASE + (10 << 2),
(OS_REG_READ(ah, AR_PHY_BASE + (10 << 2)) & 0xFFFF00FF) |
(ee->ee_txEndToXLNAOn[arrayMode] << 8));
OS_REG_WRITE(ah, AR_PHY_BASE + (25 << 2),
(OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) & 0xFFF80FFF) |
((ee->ee_thresh62[arrayMode] << 12) & 0x7F000));
#define NO_FALSE_DETECT_BACKOFF 2
#define CB22_FALSE_DETECT_BACKOFF 6
/*
* False detect backoff - suspected 32 MHz spur causes
* false detects in OFDM, causing Tx Hangs. Decrease
* weak signal sensitivity for this card.
*/
falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
if (AH_PRIVATE(ah)->ah_eeversion < AR_EEPROM_VER3_3) {
if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
IEEE80211_IS_CHAN_OFDM(chan))
falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
} else {
uint16_t freq = ath_hal_gethwchannel(ah, chan);
uint32_t remainder = freq % 32;
if (remainder && (remainder < 10 || remainder > 22))
falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
}
OS_REG_WRITE(ah, 0x9924,
(OS_REG_READ(ah, 0x9924) & 0xFFFFFF01)
| ((falseDectectBackoff << 1) & 0xF7));
return AH_TRUE;
#undef NO_FALSE_DETECT_BACKOFF
#undef CB22_FALSE_DETECT_BACKOFF
}
/*
* Set the limit on the overall output power. Used for dynamic
* transmit power control and the like.
*
* NOTE: The power is passed in is in units of 0.5 dBm.
*/
HAL_BOOL
ar5211SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
{
AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, limit);
return AH_TRUE;
}
/*
* Sets the transmit power in the baseband for the given
* operating channel and mode.
*/
static HAL_BOOL
ar5211SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
uint16_t freq = ath_hal_gethwchannel(ah, chan);
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
TRGT_POWER_INFO *pi;
RD_EDGES_POWER *rep;
PCDACS_EEPROM eepromPcdacs;
u_int nchan, cfgCtl;
int i;
/* setup the pcdac struct to point to the correct info, based on mode */
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
case IEEE80211_CHAN_A:
eepromPcdacs.numChannels = ee->ee_numChannels11a;
eepromPcdacs.pChannelList= ee->ee_channels11a;
eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
nchan = ee->ee_numTargetPwr_11a;
pi = ee->ee_trgtPwr_11a;
break;
case IEEE80211_CHAN_PUREG:
eepromPcdacs.numChannels = ee->ee_numChannels2_4;
eepromPcdacs.pChannelList= ee->ee_channels11g;
eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
nchan = ee->ee_numTargetPwr_11g;
pi = ee->ee_trgtPwr_11g;
break;
case IEEE80211_CHAN_B:
eepromPcdacs.numChannels = ee->ee_numChannels2_4;
eepromPcdacs.pChannelList= ee->ee_channels11b;
eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
nchan = ee->ee_numTargetPwr_11b;
pi = ee->ee_trgtPwr_11b;
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
__func__, chan->ic_flags);
return AH_FALSE;
}
ar5211SetPowerTable(ah, &eepromPcdacs, freq);
rep = AH_NULL;
/* Match CTL to EEPROM value */
cfgCtl = ath_hal_getctl(ah, chan);
for (i = 0; i < ee->ee_numCtls; i++)
if (ee->ee_ctl[i] != 0 && ee->ee_ctl[i] == cfgCtl) {
rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
break;
}
ar5211SetRateTable(ah, rep, pi, nchan, chan);
return AH_TRUE;
}
/*
* Read the transmit power levels from the structures taken
* from EEPROM. Interpolate read transmit power values for
* this channel. Organize the transmit power values into a
* table for writing into the hardware.
*/
void
ar5211SetPowerTable(struct ath_hal *ah, PCDACS_EEPROM *pSrcStruct,
uint16_t channel)
{
static FULL_PCDAC_STRUCT pcdacStruct;
static uint16_t pcdacTable[PWR_TABLE_SIZE];
uint16_t i, j;
uint16_t *pPcdacValues;
int16_t *pScaledUpDbm;
int16_t minScaledPwr;
int16_t maxScaledPwr;
int16_t pwr;
uint16_t pcdacMin = 0;
uint16_t pcdacMax = 63;
uint16_t pcdacTableIndex;
uint16_t scaledPcdac;
uint32_t addr;
uint32_t temp32;
OS_MEMZERO(&pcdacStruct, sizeof(FULL_PCDAC_STRUCT));
OS_MEMZERO(pcdacTable, sizeof(uint16_t) * PWR_TABLE_SIZE);
pPcdacValues = pcdacStruct.PcdacValues;
pScaledUpDbm = pcdacStruct.PwrValues;
/* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
pPcdacValues[j] = i;
pcdacStruct.numPcdacValues = j;
pcdacStruct.pcdacMin = PCDAC_START;
pcdacStruct.pcdacMax = PCDAC_STOP;
/* Fill out the power values for this channel */
for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
pScaledUpDbm[j] = ar5211GetScaledPower(channel, pPcdacValues[j], pSrcStruct);
/* Now scale the pcdac values to fit in the 64 entry power table */
minScaledPwr = pScaledUpDbm[0];
maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
/* find minimum and make monotonic */
for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
if (minScaledPwr >= pScaledUpDbm[j]) {
minScaledPwr = pScaledUpDbm[j];
pcdacMin = j;
}
/*
* Make the full_hsh monotonically increasing otherwise
* interpolation algorithm will get fooled gotta start
* working from the top, hence i = 63 - j.
*/
i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
if (i == 0)
break;
if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
/*
* It could be a glitch, so make the power for
* this pcdac the same as the power from the
* next highest pcdac.
*/
pScaledUpDbm[i - 1] = pScaledUpDbm[i];
}
}
for (j = 0; j < pcdacStruct.numPcdacValues; j++)
if (maxScaledPwr < pScaledUpDbm[j]) {
maxScaledPwr = pScaledUpDbm[j];
pcdacMax = j;
}
/* Find the first power level with a pcdac */
pwr = (uint16_t)(PWR_STEP * ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
/* Write all the first pcdac entries based off the pcdacMin */
pcdacTableIndex = 0;
for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++)
pcdacTable[pcdacTableIndex++] = pcdacMin;
i = 0;
while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1]) {
pwr += PWR_STEP;
/* stop if dbM > max_power_possible */
while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
(pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
i++;
/* scale by 2 and add 1 to enable round up or down as needed */
scaledPcdac = (uint16_t)(ar5211GetInterpolatedValue(pwr,
pScaledUpDbm[i], pScaledUpDbm[i+1],
(uint16_t)(pPcdacValues[i] * 2),
(uint16_t)(pPcdacValues[i+1] * 2), 0) + 1);
pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
if (pcdacTable[pcdacTableIndex] > pcdacMax)
pcdacTable[pcdacTableIndex] = pcdacMax;
pcdacTableIndex++;
}
/* Write all the last pcdac entries based off the last valid pcdac */
while (pcdacTableIndex < PWR_TABLE_SIZE) {
pcdacTable[pcdacTableIndex] = pcdacTable[pcdacTableIndex - 1];
pcdacTableIndex++;
}
/* Finally, write the power values into the baseband power table */
addr = AR_PHY_BASE + (608 << 2);
for (i = 0; i < 32; i++) {
temp32 = 0xffff & ((pcdacTable[2 * i + 1] << 8) | 0xff);
temp32 = (temp32 << 16) | (0xffff & ((pcdacTable[2 * i] << 8) | 0xff));
OS_REG_WRITE(ah, addr, temp32);
addr += 4;
}
}
/*
* Set the transmit power in the baseband for the given
* operating channel and mode.
*/
static void
ar5211SetRateTable(struct ath_hal *ah, RD_EDGES_POWER *pRdEdgesPower,
TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
const struct ieee80211_channel *chan)
{
uint16_t freq = ath_hal_gethwchannel(ah, chan);
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
struct ath_hal_5211 *ahp = AH5211(ah);
static uint16_t ratesArray[NUM_RATES];
static const uint16_t tpcScaleReductionTable[5] =
{ 0, 3, 6, 9, MAX_RATE_POWER };
uint16_t *pRatesPower;
uint16_t lowerChannel, lowerIndex=0, lowerPower=0;
uint16_t upperChannel, upperIndex=0, upperPower=0;
uint16_t twiceMaxEdgePower=63;
uint16_t twicePower = 0;
uint16_t i, numEdges;
uint16_t tempChannelList[NUM_EDGES]; /* temp array for holding edge channels */
uint16_t twiceMaxRDPower;
int16_t scaledPower = 0; /* for gcc -O2 */
uint16_t mask = 0x3f;
HAL_BOOL paPreDEnable = 0;
int8_t twiceAntennaGain, twiceAntennaReduction = 0;
pRatesPower = ratesArray;
twiceMaxRDPower = chan->ic_maxregpower * 2;
if (IEEE80211_IS_CHAN_5GHZ(chan)) {
twiceAntennaGain = ee->ee_antennaGainMax[0];
} else {
twiceAntennaGain = ee->ee_antennaGainMax[1];
}
twiceAntennaReduction = ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
if (pRdEdgesPower) {
/* Get the edge power */
for (i = 0; i < NUM_EDGES; i++) {
if (pRdEdgesPower[i].rdEdge == 0)
break;
tempChannelList[i] = pRdEdgesPower[i].rdEdge;
}
numEdges = i;
ar5211GetLowerUpperValues(freq, tempChannelList,
numEdges, &lowerChannel, &upperChannel);
/* Get the index for this channel */
for (i = 0; i < numEdges; i++)
if (lowerChannel == tempChannelList[i])
break;
HALASSERT(i != numEdges);
if ((lowerChannel == upperChannel &&
lowerChannel == freq) ||
pRdEdgesPower[i].flag) {
twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
HALASSERT(twiceMaxEdgePower > 0);
}
}
/* extrapolate the power values for the test Groups */
for (i = 0; i < numChannels; i++)
tempChannelList[i] = pPowerInfo[i].testChannel;
ar5211GetLowerUpperValues(freq, tempChannelList,
numChannels, &lowerChannel, &upperChannel);
/* get the index for the channel */
for (i = 0; i < numChannels; i++) {
if (lowerChannel == tempChannelList[i])
lowerIndex = i;
if (upperChannel == tempChannelList[i]) {
upperIndex = i;
break;
}
}
for (i = 0; i < NUM_RATES; i++) {
if (IEEE80211_IS_CHAN_OFDM(chan)) {
/* power for rates 6,9,12,18,24 is all the same */
if (i < 5) {
lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
upperPower = pPowerInfo[upperIndex].twicePwr6_24;
} else if (i == 5) {
lowerPower = pPowerInfo[lowerIndex].twicePwr36;
upperPower = pPowerInfo[upperIndex].twicePwr36;
} else if (i == 6) {
lowerPower = pPowerInfo[lowerIndex].twicePwr48;
upperPower = pPowerInfo[upperIndex].twicePwr48;
} else if (i == 7) {
lowerPower = pPowerInfo[lowerIndex].twicePwr54;
upperPower = pPowerInfo[upperIndex].twicePwr54;
}
} else {
switch (i) {
case 0:
case 1:
lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
upperPower = pPowerInfo[upperIndex].twicePwr6_24;
break;
case 2:
case 3:
lowerPower = pPowerInfo[lowerIndex].twicePwr36;
upperPower = pPowerInfo[upperIndex].twicePwr36;
break;
case 4:
case 5:
lowerPower = pPowerInfo[lowerIndex].twicePwr48;
upperPower = pPowerInfo[upperIndex].twicePwr48;
break;
case 6:
case 7:
lowerPower = pPowerInfo[lowerIndex].twicePwr54;
upperPower = pPowerInfo[upperIndex].twicePwr54;
break;
}
}
twicePower = ar5211GetInterpolatedValue(freq,
lowerChannel, upperChannel, lowerPower, upperPower, 0);
/* Reduce power by band edge restrictions */
twicePower = AH_MIN(twicePower, twiceMaxEdgePower);
/*
* If turbo is set, reduce power to keep power
* consumption under 2 Watts. Note that we always do
* this unless specially configured. Then we limit
* power only for non-AP operation.
*/
if (IEEE80211_IS_CHAN_TURBO(chan) &&
AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1
#ifdef AH_ENABLE_AP_SUPPORT
&& AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
#endif
) {
twicePower = AH_MIN(twicePower, ee->ee_turbo2WMaxPower5);
}
/* Reduce power by max regulatory domain allowed restrictions */
pRatesPower[i] = AH_MIN(twicePower, twiceMaxRDPower - twiceAntennaReduction);
/* Use 6 Mb power level for transmit power scaling reduction */
/* We don't want to reduce higher rates if its not needed */
if (i == 0) {
scaledPower = pRatesPower[0] -
(tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2);
if (scaledPower < 1)
scaledPower = 1;
}
pRatesPower[i] = AH_MIN(pRatesPower[i], scaledPower);
}
/* Record txPower at Rate 6 for info gathering */
ahp->ah_tx6PowerInHalfDbm = pRatesPower[0];
#ifdef AH_DEBUG
HALDEBUG(ah, HAL_DEBUG_RESET,
"%s: final output power setting %d MHz:\n",
__func__, chan->ic_freq);
HALDEBUG(ah, HAL_DEBUG_RESET,
"6 Mb %d dBm, MaxRD: %d dBm, MaxEdge %d dBm\n",
scaledPower / 2, twiceMaxRDPower / 2, twiceMaxEdgePower / 2);
HALDEBUG(ah, HAL_DEBUG_RESET, "TPC Scale %d dBm - Ant Red %d dBm\n",
tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2,
twiceAntennaReduction / 2);
if (IEEE80211_IS_CHAN_TURBO(chan) &&
AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1)
HALDEBUG(ah, HAL_DEBUG_RESET, "Max Turbo %d dBm\n",
ee->ee_turbo2WMaxPower5);
HALDEBUG(ah, HAL_DEBUG_RESET,
" %2d | %2d | %2d | %2d | %2d | %2d | %2d | %2d dBm\n",
pRatesPower[0] / 2, pRatesPower[1] / 2, pRatesPower[2] / 2,
pRatesPower[3] / 2, pRatesPower[4] / 2, pRatesPower[5] / 2,
pRatesPower[6] / 2, pRatesPower[7] / 2);
#endif /* AH_DEBUG */
/* Write the power table into the hardware */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
((paPreDEnable & 1)<< 30) | ((pRatesPower[3] & mask) << 24) |
((paPreDEnable & 1)<< 22) | ((pRatesPower[2] & mask) << 16) |
((paPreDEnable & 1)<< 14) | ((pRatesPower[1] & mask) << 8) |
((paPreDEnable & 1)<< 6 ) | (pRatesPower[0] & mask));
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
((paPreDEnable & 1)<< 30) | ((pRatesPower[7] & mask) << 24) |
((paPreDEnable & 1)<< 22) | ((pRatesPower[6] & mask) << 16) |
((paPreDEnable & 1)<< 14) | ((pRatesPower[5] & mask) << 8) |
((paPreDEnable & 1)<< 6 ) | (pRatesPower[4] & mask));
/* set max power to the power value at rate 6 */
ar5211SetTxPowerLimit(ah, pRatesPower[0]);
AH_PRIVATE(ah)->ah_maxPowerLevel = pRatesPower[0];
}
/*
* Get or interpolate the pcdac value from the calibrated data
*/
uint16_t
ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
const PCDACS_EEPROM *pSrcStruct)
{
uint16_t powerValue;
uint16_t lFreq, rFreq; /* left and right frequency values */
uint16_t llPcdac, ulPcdac; /* lower and upper left pcdac values */
uint16_t lrPcdac, urPcdac; /* lower and upper right pcdac values */
uint16_t lPwr, uPwr; /* lower and upper temp pwr values */
uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
if (ar5211FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue))
/* value was copied from srcStruct */
return powerValue;
ar5211GetLowerUpperValues(channel, pSrcStruct->pChannelList,
pSrcStruct->numChannels, &lFreq, &rFreq);
ar5211GetLowerUpperPcdacs(pcdacValue, lFreq, pSrcStruct,
&llPcdac, &ulPcdac);
ar5211GetLowerUpperPcdacs(pcdacValue, rFreq, pSrcStruct,
&lrPcdac, &urPcdac);
/* get the power index for the pcdac value */
ar5211FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
ar5211FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
lScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
llPcdac, ulPcdac, lPwr, uPwr, 0);
ar5211FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
ar5211FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
rScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
lrPcdac, urPcdac, lPwr, uPwr, 0);
return ar5211GetInterpolatedValue(channel, lFreq, rFreq,
lScaledPwr, rScaledPwr, 0);
}
/*
* Find the value from the calibrated source data struct
*/
HAL_BOOL
ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
{
const DATA_PER_CHANNEL *pChannelData;
const uint16_t *pPcdac;
uint16_t i, j;
pChannelData = pSrcStruct->pDataPerChannel;
for (i = 0; i < pSrcStruct->numChannels; i++ ) {
if (pChannelData->channelValue == channel) {
pPcdac = pChannelData->PcdacValues;
for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
if (*pPcdac == pcdacValue) {
*powerValue = pChannelData->PwrValues[j];
return AH_TRUE;
}
pPcdac++;
}
}
pChannelData++;
}
return AH_FALSE;
}
/*
* Returns interpolated or the scaled up interpolated value
*/
uint16_t
ar5211GetInterpolatedValue(uint16_t target,
uint16_t srcLeft, uint16_t srcRight,
uint16_t targetLeft, uint16_t targetRight,
HAL_BOOL scaleUp)
{
uint16_t rv;
int16_t lRatio;
uint16_t scaleValue = EEP_SCALE;
/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
if ((targetLeft * targetRight) == 0)
return 0;
if (scaleUp)
scaleValue = 1;
if (srcRight != srcLeft) {
/*
* Note the ratio always need to be scaled,
* since it will be a fraction.
*/
lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
if (lRatio < 0) {
/* Return as Left target if value would be negative */
rv = targetLeft * (scaleUp ? EEP_SCALE : 1);
} else if (lRatio > EEP_SCALE) {
/* Return as Right target if Ratio is greater than 100% (SCALE) */
rv = targetRight * (scaleUp ? EEP_SCALE : 1);
} else {
rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
targetLeft) / scaleValue;
}
} else {
rv = targetLeft;
if (scaleUp)
rv *= EEP_SCALE;
}
return rv;
}
/*
* Look for value being within 0.1 of the search values
* however, NDIS can't do float calculations, so multiply everything
* up by EEP_SCALE so can do integer arithmatic
*
* INPUT value -value to search for
* INPUT pList -ptr to the list to search
* INPUT listSize -number of entries in list
* OUTPUT pLowerValue -return the lower value
* OUTPUT pUpperValue -return the upper value
*/
void
ar5211GetLowerUpperValues(uint16_t value,
const uint16_t *pList, uint16_t listSize,
uint16_t *pLowerValue, uint16_t *pUpperValue)
{
const uint16_t listEndValue = *(pList + listSize - 1);
uint32_t target = value * EEP_SCALE;
int i;
/*
* See if value is lower than the first value in the list
* if so return first value
*/
if (target < (uint32_t)(*pList * EEP_SCALE - EEP_DELTA)) {
*pLowerValue = *pList;
*pUpperValue = *pList;
return;
}
/*
* See if value is greater than last value in list
* if so return last value
*/
if (target > (uint32_t)(listEndValue * EEP_SCALE + EEP_DELTA)) {
*pLowerValue = listEndValue;
*pUpperValue = listEndValue;
return;
}
/* look for value being near or between 2 values in list */
for (i = 0; i < listSize; i++) {
/*
* If value is close to the current value of the list
* then target is not between values, it is one of the values
*/
if (abs(pList[i] * EEP_SCALE - (int32_t) target) < EEP_DELTA) {
*pLowerValue = pList[i];
*pUpperValue = pList[i];
return;
}
/*
* Look for value being between current value and next value
* if so return these 2 values
*/
if (target < (uint32_t)(pList[i + 1] * EEP_SCALE - EEP_DELTA)) {
*pLowerValue = pList[i];
*pUpperValue = pList[i + 1];
return;
}
}
}
/*
* Get the upper and lower pcdac given the channel and the pcdac
* used in the search
*/
void
ar5211GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
const PCDACS_EEPROM *pSrcStruct,
uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
{
const DATA_PER_CHANNEL *pChannelData;
int i;
/* Find the channel information */
pChannelData = pSrcStruct->pDataPerChannel;
for (i = 0; i < pSrcStruct->numChannels; i++) {
if (pChannelData->channelValue == channel)
break;
pChannelData++;
}
ar5211GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
pChannelData->numPcdacValues, pLowerPcdac, pUpperPcdac);
}
#define DYN_ADJ_UP_MARGIN 15
#define DYN_ADJ_LO_MARGIN 20
static const GAIN_OPTIMIZATION_LADDER gainLadder = {
9, /* numStepsInLadder */
4, /* defaultStepNum */
{ { {4, 1, 1, 1}, 6, "FG8"},
{ {4, 0, 1, 1}, 4, "FG7"},
{ {3, 1, 1, 1}, 3, "FG6"},
{ {4, 0, 0, 1}, 1, "FG5"},
{ {4, 1, 1, 0}, 0, "FG4"}, /* noJack */
{ {4, 0, 1, 0}, -2, "FG3"}, /* halfJack */
{ {3, 1, 1, 0}, -3, "FG2"}, /* clip3 */
{ {4, 0, 0, 0}, -4, "FG1"}, /* noJack */
{ {2, 1, 1, 0}, -6, "FG0"} /* clip2 */
}
};
/*
* Initialize the gain structure to good values
*/
void
ar5211InitializeGainValues(struct ath_hal *ah)
{
struct ath_hal_5211 *ahp = AH5211(ah);
GAIN_VALUES *gv = &ahp->ah_gainValues;
/* initialize gain optimization values */
gv->currStepNum = gainLadder.defaultStepNum;
gv->currStep = &gainLadder.optStep[gainLadder.defaultStepNum];
gv->active = AH_TRUE;
gv->loTrig = 20;
gv->hiTrig = 35;
}
static HAL_BOOL
ar5211InvalidGainReadback(struct ath_hal *ah, GAIN_VALUES *gv)
{
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
uint32_t gStep, g;
uint32_t L1, L2, L3, L4;
if (IEEE80211_IS_CHAN_CCK(chan)) {
gStep = 0x18;
L1 = 0;
L2 = gStep + 4;
L3 = 0x40;
L4 = L3 + 50;
gv->loTrig = L1;
gv->hiTrig = L4+5;
} else {
gStep = 0x3f;
L1 = 0;
L2 = 50;
L3 = L1;
L4 = L3 + 50;
gv->loTrig = L1 + DYN_ADJ_LO_MARGIN;
gv->hiTrig = L4 - DYN_ADJ_UP_MARGIN;
}
g = gv->currGain;
return !((g >= L1 && g<= L2) || (g >= L3 && g <= L4));
}
/*
* Enable the probe gain check on the next packet
*/
static void
ar5211RequestRfgain(struct ath_hal *ah)
{
struct ath_hal_5211 *ahp = AH5211(ah);
/* Enable the gain readback probe */
OS_REG_WRITE(ah, AR_PHY_PAPD_PROBE,
SM(ahp->ah_tx6PowerInHalfDbm, AR_PHY_PAPD_PROBE_POWERTX)
| AR_PHY_PAPD_PROBE_NEXT_TX);
ahp->ah_rfgainState = HAL_RFGAIN_READ_REQUESTED;
}
/*
* Exported call to check for a recent gain reading and return
* the current state of the thermal calibration gain engine.
*/
HAL_RFGAIN
ar5211GetRfgain(struct ath_hal *ah)
{
struct ath_hal_5211 *ahp = AH5211(ah);
GAIN_VALUES *gv = &ahp->ah_gainValues;
uint32_t rddata;
if (!gv->active)
return HAL_RFGAIN_INACTIVE;
if (ahp->ah_rfgainState == HAL_RFGAIN_READ_REQUESTED) {
/* Caller had asked to setup a new reading. Check it. */
rddata = OS_REG_READ(ah, AR_PHY_PAPD_PROBE);
if ((rddata & AR_PHY_PAPD_PROBE_NEXT_TX) == 0) {
/* bit got cleared, we have a new reading. */
gv->currGain = rddata >> AR_PHY_PAPD_PROBE_GAINF_S;
/* inactive by default */
ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
if (!ar5211InvalidGainReadback(ah, gv) &&
ar5211IsGainAdjustNeeded(ah, gv) &&
ar5211AdjustGain(ah, gv) > 0) {
/*
* Change needed. Copy ladder info
* into eeprom info.
*/
ar5211SetRfgain(ah, gv);
ahp->ah_rfgainState = HAL_RFGAIN_NEED_CHANGE;
}
}
}
return ahp->ah_rfgainState;
}
/*
* Check to see if our readback gain level sits within the linear
* region of our current variable attenuation window
*/
static HAL_BOOL
ar5211IsGainAdjustNeeded(struct ath_hal *ah, const GAIN_VALUES *gv)
{
return (gv->currGain <= gv->loTrig || gv->currGain >= gv->hiTrig);
}
/*
* Move the rabbit ears in the correct direction.
*/
static int32_t
ar5211AdjustGain(struct ath_hal *ah, GAIN_VALUES *gv)
{
/* return > 0 for valid adjustments. */
if (!gv->active)
return -1;
gv->currStep = &gainLadder.optStep[gv->currStepNum];
if (gv->currGain >= gv->hiTrig) {
if (gv->currStepNum == 0) {
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
"%s: Max gain limit.\n", __func__);
return -1;
}
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
"%s: Adding gain: currG=%d [%s] --> ",
__func__, gv->currGain, gv->currStep->stepName);
gv->targetGain = gv->currGain;
while (gv->targetGain >= gv->hiTrig && gv->currStepNum > 0) {
gv->targetGain -= 2 * (gainLadder.optStep[--(gv->currStepNum)].stepGain -
gv->currStep->stepGain);
gv->currStep = &gainLadder.optStep[gv->currStepNum];
}
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
gv->targetGain, gv->currStep->stepName);
return 1;
}
if (gv->currGain <= gv->loTrig) {
if (gv->currStepNum == gainLadder.numStepsInLadder-1) {
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
"%s: Min gain limit.\n", __func__);
return -2;
}
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
"%s: Deducting gain: currG=%d [%s] --> ",
__func__, gv->currGain, gv->currStep->stepName);
gv->targetGain = gv->currGain;
while (gv->targetGain <= gv->loTrig &&
gv->currStepNum < (gainLadder.numStepsInLadder - 1)) {
gv->targetGain -= 2 *
(gainLadder.optStep[++(gv->currStepNum)].stepGain - gv->currStep->stepGain);
gv->currStep = &gainLadder.optStep[gv->currStepNum];
}
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
gv->targetGain, gv->currStep->stepName);
return 2;
}
return 0; /* caller didn't call needAdjGain first */
}
/*
* Adjust the 5GHz EEPROM information with the desired calibration values.
*/
static void
ar5211SetRfgain(struct ath_hal *ah, const GAIN_VALUES *gv)
{
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
if (!gv->active)
return;
ee->ee_cornerCal.clip = gv->currStep->paramVal[0]; /* bb_tx_clip */
ee->ee_cornerCal.pd90 = gv->currStep->paramVal[1]; /* rf_pwd_90 */
ee->ee_cornerCal.pd84 = gv->currStep->paramVal[2]; /* rf_pwd_84 */
ee->ee_cornerCal.gSel = gv->currStep->paramVal[3]; /* rf_rfgainsel */
}
static void
ar5211SetOperatingMode(struct ath_hal *ah, int opmode)
{
struct ath_hal_5211 *ahp = AH5211(ah);
uint32_t val;
val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
switch (opmode) {
case HAL_M_HOSTAP:
OS_REG_WRITE(ah, AR_STA_ID1, val
| AR_STA_ID1_STA_AP
| AR_STA_ID1_RTS_USE_DEF
| ahp->ah_staId1Defaults);
break;
case HAL_M_IBSS:
OS_REG_WRITE(ah, AR_STA_ID1, val
| AR_STA_ID1_ADHOC
| AR_STA_ID1_DESC_ANTENNA
| ahp->ah_staId1Defaults);
break;
case HAL_M_STA:
case HAL_M_MONITOR:
OS_REG_WRITE(ah, AR_STA_ID1, val
| AR_STA_ID1_DEFAULT_ANTENNA
| ahp->ah_staId1Defaults);
break;
}
}
void
ar5211SetPCUConfig(struct ath_hal *ah)
{
ar5211SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
}