freebsd-dev/sys/boot/sparc64/loader/main.c
Marius Strobl 2fbad3a135 - The method introduced as part of r234898 for not altering the boot path
when booting from ZFS turned out to also cause the boot path not being
  adjusted if booting from CD-ROM with firmware versions that do not employ
  the "cdrom" alias in that case. So shuffle the code around instead in order
  to achieve the original intent. Ideally, we shouldn't fiddle with the boot
  path when booting from UFS on a disk either; unfortunately, there doesn't
  seem to be an universal way of telling disks and CD-ROMs apart, though. [1]
- Use NULL instead of 0 for pointers.

PR:		179289
MFC after:	1 week
2013-06-09 23:50:30 +00:00

995 lines
24 KiB
C

/*-
* Initial implementation:
* Copyright (c) 2001 Robert Drehmel
* All rights reserved.
*
* As long as the above copyright statement and this notice remain
* unchanged, you can do what ever you want with this file.
*/
/*-
* Copyright (c) 2008 - 2012 Marius Strobl <marius@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* FreeBSD/sparc64 kernel loader - machine dependent part
*
* - implements copyin and readin functions that map kernel
* pages on demand. The machine independent code does not
* know the size of the kernel early enough to pre-enter
* TTEs and install just one 4MB mapping seemed to limiting
* to me.
*/
#include <stand.h>
#include <sys/param.h>
#include <sys/exec.h>
#include <sys/linker.h>
#include <sys/queue.h>
#include <sys/types.h>
#ifdef LOADER_ZFS_SUPPORT
#include <sys/vtoc.h>
#include "../zfs/libzfs.h"
#endif
#include <vm/vm.h>
#include <machine/asi.h>
#include <machine/cmt.h>
#include <machine/cpufunc.h>
#include <machine/elf.h>
#include <machine/fireplane.h>
#include <machine/jbus.h>
#include <machine/lsu.h>
#include <machine/metadata.h>
#include <machine/tte.h>
#include <machine/tlb.h>
#include <machine/upa.h>
#include <machine/ver.h>
#include <machine/vmparam.h>
#include "bootstrap.h"
#include "libofw.h"
#include "dev_net.h"
extern char bootprog_name[], bootprog_rev[], bootprog_date[], bootprog_maker[];
enum {
HEAPVA = 0x800000,
HEAPSZ = 0x1000000,
LOADSZ = 0x1000000 /* for kernel and modules */
};
/* At least Sun Fire V1280 require page sized allocations to be claimed. */
CTASSERT(HEAPSZ % PAGE_SIZE == 0);
static struct mmu_ops {
void (*tlb_init)(void);
int (*mmu_mapin)(vm_offset_t va, vm_size_t len);
} *mmu_ops;
typedef void kernel_entry_t(vm_offset_t mdp, u_long o1, u_long o2, u_long o3,
void *openfirmware);
static inline u_long dtlb_get_data_sun4u(u_int, u_int);
static int dtlb_enter_sun4u(u_int, u_long data, vm_offset_t);
static vm_offset_t dtlb_va_to_pa_sun4u(vm_offset_t);
static inline u_long itlb_get_data_sun4u(u_int, u_int);
static int itlb_enter_sun4u(u_int, u_long data, vm_offset_t);
static vm_offset_t itlb_va_to_pa_sun4u(vm_offset_t);
static void itlb_relocate_locked0_sun4u(void);
extern vm_offset_t md_load(char *, vm_offset_t *);
static int sparc64_autoload(void);
static ssize_t sparc64_readin(const int, vm_offset_t, const size_t);
static ssize_t sparc64_copyin(const void *, vm_offset_t, size_t);
static vm_offset_t claim_virt(vm_offset_t, size_t, int);
static vm_offset_t alloc_phys(size_t, int);
static int map_phys(int, size_t, vm_offset_t, vm_offset_t);
static void release_phys(vm_offset_t, u_int);
static int __elfN(exec)(struct preloaded_file *);
static int mmu_mapin_sun4u(vm_offset_t, vm_size_t);
static vm_offset_t init_heap(void);
static phandle_t find_bsp_sun4u(phandle_t, uint32_t);
const char *cpu_cpuid_prop_sun4u(void);
uint32_t cpu_get_mid_sun4u(void);
static void tlb_init_sun4u(void);
#ifdef LOADER_DEBUG
typedef u_int64_t tte_t;
static void pmap_print_tlb_sun4u(void);
static void pmap_print_tte_sun4u(tte_t, tte_t);
#endif
static struct mmu_ops mmu_ops_sun4u = { tlb_init_sun4u, mmu_mapin_sun4u };
/* sun4u */
struct tlb_entry *dtlb_store;
struct tlb_entry *itlb_store;
u_int dtlb_slot;
u_int itlb_slot;
static int cpu_impl;
static u_int dtlb_slot_max;
static u_int itlb_slot_max;
static u_int tlb_locked;
static vm_offset_t curkva = 0;
static vm_offset_t heapva;
static char bootpath[64];
static phandle_t root;
#ifdef LOADER_ZFS_SUPPORT
static struct zfs_devdesc zfs_currdev;
#endif
/*
* Machine dependent structures that the machine independent
* loader part uses.
*/
struct devsw *devsw[] = {
#ifdef LOADER_DISK_SUPPORT
&ofwdisk,
#endif
#ifdef LOADER_NET_SUPPORT
&netdev,
#endif
#ifdef LOADER_ZFS_SUPPORT
&zfs_dev,
#endif
NULL
};
struct arch_switch archsw;
static struct file_format sparc64_elf = {
__elfN(loadfile),
__elfN(exec)
};
struct file_format *file_formats[] = {
&sparc64_elf,
NULL
};
struct fs_ops *file_system[] = {
#ifdef LOADER_ZFS_SUPPORT
&zfs_fsops,
#endif
#ifdef LOADER_UFS_SUPPORT
&ufs_fsops,
#endif
#ifdef LOADER_CD9660_SUPPORT
&cd9660_fsops,
#endif
#ifdef LOADER_ZIP_SUPPORT
&zipfs_fsops,
#endif
#ifdef LOADER_GZIP_SUPPORT
&gzipfs_fsops,
#endif
#ifdef LOADER_BZIP2_SUPPORT
&bzipfs_fsops,
#endif
#ifdef LOADER_NFS_SUPPORT
&nfs_fsops,
#endif
#ifdef LOADER_TFTP_SUPPORT
&tftp_fsops,
#endif
NULL
};
struct netif_driver *netif_drivers[] = {
#ifdef LOADER_NET_SUPPORT
&ofwnet,
#endif
NULL
};
extern struct console ofwconsole;
struct console *consoles[] = {
&ofwconsole,
NULL
};
#ifdef LOADER_DEBUG
static int
watch_phys_set_mask(vm_offset_t pa, u_long mask)
{
u_long lsucr;
stxa(AA_DMMU_PWPR, ASI_DMMU, pa & (((2UL << 38) - 1) << 3));
lsucr = ldxa(0, ASI_LSU_CTL_REG);
lsucr = ((lsucr | LSU_PW) & ~LSU_PM_MASK) |
(mask << LSU_PM_SHIFT);
stxa(0, ASI_LSU_CTL_REG, lsucr);
return (0);
}
static int
watch_phys_set(vm_offset_t pa, int sz)
{
u_long off;
off = (u_long)pa & 7;
/* Test for misaligned watch points. */
if (off + sz > 8)
return (-1);
return (watch_phys_set_mask(pa, ((1 << sz) - 1) << off));
}
static int
watch_virt_set_mask(vm_offset_t va, u_long mask)
{
u_long lsucr;
stxa(AA_DMMU_VWPR, ASI_DMMU, va & (((2UL << 41) - 1) << 3));
lsucr = ldxa(0, ASI_LSU_CTL_REG);
lsucr = ((lsucr | LSU_VW) & ~LSU_VM_MASK) |
(mask << LSU_VM_SHIFT);
stxa(0, ASI_LSU_CTL_REG, lsucr);
return (0);
}
static int
watch_virt_set(vm_offset_t va, int sz)
{
u_long off;
off = (u_long)va & 7;
/* Test for misaligned watch points. */
if (off + sz > 8)
return (-1);
return (watch_virt_set_mask(va, ((1 << sz) - 1) << off));
}
#endif
/*
* archsw functions
*/
static int
sparc64_autoload(void)
{
return (0);
}
static ssize_t
sparc64_readin(const int fd, vm_offset_t va, const size_t len)
{
mmu_ops->mmu_mapin(va, len);
return (read(fd, (void *)va, len));
}
static ssize_t
sparc64_copyin(const void *src, vm_offset_t dest, size_t len)
{
mmu_ops->mmu_mapin(dest, len);
memcpy((void *)dest, src, len);
return (len);
}
/*
* other MD functions
*/
static vm_offset_t
claim_virt(vm_offset_t virt, size_t size, int align)
{
vm_offset_t mva;
if (OF_call_method("claim", mmu, 3, 1, virt, size, align, &mva) == -1)
return ((vm_offset_t)-1);
return (mva);
}
static vm_offset_t
alloc_phys(size_t size, int align)
{
cell_t phys_hi, phys_low;
if (OF_call_method("claim", memory, 2, 2, size, align, &phys_low,
&phys_hi) == -1)
return ((vm_offset_t)-1);
return ((vm_offset_t)phys_hi << 32 | phys_low);
}
static int
map_phys(int mode, size_t size, vm_offset_t virt, vm_offset_t phys)
{
return (OF_call_method("map", mmu, 5, 0, (uint32_t)phys,
(uint32_t)(phys >> 32), virt, size, mode));
}
static void
release_phys(vm_offset_t phys, u_int size)
{
(void)OF_call_method("release", memory, 3, 0, (uint32_t)phys,
(uint32_t)(phys >> 32), size);
}
static int
__elfN(exec)(struct preloaded_file *fp)
{
struct file_metadata *fmp;
vm_offset_t mdp;
Elf_Addr entry;
Elf_Ehdr *e;
int error;
if ((fmp = file_findmetadata(fp, MODINFOMD_ELFHDR)) == 0)
return (EFTYPE);
e = (Elf_Ehdr *)&fmp->md_data;
if ((error = md_load(fp->f_args, &mdp)) != 0)
return (error);
printf("jumping to kernel entry at %#lx.\n", e->e_entry);
#ifdef LOADER_DEBUG
pmap_print_tlb_sun4u();
#endif
dev_cleanup();
entry = e->e_entry;
OF_release((void *)heapva, HEAPSZ);
((kernel_entry_t *)entry)(mdp, 0, 0, 0, openfirmware);
panic("%s: exec returned", __func__);
}
static inline u_long
dtlb_get_data_sun4u(u_int tlb, u_int slot)
{
u_long data, pstate;
slot = TLB_DAR_SLOT(tlb, slot);
/*
* We read ASI_DTLB_DATA_ACCESS_REG twice back-to-back in order to
* work around errata of USIII and beyond.
*/
pstate = rdpr(pstate);
wrpr(pstate, pstate & ~PSTATE_IE, 0);
(void)ldxa(slot, ASI_DTLB_DATA_ACCESS_REG);
data = ldxa(slot, ASI_DTLB_DATA_ACCESS_REG);
wrpr(pstate, pstate, 0);
return (data);
}
static inline u_long
itlb_get_data_sun4u(u_int tlb, u_int slot)
{
u_long data, pstate;
slot = TLB_DAR_SLOT(tlb, slot);
/*
* We read ASI_DTLB_DATA_ACCESS_REG twice back-to-back in order to
* work around errata of USIII and beyond.
*/
pstate = rdpr(pstate);
wrpr(pstate, pstate & ~PSTATE_IE, 0);
(void)ldxa(slot, ASI_ITLB_DATA_ACCESS_REG);
data = ldxa(slot, ASI_ITLB_DATA_ACCESS_REG);
wrpr(pstate, pstate, 0);
return (data);
}
static vm_offset_t
dtlb_va_to_pa_sun4u(vm_offset_t va)
{
u_long pstate, reg;
u_int i, tlb;
pstate = rdpr(pstate);
wrpr(pstate, pstate & ~PSTATE_IE, 0);
for (i = 0; i < dtlb_slot_max; i++) {
reg = ldxa(TLB_DAR_SLOT(tlb_locked, i),
ASI_DTLB_TAG_READ_REG);
if (TLB_TAR_VA(reg) != va)
continue;
reg = dtlb_get_data_sun4u(tlb_locked, i);
wrpr(pstate, pstate, 0);
reg >>= TD_PA_SHIFT;
if (cpu_impl == CPU_IMPL_SPARC64V ||
cpu_impl >= CPU_IMPL_ULTRASPARCIII)
return (reg & TD_PA_CH_MASK);
return (reg & TD_PA_SF_MASK);
}
wrpr(pstate, pstate, 0);
return (-1);
}
static vm_offset_t
itlb_va_to_pa_sun4u(vm_offset_t va)
{
u_long pstate, reg;
int i;
pstate = rdpr(pstate);
wrpr(pstate, pstate & ~PSTATE_IE, 0);
for (i = 0; i < itlb_slot_max; i++) {
reg = ldxa(TLB_DAR_SLOT(tlb_locked, i),
ASI_ITLB_TAG_READ_REG);
if (TLB_TAR_VA(reg) != va)
continue;
reg = itlb_get_data_sun4u(tlb_locked, i);
wrpr(pstate, pstate, 0);
reg >>= TD_PA_SHIFT;
if (cpu_impl == CPU_IMPL_SPARC64V ||
cpu_impl >= CPU_IMPL_ULTRASPARCIII)
return (reg & TD_PA_CH_MASK);
return (reg & TD_PA_SF_MASK);
}
wrpr(pstate, pstate, 0);
return (-1);
}
static int
dtlb_enter_sun4u(u_int index, u_long data, vm_offset_t virt)
{
return (OF_call_method("SUNW,dtlb-load", mmu, 3, 0, index, data,
virt));
}
static int
itlb_enter_sun4u(u_int index, u_long data, vm_offset_t virt)
{
if (cpu_impl == CPU_IMPL_ULTRASPARCIIIp && index == 0 &&
(data & TD_L) != 0)
panic("%s: won't enter locked TLB entry at index 0 on USIII+",
__func__);
return (OF_call_method("SUNW,itlb-load", mmu, 3, 0, index, data,
virt));
}
static void
itlb_relocate_locked0_sun4u(void)
{
u_long data, pstate, tag;
int i;
if (cpu_impl != CPU_IMPL_ULTRASPARCIIIp)
return;
pstate = rdpr(pstate);
wrpr(pstate, pstate & ~PSTATE_IE, 0);
data = itlb_get_data_sun4u(tlb_locked, 0);
if ((data & (TD_V | TD_L)) != (TD_V | TD_L)) {
wrpr(pstate, pstate, 0);
return;
}
/* Flush the mapping of slot 0. */
tag = ldxa(TLB_DAR_SLOT(tlb_locked, 0), ASI_ITLB_TAG_READ_REG);
stxa(TLB_DEMAP_VA(TLB_TAR_VA(tag)) | TLB_DEMAP_PRIMARY |
TLB_DEMAP_PAGE, ASI_IMMU_DEMAP, 0);
flush(0); /* The USIII-family ignores the address. */
/*
* Search a replacement slot != 0 and enter the data and tag
* that formerly were in slot 0.
*/
for (i = 1; i < itlb_slot_max; i++) {
if ((itlb_get_data_sun4u(tlb_locked, i) & TD_V) != 0)
continue;
stxa(AA_IMMU_TAR, ASI_IMMU, tag);
stxa(TLB_DAR_SLOT(tlb_locked, i), ASI_ITLB_DATA_ACCESS_REG,
data);
flush(0); /* The USIII-family ignores the address. */
break;
}
wrpr(pstate, pstate, 0);
if (i == itlb_slot_max)
panic("%s: could not find a replacement slot", __func__);
}
static int
mmu_mapin_sun4u(vm_offset_t va, vm_size_t len)
{
vm_offset_t pa, mva;
u_long data;
u_int index;
if (va + len > curkva)
curkva = va + len;
pa = (vm_offset_t)-1;
len += va & PAGE_MASK_4M;
va &= ~PAGE_MASK_4M;
while (len) {
if (dtlb_va_to_pa_sun4u(va) == (vm_offset_t)-1 ||
itlb_va_to_pa_sun4u(va) == (vm_offset_t)-1) {
/* Allocate a physical page, claim the virtual area. */
if (pa == (vm_offset_t)-1) {
pa = alloc_phys(PAGE_SIZE_4M, PAGE_SIZE_4M);
if (pa == (vm_offset_t)-1)
panic("%s: out of memory", __func__);
mva = claim_virt(va, PAGE_SIZE_4M, 0);
if (mva != va)
panic("%s: can't claim virtual page "
"(wanted %#lx, got %#lx)",
__func__, va, mva);
/*
* The mappings may have changed, be paranoid.
*/
continue;
}
/*
* Actually, we can only allocate two pages less at
* most (depending on the kernel TSB size).
*/
if (dtlb_slot >= dtlb_slot_max)
panic("%s: out of dtlb_slots", __func__);
if (itlb_slot >= itlb_slot_max)
panic("%s: out of itlb_slots", __func__);
data = TD_V | TD_4M | TD_PA(pa) | TD_L | TD_CP |
TD_CV | TD_P | TD_W;
dtlb_store[dtlb_slot].te_pa = pa;
dtlb_store[dtlb_slot].te_va = va;
index = dtlb_slot_max - dtlb_slot - 1;
if (dtlb_enter_sun4u(index, data, va) < 0)
panic("%s: can't enter dTLB slot %d data "
"%#lx va %#lx", __func__, index, data,
va);
dtlb_slot++;
itlb_store[itlb_slot].te_pa = pa;
itlb_store[itlb_slot].te_va = va;
index = itlb_slot_max - itlb_slot - 1;
if (itlb_enter_sun4u(index, data, va) < 0)
panic("%s: can't enter iTLB slot %d data "
"%#lx va %#lxd", __func__, index, data,
va);
itlb_slot++;
pa = (vm_offset_t)-1;
}
len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
va += PAGE_SIZE_4M;
}
if (pa != (vm_offset_t)-1)
release_phys(pa, PAGE_SIZE_4M);
return (0);
}
static vm_offset_t
init_heap(void)
{
/* There is no need for continuous physical heap memory. */
heapva = (vm_offset_t)OF_claim((void *)HEAPVA, HEAPSZ, 32);
return (heapva);
}
static phandle_t
find_bsp_sun4u(phandle_t node, uint32_t bspid)
{
char type[sizeof("cpu")];
phandle_t child;
uint32_t cpuid;
for (; node > 0; node = OF_peer(node)) {
child = OF_child(node);
if (child > 0) {
child = find_bsp_sun4u(child, bspid);
if (child > 0)
return (child);
} else {
if (OF_getprop(node, "device_type", type,
sizeof(type)) <= 0)
continue;
if (strcmp(type, "cpu") != 0)
continue;
if (OF_getprop(node, cpu_cpuid_prop_sun4u(), &cpuid,
sizeof(cpuid)) <= 0)
continue;
if (cpuid == bspid)
return (node);
}
}
return (0);
}
const char *
cpu_cpuid_prop_sun4u(void)
{
switch (cpu_impl) {
case CPU_IMPL_SPARC64:
case CPU_IMPL_SPARC64V:
case CPU_IMPL_ULTRASPARCI:
case CPU_IMPL_ULTRASPARCII:
case CPU_IMPL_ULTRASPARCIIi:
case CPU_IMPL_ULTRASPARCIIe:
return ("upa-portid");
case CPU_IMPL_ULTRASPARCIII:
case CPU_IMPL_ULTRASPARCIIIp:
case CPU_IMPL_ULTRASPARCIIIi:
case CPU_IMPL_ULTRASPARCIIIip:
return ("portid");
case CPU_IMPL_ULTRASPARCIV:
case CPU_IMPL_ULTRASPARCIVp:
return ("cpuid");
default:
return ("");
}
}
uint32_t
cpu_get_mid_sun4u(void)
{
switch (cpu_impl) {
case CPU_IMPL_SPARC64:
case CPU_IMPL_SPARC64V:
case CPU_IMPL_ULTRASPARCI:
case CPU_IMPL_ULTRASPARCII:
case CPU_IMPL_ULTRASPARCIIi:
case CPU_IMPL_ULTRASPARCIIe:
return (UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG)));
case CPU_IMPL_ULTRASPARCIII:
case CPU_IMPL_ULTRASPARCIIIp:
return (FIREPLANE_CR_GET_AID(ldxa(AA_FIREPLANE_CONFIG,
ASI_FIREPLANE_CONFIG_REG)));
case CPU_IMPL_ULTRASPARCIIIi:
case CPU_IMPL_ULTRASPARCIIIip:
return (JBUS_CR_GET_JID(ldxa(0, ASI_JBUS_CONFIG_REG)));
case CPU_IMPL_ULTRASPARCIV:
case CPU_IMPL_ULTRASPARCIVp:
return (INTR_ID_GET_ID(ldxa(AA_INTR_ID, ASI_INTR_ID)));
default:
return (0);
}
}
static void
tlb_init_sun4u(void)
{
phandle_t bsp;
cpu_impl = VER_IMPL(rdpr(ver));
switch (cpu_impl) {
case CPU_IMPL_SPARC64:
case CPU_IMPL_ULTRASPARCI:
case CPU_IMPL_ULTRASPARCII:
case CPU_IMPL_ULTRASPARCIIi:
case CPU_IMPL_ULTRASPARCIIe:
tlb_locked = TLB_DAR_T32;
break;
case CPU_IMPL_ULTRASPARCIII:
case CPU_IMPL_ULTRASPARCIIIp:
case CPU_IMPL_ULTRASPARCIIIi:
case CPU_IMPL_ULTRASPARCIIIip:
case CPU_IMPL_ULTRASPARCIV:
case CPU_IMPL_ULTRASPARCIVp:
tlb_locked = TLB_DAR_T16;
break;
case CPU_IMPL_SPARC64V:
tlb_locked = TLB_DAR_FTLB;
break;
}
bsp = find_bsp_sun4u(OF_child(root), cpu_get_mid_sun4u());
if (bsp == 0)
panic("%s: no node for bootcpu?!?!", __func__);
if (OF_getprop(bsp, "#dtlb-entries", &dtlb_slot_max,
sizeof(dtlb_slot_max)) == -1 ||
OF_getprop(bsp, "#itlb-entries", &itlb_slot_max,
sizeof(itlb_slot_max)) == -1)
panic("%s: can't get TLB slot max.", __func__);
if (cpu_impl == CPU_IMPL_ULTRASPARCIIIp) {
#ifdef LOADER_DEBUG
printf("pre fixup:\n");
pmap_print_tlb_sun4u();
#endif
/*
* Relocate the locked entry in it16 slot 0 (if existent)
* as part of working around Cheetah+ erratum 34.
*/
itlb_relocate_locked0_sun4u();
#ifdef LOADER_DEBUG
printf("post fixup:\n");
pmap_print_tlb_sun4u();
#endif
}
dtlb_store = malloc(dtlb_slot_max * sizeof(*dtlb_store));
itlb_store = malloc(itlb_slot_max * sizeof(*itlb_store));
if (dtlb_store == NULL || itlb_store == NULL)
panic("%s: can't allocate TLB store", __func__);
}
#ifdef LOADER_ZFS_SUPPORT
static void
sparc64_zfs_probe(void)
{
struct vtoc8 vtoc;
char alias[64], devname[sizeof(alias) + sizeof(":x") - 1];
char type[sizeof("device_type")];
char *bdev, *dev, *odev;
uint64_t guid;
int fd, len, part;
phandle_t aliases, options;
/* Get the GUID of the ZFS pool on the boot device. */
guid = 0;
zfs_probe_dev(bootpath, &guid);
/*
* Get the GUIDs of the ZFS pools on any additional disks listed in
* the boot-device environment variable.
*/
if ((aliases = OF_finddevice("/aliases")) == -1)
goto out;
options = OF_finddevice("/options");
len = OF_getproplen(options, "boot-device");
if (len <= 0)
goto out;
bdev = odev = malloc(len + 1);
if (bdev == NULL)
goto out;
if (OF_getprop(options, "boot-device", bdev, len) <= 0)
goto out;
bdev[len] = '\0';
while ((dev = strsep(&bdev, " ")) != NULL) {
if (*dev == '\0')
continue;
strcpy(alias, dev);
(void)OF_getprop(aliases, dev, alias, sizeof(alias));
/*
* Don't probe the boot disk twice. Note that bootpath
* includes the partition specifier.
*/
if (strncmp(alias, bootpath, strlen(alias)) == 0)
continue;
if (OF_getprop(OF_finddevice(alias), "device_type", type,
sizeof(type)) == -1)
continue;
if (strcmp(type, "block") != 0)
continue;
/* Find freebsd-zfs slices in the VTOC. */
fd = open(alias, O_RDONLY);
if (fd == -1)
continue;
lseek(fd, 0, SEEK_SET);
if (read(fd, &vtoc, sizeof(vtoc)) != sizeof(vtoc)) {
close(fd);
continue;
}
close(fd);
for (part = 0; part < 8; part++) {
if (part == 2 || vtoc.part[part].tag !=
VTOC_TAG_FREEBSD_ZFS)
continue;
(void)sprintf(devname, "%s:%c", alias, part + 'a');
if (zfs_probe_dev(devname, NULL) == ENXIO)
break;
}
}
free(odev);
out:
if (guid != 0) {
zfs_currdev.pool_guid = guid;
zfs_currdev.root_guid = 0;
zfs_currdev.d_dev = &zfs_dev;
zfs_currdev.d_type = zfs_currdev.d_dev->dv_type;
}
}
#endif /* LOADER_ZFS_SUPPORT */
int
main(int (*openfirm)(void *))
{
char compatible[32];
struct devsw **dp;
/*
* Tell the Open Firmware functions where they find the OFW gate.
*/
OF_init(openfirm);
archsw.arch_getdev = ofw_getdev;
archsw.arch_copyin = sparc64_copyin;
archsw.arch_copyout = ofw_copyout;
archsw.arch_readin = sparc64_readin;
archsw.arch_autoload = sparc64_autoload;
#ifdef LOADER_ZFS_SUPPORT
archsw.arch_zfs_probe = sparc64_zfs_probe;
#endif
if (init_heap() == (vm_offset_t)-1)
OF_exit();
setheap((void *)heapva, (void *)(heapva + HEAPSZ));
/*
* Probe for a console.
*/
cons_probe();
if ((root = OF_peer(0)) == -1)
panic("%s: can't get root phandle", __func__);
OF_getprop(root, "compatible", compatible, sizeof(compatible));
mmu_ops = &mmu_ops_sun4u;
mmu_ops->tlb_init();
/*
* Set up the current device.
*/
OF_getprop(chosen, "bootpath", bootpath, sizeof(bootpath));
/*
* Initialize devices.
*/
for (dp = devsw; *dp != 0; dp++)
if ((*dp)->dv_init != 0)
(*dp)->dv_init();
#ifdef LOADER_ZFS_SUPPORT
if (zfs_currdev.pool_guid != 0) {
(void)strncpy(bootpath, zfs_fmtdev(&zfs_currdev),
sizeof(bootpath) - 1);
bootpath[sizeof(bootpath) - 1] = '\0';
} else
#endif
/*
* Sun compatible bootable CD-ROMs have a disk label placed before
* the ISO 9660 data, with the actual file system being in the first
* partition, while the other partitions contain pseudo disk labels
* with embedded boot blocks for different architectures, which may
* be followed by UFS file systems.
* The firmware will set the boot path to the partition it boots from
* ('f' in the sun4u/sun4v case), but we want the kernel to be loaded
* from the ISO 9660 file system ('a'), so the boot path needs to be
* altered.
*/
if (bootpath[strlen(bootpath) - 2] == ':' &&
bootpath[strlen(bootpath) - 1] == 'f')
bootpath[strlen(bootpath) - 1] = 'a';
env_setenv("currdev", EV_VOLATILE, bootpath,
ofw_setcurrdev, env_nounset);
env_setenv("loaddev", EV_VOLATILE, bootpath,
env_noset, env_nounset);
printf("\n");
printf("%s, Revision %s\n", bootprog_name, bootprog_rev);
printf("(%s, %s)\n", bootprog_maker, bootprog_date);
printf("bootpath=\"%s\"\n", bootpath);
/* Give control to the machine independent loader code. */
interact();
return (1);
}
COMMAND_SET(heap, "heap", "show heap usage", command_heap);
static int
command_heap(int argc, char *argv[])
{
mallocstats();
printf("heap base at %p, top at %p, upper limit at %p\n", heapva,
sbrk(0), heapva + HEAPSZ);
return(CMD_OK);
}
COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
static int
command_reboot(int argc, char *argv[])
{
int i;
for (i = 0; devsw[i] != NULL; ++i)
if (devsw[i]->dv_cleanup != NULL)
(devsw[i]->dv_cleanup)();
printf("Rebooting...\n");
OF_exit();
}
/* provide this for panic, as it's not in the startup code */
void
exit(int code)
{
OF_exit();
}
#ifdef LOADER_DEBUG
static const char *const page_sizes[] = {
" 8k", " 64k", "512k", " 4m"
};
static void
pmap_print_tte_sun4u(tte_t tag, tte_t tte)
{
printf("%s %s ",
page_sizes[(tte >> TD_SIZE_SHIFT) & TD_SIZE_MASK],
tag & TD_G ? "G" : " ");
printf(tte & TD_W ? "W " : " ");
printf(tte & TD_P ? "\e[33mP\e[0m " : " ");
printf(tte & TD_E ? "E " : " ");
printf(tte & TD_CV ? "CV " : " ");
printf(tte & TD_CP ? "CP " : " ");
printf(tte & TD_L ? "\e[32mL\e[0m " : " ");
printf(tte & TD_IE ? "IE " : " ");
printf(tte & TD_NFO ? "NFO " : " ");
printf("pa=0x%lx va=0x%lx ctx=%ld\n",
TD_PA(tte), TLB_TAR_VA(tag), TLB_TAR_CTX(tag));
}
static void
pmap_print_tlb_sun4u(void)
{
tte_t tag, tte;
u_long pstate;
int i;
pstate = rdpr(pstate);
for (i = 0; i < itlb_slot_max; i++) {
wrpr(pstate, pstate & ~PSTATE_IE, 0);
tte = itlb_get_data_sun4u(tlb_locked, i);
wrpr(pstate, pstate, 0);
if (!(tte & TD_V))
continue;
tag = ldxa(TLB_DAR_SLOT(tlb_locked, i),
ASI_ITLB_TAG_READ_REG);
printf("iTLB-%2u: ", i);
pmap_print_tte_sun4u(tag, tte);
}
for (i = 0; i < dtlb_slot_max; i++) {
wrpr(pstate, pstate & ~PSTATE_IE, 0);
tte = dtlb_get_data_sun4u(tlb_locked, i);
wrpr(pstate, pstate, 0);
if (!(tte & TD_V))
continue;
tag = ldxa(TLB_DAR_SLOT(tlb_locked, i),
ASI_DTLB_TAG_READ_REG);
printf("dTLB-%2u: ", i);
pmap_print_tte_sun4u(tag, tte);
}
}
#endif