freebsd-dev/usr.bin/top/machine.c
Bjoern A. Zeeb c618a5222e Constantly print the command name and if set include the thread
name in per-thread mode.

Discussed with:	jhb
Obtained from:	Ed Maste at Sandvine Incorporated
Sponsored by:	Sandvine Incorporated
MFC after:	1 week
Approved by:	re (kib)
2011-07-18 20:57:43 +00:00

1455 lines
36 KiB
C

/*
* top - a top users display for Unix
*
* SYNOPSIS: For FreeBSD-2.x and later
*
* DESCRIPTION:
* Originally written for BSD4.4 system by Christos Zoulas.
* Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
* Order support hacked in from top-3.5beta6/machine/m_aix41.c
* by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
*
* This is the machine-dependent module for FreeBSD 2.2
* Works for:
* FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
*
* LIBS: -lkvm
*
* AUTHOR: Christos Zoulas <christos@ee.cornell.edu>
* Steven Wallace <swallace@freebsd.org>
* Wolfram Schneider <wosch@FreeBSD.org>
* Thomas Moestl <tmoestl@gmx.net>
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/file.h>
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/rtprio.h>
#include <sys/signal.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/user.h>
#include <sys/vmmeter.h>
#include <err.h>
#include <kvm.h>
#include <math.h>
#include <nlist.h>
#include <paths.h>
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include <vis.h>
#include "top.h"
#include "machine.h"
#include "screen.h"
#include "utils.h"
#include "layout.h"
#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
#define SMPUNAMELEN 13
#define UPUNAMELEN 15
extern struct process_select ps;
extern char* printable(char *);
static int smpmode;
enum displaymodes displaymode;
#ifdef TOP_USERNAME_LEN
static int namelength = TOP_USERNAME_LEN;
#else
static int namelength = 8;
#endif
static int cmdlengthdelta;
/* Prototypes for top internals */
void quit(int);
/* get_process_info passes back a handle. This is what it looks like: */
struct handle {
struct kinfo_proc **next_proc; /* points to next valid proc pointer */
int remaining; /* number of pointers remaining */
};
/* declarations for load_avg */
#include "loadavg.h"
/* define what weighted cpu is. */
#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
/* what we consider to be process size: */
#define PROCSIZE(pp) ((pp)->ki_size / 1024)
#define RU(pp) (&(pp)->ki_rusage)
#define RUTOT(pp) \
(RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt)
/* definitions for indices in the nlist array */
/*
* These definitions control the format of the per-process area
*/
static char io_header[] =
" PID%s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND";
#define io_Proc_format \
"%5d%s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"
static char smp_header_thr[] =
" PID%s %-*.*s THR PRI NICE SIZE RES STATE C TIME %6s COMMAND";
static char smp_header[] =
" PID%s %-*.*s " "PRI NICE SIZE RES STATE C TIME %6s COMMAND";
#define smp_Proc_format \
"%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s %2d%7s %5.2f%% %.*s"
static char up_header_thr[] =
" PID%s %-*.*s THR PRI NICE SIZE RES STATE TIME %6s COMMAND";
static char up_header[] =
" PID%s %-*.*s " "PRI NICE SIZE RES STATE TIME %6s COMMAND";
#define up_Proc_format \
"%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %5.2f%% %.*s"
/* process state names for the "STATE" column of the display */
/* the extra nulls in the string "run" are for adding a slash and
the processor number when needed */
char *state_abbrev[] = {
"", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
};
static kvm_t *kd;
/* values that we stash away in _init and use in later routines */
static double logcpu;
/* these are retrieved from the kernel in _init */
static load_avg ccpu;
/* these are used in the get_ functions */
static int lastpid;
/* these are for calculating cpu state percentages */
static long cp_time[CPUSTATES];
static long cp_old[CPUSTATES];
static long cp_diff[CPUSTATES];
/* these are for detailing the process states */
int process_states[8];
char *procstatenames[] = {
"", " starting, ", " running, ", " sleeping, ", " stopped, ",
" zombie, ", " waiting, ", " lock, ",
NULL
};
/* these are for detailing the cpu states */
int cpu_states[CPUSTATES];
char *cpustatenames[] = {
"user", "nice", "system", "interrupt", "idle", NULL
};
/* these are for detailing the memory statistics */
int memory_stats[7];
char *memorynames[] = {
"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ",
"K Free", NULL
};
int swap_stats[7];
char *swapnames[] = {
"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
NULL
};
/* these are for keeping track of the proc array */
static int nproc;
static int onproc = -1;
static int pref_len;
static struct kinfo_proc *pbase;
static struct kinfo_proc **pref;
static struct kinfo_proc *previous_procs;
static struct kinfo_proc **previous_pref;
static int previous_proc_count = 0;
static int previous_proc_count_max = 0;
/* total number of io operations */
static long total_inblock;
static long total_oublock;
static long total_majflt;
/* these are for getting the memory statistics */
static int pageshift; /* log base 2 of the pagesize */
/* define pagetok in terms of pageshift */
#define pagetok(size) ((size) << pageshift)
/* useful externals */
long percentages();
#ifdef ORDER
/*
* Sorting orders. The first element is the default.
*/
char *ordernames[] = {
"cpu", "size", "res", "time", "pri", "threads",
"total", "read", "write", "fault", "vcsw", "ivcsw",
"jid", NULL
};
#endif
/* Per-cpu time states */
static int maxcpu;
static int maxid;
static int ncpus;
static u_long cpumask;
static long *times;
static long *pcpu_cp_time;
static long *pcpu_cp_old;
static long *pcpu_cp_diff;
static int *pcpu_cpu_states;
static int compare_jid(const void *a, const void *b);
static int compare_pid(const void *a, const void *b);
static int compare_tid(const void *a, const void *b);
static const char *format_nice(const struct kinfo_proc *pp);
static void getsysctl(const char *name, void *ptr, size_t len);
static int swapmode(int *retavail, int *retfree);
void
toggle_pcpustats(struct statics *statics)
{
if (ncpus == 1)
return;
/* Adjust display based on ncpus */
if (pcpu_stats) {
y_mem += ncpus - 1; /* 3 */
y_swap += ncpus - 1; /* 4 */
y_idlecursor += ncpus - 1; /* 5 */
y_message += ncpus - 1; /* 5 */
y_header += ncpus - 1; /* 6 */
y_procs += ncpus - 1; /* 7 */
Header_lines += ncpus - 1; /* 7 */
statics->ncpus = ncpus;
} else {
y_mem = 3;
y_swap = 4;
y_idlecursor = 5;
y_message = 5;
y_header = 6;
y_procs = 7;
Header_lines = 7;
statics->ncpus = 1;
}
}
int
machine_init(struct statics *statics, char do_unames)
{
int i, j, empty, pagesize;
size_t size;
struct passwd *pw;
size = sizeof(smpmode);
if ((sysctlbyname("machdep.smp_active", &smpmode, &size,
NULL, 0) != 0 &&
sysctlbyname("kern.smp.active", &smpmode, &size,
NULL, 0) != 0) ||
size != sizeof(smpmode))
smpmode = 0;
if (do_unames) {
while ((pw = getpwent()) != NULL) {
if (strlen(pw->pw_name) > namelength)
namelength = strlen(pw->pw_name);
}
}
if (smpmode && namelength > SMPUNAMELEN)
namelength = SMPUNAMELEN;
else if (namelength > UPUNAMELEN)
namelength = UPUNAMELEN;
kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
if (kd == NULL)
return (-1);
GETSYSCTL("kern.ccpu", ccpu);
/* this is used in calculating WCPU -- calculate it ahead of time */
logcpu = log(loaddouble(ccpu));
pbase = NULL;
pref = NULL;
nproc = 0;
onproc = -1;
/* get the page size and calculate pageshift from it */
pagesize = getpagesize();
pageshift = 0;
while (pagesize > 1) {
pageshift++;
pagesize >>= 1;
}
/* we only need the amount of log(2)1024 for our conversion */
pageshift -= LOG1024;
/* fill in the statics information */
statics->procstate_names = procstatenames;
statics->cpustate_names = cpustatenames;
statics->memory_names = memorynames;
statics->swap_names = swapnames;
#ifdef ORDER
statics->order_names = ordernames;
#endif
/* Allocate state for per-CPU stats. */
cpumask = 0;
ncpus = 0;
GETSYSCTL("kern.smp.maxcpus", maxcpu);
size = sizeof(long) * maxcpu * CPUSTATES;
times = malloc(size);
if (times == NULL)
err(1, "malloc %zd bytes", size);
if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1)
err(1, "sysctlbyname kern.cp_times");
pcpu_cp_time = calloc(1, size);
maxid = (size / CPUSTATES / sizeof(long)) - 1;
for (i = 0; i <= maxid; i++) {
empty = 1;
for (j = 0; empty && j < CPUSTATES; j++) {
if (times[i * CPUSTATES + j] != 0)
empty = 0;
}
if (!empty) {
cpumask |= (1ul << i);
ncpus++;
}
}
size = sizeof(long) * ncpus * CPUSTATES;
pcpu_cp_old = calloc(1, size);
pcpu_cp_diff = calloc(1, size);
pcpu_cpu_states = calloc(1, size);
statics->ncpus = 1;
if (pcpu_stats)
toggle_pcpustats(statics);
/* all done! */
return (0);
}
char *
format_header(char *uname_field)
{
static char Header[128];
const char *prehead;
switch (displaymode) {
case DISP_CPU:
/*
* The logic of picking the right header format seems reverse
* here because we only want to display a THR column when
* "thread mode" is off (and threads are not listed as
* separate lines).
*/
prehead = smpmode ?
(ps.thread ? smp_header : smp_header_thr) :
(ps.thread ? up_header : up_header_thr);
snprintf(Header, sizeof(Header), prehead,
ps.jail ? " JID" : "",
namelength, namelength, uname_field,
ps.wcpu ? "WCPU" : "CPU");
break;
case DISP_IO:
prehead = io_header;
snprintf(Header, sizeof(Header), prehead,
ps.jail ? " JID" : "",
namelength, namelength, uname_field);
break;
}
cmdlengthdelta = strlen(Header) - 7;
return (Header);
}
static int swappgsin = -1;
static int swappgsout = -1;
extern struct timeval timeout;
void
get_system_info(struct system_info *si)
{
long total;
struct loadavg sysload;
int mib[2];
struct timeval boottime;
size_t bt_size;
int i, j;
size_t size;
/* get the CPU stats */
size = (maxid + 1) * CPUSTATES * sizeof(long);
if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1)
err(1, "sysctlbyname kern.cp_times");
GETSYSCTL("kern.cp_time", cp_time);
GETSYSCTL("vm.loadavg", sysload);
GETSYSCTL("kern.lastpid", lastpid);
/* convert load averages to doubles */
for (i = 0; i < 3; i++)
si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
/* convert cp_time counts to percentages */
for (i = j = 0; i <= maxid; i++) {
if ((cpumask & (1ul << i)) == 0)
continue;
percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES],
&pcpu_cp_time[j * CPUSTATES],
&pcpu_cp_old[j * CPUSTATES],
&pcpu_cp_diff[j * CPUSTATES]);
j++;
}
percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
/* sum memory & swap statistics */
{
static unsigned int swap_delay = 0;
static int swapavail = 0;
static int swapfree = 0;
static long bufspace = 0;
static int nspgsin, nspgsout;
GETSYSCTL("vfs.bufspace", bufspace);
GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
/* convert memory stats to Kbytes */
memory_stats[0] = pagetok(memory_stats[0]);
memory_stats[1] = pagetok(memory_stats[1]);
memory_stats[2] = pagetok(memory_stats[2]);
memory_stats[3] = pagetok(memory_stats[3]);
memory_stats[4] = bufspace / 1024;
memory_stats[5] = pagetok(memory_stats[5]);
memory_stats[6] = -1;
/* first interval */
if (swappgsin < 0) {
swap_stats[4] = 0;
swap_stats[5] = 0;
}
/* compute differences between old and new swap statistic */
else {
swap_stats[4] = pagetok(((nspgsin - swappgsin)));
swap_stats[5] = pagetok(((nspgsout - swappgsout)));
}
swappgsin = nspgsin;
swappgsout = nspgsout;
/* call CPU heavy swapmode() only for changes */
if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
swap_stats[3] = swapmode(&swapavail, &swapfree);
swap_stats[0] = swapavail;
swap_stats[1] = swapavail - swapfree;
swap_stats[2] = swapfree;
}
swap_delay = 1;
swap_stats[6] = -1;
}
/* set arrays and strings */
if (pcpu_stats) {
si->cpustates = pcpu_cpu_states;
si->ncpus = ncpus;
} else {
si->cpustates = cpu_states;
si->ncpus = 1;
}
si->memory = memory_stats;
si->swap = swap_stats;
if (lastpid > 0) {
si->last_pid = lastpid;
} else {
si->last_pid = -1;
}
/*
* Print how long system has been up.
* (Found by looking getting "boottime" from the kernel)
*/
mib[0] = CTL_KERN;
mib[1] = KERN_BOOTTIME;
bt_size = sizeof(boottime);
if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
boottime.tv_sec != 0) {
si->boottime = boottime;
} else {
si->boottime.tv_sec = -1;
}
}
#define NOPROC ((void *)-1)
/*
* We need to compare data from the old process entry with the new
* process entry.
* To facilitate doing this quickly we stash a pointer in the kinfo_proc
* structure to cache the mapping. We also use a negative cache pointer
* of NOPROC to avoid duplicate lookups.
* XXX: this could be done when the actual processes are fetched, we do
* it here out of laziness.
*/
const struct kinfo_proc *
get_old_proc(struct kinfo_proc *pp)
{
struct kinfo_proc **oldpp, *oldp;
/*
* If this is the first fetch of the kinfo_procs then we don't have
* any previous entries.
*/
if (previous_proc_count == 0)
return (NULL);
/* negative cache? */
if (pp->ki_udata == NOPROC)
return (NULL);
/* cached? */
if (pp->ki_udata != NULL)
return (pp->ki_udata);
/*
* Not cached,
* 1) look up based on pid.
* 2) compare process start.
* If we fail here, then setup a negative cache entry, otherwise
* cache it.
*/
oldpp = bsearch(&pp, previous_pref, previous_proc_count,
sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid);
if (oldpp == NULL) {
pp->ki_udata = NOPROC;
return (NULL);
}
oldp = *oldpp;
if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
pp->ki_udata = NOPROC;
return (NULL);
}
pp->ki_udata = oldp;
return (oldp);
}
/*
* Return the total amount of IO done in blocks in/out and faults.
* store the values individually in the pointers passed in.
*/
long
get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp,
long *vcsw, long *ivcsw)
{
const struct kinfo_proc *oldp;
static struct kinfo_proc dummy;
long ret;
oldp = get_old_proc(pp);
if (oldp == NULL) {
bzero(&dummy, sizeof(dummy));
oldp = &dummy;
}
*inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
*oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
*flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
*vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
*ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
ret =
(RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
(RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
(RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
return (ret);
}
/*
* Return the total number of block in/out and faults by a process.
*/
long
get_io_total(struct kinfo_proc *pp)
{
long dummy;
return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
}
static struct handle handle;
caddr_t
get_process_info(struct system_info *si, struct process_select *sel,
int (*compare)(const void *, const void *))
{
int i;
int total_procs;
long p_io;
long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
int active_procs;
struct kinfo_proc **prefp;
struct kinfo_proc *pp;
/* these are copied out of sel for speed */
int show_idle;
int show_self;
int show_system;
int show_uid;
int show_command;
int show_kidle;
/*
* Save the previous process info.
*/
if (previous_proc_count_max < nproc) {
free(previous_procs);
previous_procs = malloc(nproc * sizeof(*previous_procs));
free(previous_pref);
previous_pref = malloc(nproc * sizeof(*previous_pref));
if (previous_procs == NULL || previous_pref == NULL) {
(void) fprintf(stderr, "top: Out of memory.\n");
quit(23);
}
previous_proc_count_max = nproc;
}
if (nproc) {
for (i = 0; i < nproc; i++)
previous_pref[i] = &previous_procs[i];
bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs));
qsort(previous_pref, nproc, sizeof(*previous_pref),
ps.thread ? compare_tid : compare_pid);
}
previous_proc_count = nproc;
pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC,
0, &nproc);
if (nproc > onproc)
pref = realloc(pref, sizeof(*pref) * (onproc = nproc));
if (pref == NULL || pbase == NULL) {
(void) fprintf(stderr, "top: Out of memory.\n");
quit(23);
}
/* get a pointer to the states summary array */
si->procstates = process_states;
/* set up flags which define what we are going to select */
show_idle = sel->idle;
show_self = sel->self == -1;
show_system = sel->system;
show_uid = sel->uid != -1;
show_command = sel->command != NULL;
show_kidle = sel->kidle;
/* count up process states and get pointers to interesting procs */
total_procs = 0;
active_procs = 0;
total_inblock = 0;
total_oublock = 0;
total_majflt = 0;
memset((char *)process_states, 0, sizeof(process_states));
prefp = pref;
for (pp = pbase, i = 0; i < nproc; pp++, i++) {
if (pp->ki_stat == 0)
/* not in use */
continue;
if (!show_self && pp->ki_pid == sel->self)
/* skip self */
continue;
if (!show_system && (pp->ki_flag & P_SYSTEM))
/* skip system process */
continue;
p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt,
&p_vcsw, &p_ivcsw);
total_inblock += p_inblock;
total_oublock += p_oublock;
total_majflt += p_majflt;
total_procs++;
process_states[pp->ki_stat]++;
if (pp->ki_stat == SZOMB)
/* skip zombies */
continue;
if (!show_kidle && pp->ki_tdflags & TDF_IDLETD)
/* skip kernel idle process */
continue;
if (displaymode == DISP_CPU && !show_idle &&
(pp->ki_pctcpu == 0 ||
pp->ki_stat == SSTOP || pp->ki_stat == SIDL))
/* skip idle or non-running processes */
continue;
if (displaymode == DISP_IO && !show_idle && p_io == 0)
/* skip processes that aren't doing I/O */
continue;
if (show_uid && pp->ki_ruid != (uid_t)sel->uid)
/* skip proc. that don't belong to the selected UID */
continue;
*prefp++ = pp;
active_procs++;
}
/* if requested, sort the "interesting" processes */
if (compare != NULL)
qsort(pref, active_procs, sizeof(*pref), compare);
/* remember active and total counts */
si->p_total = total_procs;
si->p_active = pref_len = active_procs;
/* pass back a handle */
handle.next_proc = pref;
handle.remaining = active_procs;
return ((caddr_t)&handle);
}
static char fmt[128]; /* static area where result is built */
char *
format_next_process(caddr_t handle, char *(*get_userid)(int), int flags)
{
struct kinfo_proc *pp;
const struct kinfo_proc *oldp;
long cputime;
double pct;
struct handle *hp;
char status[16];
int state;
struct rusage ru, *rup;
long p_tot, s_tot;
char *proc_fmt, thr_buf[6], jid_buf[6];
char *cmdbuf = NULL;
char **args;
/* find and remember the next proc structure */
hp = (struct handle *)handle;
pp = *(hp->next_proc++);
hp->remaining--;
/* get the process's command name */
if ((pp->ki_flag & P_INMEM) == 0) {
/*
* Print swapped processes as <pname>
*/
size_t len;
len = strlen(pp->ki_comm);
if (len > sizeof(pp->ki_comm) - 3)
len = sizeof(pp->ki_comm) - 3;
memmove(pp->ki_comm + 1, pp->ki_comm, len);
pp->ki_comm[0] = '<';
pp->ki_comm[len + 1] = '>';
pp->ki_comm[len + 2] = '\0';
}
/*
* Convert the process's runtime from microseconds to seconds. This
* time includes the interrupt time although that is not wanted here.
* ps(1) is similarly sloppy.
*/
cputime = (pp->ki_runtime + 500000) / 1000000;
/* calculate the base for cpu percentages */
pct = pctdouble(pp->ki_pctcpu);
/* generate "STATE" field */
switch (state = pp->ki_stat) {
case SRUN:
if (smpmode && pp->ki_oncpu != 0xff)
sprintf(status, "CPU%d", pp->ki_oncpu);
else
strcpy(status, "RUN");
break;
case SLOCK:
if (pp->ki_kiflag & KI_LOCKBLOCK) {
sprintf(status, "*%.6s", pp->ki_lockname);
break;
}
/* fall through */
case SSLEEP:
if (pp->ki_wmesg != NULL) {
sprintf(status, "%.6s", pp->ki_wmesg);
break;
}
/* FALLTHROUGH */
default:
if (state >= 0 &&
state < sizeof(state_abbrev) / sizeof(*state_abbrev))
sprintf(status, "%.6s", state_abbrev[state]);
else
sprintf(status, "?%5d", state);
break;
}
cmdbuf = (char *)malloc(cmdlengthdelta + 1);
if (cmdbuf == NULL) {
warn("malloc(%d)", cmdlengthdelta + 1);
return NULL;
}
if (!(flags & FMT_SHOWARGS)) {
if (ps.thread && pp->ki_flag & P_HADTHREADS &&
pp->ki_tdname[0]) {
snprintf(cmdbuf, cmdlengthdelta, "%s{%s}", pp->ki_comm,
pp->ki_tdname);
} else {
snprintf(cmdbuf, cmdlengthdelta, "%s", pp->ki_comm);
}
} else {
if (pp->ki_flag & P_SYSTEM ||
pp->ki_args == NULL ||
(args = kvm_getargv(kd, pp, cmdlengthdelta)) == NULL ||
!(*args)) {
if (ps.thread && pp->ki_flag & P_HADTHREADS &&
pp->ki_tdname[0]) {
snprintf(cmdbuf, cmdlengthdelta,
"[%s{%s}]", pp->ki_comm, pp->ki_tdname);
} else {
snprintf(cmdbuf, cmdlengthdelta,
"[%s]", pp->ki_comm);
}
} else {
char *src, *dst, *argbuf;
char *cmd;
size_t argbuflen;
size_t len;
argbuflen = cmdlengthdelta * 4;
argbuf = (char *)malloc(argbuflen + 1);
if (argbuf == NULL) {
warn("malloc(%d)", argbuflen + 1);
free(cmdbuf);
return NULL;
}
dst = argbuf;
/* Extract cmd name from argv */
cmd = strrchr(*args, '/');
if (cmd == NULL)
cmd = *args;
else
cmd++;
for (; (src = *args++) != NULL; ) {
if (*src == '\0')
continue;
len = (argbuflen - (dst - argbuf) - 1) / 4;
strvisx(dst, src,
strlen(src) < len ? strlen(src) : len,
VIS_NL | VIS_CSTYLE);
while (*dst != '\0')
dst++;
if ((argbuflen - (dst - argbuf) - 1) / 4 > 0)
*dst++ = ' '; /* add delimiting space */
}
if (dst != argbuf && dst[-1] == ' ')
dst--;
*dst = '\0';
if (strcmp(cmd, pp->ki_comm) != 0 ) {
if (ps.thread && pp->ki_flag & P_HADTHREADS &&
pp->ki_tdname[0])
snprintf(cmdbuf, cmdlengthdelta,
"%s (%s){%s}", argbuf, pp->ki_comm,
pp->ki_tdname);
else
snprintf(cmdbuf, cmdlengthdelta,
"%s (%s)", argbuf, pp->ki_comm);
} else {
if (ps.thread && pp->ki_flag & P_HADTHREADS &&
pp->ki_tdname[0])
snprintf(cmdbuf, cmdlengthdelta,
"%s{%s}", argbuf, pp->ki_tdname);
else
strlcpy(cmdbuf, argbuf, cmdlengthdelta);
}
free(argbuf);
}
}
if (ps.jail == 0)
jid_buf[0] = '\0';
else
snprintf(jid_buf, sizeof(jid_buf), " %*d",
sizeof(jid_buf) - 3, pp->ki_jid);
if (displaymode == DISP_IO) {
oldp = get_old_proc(pp);
if (oldp != NULL) {
ru.ru_inblock = RU(pp)->ru_inblock -
RU(oldp)->ru_inblock;
ru.ru_oublock = RU(pp)->ru_oublock -
RU(oldp)->ru_oublock;
ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
rup = &ru;
} else {
rup = RU(pp);
}
p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
s_tot = total_inblock + total_oublock + total_majflt;
sprintf(fmt, io_Proc_format,
pp->ki_pid,
jid_buf,
namelength, namelength, (*get_userid)(pp->ki_ruid),
rup->ru_nvcsw,
rup->ru_nivcsw,
rup->ru_inblock,
rup->ru_oublock,
rup->ru_majflt,
p_tot,
s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot),
screen_width > cmdlengthdelta ?
screen_width - cmdlengthdelta : 0,
printable(cmdbuf));
free(cmdbuf);
return (fmt);
}
/* format this entry */
proc_fmt = smpmode ? smp_Proc_format : up_Proc_format;
if (ps.thread != 0)
thr_buf[0] = '\0';
else
snprintf(thr_buf, sizeof(thr_buf), "%*d ",
sizeof(thr_buf) - 2, pp->ki_numthreads);
sprintf(fmt, proc_fmt,
pp->ki_pid,
jid_buf,
namelength, namelength, (*get_userid)(pp->ki_ruid),
thr_buf,
pp->ki_pri.pri_level - PZERO,
format_nice(pp),
format_k2(PROCSIZE(pp)),
format_k2(pagetok(pp->ki_rssize)),
status,
smpmode ? pp->ki_lastcpu : 0,
format_time(cputime),
ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct,
screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0,
printable(cmdbuf));
free(cmdbuf);
/* return the result */
return (fmt);
}
static void
getsysctl(const char *name, void *ptr, size_t len)
{
size_t nlen = len;
if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
strerror(errno));
quit(23);
}
if (nlen != len) {
fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n",
name, (unsigned long)len, (unsigned long)nlen);
quit(23);
}
}
static const char *
format_nice(const struct kinfo_proc *pp)
{
const char *fifo, *kthread;
int rtpri;
static char nicebuf[4 + 1];
fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F";
kthread = (pp->ki_flag & P_KTHREAD) ? "k" : "";
switch (PRI_BASE(pp->ki_pri.pri_class)) {
case PRI_ITHD:
return ("-");
case PRI_REALTIME:
/*
* XXX: the kernel doesn't tell us the original rtprio and
* doesn't really know what it was, so to recover it we
* must be more chummy with the implementation than the
* implementation is with itself. pri_user gives a
* constant "base" priority, but is only initialized
* properly for user threads. pri_native gives what the
* kernel calls the "base" priority, but it isn't constant
* since it is changed by priority propagation. pri_native
* also isn't properly initialized for all threads, but it
* is properly initialized for kernel realtime and idletime
* threads. Thus we use pri_user for the base priority of
* user threads (it is always correct) and pri_native for
* the base priority of kernel realtime and idletime threads
* (there is nothing better, and it is usually correct).
*
* The field width and thus the buffer are too small for
* values like "kr31F", but such values shouldn't occur,
* and if they do then the tailing "F" is not displayed.
*/
rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native :
pp->ki_pri.pri_user) - PRI_MIN_REALTIME;
snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s",
kthread, rtpri, fifo);
break;
case PRI_TIMESHARE:
if (pp->ki_flag & P_KTHREAD)
return ("-");
snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO);
break;
case PRI_IDLE:
/* XXX: as above. */
rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native :
pp->ki_pri.pri_user) - PRI_MIN_IDLE;
snprintf(nicebuf, sizeof(nicebuf), "%si%d%s",
kthread, rtpri, fifo);
break;
default:
return ("?");
}
return (nicebuf);
}
/* comparison routines for qsort */
static int
compare_pid(const void *p1, const void *p2)
{
const struct kinfo_proc * const *pp1 = p1;
const struct kinfo_proc * const *pp2 = p2;
if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0)
abort();
return ((*pp1)->ki_pid - (*pp2)->ki_pid);
}
static int
compare_tid(const void *p1, const void *p2)
{
const struct kinfo_proc * const *pp1 = p1;
const struct kinfo_proc * const *pp2 = p2;
if ((*pp2)->ki_tid < 0 || (*pp1)->ki_tid < 0)
abort();
return ((*pp1)->ki_tid - (*pp2)->ki_tid);
}
/*
* proc_compare - comparison function for "qsort"
* Compares the resource consumption of two processes using five
* distinct keys. The keys (in descending order of importance) are:
* percent cpu, cpu ticks, state, resident set size, total virtual
* memory usage. The process states are ordered as follows (from least
* to most important): WAIT, zombie, sleep, stop, start, run. The
* array declaration below maps a process state index into a number
* that reflects this ordering.
*/
static int sorted_state[] = {
0, /* not used */
3, /* sleep */
1, /* ABANDONED (WAIT) */
6, /* run */
5, /* start */
2, /* zombie */
4 /* stop */
};
#define ORDERKEY_PCTCPU(a, b) do { \
long diff; \
if (ps.wcpu) \
diff = floor(1.0E6 * weighted_cpu(pctdouble((b)->ki_pctcpu), \
(b))) - \
floor(1.0E6 * weighted_cpu(pctdouble((a)->ki_pctcpu), \
(a))); \
else \
diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_CPTICKS(a, b) do { \
int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_STATE(a, b) do { \
int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_PRIO(a, b) do { \
int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_THREADS(a, b) do { \
int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_RSSIZE(a, b) do { \
long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_MEM(a, b) do { \
long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_JID(a, b) do { \
int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
/* compare_cpu - the comparison function for sorting by cpu percentage */
int
#ifdef ORDER
compare_cpu(void *arg1, void *arg2)
#else
proc_compare(void *arg1, void *arg2)
#endif
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_PRIO(p1, p2);
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_MEM(p1, p2);
return (0);
}
#ifdef ORDER
/* "cpu" compare routines */
int compare_size(), compare_res(), compare_time(), compare_prio(),
compare_threads();
/*
* "io" compare routines. Context switches aren't i/o, but are displayed
* on the "io" display.
*/
int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(),
compare_vcsw(), compare_ivcsw();
int (*compares[])() = {
compare_cpu,
compare_size,
compare_res,
compare_time,
compare_prio,
compare_threads,
compare_iototal,
compare_ioread,
compare_iowrite,
compare_iofault,
compare_vcsw,
compare_ivcsw,
compare_jid,
NULL
};
/* compare_size - the comparison function for sorting by total memory usage */
int
compare_size(void *arg1, void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
ORDERKEY_MEM(p1, p2);
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_PRIO(p1, p2);
return (0);
}
/* compare_res - the comparison function for sorting by resident set size */
int
compare_res(void *arg1, void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_MEM(p1, p2);
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_PRIO(p1, p2);
return (0);
}
/* compare_time - the comparison function for sorting by total cpu time */
int
compare_time(void *arg1, void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_PRIO(p1, p2);
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_MEM(p1, p2);
return (0);
}
/* compare_prio - the comparison function for sorting by priority */
int
compare_prio(void *arg1, void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
ORDERKEY_PRIO(p1, p2);
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_MEM(p1, p2);
return (0);
}
/* compare_threads - the comparison function for sorting by threads */
int
compare_threads(void *arg1, void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
ORDERKEY_THREADS(p1, p2);
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_PRIO(p1, p2);
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_MEM(p1, p2);
return (0);
}
/* compare_jid - the comparison function for sorting by jid */
static int
compare_jid(const void *arg1, const void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
ORDERKEY_JID(p1, p2);
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_PRIO(p1, p2);
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_MEM(p1, p2);
return (0);
}
#endif /* ORDER */
/* assorted comparison functions for sorting by i/o */
int
#ifdef ORDER
compare_iototal(void *arg1, void *arg2)
#else
io_compare(void *arg1, void *arg2)
#endif
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
return (get_io_total(p2) - get_io_total(p1));
}
#ifdef ORDER
int
compare_ioread(void *arg1, void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
long dummy, inp1, inp2;
(void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
(void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);
return (inp2 - inp1);
}
int
compare_iowrite(void *arg1, void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
long dummy, oup1, oup2;
(void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
(void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);
return (oup2 - oup1);
}
int
compare_iofault(void *arg1, void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
long dummy, flp1, flp2;
(void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
(void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);
return (flp2 - flp1);
}
int
compare_vcsw(void *arg1, void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
long dummy, flp1, flp2;
(void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
(void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);
return (flp2 - flp1);
}
int
compare_ivcsw(void *arg1, void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
long dummy, flp1, flp2;
(void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
(void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);
return (flp2 - flp1);
}
#endif /* ORDER */
/*
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if
* the process does not exist.
* It is EXTREMLY IMPORTANT that this function work correctly.
* If top runs setuid root (as in SVR4), then this function
* is the only thing that stands in the way of a serious
* security problem. It validates requests for the "kill"
* and "renice" commands.
*/
int
proc_owner(int pid)
{
int cnt;
struct kinfo_proc **prefp;
struct kinfo_proc *pp;
prefp = pref;
cnt = pref_len;
while (--cnt >= 0) {
pp = *prefp++;
if (pp->ki_pid == (pid_t)pid)
return ((int)pp->ki_ruid);
}
return (-1);
}
static int
swapmode(int *retavail, int *retfree)
{
int n;
int pagesize = getpagesize();
struct kvm_swap swapary[1];
*retavail = 0;
*retfree = 0;
#define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
n = kvm_getswapinfo(kd, swapary, 1, 0);
if (n < 0 || swapary[0].ksw_total == 0)
return (0);
*retavail = CONVERT(swapary[0].ksw_total);
*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
return (n);
}