freebsd-dev/sys/miscfs/nullfs/null_vnops.c
Bosko Milekic 9ed346bab0 Change and clean the mutex lock interface.
mtx_enter(lock, type) becomes:

mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)

similarily, for releasing a lock, we now have:

mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.

The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.

Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:

MTX_QUIET and MTX_NOSWITCH

The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:

mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.

Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.

Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.

Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.

Finally, caught up to the interface changes in all sys code.

Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00

850 lines
25 KiB
C

/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* John Heidemann of the UCLA Ficus project.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
*
* Ancestors:
* @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
* ...and...
* @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
*
* $FreeBSD$
*/
/*
* Null Layer
*
* (See mount_null(8) for more information.)
*
* The null layer duplicates a portion of the file system
* name space under a new name. In this respect, it is
* similar to the loopback file system. It differs from
* the loopback fs in two respects: it is implemented using
* a stackable layers techniques, and its "null-node"s stack above
* all lower-layer vnodes, not just over directory vnodes.
*
* The null layer has two purposes. First, it serves as a demonstration
* of layering by proving a layer which does nothing. (It actually
* does everything the loopback file system does, which is slightly
* more than nothing.) Second, the null layer can serve as a prototype
* layer. Since it provides all necessary layer framework,
* new file system layers can be created very easily be starting
* with a null layer.
*
* The remainder of this man page examines the null layer as a basis
* for constructing new layers.
*
*
* INSTANTIATING NEW NULL LAYERS
*
* New null layers are created with mount_null(8).
* Mount_null(8) takes two arguments, the pathname
* of the lower vfs (target-pn) and the pathname where the null
* layer will appear in the namespace (alias-pn). After
* the null layer is put into place, the contents
* of target-pn subtree will be aliased under alias-pn.
*
*
* OPERATION OF A NULL LAYER
*
* The null layer is the minimum file system layer,
* simply bypassing all possible operations to the lower layer
* for processing there. The majority of its activity centers
* on the bypass routine, through which nearly all vnode operations
* pass.
*
* The bypass routine accepts arbitrary vnode operations for
* handling by the lower layer. It begins by examing vnode
* operation arguments and replacing any null-nodes by their
* lower-layer equivlants. It then invokes the operation
* on the lower layer. Finally, it replaces the null-nodes
* in the arguments and, if a vnode is return by the operation,
* stacks a null-node on top of the returned vnode.
*
* Although bypass handles most operations, vop_getattr, vop_lock,
* vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
* bypassed. Vop_getattr must change the fsid being returned.
* Vop_lock and vop_unlock must handle any locking for the
* current vnode as well as pass the lock request down.
* Vop_inactive and vop_reclaim are not bypassed so that
* they can handle freeing null-layer specific data. Vop_print
* is not bypassed to avoid excessive debugging information.
* Also, certain vnode operations change the locking state within
* the operation (create, mknod, remove, link, rename, mkdir, rmdir,
* and symlink). Ideally these operations should not change the
* lock state, but should be changed to let the caller of the
* function unlock them. Otherwise all intermediate vnode layers
* (such as union, umapfs, etc) must catch these functions to do
* the necessary locking at their layer.
*
*
* INSTANTIATING VNODE STACKS
*
* Mounting associates the null layer with a lower layer,
* effect stacking two VFSes. Vnode stacks are instead
* created on demand as files are accessed.
*
* The initial mount creates a single vnode stack for the
* root of the new null layer. All other vnode stacks
* are created as a result of vnode operations on
* this or other null vnode stacks.
*
* New vnode stacks come into existance as a result of
* an operation which returns a vnode.
* The bypass routine stacks a null-node above the new
* vnode before returning it to the caller.
*
* For example, imagine mounting a null layer with
* "mount_null /usr/include /dev/layer/null".
* Changing directory to /dev/layer/null will assign
* the root null-node (which was created when the null layer was mounted).
* Now consider opening "sys". A vop_lookup would be
* done on the root null-node. This operation would bypass through
* to the lower layer which would return a vnode representing
* the UFS "sys". Null_bypass then builds a null-node
* aliasing the UFS "sys" and returns this to the caller.
* Later operations on the null-node "sys" will repeat this
* process when constructing other vnode stacks.
*
*
* CREATING OTHER FILE SYSTEM LAYERS
*
* One of the easiest ways to construct new file system layers is to make
* a copy of the null layer, rename all files and variables, and
* then begin modifing the copy. Sed can be used to easily rename
* all variables.
*
* The umap layer is an example of a layer descended from the
* null layer.
*
*
* INVOKING OPERATIONS ON LOWER LAYERS
*
* There are two techniques to invoke operations on a lower layer
* when the operation cannot be completely bypassed. Each method
* is appropriate in different situations. In both cases,
* it is the responsibility of the aliasing layer to make
* the operation arguments "correct" for the lower layer
* by mapping an vnode arguments to the lower layer.
*
* The first approach is to call the aliasing layer's bypass routine.
* This method is most suitable when you wish to invoke the operation
* currently being handled on the lower layer. It has the advantage
* that the bypass routine already must do argument mapping.
* An example of this is null_getattrs in the null layer.
*
* A second approach is to directly invoke vnode operations on
* the lower layer with the VOP_OPERATIONNAME interface.
* The advantage of this method is that it is easy to invoke
* arbitrary operations on the lower layer. The disadvantage
* is that vnode arguments must be manualy mapped.
*
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <sys/sysctl.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/malloc.h>
#include <miscfs/nullfs/null.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <vm/vnode_pager.h>
static int null_bug_bypass = 0; /* for debugging: enables bypass printf'ing */
SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
&null_bug_bypass, 0, "");
static int null_access(struct vop_access_args *ap);
static int null_createvobject(struct vop_createvobject_args *ap);
static int null_destroyvobject(struct vop_destroyvobject_args *ap);
static int null_getattr(struct vop_getattr_args *ap);
static int null_getvobject(struct vop_getvobject_args *ap);
static int null_inactive(struct vop_inactive_args *ap);
static int null_islocked(struct vop_islocked_args *ap);
static int null_lock(struct vop_lock_args *ap);
static int null_lookup(struct vop_lookup_args *ap);
static int null_open(struct vop_open_args *ap);
static int null_print(struct vop_print_args *ap);
static int null_reclaim(struct vop_reclaim_args *ap);
static int null_rename(struct vop_rename_args *ap);
static int null_setattr(struct vop_setattr_args *ap);
static int null_unlock(struct vop_unlock_args *ap);
/*
* This is the 10-Apr-92 bypass routine.
* This version has been optimized for speed, throwing away some
* safety checks. It should still always work, but it's not as
* robust to programmer errors.
*
* In general, we map all vnodes going down and unmap them on the way back.
* As an exception to this, vnodes can be marked "unmapped" by setting
* the Nth bit in operation's vdesc_flags.
*
* Also, some BSD vnode operations have the side effect of vrele'ing
* their arguments. With stacking, the reference counts are held
* by the upper node, not the lower one, so we must handle these
* side-effects here. This is not of concern in Sun-derived systems
* since there are no such side-effects.
*
* This makes the following assumptions:
* - only one returned vpp
* - no INOUT vpp's (Sun's vop_open has one of these)
* - the vnode operation vector of the first vnode should be used
* to determine what implementation of the op should be invoked
* - all mapped vnodes are of our vnode-type (NEEDSWORK:
* problems on rmdir'ing mount points and renaming?)
*/
int
null_bypass(ap)
struct vop_generic_args /* {
struct vnodeop_desc *a_desc;
<other random data follows, presumably>
} */ *ap;
{
register struct vnode **this_vp_p;
int error;
struct vnode *old_vps[VDESC_MAX_VPS];
struct vnode **vps_p[VDESC_MAX_VPS];
struct vnode ***vppp;
struct vnodeop_desc *descp = ap->a_desc;
int reles, i;
if (null_bug_bypass)
printf ("null_bypass: %s\n", descp->vdesc_name);
#ifdef DIAGNOSTIC
/*
* We require at least one vp.
*/
if (descp->vdesc_vp_offsets == NULL ||
descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
panic ("null_bypass: no vp's in map");
#endif
/*
* Map the vnodes going in.
* Later, we'll invoke the operation based on
* the first mapped vnode's operation vector.
*/
reles = descp->vdesc_flags;
for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
break; /* bail out at end of list */
vps_p[i] = this_vp_p =
VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
/*
* We're not guaranteed that any but the first vnode
* are of our type. Check for and don't map any
* that aren't. (We must always map first vp or vclean fails.)
*/
if (i && (*this_vp_p == NULLVP ||
(*this_vp_p)->v_op != null_vnodeop_p)) {
old_vps[i] = NULLVP;
} else {
old_vps[i] = *this_vp_p;
*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
/*
* XXX - Several operations have the side effect
* of vrele'ing their vp's. We must account for
* that. (This should go away in the future.)
*/
if (reles & VDESC_VP0_WILLRELE)
VREF(*this_vp_p);
}
}
/*
* Call the operation on the lower layer
* with the modified argument structure.
*/
if (vps_p[0] && *vps_p[0])
error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
else {
printf("null_bypass: no map for %s\n", descp->vdesc_name);
error = EINVAL;
}
/*
* Maintain the illusion of call-by-value
* by restoring vnodes in the argument structure
* to their original value.
*/
reles = descp->vdesc_flags;
for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
break; /* bail out at end of list */
if (old_vps[i]) {
*(vps_p[i]) = old_vps[i];
#if 0
if (reles & VDESC_VP0_WILLUNLOCK)
VOP_UNLOCK(*(vps_p[i]), LK_THISLAYER, curproc);
#endif
if (reles & VDESC_VP0_WILLRELE)
vrele(*(vps_p[i]));
}
}
/*
* Map the possible out-going vpp
* (Assumes that the lower layer always returns
* a VREF'ed vpp unless it gets an error.)
*/
if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
!(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
!error) {
/*
* XXX - even though some ops have vpp returned vp's,
* several ops actually vrele this before returning.
* We must avoid these ops.
* (This should go away when these ops are regularized.)
*/
if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
goto out;
vppp = VOPARG_OFFSETTO(struct vnode***,
descp->vdesc_vpp_offset,ap);
if (*vppp)
error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp);
}
out:
return (error);
}
/*
* We have to carry on the locking protocol on the null layer vnodes
* as we progress through the tree. We also have to enforce read-only
* if this layer is mounted read-only.
*/
static int
null_lookup(ap)
struct vop_lookup_args /* {
struct vnode * a_dvp;
struct vnode ** a_vpp;
struct componentname * a_cnp;
} */ *ap;
{
struct componentname *cnp = ap->a_cnp;
struct vnode *dvp = ap->a_dvp;
struct proc *p = cnp->cn_proc;
int flags = cnp->cn_flags;
struct vnode *vp, *ldvp, *lvp;
int error;
if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
(cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
return (EROFS);
/*
* Although it is possible to call null_bypass(), we'll do
* a direct call to reduce overhead
*/
ldvp = NULLVPTOLOWERVP(dvp);
vp = lvp = NULL;
error = VOP_LOOKUP(ldvp, &lvp, cnp);
if (error == EJUSTRETURN && (flags & ISLASTCN) &&
(dvp->v_mount->mnt_flag & MNT_RDONLY) &&
(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
error = EROFS;
/*
* Rely only on the PDIRUNLOCK flag which should be carefully
* tracked by underlying filesystem.
*/
if (cnp->cn_flags & PDIRUNLOCK)
VOP_UNLOCK(dvp, LK_THISLAYER, p);
if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
if (ldvp == lvp) {
*ap->a_vpp = dvp;
VREF(dvp);
vrele(lvp);
} else {
error = null_node_create(dvp->v_mount, lvp, &vp);
if (error == 0)
*ap->a_vpp = vp;
}
}
return (error);
}
/*
* Setattr call. Disallow write attempts if the layer is mounted read-only.
*/
int
null_setattr(ap)
struct vop_setattr_args /* {
struct vnodeop_desc *a_desc;
struct vnode *a_vp;
struct vattr *a_vap;
struct ucred *a_cred;
struct proc *a_p;
} */ *ap;
{
struct vnode *vp = ap->a_vp;
struct vattr *vap = ap->a_vap;
if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
(vp->v_mount->mnt_flag & MNT_RDONLY))
return (EROFS);
if (vap->va_size != VNOVAL) {
switch (vp->v_type) {
case VDIR:
return (EISDIR);
case VCHR:
case VBLK:
case VSOCK:
case VFIFO:
if (vap->va_flags != VNOVAL)
return (EOPNOTSUPP);
return (0);
case VREG:
case VLNK:
default:
/*
* Disallow write attempts if the filesystem is
* mounted read-only.
*/
if (vp->v_mount->mnt_flag & MNT_RDONLY)
return (EROFS);
}
}
return (null_bypass((struct vop_generic_args *)ap));
}
/*
* We handle getattr only to change the fsid.
*/
static int
null_getattr(ap)
struct vop_getattr_args /* {
struct vnode *a_vp;
struct vattr *a_vap;
struct ucred *a_cred;
struct proc *a_p;
} */ *ap;
{
int error;
if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
return (error);
ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
return (0);
}
/*
* Handle to disallow write access if mounted read-only.
*/
static int
null_access(ap)
struct vop_access_args /* {
struct vnode *a_vp;
int a_mode;
struct ucred *a_cred;
struct proc *a_p;
} */ *ap;
{
struct vnode *vp = ap->a_vp;
mode_t mode = ap->a_mode;
/*
* Disallow write attempts on read-only layers;
* unless the file is a socket, fifo, or a block or
* character device resident on the file system.
*/
if (mode & VWRITE) {
switch (vp->v_type) {
case VDIR:
case VLNK:
case VREG:
if (vp->v_mount->mnt_flag & MNT_RDONLY)
return (EROFS);
break;
default:
break;
}
}
return (null_bypass((struct vop_generic_args *)ap));
}
/*
* We must handle open to be able to catch MNT_NODEV and friends.
*/
static int
null_open(ap)
struct vop_open_args /* {
struct vnode *a_vp;
int a_mode;
struct ucred *a_cred;
struct proc *a_p;
} */ *ap;
{
struct vnode *vp = ap->a_vp;
struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
if ((vp->v_mount->mnt_flag & MNT_NODEV) &&
(lvp->v_type == VBLK || lvp->v_type == VCHR))
return ENXIO;
return (null_bypass((struct vop_generic_args *)ap));
}
/*
* We handle this to eliminate null FS to lower FS
* file moving. Don't know why we don't allow this,
* possibly we should.
*/
static int
null_rename(ap)
struct vop_rename_args /* {
struct vnode *a_fdvp;
struct vnode *a_fvp;
struct componentname *a_fcnp;
struct vnode *a_tdvp;
struct vnode *a_tvp;
struct componentname *a_tcnp;
} */ *ap;
{
struct vnode *tdvp = ap->a_tdvp;
struct vnode *fvp = ap->a_fvp;
struct vnode *fdvp = ap->a_fdvp;
struct vnode *tvp = ap->a_tvp;
/* Check for cross-device rename. */
if ((fvp->v_mount != tdvp->v_mount) ||
(tvp && (fvp->v_mount != tvp->v_mount))) {
if (tdvp == tvp)
vrele(tdvp);
else
vput(tdvp);
if (tvp)
vput(tvp);
vrele(fdvp);
vrele(fvp);
return (EXDEV);
}
return (null_bypass((struct vop_generic_args *)ap));
}
/*
* We need to process our own vnode lock and then clear the
* interlock flag as it applies only to our vnode, not the
* vnodes below us on the stack.
*/
static int
null_lock(ap)
struct vop_lock_args /* {
struct vnode *a_vp;
int a_flags;
struct proc *a_p;
} */ *ap;
{
struct vnode *vp = ap->a_vp;
int flags = ap->a_flags;
struct proc *p = ap->a_p;
struct vnode *lvp;
int error;
if (flags & LK_THISLAYER) {
if (vp->v_vnlock != NULL)
return 0; /* lock is shared across layers */
error = lockmgr(&vp->v_lock, flags & ~LK_THISLAYER,
&vp->v_interlock, p);
return (error);
}
if (vp->v_vnlock != NULL) {
/*
* The lower level has exported a struct lock to us. Use
* it so that all vnodes in the stack lock and unlock
* simultaneously. Note: we don't DRAIN the lock as DRAIN
* decommissions the lock - just because our vnode is
* going away doesn't mean the struct lock below us is.
* LK_EXCLUSIVE is fine.
*/
if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
NULLFSDEBUG("null_lock: avoiding LK_DRAIN\n");
return(lockmgr(vp->v_vnlock,
(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
&vp->v_interlock, p));
}
return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock, p));
} else {
/*
* To prevent race conditions involving doing a lookup
* on "..", we have to lock the lower node, then lock our
* node. Most of the time it won't matter that we lock our
* node (as any locking would need the lower one locked
* first). But we can LK_DRAIN the upper lock as a step
* towards decomissioning it.
*/
lvp = NULLVPTOLOWERVP(vp);
if (lvp == NULL)
return (lockmgr(&vp->v_lock, flags, &vp->v_interlock, p));
if (flags & LK_INTERLOCK) {
mtx_unlock(&vp->v_interlock);
flags &= ~LK_INTERLOCK;
}
if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
error = VOP_LOCK(lvp,
(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, p);
} else
error = VOP_LOCK(lvp, flags, p);
if (error)
return (error);
error = lockmgr(&vp->v_lock, flags, &vp->v_interlock, p);
if (error)
VOP_UNLOCK(lvp, 0, p);
return (error);
}
}
/*
* We need to process our own vnode unlock and then clear the
* interlock flag as it applies only to our vnode, not the
* vnodes below us on the stack.
*/
static int
null_unlock(ap)
struct vop_unlock_args /* {
struct vnode *a_vp;
int a_flags;
struct proc *a_p;
} */ *ap;
{
struct vnode *vp = ap->a_vp;
int flags = ap->a_flags;
struct proc *p = ap->a_p;
struct vnode *lvp;
if (vp->v_vnlock != NULL) {
if (flags & LK_THISLAYER)
return 0; /* the lock is shared across layers */
flags &= ~LK_THISLAYER;
return (lockmgr(vp->v_vnlock, flags | LK_RELEASE,
&vp->v_interlock, p));
}
lvp = NULLVPTOLOWERVP(vp);
if (lvp == NULL)
return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, p));
if ((flags & LK_THISLAYER) == 0) {
if (flags & LK_INTERLOCK) {
mtx_unlock(&vp->v_interlock);
flags &= ~LK_INTERLOCK;
}
VOP_UNLOCK(lvp, flags & ~LK_INTERLOCK, p);
} else
flags &= ~LK_THISLAYER;
return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, p));
}
static int
null_islocked(ap)
struct vop_islocked_args /* {
struct vnode *a_vp;
struct proc *a_p;
} */ *ap;
{
struct vnode *vp = ap->a_vp;
struct proc *p = ap->a_p;
if (vp->v_vnlock != NULL)
return (lockstatus(vp->v_vnlock, p));
return (lockstatus(&vp->v_lock, p));
}
/*
* There is no way to tell that someone issued remove/rmdir operation
* on the underlying filesystem. For now we just have to release lowevrp
* as soon as possible.
*/
static int
null_inactive(ap)
struct vop_inactive_args /* {
struct vnode *a_vp;
struct proc *a_p;
} */ *ap;
{
struct vnode *vp = ap->a_vp;
struct proc *p = ap->a_p;
struct null_node *xp = VTONULL(vp);
struct vnode *lowervp = xp->null_lowervp;
lockmgr(&null_hashlock, LK_EXCLUSIVE, NULL, p);
LIST_REMOVE(xp, null_hash);
lockmgr(&null_hashlock, LK_RELEASE, NULL, p);
xp->null_lowervp = NULLVP;
if (vp->v_vnlock != NULL) {
vp->v_vnlock = &vp->v_lock; /* we no longer share the lock */
} else
VOP_UNLOCK(vp, LK_THISLAYER, p);
vput(lowervp);
/*
* Now it is safe to drop references to the lower vnode.
* VOP_INACTIVE() will be called by vrele() if necessary.
*/
vrele (lowervp);
return (0);
}
/*
* We can free memory in null_inactive, but we do this
* here. (Possible to guard vp->v_data to point somewhere)
*/
static int
null_reclaim(ap)
struct vop_reclaim_args /* {
struct vnode *a_vp;
struct proc *a_p;
} */ *ap;
{
struct vnode *vp = ap->a_vp;
void *vdata = vp->v_data;
vp->v_data = NULL;
FREE(vdata, M_NULLFSNODE);
return (0);
}
static int
null_print(ap)
struct vop_print_args /* {
struct vnode *a_vp;
} */ *ap;
{
register struct vnode *vp = ap->a_vp;
printf ("\ttag VT_NULLFS, vp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
return (0);
}
/*
* Let an underlying filesystem do the work
*/
static int
null_createvobject(ap)
struct vop_createvobject_args /* {
struct vnode *vp;
struct ucred *cred;
struct proc *p;
} */ *ap;
{
struct vnode *vp = ap->a_vp;
struct vnode *lowervp = VTONULL(vp) ? NULLVPTOLOWERVP(vp) : NULL;
int error;
if (vp->v_type == VNON || lowervp == NULL)
return 0;
error = VOP_CREATEVOBJECT(lowervp, ap->a_cred, ap->a_p);
if (error)
return (error);
vp->v_flag |= VOBJBUF;
return (0);
}
/*
* We have nothing to destroy and this operation shouldn't be bypassed.
*/
static int
null_destroyvobject(ap)
struct vop_destroyvobject_args /* {
struct vnode *vp;
} */ *ap;
{
struct vnode *vp = ap->a_vp;
vp->v_flag &= ~VOBJBUF;
return (0);
}
static int
null_getvobject(ap)
struct vop_getvobject_args /* {
struct vnode *vp;
struct vm_object **objpp;
} */ *ap;
{
struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
if (lvp == NULL)
return EINVAL;
return (VOP_GETVOBJECT(lvp, ap->a_objpp));
}
/*
* Global vfs data structures
*/
vop_t **null_vnodeop_p;
static struct vnodeopv_entry_desc null_vnodeop_entries[] = {
{ &vop_default_desc, (vop_t *) null_bypass },
{ &vop_access_desc, (vop_t *) null_access },
{ &vop_bmap_desc, (vop_t *) vop_eopnotsupp },
{ &vop_createvobject_desc, (vop_t *) null_createvobject },
{ &vop_destroyvobject_desc, (vop_t *) null_destroyvobject },
{ &vop_getattr_desc, (vop_t *) null_getattr },
{ &vop_getvobject_desc, (vop_t *) null_getvobject },
{ &vop_getwritemount_desc, (vop_t *) vop_stdgetwritemount},
{ &vop_inactive_desc, (vop_t *) null_inactive },
{ &vop_islocked_desc, (vop_t *) null_islocked },
{ &vop_lock_desc, (vop_t *) null_lock },
{ &vop_lookup_desc, (vop_t *) null_lookup },
{ &vop_open_desc, (vop_t *) null_open },
{ &vop_print_desc, (vop_t *) null_print },
{ &vop_reclaim_desc, (vop_t *) null_reclaim },
{ &vop_rename_desc, (vop_t *) null_rename },
{ &vop_setattr_desc, (vop_t *) null_setattr },
{ &vop_strategy_desc, (vop_t *) vop_eopnotsupp },
{ &vop_unlock_desc, (vop_t *) null_unlock },
{ NULL, NULL }
};
static struct vnodeopv_desc null_vnodeop_opv_desc =
{ &null_vnodeop_p, null_vnodeop_entries };
VNODEOP_SET(null_vnodeop_opv_desc);