freebsd-dev/lib/libc/stdlib/malloc.c
2010-02-28 22:57:13 +00:00

6235 lines
159 KiB
C

/*-
* Copyright (C) 2006-2010 Jason Evans <jasone@FreeBSD.org>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice(s), this list of conditions and the following disclaimer as
* the first lines of this file unmodified other than the possible
* addition of one or more copyright notices.
* 2. Redistributions in binary form must reproduce the above copyright
* notice(s), this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************
*
* This allocator implementation is designed to provide scalable performance
* for multi-threaded programs on multi-processor systems. The following
* features are included for this purpose:
*
* + Multiple arenas are used if there are multiple CPUs, which reduces lock
* contention and cache sloshing.
*
* + Thread-specific caching is used if there are multiple threads, which
* reduces the amount of locking.
*
* + Cache line sharing between arenas is avoided for internal data
* structures.
*
* + Memory is managed in chunks and runs (chunks can be split into runs),
* rather than as individual pages. This provides a constant-time
* mechanism for associating allocations with particular arenas.
*
* Allocation requests are rounded up to the nearest size class, and no record
* of the original request size is maintained. Allocations are broken into
* categories according to size class. Assuming runtime defaults, 4 KiB pages
* and a 16 byte quantum on a 32-bit system, the size classes in each category
* are as follows:
*
* |========================================|
* | Category | Subcategory | Size |
* |========================================|
* | Small | Tiny | 2 |
* | | | 4 |
* | | | 8 |
* | |------------------+----------|
* | | Quantum-spaced | 16 |
* | | | 32 |
* | | | 48 |
* | | | ... |
* | | | 96 |
* | | | 112 |
* | | | 128 |
* | |------------------+----------|
* | | Cacheline-spaced | 192 |
* | | | 256 |
* | | | 320 |
* | | | 384 |
* | | | 448 |
* | | | 512 |
* | |------------------+----------|
* | | Sub-page | 760 |
* | | | 1024 |
* | | | 1280 |
* | | | ... |
* | | | 3328 |
* | | | 3584 |
* | | | 3840 |
* |========================================|
* | Medium | 4 KiB |
* | | 6 KiB |
* | | 8 KiB |
* | | ... |
* | | 28 KiB |
* | | 30 KiB |
* | | 32 KiB |
* |========================================|
* | Large | 36 KiB |
* | | 40 KiB |
* | | 44 KiB |
* | | ... |
* | | 1012 KiB |
* | | 1016 KiB |
* | | 1020 KiB |
* |========================================|
* | Huge | 1 MiB |
* | | 2 MiB |
* | | 3 MiB |
* | | ... |
* |========================================|
*
* Different mechanisms are used accoding to category:
*
* Small/medium : Each size class is segregated into its own set of runs.
* Each run maintains a bitmap of which regions are
* free/allocated.
*
* Large : Each allocation is backed by a dedicated run. Metadata are stored
* in the associated arena chunk header maps.
*
* Huge : Each allocation is backed by a dedicated contiguous set of chunks.
* Metadata are stored in a separate red-black tree.
*
*******************************************************************************
*/
/*
* MALLOC_PRODUCTION disables assertions and statistics gathering. It also
* defaults the A and J runtime options to off. These settings are appropriate
* for production systems.
*/
/* #define MALLOC_PRODUCTION */
#ifndef MALLOC_PRODUCTION
/*
* MALLOC_DEBUG enables assertions and other sanity checks, and disables
* inline functions.
*/
# define MALLOC_DEBUG
/* MALLOC_STATS enables statistics calculation. */
# define MALLOC_STATS
#endif
/*
* MALLOC_TINY enables support for tiny objects, which are smaller than one
* quantum.
*/
#define MALLOC_TINY
/*
* MALLOC_TCACHE enables a thread-specific caching layer for small and medium
* objects. This makes it possible to allocate/deallocate objects without any
* locking when the cache is in the steady state.
*/
#define MALLOC_TCACHE
/*
* MALLOC_DSS enables use of sbrk(2) to allocate chunks from the data storage
* segment (DSS). In an ideal world, this functionality would be completely
* unnecessary, but we are burdened by history and the lack of resource limits
* for anonymous mapped memory.
*/
#define MALLOC_DSS
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "libc_private.h"
#ifdef MALLOC_DEBUG
# define _LOCK_DEBUG
#endif
#include "spinlock.h"
#include "namespace.h"
#include <sys/mman.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/uio.h>
#include <sys/ktrace.h> /* Must come after several other sys/ includes. */
#include <machine/cpufunc.h>
#include <machine/param.h>
#include <machine/vmparam.h>
#include <errno.h>
#include <limits.h>
#include <pthread.h>
#include <sched.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include "un-namespace.h"
#define RB_COMPACT
#include "rb.h"
#if (defined(MALLOC_TCACHE) && defined(MALLOC_STATS))
#include "qr.h"
#include "ql.h"
#endif
#ifdef MALLOC_DEBUG
/* Disable inlining to make debugging easier. */
# define inline
#endif
/* Size of stack-allocated buffer passed to strerror_r(). */
#define STRERROR_BUF 64
/*
* Minimum alignment of allocations is 2^LG_QUANTUM bytes.
*/
#ifdef __i386__
# define LG_QUANTUM 4
# define LG_SIZEOF_PTR 2
# define CPU_SPINWAIT __asm__ volatile("pause")
# define TLS_MODEL __attribute__((tls_model("initial-exec")))
#endif
#ifdef __ia64__
# define LG_QUANTUM 4
# define LG_SIZEOF_PTR 3
# define TLS_MODEL /* default */
#endif
#ifdef __alpha__
# define LG_QUANTUM 4
# define LG_SIZEOF_PTR 3
# define NO_TLS
#endif
#ifdef __sparc64__
# define LG_QUANTUM 4
# define LG_SIZEOF_PTR 3
# define NO_TLS
#endif
#ifdef __amd64__
# define LG_QUANTUM 4
# define LG_SIZEOF_PTR 3
# define CPU_SPINWAIT __asm__ volatile("pause")
# define TLS_MODEL __attribute__((tls_model("initial-exec")))
#endif
#ifdef __arm__
# define LG_QUANTUM 3
# define LG_SIZEOF_PTR 2
# define NO_TLS
#endif
#ifdef __mips__
# define LG_QUANTUM 3
# define LG_SIZEOF_PTR 2
# define NO_TLS
#endif
#ifdef __powerpc__
# define LG_QUANTUM 4
# define TLS_MODEL /* default */
#endif
#ifdef __s390x__
# define LG_QUANTUM 4
#endif
#define QUANTUM ((size_t)(1U << LG_QUANTUM))
#define QUANTUM_MASK (QUANTUM - 1)
#define SIZEOF_PTR (1U << LG_SIZEOF_PTR)
/* sizeof(int) == (1U << LG_SIZEOF_INT). */
#ifndef LG_SIZEOF_INT
# define LG_SIZEOF_INT 2
#endif
/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
#if (!defined(PIC) && !defined(NO_TLS))
# define NO_TLS
#endif
#ifdef NO_TLS
/* MALLOC_TCACHE requires TLS. */
# ifdef MALLOC_TCACHE
# undef MALLOC_TCACHE
# endif
#endif
/*
* Size and alignment of memory chunks that are allocated by the OS's virtual
* memory system.
*/
#define LG_CHUNK_DEFAULT 22
/*
* The minimum ratio of active:dirty pages per arena is computed as:
*
* (nactive >> opt_lg_dirty_mult) >= ndirty
*
* So, supposing that opt_lg_dirty_mult is 5, there can be no less than 32
* times as many active pages as dirty pages.
*/
#define LG_DIRTY_MULT_DEFAULT 5
/*
* Maximum size of L1 cache line. This is used to avoid cache line aliasing.
* In addition, this controls the spacing of cacheline-spaced size classes.
*/
#define LG_CACHELINE 6
#define CACHELINE ((size_t)(1U << LG_CACHELINE))
#define CACHELINE_MASK (CACHELINE - 1)
/*
* Subpages are an artificially designated partitioning of pages. Their only
* purpose is to support subpage-spaced size classes.
*
* There must be at least 4 subpages per page, due to the way size classes are
* handled.
*/
#define LG_SUBPAGE 8
#define SUBPAGE ((size_t)(1U << LG_SUBPAGE))
#define SUBPAGE_MASK (SUBPAGE - 1)
#ifdef MALLOC_TINY
/* Smallest size class to support. */
# define LG_TINY_MIN 1
#endif
/*
* Maximum size class that is a multiple of the quantum, but not (necessarily)
* a power of 2. Above this size, allocations are rounded up to the nearest
* power of 2.
*/
#define LG_QSPACE_MAX_DEFAULT 7
/*
* Maximum size class that is a multiple of the cacheline, but not (necessarily)
* a power of 2. Above this size, allocations are rounded up to the nearest
* power of 2.
*/
#define LG_CSPACE_MAX_DEFAULT 9
/*
* Maximum medium size class. This must not be more than 1/4 of a chunk
* (LG_MEDIUM_MAX_DEFAULT <= LG_CHUNK_DEFAULT - 2).
*/
#define LG_MEDIUM_MAX_DEFAULT 15
/*
* RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
* as small as possible such that this setting is still honored, without
* violating other constraints. The goal is to make runs as small as possible
* without exceeding a per run external fragmentation threshold.
*
* We use binary fixed point math for overhead computations, where the binary
* point is implicitly RUN_BFP bits to the left.
*
* Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
* honored for some/all object sizes, since there is one bit of header overhead
* per object (plus a constant). This constraint is relaxed (ignored) for runs
* that are so small that the per-region overhead is greater than:
*
* (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
*/
#define RUN_BFP 12
/* \/ Implicit binary fixed point. */
#define RUN_MAX_OVRHD 0x0000003dU
#define RUN_MAX_OVRHD_RELAX 0x00001800U
/* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */
#define RUN_MAX_SMALL \
(arena_maxclass <= (1U << (CHUNK_MAP_LG_PG_RANGE + PAGE_SHIFT)) \
? arena_maxclass : (1U << (CHUNK_MAP_LG_PG_RANGE + \
PAGE_SHIFT)))
/*
* Hyper-threaded CPUs may need a special instruction inside spin loops in
* order to yield to another virtual CPU. If no such instruction is defined
* above, make CPU_SPINWAIT a no-op.
*/
#ifndef CPU_SPINWAIT
# define CPU_SPINWAIT
#endif
/*
* Adaptive spinning must eventually switch to blocking, in order to avoid the
* potential for priority inversion deadlock. Backing off past a certain point
* can actually waste time.
*/
#define LG_SPIN_LIMIT 11
#ifdef MALLOC_TCACHE
/*
* Default number of cache slots for each bin in the thread cache (0:
* disabled).
*/
# define LG_TCACHE_NSLOTS_DEFAULT 7
/*
* (1U << opt_lg_tcache_gc_sweep) is the approximate number of
* allocation events between full GC sweeps (-1: disabled). Integer
* rounding may cause the actual number to be slightly higher, since GC is
* performed incrementally.
*/
# define LG_TCACHE_GC_SWEEP_DEFAULT 13
#endif
/******************************************************************************/
/*
* Mutexes based on spinlocks. We can't use normal pthread spinlocks in all
* places, because they require malloc()ed memory, which causes bootstrapping
* issues in some cases.
*/
typedef struct {
spinlock_t lock;
} malloc_mutex_t;
/* Set to true once the allocator has been initialized. */
static bool malloc_initialized = false;
/* Used to avoid initialization races. */
static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
/******************************************************************************/
/*
* Statistics data structures.
*/
#ifdef MALLOC_STATS
#ifdef MALLOC_TCACHE
typedef struct tcache_bin_stats_s tcache_bin_stats_t;
struct tcache_bin_stats_s {
/*
* Number of allocation requests that corresponded to the size of this
* bin.
*/
uint64_t nrequests;
};
#endif
typedef struct malloc_bin_stats_s malloc_bin_stats_t;
struct malloc_bin_stats_s {
/*
* Number of allocation requests that corresponded to the size of this
* bin.
*/
uint64_t nrequests;
#ifdef MALLOC_TCACHE
/* Number of tcache fills from this bin. */
uint64_t nfills;
/* Number of tcache flushes to this bin. */
uint64_t nflushes;
#endif
/* Total number of runs created for this bin's size class. */
uint64_t nruns;
/*
* Total number of runs reused by extracting them from the runs tree for
* this bin's size class.
*/
uint64_t reruns;
/* High-water mark for this bin. */
size_t highruns;
/* Current number of runs in this bin. */
size_t curruns;
};
typedef struct malloc_large_stats_s malloc_large_stats_t;
struct malloc_large_stats_s {
/*
* Number of allocation requests that corresponded to this size class.
*/
uint64_t nrequests;
/* High-water mark for this size class. */
size_t highruns;
/* Current number of runs of this size class. */
size_t curruns;
};
typedef struct arena_stats_s arena_stats_t;
struct arena_stats_s {
/* Number of bytes currently mapped. */
size_t mapped;
/*
* Total number of purge sweeps, total number of madvise calls made,
* and total pages purged in order to keep dirty unused memory under
* control.
*/
uint64_t npurge;
uint64_t nmadvise;
uint64_t purged;
/* Per-size-category statistics. */
size_t allocated_small;
uint64_t nmalloc_small;
uint64_t ndalloc_small;
size_t allocated_medium;
uint64_t nmalloc_medium;
uint64_t ndalloc_medium;
size_t allocated_large;
uint64_t nmalloc_large;
uint64_t ndalloc_large;
/*
* One element for each possible size class, including sizes that
* overlap with bin size classes. This is necessary because ipalloc()
* sometimes has to use such large objects in order to assure proper
* alignment.
*/
malloc_large_stats_t *lstats;
};
typedef struct chunk_stats_s chunk_stats_t;
struct chunk_stats_s {
/* Number of chunks that were allocated. */
uint64_t nchunks;
/* High-water mark for number of chunks allocated. */
size_t highchunks;
/*
* Current number of chunks allocated. This value isn't maintained for
* any other purpose, so keep track of it in order to be able to set
* highchunks.
*/
size_t curchunks;
};
#endif /* #ifdef MALLOC_STATS */
/******************************************************************************/
/*
* Extent data structures.
*/
/* Tree of extents. */
typedef struct extent_node_s extent_node_t;
struct extent_node_s {
#ifdef MALLOC_DSS
/* Linkage for the size/address-ordered tree. */
rb_node(extent_node_t) link_szad;
#endif
/* Linkage for the address-ordered tree. */
rb_node(extent_node_t) link_ad;
/* Pointer to the extent that this tree node is responsible for. */
void *addr;
/* Total region size. */
size_t size;
};
typedef rb_tree(extent_node_t) extent_tree_t;
/******************************************************************************/
/*
* Arena data structures.
*/
typedef struct arena_s arena_t;
typedef struct arena_bin_s arena_bin_t;
/* Each element of the chunk map corresponds to one page within the chunk. */
typedef struct arena_chunk_map_s arena_chunk_map_t;
struct arena_chunk_map_s {
/*
* Linkage for run trees. There are two disjoint uses:
*
* 1) arena_t's runs_avail tree.
* 2) arena_run_t conceptually uses this linkage for in-use non-full
* runs, rather than directly embedding linkage.
*/
rb_node(arena_chunk_map_t) link;
/*
* Run address (or size) and various flags are stored together. The bit
* layout looks like (assuming 32-bit system):
*
* ???????? ???????? ????cccc ccccdzla
*
* ? : Unallocated: Run address for first/last pages, unset for internal
* pages.
* Small/medium: Don't care.
* Large: Run size for first page, unset for trailing pages.
* - : Unused.
* c : refcount (could overflow for PAGE_SIZE >= 128 KiB)
* d : dirty?
* z : zeroed?
* l : large?
* a : allocated?
*
* Following are example bit patterns for the three types of runs.
*
* p : run page offset
* s : run size
* x : don't care
* - : 0
* [dzla] : bit set
*
* Unallocated:
* ssssssss ssssssss ssss---- --------
* xxxxxxxx xxxxxxxx xxxx---- ----d---
* ssssssss ssssssss ssss---- -----z--
*
* Small/medium:
* pppppppp ppppcccc cccccccc cccc---a
* pppppppp ppppcccc cccccccc cccc---a
* pppppppp ppppcccc cccccccc cccc---a
*
* Large:
* ssssssss ssssssss ssss---- ------la
* -------- -------- -------- ------la
* -------- -------- -------- ------la
*/
size_t bits;
#define CHUNK_MAP_PG_MASK ((size_t)0xfff00000U)
#define CHUNK_MAP_PG_SHIFT 20
#define CHUNK_MAP_LG_PG_RANGE 12
#define CHUNK_MAP_RC_MASK ((size_t)0xffff0U)
#define CHUNK_MAP_RC_ONE ((size_t)0x00010U)
#define CHUNK_MAP_FLAGS_MASK ((size_t)0xfU)
#define CHUNK_MAP_DIRTY ((size_t)0x8U)
#define CHUNK_MAP_ZEROED ((size_t)0x4U)
#define CHUNK_MAP_LARGE ((size_t)0x2U)
#define CHUNK_MAP_ALLOCATED ((size_t)0x1U)
#define CHUNK_MAP_KEY (CHUNK_MAP_DIRTY | CHUNK_MAP_ALLOCATED)
};
typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
/* Arena chunk header. */
typedef struct arena_chunk_s arena_chunk_t;
struct arena_chunk_s {
/* Arena that owns the chunk. */
arena_t *arena;
/* Linkage for the arena's chunks_dirty tree. */
rb_node(arena_chunk_t) link_dirty;
/*
* True if the chunk is currently in the chunks_dirty tree, due to
* having at some point contained one or more dirty pages. Removal
* from chunks_dirty is lazy, so (dirtied && ndirty == 0) is possible.
*/
bool dirtied;
/* Number of dirty pages. */
size_t ndirty;
/* Map of pages within chunk that keeps track of free/large/small. */
arena_chunk_map_t map[1]; /* Dynamically sized. */
};
typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
typedef struct arena_run_s arena_run_t;
struct arena_run_s {
#ifdef MALLOC_DEBUG
uint32_t magic;
# define ARENA_RUN_MAGIC 0x384adf93
#endif
/* Bin this run is associated with. */
arena_bin_t *bin;
/* Index of first element that might have a free region. */
unsigned regs_minelm;
/* Number of free regions in run. */
unsigned nfree;
/* Bitmask of in-use regions (0: in use, 1: free). */
unsigned regs_mask[1]; /* Dynamically sized. */
};
struct arena_bin_s {
/*
* Current run being used to service allocations of this bin's size
* class.
*/
arena_run_t *runcur;
/*
* Tree of non-full runs. This tree is used when looking for an
* existing run when runcur is no longer usable. We choose the
* non-full run that is lowest in memory; this policy tends to keep
* objects packed well, and it can also help reduce the number of
* almost-empty chunks.
*/
arena_run_tree_t runs;
/* Size of regions in a run for this bin's size class. */
size_t reg_size;
/* Total size of a run for this bin's size class. */
size_t run_size;
/* Total number of regions in a run for this bin's size class. */
uint32_t nregs;
/* Number of elements in a run's regs_mask for this bin's size class. */
uint32_t regs_mask_nelms;
/* Offset of first region in a run for this bin's size class. */
uint32_t reg0_offset;
#ifdef MALLOC_STATS
/* Bin statistics. */
malloc_bin_stats_t stats;
#endif
};
#ifdef MALLOC_TCACHE
typedef struct tcache_s tcache_t;
#endif
struct arena_s {
#ifdef MALLOC_DEBUG
uint32_t magic;
# define ARENA_MAGIC 0x947d3d24
#endif
/* All operations on this arena require that lock be locked. */
pthread_mutex_t lock;
#ifdef MALLOC_STATS
arena_stats_t stats;
# ifdef MALLOC_TCACHE
/*
* List of tcaches for extant threads associated with this arena.
* Stats from these are merged incrementally, and at exit.
*/
ql_head(tcache_t) tcache_ql;
# endif
#endif
/* Tree of dirty-page-containing chunks this arena manages. */
arena_chunk_tree_t chunks_dirty;
/*
* In order to avoid rapid chunk allocation/deallocation when an arena
* oscillates right on the cusp of needing a new chunk, cache the most
* recently freed chunk. The spare is left in the arena's chunk trees
* until it is deleted.
*
* There is one spare chunk per arena, rather than one spare total, in
* order to avoid interactions between multiple threads that could make
* a single spare inadequate.
*/
arena_chunk_t *spare;
/* Number of pages in active runs. */
size_t nactive;
/*
* Current count of pages within unused runs that are potentially
* dirty, and for which madvise(... MADV_FREE) has not been called. By
* tracking this, we can institute a limit on how much dirty unused
* memory is mapped for each arena.
*/
size_t ndirty;
/*
* Size/address-ordered tree of this arena's available runs. This tree
* is used for first-best-fit run allocation.
*/
arena_avail_tree_t runs_avail;
/*
* bins is used to store trees of free regions of the following sizes,
* assuming a 16-byte quantum, 4 KiB page size, and default
* MALLOC_OPTIONS.
*
* bins[i] | size |
* --------+--------+
* 0 | 2 |
* 1 | 4 |
* 2 | 8 |
* --------+--------+
* 3 | 16 |
* 4 | 32 |
* 5 | 48 |
* : :
* 8 | 96 |
* 9 | 112 |
* 10 | 128 |
* --------+--------+
* 11 | 192 |
* 12 | 256 |
* 13 | 320 |
* 14 | 384 |
* 15 | 448 |
* 16 | 512 |
* --------+--------+
* 17 | 768 |
* 18 | 1024 |
* 19 | 1280 |
* : :
* 27 | 3328 |
* 28 | 3584 |
* 29 | 3840 |
* --------+--------+
* 30 | 4 KiB |
* 31 | 6 KiB |
* 33 | 8 KiB |
* : :
* 43 | 28 KiB |
* 44 | 30 KiB |
* 45 | 32 KiB |
* --------+--------+
*/
arena_bin_t bins[1]; /* Dynamically sized. */
};
/******************************************************************************/
/*
* Thread cache data structures.
*/
#ifdef MALLOC_TCACHE
typedef struct tcache_bin_s tcache_bin_t;
struct tcache_bin_s {
# ifdef MALLOC_STATS
tcache_bin_stats_t tstats;
# endif
unsigned low_water; /* Min # cached since last GC. */
unsigned high_water; /* Max # cached since last GC. */
unsigned ncached; /* # of cached objects. */
void *slots[1]; /* Dynamically sized. */
};
struct tcache_s {
# ifdef MALLOC_STATS
ql_elm(tcache_t) link; /* Used for aggregating stats. */
# endif
arena_t *arena; /* This thread's arena. */
unsigned ev_cnt; /* Event count since incremental GC. */
unsigned next_gc_bin; /* Next bin to GC. */
tcache_bin_t *tbins[1]; /* Dynamically sized. */
};
#endif
/******************************************************************************/
/*
* Data.
*/
/* Number of CPUs. */
static unsigned ncpus;
/* Various bin-related settings. */
#ifdef MALLOC_TINY /* Number of (2^n)-spaced tiny bins. */
# define ntbins ((unsigned)(LG_QUANTUM - LG_TINY_MIN))
#else
# define ntbins 0
#endif
static unsigned nqbins; /* Number of quantum-spaced bins. */
static unsigned ncbins; /* Number of cacheline-spaced bins. */
static unsigned nsbins; /* Number of subpage-spaced bins. */
static unsigned nmbins; /* Number of medium bins. */
static unsigned nbins;
static unsigned mbin0; /* mbin offset (nbins - nmbins). */
#ifdef MALLOC_TINY
# define tspace_max ((size_t)(QUANTUM >> 1))
#endif
#define qspace_min QUANTUM
static size_t qspace_max;
static size_t cspace_min;
static size_t cspace_max;
static size_t sspace_min;
static size_t sspace_max;
#define small_maxclass sspace_max
#define medium_min PAGE_SIZE
static size_t medium_max;
#define bin_maxclass medium_max
/*
* Soft limit on the number of medium size classes. Spacing between medium
* size classes never exceeds pagesize, which can force more than NBINS_MAX
* medium size classes.
*/
#define NMBINS_MAX 16
/* Spacing between medium size classes. */
static size_t lg_mspace;
static size_t mspace_mask;
static uint8_t const *small_size2bin;
/*
* const_small_size2bin is a static constant lookup table that in the common
* case can be used as-is for small_size2bin. For dynamically linked programs,
* this avoids a page of memory overhead per process.
*/
#define S2B_1(i) i,
#define S2B_2(i) S2B_1(i) S2B_1(i)
#define S2B_4(i) S2B_2(i) S2B_2(i)
#define S2B_8(i) S2B_4(i) S2B_4(i)
#define S2B_16(i) S2B_8(i) S2B_8(i)
#define S2B_32(i) S2B_16(i) S2B_16(i)
#define S2B_64(i) S2B_32(i) S2B_32(i)
#define S2B_128(i) S2B_64(i) S2B_64(i)
#define S2B_256(i) S2B_128(i) S2B_128(i)
static const uint8_t const_small_size2bin[PAGE_SIZE - 255] = {
S2B_1(0xffU) /* 0 */
#if (LG_QUANTUM == 4)
/* 64-bit system ************************/
# ifdef MALLOC_TINY
S2B_2(0) /* 2 */
S2B_2(1) /* 4 */
S2B_4(2) /* 8 */
S2B_8(3) /* 16 */
# define S2B_QMIN 3
# else
S2B_16(0) /* 16 */
# define S2B_QMIN 0
# endif
S2B_16(S2B_QMIN + 1) /* 32 */
S2B_16(S2B_QMIN + 2) /* 48 */
S2B_16(S2B_QMIN + 3) /* 64 */
S2B_16(S2B_QMIN + 4) /* 80 */
S2B_16(S2B_QMIN + 5) /* 96 */
S2B_16(S2B_QMIN + 6) /* 112 */
S2B_16(S2B_QMIN + 7) /* 128 */
# define S2B_CMIN (S2B_QMIN + 8)
#else
/* 32-bit system ************************/
# ifdef MALLOC_TINY
S2B_2(0) /* 2 */
S2B_2(1) /* 4 */
S2B_4(2) /* 8 */
# define S2B_QMIN 2
# else
S2B_8(0) /* 8 */
# define S2B_QMIN 0
# endif
S2B_8(S2B_QMIN + 1) /* 16 */
S2B_8(S2B_QMIN + 2) /* 24 */
S2B_8(S2B_QMIN + 3) /* 32 */
S2B_8(S2B_QMIN + 4) /* 40 */
S2B_8(S2B_QMIN + 5) /* 48 */
S2B_8(S2B_QMIN + 6) /* 56 */
S2B_8(S2B_QMIN + 7) /* 64 */
S2B_8(S2B_QMIN + 8) /* 72 */
S2B_8(S2B_QMIN + 9) /* 80 */
S2B_8(S2B_QMIN + 10) /* 88 */
S2B_8(S2B_QMIN + 11) /* 96 */
S2B_8(S2B_QMIN + 12) /* 104 */
S2B_8(S2B_QMIN + 13) /* 112 */
S2B_8(S2B_QMIN + 14) /* 120 */
S2B_8(S2B_QMIN + 15) /* 128 */
# define S2B_CMIN (S2B_QMIN + 16)
#endif
/****************************************/
S2B_64(S2B_CMIN + 0) /* 192 */
S2B_64(S2B_CMIN + 1) /* 256 */
S2B_64(S2B_CMIN + 2) /* 320 */
S2B_64(S2B_CMIN + 3) /* 384 */
S2B_64(S2B_CMIN + 4) /* 448 */
S2B_64(S2B_CMIN + 5) /* 512 */
# define S2B_SMIN (S2B_CMIN + 6)
S2B_256(S2B_SMIN + 0) /* 768 */
S2B_256(S2B_SMIN + 1) /* 1024 */
S2B_256(S2B_SMIN + 2) /* 1280 */
S2B_256(S2B_SMIN + 3) /* 1536 */
S2B_256(S2B_SMIN + 4) /* 1792 */
S2B_256(S2B_SMIN + 5) /* 2048 */
S2B_256(S2B_SMIN + 6) /* 2304 */
S2B_256(S2B_SMIN + 7) /* 2560 */
S2B_256(S2B_SMIN + 8) /* 2816 */
S2B_256(S2B_SMIN + 9) /* 3072 */
S2B_256(S2B_SMIN + 10) /* 3328 */
S2B_256(S2B_SMIN + 11) /* 3584 */
S2B_256(S2B_SMIN + 12) /* 3840 */
#if (PAGE_SHIFT == 13)
S2B_256(S2B_SMIN + 13) /* 4096 */
S2B_256(S2B_SMIN + 14) /* 4352 */
S2B_256(S2B_SMIN + 15) /* 4608 */
S2B_256(S2B_SMIN + 16) /* 4864 */
S2B_256(S2B_SMIN + 17) /* 5120 */
S2B_256(S2B_SMIN + 18) /* 5376 */
S2B_256(S2B_SMIN + 19) /* 5632 */
S2B_256(S2B_SMIN + 20) /* 5888 */
S2B_256(S2B_SMIN + 21) /* 6144 */
S2B_256(S2B_SMIN + 22) /* 6400 */
S2B_256(S2B_SMIN + 23) /* 6656 */
S2B_256(S2B_SMIN + 24) /* 6912 */
S2B_256(S2B_SMIN + 25) /* 7168 */
S2B_256(S2B_SMIN + 26) /* 7424 */
S2B_256(S2B_SMIN + 27) /* 7680 */
S2B_256(S2B_SMIN + 28) /* 7936 */
#endif
};
#undef S2B_1
#undef S2B_2
#undef S2B_4
#undef S2B_8
#undef S2B_16
#undef S2B_32
#undef S2B_64
#undef S2B_128
#undef S2B_256
#undef S2B_QMIN
#undef S2B_CMIN
#undef S2B_SMIN
/* Various chunk-related settings. */
static size_t chunksize;
static size_t chunksize_mask; /* (chunksize - 1). */
static size_t chunk_npages;
static size_t arena_chunk_header_npages;
static size_t arena_maxclass; /* Max size class for arenas. */
/********/
/*
* Chunks.
*/
/* Protects chunk-related data structures. */
static malloc_mutex_t huge_mtx;
/* Tree of chunks that are stand-alone huge allocations. */
static extent_tree_t huge;
#ifdef MALLOC_DSS
/*
* Protects sbrk() calls. This avoids malloc races among threads, though it
* does not protect against races with threads that call sbrk() directly.
*/
static malloc_mutex_t dss_mtx;
/* Base address of the DSS. */
static void *dss_base;
/* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */
static void *dss_prev;
/* Current upper limit on DSS addresses. */
static void *dss_max;
/*
* Trees of chunks that were previously allocated (trees differ only in node
* ordering). These are used when allocating chunks, in an attempt to re-use
* address space. Depending on function, different tree orderings are needed,
* which is why there are two trees with the same contents.
*/
static extent_tree_t dss_chunks_szad;
static extent_tree_t dss_chunks_ad;
#endif
#ifdef MALLOC_STATS
/* Huge allocation statistics. */
static uint64_t huge_nmalloc;
static uint64_t huge_ndalloc;
static size_t huge_allocated;
#endif
/****************************/
/*
* base (internal allocation).
*/
/*
* Current pages that are being used for internal memory allocations. These
* pages are carved up in cacheline-size quanta, so that there is no chance of
* false cache line sharing.
*/
static void *base_pages;
static void *base_next_addr;
static void *base_past_addr; /* Addr immediately past base_pages. */
static extent_node_t *base_nodes;
static malloc_mutex_t base_mtx;
#ifdef MALLOC_STATS
static size_t base_mapped;
#endif
/********/
/*
* Arenas.
*/
/*
* Arenas that are used to service external requests. Not all elements of the
* arenas array are necessarily used; arenas are created lazily as needed.
*/
static arena_t **arenas;
static unsigned narenas;
#ifndef NO_TLS
static unsigned next_arena;
#endif
static pthread_mutex_t arenas_lock; /* Protects arenas initialization. */
#ifndef NO_TLS
/*
* Map of _pthread_self() --> arenas[???], used for selecting an arena to use
* for allocations.
*/
static __thread arena_t *arenas_map TLS_MODEL;
#endif
#ifdef MALLOC_TCACHE
/* Map of thread-specific caches. */
static __thread tcache_t *tcache_tls TLS_MODEL;
/*
* Number of cache slots for each bin in the thread cache, or 0 if tcache is
* disabled.
*/
size_t tcache_nslots;
/* Number of tcache allocation/deallocation events between incremental GCs. */
unsigned tcache_gc_incr;
#endif
/*
* Used by chunk_alloc_mmap() to decide whether to attempt the fast path and
* potentially avoid some system calls. We can get away without TLS here,
* since the state of mmap_unaligned only affects performance, rather than
* correct function.
*/
#ifndef NO_TLS
static __thread bool mmap_unaligned TLS_MODEL;
#else
static bool mmap_unaligned;
#endif
#ifdef MALLOC_STATS
static malloc_mutex_t chunks_mtx;
/* Chunk statistics. */
static chunk_stats_t stats_chunks;
#endif
/*******************************/
/*
* Runtime configuration options.
*/
const char *_malloc_options;
#ifndef MALLOC_PRODUCTION
static bool opt_abort = true;
static bool opt_junk = true;
#else
static bool opt_abort = false;
static bool opt_junk = false;
#endif
#ifdef MALLOC_TCACHE
static size_t opt_lg_tcache_nslots = LG_TCACHE_NSLOTS_DEFAULT;
static ssize_t opt_lg_tcache_gc_sweep = LG_TCACHE_GC_SWEEP_DEFAULT;
#endif
#ifdef MALLOC_DSS
static bool opt_dss = true;
static bool opt_mmap = true;
#endif
static ssize_t opt_lg_dirty_mult = LG_DIRTY_MULT_DEFAULT;
static bool opt_stats_print = false;
static size_t opt_lg_qspace_max = LG_QSPACE_MAX_DEFAULT;
static size_t opt_lg_cspace_max = LG_CSPACE_MAX_DEFAULT;
static size_t opt_lg_medium_max = LG_MEDIUM_MAX_DEFAULT;
static size_t opt_lg_chunk = LG_CHUNK_DEFAULT;
static bool opt_utrace = false;
static bool opt_sysv = false;
static bool opt_xmalloc = false;
static bool opt_zero = false;
static int opt_narenas_lshift = 0;
typedef struct {
void *p;
size_t s;
void *r;
} malloc_utrace_t;
#define UTRACE(a, b, c) \
if (opt_utrace) { \
malloc_utrace_t ut; \
ut.p = (a); \
ut.s = (b); \
ut.r = (c); \
utrace(&ut, sizeof(ut)); \
}
/******************************************************************************/
/*
* Begin function prototypes for non-inline static functions.
*/
static void malloc_mutex_init(malloc_mutex_t *mutex);
static bool malloc_spin_init(pthread_mutex_t *lock);
#ifdef MALLOC_TINY
static size_t pow2_ceil(size_t x);
#endif
static void wrtmessage(const char *p1, const char *p2, const char *p3,
const char *p4);
#ifdef MALLOC_STATS
static void malloc_printf(const char *format, ...);
#endif
static char *umax2s(uintmax_t x, unsigned base, char *s);
#ifdef MALLOC_DSS
static bool base_pages_alloc_dss(size_t minsize);
#endif
static bool base_pages_alloc_mmap(size_t minsize);
static bool base_pages_alloc(size_t minsize);
static void *base_alloc(size_t size);
static void *base_calloc(size_t number, size_t size);
static extent_node_t *base_node_alloc(void);
static void base_node_dealloc(extent_node_t *node);
static void *pages_map(void *addr, size_t size);
static void pages_unmap(void *addr, size_t size);
#ifdef MALLOC_DSS
static void *chunk_alloc_dss(size_t size, bool *zero);
static void *chunk_recycle_dss(size_t size, bool *zero);
#endif
static void *chunk_alloc_mmap_slow(size_t size, bool unaligned);
static void *chunk_alloc_mmap(size_t size);
static void *chunk_alloc(size_t size, bool *zero);
#ifdef MALLOC_DSS
static extent_node_t *chunk_dealloc_dss_record(void *chunk, size_t size);
static bool chunk_dealloc_dss(void *chunk, size_t size);
#endif
static void chunk_dealloc_mmap(void *chunk, size_t size);
static void chunk_dealloc(void *chunk, size_t size);
#ifndef NO_TLS
static arena_t *choose_arena_hard(void);
#endif
static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size,
bool large, bool zero);
static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
static arena_run_t *arena_run_alloc(arena_t *arena, size_t size, bool large,
bool zero);
static void arena_purge(arena_t *arena);
static void arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty);
static void arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk,
arena_run_t *run, size_t oldsize, size_t newsize);
static void arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk,
arena_run_t *run, size_t oldsize, size_t newsize, bool dirty);
static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
#ifdef MALLOC_TCACHE
static void tcache_bin_fill(tcache_t *tcache, tcache_bin_t *tbin,
size_t binind);
static void *tcache_alloc_hard(tcache_t *tcache, tcache_bin_t *tbin,
size_t binind);
#endif
static void *arena_malloc_medium(arena_t *arena, size_t size, bool zero);
static void *arena_malloc_large(arena_t *arena, size_t size, bool zero);
static void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
size_t alloc_size);
static bool arena_is_large(const void *ptr);
static size_t arena_salloc(const void *ptr);
static void
arena_dalloc_bin_run(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
arena_bin_t *bin);
#ifdef MALLOC_STATS
static void arena_stats_print(arena_t *arena);
#endif
static void stats_print_atexit(void);
#ifdef MALLOC_TCACHE
static void tcache_bin_flush(tcache_bin_t *tbin, size_t binind,
unsigned rem);
#endif
static void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk,
void *ptr);
#ifdef MALLOC_TCACHE
static void arena_dalloc_hard(arena_t *arena, arena_chunk_t *chunk,
void *ptr, arena_chunk_map_t *mapelm, tcache_t *tcache);
#endif
static void arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk,
void *ptr, size_t size, size_t oldsize);
static bool arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk,
void *ptr, size_t size, size_t oldsize);
static bool arena_ralloc_large(void *ptr, size_t size, size_t oldsize);
static void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
static bool arena_new(arena_t *arena, unsigned ind);
static arena_t *arenas_extend(unsigned ind);
#ifdef MALLOC_TCACHE
static tcache_bin_t *tcache_bin_create(arena_t *arena);
static void tcache_bin_destroy(tcache_t *tcache, tcache_bin_t *tbin,
unsigned binind);
# ifdef MALLOC_STATS
static void tcache_stats_merge(tcache_t *tcache, arena_t *arena);
# endif
static tcache_t *tcache_create(arena_t *arena);
static void tcache_destroy(tcache_t *tcache);
#endif
static void *huge_malloc(size_t size, bool zero);
static void *huge_palloc(size_t alignment, size_t size);
static void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
static void huge_dalloc(void *ptr);
static void malloc_stats_print(void);
#ifdef MALLOC_DEBUG
static void small_size2bin_validate(void);
#endif
static bool small_size2bin_init(void);
static bool small_size2bin_init_hard(void);
static unsigned malloc_ncpus(void);
static bool malloc_init_hard(void);
/*
* End function prototypes.
*/
/******************************************************************************/
static void
wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
{
if (_write(STDERR_FILENO, p1, strlen(p1)) < 0
|| _write(STDERR_FILENO, p2, strlen(p2)) < 0
|| _write(STDERR_FILENO, p3, strlen(p3)) < 0
|| _write(STDERR_FILENO, p4, strlen(p4)) < 0)
return;
}
void (*_malloc_message)(const char *p1, const char *p2, const char *p3,
const char *p4) = wrtmessage;
/*
* We don't want to depend on vsnprintf() for production builds, since that can
* cause unnecessary bloat for static binaries. umax2s() provides minimal
* integer printing functionality, so that malloc_printf() use can be limited to
* MALLOC_STATS code.
*/
#define UMAX2S_BUFSIZE 65
static char *
umax2s(uintmax_t x, unsigned base, char *s)
{
unsigned i;
i = UMAX2S_BUFSIZE - 1;
s[i] = '\0';
switch (base) {
case 10:
do {
i--;
s[i] = "0123456789"[x % 10];
x /= 10;
} while (x > 0);
break;
case 16:
do {
i--;
s[i] = "0123456789abcdef"[x & 0xf];
x >>= 4;
} while (x > 0);
break;
default:
do {
i--;
s[i] = "0123456789abcdefghijklmnopqrstuvwxyz"[x % base];
x /= base;
} while (x > 0);
}
return (&s[i]);
}
/*
* Define a custom assert() in order to reduce the chances of deadlock during
* assertion failure.
*/
#ifdef MALLOC_DEBUG
# define assert(e) do { \
if (!(e)) { \
char line_buf[UMAX2S_BUFSIZE]; \
_malloc_message(_getprogname(), ": (malloc) ", \
__FILE__, ":"); \
_malloc_message(umax2s(__LINE__, 10, line_buf), \
": Failed assertion: ", "\"", #e); \
_malloc_message("\"\n", "", "", ""); \
abort(); \
} \
} while (0)
#else
#define assert(e)
#endif
#ifdef MALLOC_STATS
/*
* Print to stderr in such a way as to (hopefully) avoid memory allocation.
*/
static void
malloc_printf(const char *format, ...)
{
char buf[4096];
va_list ap;
va_start(ap, format);
vsnprintf(buf, sizeof(buf), format, ap);
va_end(ap);
_malloc_message(buf, "", "", "");
}
#endif
/******************************************************************************/
/*
* Begin mutex. We can't use normal pthread mutexes in all places, because
* they require malloc()ed memory, which causes bootstrapping issues in some
* cases.
*/
static void
malloc_mutex_init(malloc_mutex_t *mutex)
{
static const spinlock_t lock = _SPINLOCK_INITIALIZER;
mutex->lock = lock;
}
static inline void
malloc_mutex_lock(malloc_mutex_t *mutex)
{
if (__isthreaded)
_SPINLOCK(&mutex->lock);
}
static inline void
malloc_mutex_unlock(malloc_mutex_t *mutex)
{
if (__isthreaded)
_SPINUNLOCK(&mutex->lock);
}
/*
* End mutex.
*/
/******************************************************************************/
/*
* Begin spin lock. Spin locks here are actually adaptive mutexes that block
* after a period of spinning, because unbounded spinning would allow for
* priority inversion.
*/
/*
* We use an unpublished interface to initialize pthread mutexes with an
* allocation callback, in order to avoid infinite recursion.
*/
int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
void *(calloc_cb)(size_t, size_t));
__weak_reference(_pthread_mutex_init_calloc_cb_stub,
_pthread_mutex_init_calloc_cb);
int
_pthread_mutex_init_calloc_cb_stub(pthread_mutex_t *mutex,
void *(calloc_cb)(size_t, size_t))
{
return (0);
}
static bool
malloc_spin_init(pthread_mutex_t *lock)
{
if (_pthread_mutex_init_calloc_cb(lock, base_calloc) != 0)
return (true);
return (false);
}
static inline void
malloc_spin_lock(pthread_mutex_t *lock)
{
if (__isthreaded) {
if (_pthread_mutex_trylock(lock) != 0) {
/* Exponentially back off if there are multiple CPUs. */
if (ncpus > 1) {
unsigned i;
volatile unsigned j;
for (i = 1; i <= LG_SPIN_LIMIT; i++) {
for (j = 0; j < (1U << i); j++) {
CPU_SPINWAIT;
}
if (_pthread_mutex_trylock(lock) == 0)
return;
}
}
/*
* Spinning failed. Block until the lock becomes
* available, in order to avoid indefinite priority
* inversion.
*/
_pthread_mutex_lock(lock);
}
}
}
static inline void
malloc_spin_unlock(pthread_mutex_t *lock)
{
if (__isthreaded)
_pthread_mutex_unlock(lock);
}
/*
* End spin lock.
*/
/******************************************************************************/
/*
* Begin Utility functions/macros.
*/
/* Return the chunk address for allocation address a. */
#define CHUNK_ADDR2BASE(a) \
((void *)((uintptr_t)(a) & ~chunksize_mask))
/* Return the chunk offset of address a. */
#define CHUNK_ADDR2OFFSET(a) \
((size_t)((uintptr_t)(a) & chunksize_mask))
/* Return the smallest chunk multiple that is >= s. */
#define CHUNK_CEILING(s) \
(((s) + chunksize_mask) & ~chunksize_mask)
/* Return the smallest quantum multiple that is >= a. */
#define QUANTUM_CEILING(a) \
(((a) + QUANTUM_MASK) & ~QUANTUM_MASK)
/* Return the smallest cacheline multiple that is >= s. */
#define CACHELINE_CEILING(s) \
(((s) + CACHELINE_MASK) & ~CACHELINE_MASK)
/* Return the smallest subpage multiple that is >= s. */
#define SUBPAGE_CEILING(s) \
(((s) + SUBPAGE_MASK) & ~SUBPAGE_MASK)
/* Return the smallest medium size class that is >= s. */
#define MEDIUM_CEILING(s) \
(((s) + mspace_mask) & ~mspace_mask)
/* Return the smallest pagesize multiple that is >= s. */
#define PAGE_CEILING(s) \
(((s) + PAGE_MASK) & ~PAGE_MASK)
#ifdef MALLOC_TINY
/* Compute the smallest power of 2 that is >= x. */
static size_t
pow2_ceil(size_t x)
{
x--;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
#if (SIZEOF_PTR == 8)
x |= x >> 32;
#endif
x++;
return (x);
}
#endif
/******************************************************************************/
#ifdef MALLOC_DSS
static bool
base_pages_alloc_dss(size_t minsize)
{
/*
* Do special DSS allocation here, since base allocations don't need to
* be chunk-aligned.
*/
malloc_mutex_lock(&dss_mtx);
if (dss_prev != (void *)-1) {
intptr_t incr;
size_t csize = CHUNK_CEILING(minsize);
do {
/* Get the current end of the DSS. */
dss_max = sbrk(0);
/*
* Calculate how much padding is necessary to
* chunk-align the end of the DSS. Don't worry about
* dss_max not being chunk-aligned though.
*/
incr = (intptr_t)chunksize
- (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
assert(incr >= 0);
if ((size_t)incr < minsize)
incr += csize;
dss_prev = sbrk(incr);
if (dss_prev == dss_max) {
/* Success. */
dss_max = (void *)((intptr_t)dss_prev + incr);
base_pages = dss_prev;
base_next_addr = base_pages;
base_past_addr = dss_max;
#ifdef MALLOC_STATS
base_mapped += incr;
#endif
malloc_mutex_unlock(&dss_mtx);
return (false);
}
} while (dss_prev != (void *)-1);
}
malloc_mutex_unlock(&dss_mtx);
return (true);
}
#endif
static bool
base_pages_alloc_mmap(size_t minsize)
{
size_t csize;
assert(minsize != 0);
csize = PAGE_CEILING(minsize);
base_pages = pages_map(NULL, csize);
if (base_pages == NULL)
return (true);
base_next_addr = base_pages;
base_past_addr = (void *)((uintptr_t)base_pages + csize);
#ifdef MALLOC_STATS
base_mapped += csize;
#endif
return (false);
}
static bool
base_pages_alloc(size_t minsize)
{
#ifdef MALLOC_DSS
if (opt_mmap && minsize != 0)
#endif
{
if (base_pages_alloc_mmap(minsize) == false)
return (false);
}
#ifdef MALLOC_DSS
if (opt_dss) {
if (base_pages_alloc_dss(minsize) == false)
return (false);
}
#endif
return (true);
}
static void *
base_alloc(size_t size)
{
void *ret;
size_t csize;
/* Round size up to nearest multiple of the cacheline size. */
csize = CACHELINE_CEILING(size);
malloc_mutex_lock(&base_mtx);
/* Make sure there's enough space for the allocation. */
if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
if (base_pages_alloc(csize)) {
malloc_mutex_unlock(&base_mtx);
return (NULL);
}
}
/* Allocate. */
ret = base_next_addr;
base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
malloc_mutex_unlock(&base_mtx);
return (ret);
}
static void *
base_calloc(size_t number, size_t size)
{
void *ret;
ret = base_alloc(number * size);
if (ret != NULL)
memset(ret, 0, number * size);
return (ret);
}
static extent_node_t *
base_node_alloc(void)
{
extent_node_t *ret;
malloc_mutex_lock(&base_mtx);
if (base_nodes != NULL) {
ret = base_nodes;
base_nodes = *(extent_node_t **)ret;
malloc_mutex_unlock(&base_mtx);
} else {
malloc_mutex_unlock(&base_mtx);
ret = (extent_node_t *)base_alloc(sizeof(extent_node_t));
}
return (ret);
}
static void
base_node_dealloc(extent_node_t *node)
{
malloc_mutex_lock(&base_mtx);
*(extent_node_t **)node = base_nodes;
base_nodes = node;
malloc_mutex_unlock(&base_mtx);
}
/*
* End Utility functions/macros.
*/
/******************************************************************************/
/*
* Begin extent tree code.
*/
#ifdef MALLOC_DSS
static inline int
extent_szad_comp(extent_node_t *a, extent_node_t *b)
{
int ret;
size_t a_size = a->size;
size_t b_size = b->size;
ret = (a_size > b_size) - (a_size < b_size);
if (ret == 0) {
uintptr_t a_addr = (uintptr_t)a->addr;
uintptr_t b_addr = (uintptr_t)b->addr;
ret = (a_addr > b_addr) - (a_addr < b_addr);
}
return (ret);
}
/* Wrap red-black tree macros in functions. */
rb_gen(__unused static, extent_tree_szad_, extent_tree_t, extent_node_t,
link_szad, extent_szad_comp)
#endif
static inline int
extent_ad_comp(extent_node_t *a, extent_node_t *b)
{
uintptr_t a_addr = (uintptr_t)a->addr;
uintptr_t b_addr = (uintptr_t)b->addr;
return ((a_addr > b_addr) - (a_addr < b_addr));
}
/* Wrap red-black tree macros in functions. */
rb_gen(__unused static, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad,
extent_ad_comp)
/*
* End extent tree code.
*/
/******************************************************************************/
/*
* Begin chunk management functions.
*/
static void *
pages_map(void *addr, size_t size)
{
void *ret;
/*
* We don't use MAP_FIXED here, because it can cause the *replacement*
* of existing mappings, and we only want to create new mappings.
*/
ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
-1, 0);
assert(ret != NULL);
if (ret == MAP_FAILED)
ret = NULL;
else if (addr != NULL && ret != addr) {
/*
* We succeeded in mapping memory, but not in the right place.
*/
if (munmap(ret, size) == -1) {
char buf[STRERROR_BUF];
strerror_r(errno, buf, sizeof(buf));
_malloc_message(_getprogname(),
": (malloc) Error in munmap(): ", buf, "\n");
if (opt_abort)
abort();
}
ret = NULL;
}
assert(ret == NULL || (addr == NULL && ret != addr)
|| (addr != NULL && ret == addr));
return (ret);
}
static void
pages_unmap(void *addr, size_t size)
{
if (munmap(addr, size) == -1) {
char buf[STRERROR_BUF];
strerror_r(errno, buf, sizeof(buf));
_malloc_message(_getprogname(),
": (malloc) Error in munmap(): ", buf, "\n");
if (opt_abort)
abort();
}
}
#ifdef MALLOC_DSS
static void *
chunk_alloc_dss(size_t size, bool *zero)
{
void *ret;
ret = chunk_recycle_dss(size, zero);
if (ret != NULL)
return (ret);
/*
* sbrk() uses a signed increment argument, so take care not to
* interpret a huge allocation request as a negative increment.
*/
if ((intptr_t)size < 0)
return (NULL);
malloc_mutex_lock(&dss_mtx);
if (dss_prev != (void *)-1) {
intptr_t incr;
/*
* The loop is necessary to recover from races with other
* threads that are using the DSS for something other than
* malloc.
*/
do {
/* Get the current end of the DSS. */
dss_max = sbrk(0);
/*
* Calculate how much padding is necessary to
* chunk-align the end of the DSS.
*/
incr = (intptr_t)size
- (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
if (incr == (intptr_t)size)
ret = dss_max;
else {
ret = (void *)((intptr_t)dss_max + incr);
incr += size;
}
dss_prev = sbrk(incr);
if (dss_prev == dss_max) {
/* Success. */
dss_max = (void *)((intptr_t)dss_prev + incr);
malloc_mutex_unlock(&dss_mtx);
*zero = true;
return (ret);
}
} while (dss_prev != (void *)-1);
}
malloc_mutex_unlock(&dss_mtx);
return (NULL);
}
static void *
chunk_recycle_dss(size_t size, bool *zero)
{
extent_node_t *node, key;
key.addr = NULL;
key.size = size;
malloc_mutex_lock(&dss_mtx);
node = extent_tree_szad_nsearch(&dss_chunks_szad, &key);
if (node != NULL) {
void *ret = node->addr;
/* Remove node from the tree. */
extent_tree_szad_remove(&dss_chunks_szad, node);
if (node->size == size) {
extent_tree_ad_remove(&dss_chunks_ad, node);
base_node_dealloc(node);
} else {
/*
* Insert the remainder of node's address range as a
* smaller chunk. Its position within dss_chunks_ad
* does not change.
*/
assert(node->size > size);
node->addr = (void *)((uintptr_t)node->addr + size);
node->size -= size;
extent_tree_szad_insert(&dss_chunks_szad, node);
}
malloc_mutex_unlock(&dss_mtx);
if (*zero)
memset(ret, 0, size);
return (ret);
}
malloc_mutex_unlock(&dss_mtx);
return (NULL);
}
#endif
static void *
chunk_alloc_mmap_slow(size_t size, bool unaligned)
{
void *ret;
size_t offset;
/* Beware size_t wrap-around. */
if (size + chunksize <= size)
return (NULL);
ret = pages_map(NULL, size + chunksize);
if (ret == NULL)
return (NULL);
/* Clean up unneeded leading/trailing space. */
offset = CHUNK_ADDR2OFFSET(ret);
if (offset != 0) {
/* Note that mmap() returned an unaligned mapping. */
unaligned = true;
/* Leading space. */
pages_unmap(ret, chunksize - offset);
ret = (void *)((uintptr_t)ret +
(chunksize - offset));
/* Trailing space. */
pages_unmap((void *)((uintptr_t)ret + size),
offset);
} else {
/* Trailing space only. */
pages_unmap((void *)((uintptr_t)ret + size),
chunksize);
}
/*
* If mmap() returned an aligned mapping, reset mmap_unaligned so that
* the next chunk_alloc_mmap() execution tries the fast allocation
* method.
*/
if (unaligned == false)
mmap_unaligned = false;
return (ret);
}
static void *
chunk_alloc_mmap(size_t size)
{
void *ret;
/*
* Ideally, there would be a way to specify alignment to mmap() (like
* NetBSD has), but in the absence of such a feature, we have to work
* hard to efficiently create aligned mappings. The reliable, but
* slow method is to create a mapping that is over-sized, then trim the
* excess. However, that always results in at least one call to
* pages_unmap().
*
* A more optimistic approach is to try mapping precisely the right
* amount, then try to append another mapping if alignment is off. In
* practice, this works out well as long as the application is not
* interleaving mappings via direct mmap() calls. If we do run into a
* situation where there is an interleaved mapping and we are unable to
* extend an unaligned mapping, our best option is to switch to the
* slow method until mmap() returns another aligned mapping. This will
* tend to leave a gap in the memory map that is too small to cause
* later problems for the optimistic method.
*
* Another possible confounding factor is address space layout
* randomization (ASLR), which causes mmap(2) to disregard the
* requested address. mmap_unaligned tracks whether the previous
* chunk_alloc_mmap() execution received any unaligned or relocated
* mappings, and if so, the current execution will immediately fall
* back to the slow method. However, we keep track of whether the fast
* method would have succeeded, and if so, we make a note to try the
* fast method next time.
*/
if (mmap_unaligned == false) {
size_t offset;
ret = pages_map(NULL, size);
if (ret == NULL)
return (NULL);
offset = CHUNK_ADDR2OFFSET(ret);
if (offset != 0) {
mmap_unaligned = true;
/* Try to extend chunk boundary. */
if (pages_map((void *)((uintptr_t)ret + size),
chunksize - offset) == NULL) {
/*
* Extension failed. Clean up, then revert to
* the reliable-but-expensive method.
*/
pages_unmap(ret, size);
ret = chunk_alloc_mmap_slow(size, true);
} else {
/* Clean up unneeded leading space. */
pages_unmap(ret, chunksize - offset);
ret = (void *)((uintptr_t)ret + (chunksize -
offset));
}
}
} else
ret = chunk_alloc_mmap_slow(size, false);
return (ret);
}
/*
* If the caller specifies (*zero == false), it is still possible to receive
* zeroed memory, in which case *zero is toggled to true. arena_chunk_alloc()
* takes advantage of this to avoid demanding zeroed chunks, but taking
* advantage of them if they are returned.
*/
static void *
chunk_alloc(size_t size, bool *zero)
{
void *ret;
assert(size != 0);
assert((size & chunksize_mask) == 0);
#ifdef MALLOC_DSS
if (opt_mmap)
#endif
{
ret = chunk_alloc_mmap(size);
if (ret != NULL) {
*zero = true;
goto RETURN;
}
}
#ifdef MALLOC_DSS
if (opt_dss) {
ret = chunk_alloc_dss(size, zero);
if (ret != NULL)
goto RETURN;
}
#endif
/* All strategies for allocation failed. */
ret = NULL;
RETURN:
#ifdef MALLOC_STATS
if (ret != NULL) {
malloc_mutex_lock(&chunks_mtx);
stats_chunks.nchunks += (size / chunksize);
stats_chunks.curchunks += (size / chunksize);
if (stats_chunks.curchunks > stats_chunks.highchunks)
stats_chunks.highchunks = stats_chunks.curchunks;
malloc_mutex_unlock(&chunks_mtx);
}
#endif
assert(CHUNK_ADDR2BASE(ret) == ret);
return (ret);
}
#ifdef MALLOC_DSS
static extent_node_t *
chunk_dealloc_dss_record(void *chunk, size_t size)
{
extent_node_t *node, *prev, key;
key.addr = (void *)((uintptr_t)chunk + size);
node = extent_tree_ad_nsearch(&dss_chunks_ad, &key);
/* Try to coalesce forward. */
if (node != NULL && node->addr == key.addr) {
/*
* Coalesce chunk with the following address range. This does
* not change the position within dss_chunks_ad, so only
* remove/insert from/into dss_chunks_szad.
*/
extent_tree_szad_remove(&dss_chunks_szad, node);
node->addr = chunk;
node->size += size;
extent_tree_szad_insert(&dss_chunks_szad, node);
} else {
/*
* Coalescing forward failed, so insert a new node. Drop
* dss_mtx during node allocation, since it is possible that a
* new base chunk will be allocated.
*/
malloc_mutex_unlock(&dss_mtx);
node = base_node_alloc();
malloc_mutex_lock(&dss_mtx);
if (node == NULL)
return (NULL);
node->addr = chunk;
node->size = size;
extent_tree_ad_insert(&dss_chunks_ad, node);
extent_tree_szad_insert(&dss_chunks_szad, node);
}
/* Try to coalesce backward. */
prev = extent_tree_ad_prev(&dss_chunks_ad, node);
if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
chunk) {
/*
* Coalesce chunk with the previous address range. This does
* not change the position within dss_chunks_ad, so only
* remove/insert node from/into dss_chunks_szad.
*/
extent_tree_szad_remove(&dss_chunks_szad, prev);
extent_tree_ad_remove(&dss_chunks_ad, prev);
extent_tree_szad_remove(&dss_chunks_szad, node);
node->addr = prev->addr;
node->size += prev->size;
extent_tree_szad_insert(&dss_chunks_szad, node);
base_node_dealloc(prev);
}
return (node);
}
static bool
chunk_dealloc_dss(void *chunk, size_t size)
{
bool ret;
malloc_mutex_lock(&dss_mtx);
if ((uintptr_t)chunk >= (uintptr_t)dss_base
&& (uintptr_t)chunk < (uintptr_t)dss_max) {
extent_node_t *node;
/* Try to coalesce with other unused chunks. */
node = chunk_dealloc_dss_record(chunk, size);
if (node != NULL) {
chunk = node->addr;
size = node->size;
}
/* Get the current end of the DSS. */
dss_max = sbrk(0);
/*
* Try to shrink the DSS if this chunk is at the end of the
* DSS. The sbrk() call here is subject to a race condition
* with threads that use brk(2) or sbrk(2) directly, but the
* alternative would be to leak memory for the sake of poorly
* designed multi-threaded programs.
*/
if ((void *)((uintptr_t)chunk + size) == dss_max
&& (dss_prev = sbrk(-(intptr_t)size)) == dss_max) {
/* Success. */
dss_max = (void *)((intptr_t)dss_prev - (intptr_t)size);
if (node != NULL) {
extent_tree_szad_remove(&dss_chunks_szad, node);
extent_tree_ad_remove(&dss_chunks_ad, node);
base_node_dealloc(node);
}
} else
madvise(chunk, size, MADV_FREE);
ret = false;
goto RETURN;
}
ret = true;
RETURN:
malloc_mutex_unlock(&dss_mtx);
return (ret);
}
#endif
static void
chunk_dealloc_mmap(void *chunk, size_t size)
{
pages_unmap(chunk, size);
}
static void
chunk_dealloc(void *chunk, size_t size)
{
assert(chunk != NULL);
assert(CHUNK_ADDR2BASE(chunk) == chunk);
assert(size != 0);
assert((size & chunksize_mask) == 0);
#ifdef MALLOC_STATS
malloc_mutex_lock(&chunks_mtx);
stats_chunks.curchunks -= (size / chunksize);
malloc_mutex_unlock(&chunks_mtx);
#endif
#ifdef MALLOC_DSS
if (opt_dss) {
if (chunk_dealloc_dss(chunk, size) == false)
return;
}
if (opt_mmap)
#endif
chunk_dealloc_mmap(chunk, size);
}
/*
* End chunk management functions.
*/
/******************************************************************************/
/*
* Begin arena.
*/
/*
* Choose an arena based on a per-thread value (fast-path code, calls slow-path
* code if necessary).
*/
static inline arena_t *
choose_arena(void)
{
arena_t *ret;
/*
* We can only use TLS if this is a PIC library, since for the static
* library version, libc's malloc is used by TLS allocation, which
* introduces a bootstrapping issue.
*/
#ifndef NO_TLS
if (__isthreaded == false) {
/* Avoid the overhead of TLS for single-threaded operation. */
return (arenas[0]);
}
ret = arenas_map;
if (ret == NULL) {
ret = choose_arena_hard();
assert(ret != NULL);
}
#else
if (__isthreaded && narenas > 1) {
unsigned long ind;
/*
* Hash _pthread_self() to one of the arenas. There is a prime
* number of arenas, so this has a reasonable chance of
* working. Even so, the hashing can be easily thwarted by
* inconvenient _pthread_self() values. Without specific
* knowledge of how _pthread_self() calculates values, we can't
* easily do much better than this.
*/
ind = (unsigned long) _pthread_self() % narenas;
/*
* Optimistially assume that arenas[ind] has been initialized.
* At worst, we find out that some other thread has already
* done so, after acquiring the lock in preparation. Note that
* this lazy locking also has the effect of lazily forcing
* cache coherency; without the lock acquisition, there's no
* guarantee that modification of arenas[ind] by another thread
* would be seen on this CPU for an arbitrary amount of time.
*
* In general, this approach to modifying a synchronized value
* isn't a good idea, but in this case we only ever modify the
* value once, so things work out well.
*/
ret = arenas[ind];
if (ret == NULL) {
/*
* Avoid races with another thread that may have already
* initialized arenas[ind].
*/
malloc_spin_lock(&arenas_lock);
if (arenas[ind] == NULL)
ret = arenas_extend((unsigned)ind);
else
ret = arenas[ind];
malloc_spin_unlock(&arenas_lock);
}
} else
ret = arenas[0];
#endif
assert(ret != NULL);
return (ret);
}
#ifndef NO_TLS
/*
* Choose an arena based on a per-thread value (slow-path code only, called
* only by choose_arena()).
*/
static arena_t *
choose_arena_hard(void)
{
arena_t *ret;
assert(__isthreaded);
if (narenas > 1) {
malloc_spin_lock(&arenas_lock);
if ((ret = arenas[next_arena]) == NULL)
ret = arenas_extend(next_arena);
next_arena = (next_arena + 1) % narenas;
malloc_spin_unlock(&arenas_lock);
} else
ret = arenas[0];
arenas_map = ret;
return (ret);
}
#endif
static inline int
arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
{
uintptr_t a_chunk = (uintptr_t)a;
uintptr_t b_chunk = (uintptr_t)b;
assert(a != NULL);
assert(b != NULL);
return ((a_chunk > b_chunk) - (a_chunk < b_chunk));
}
/* Wrap red-black tree macros in functions. */
rb_gen(__unused static, arena_chunk_tree_dirty_, arena_chunk_tree_t,
arena_chunk_t, link_dirty, arena_chunk_comp)
static inline int
arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
{
uintptr_t a_mapelm = (uintptr_t)a;
uintptr_t b_mapelm = (uintptr_t)b;
assert(a != NULL);
assert(b != NULL);
return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm));
}
/* Wrap red-black tree macros in functions. */
rb_gen(__unused static, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t,
link, arena_run_comp)
static inline int
arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
{
int ret;
size_t a_size = a->bits & ~PAGE_MASK;
size_t b_size = b->bits & ~PAGE_MASK;
ret = (a_size > b_size) - (a_size < b_size);
if (ret == 0) {
uintptr_t a_mapelm, b_mapelm;
if ((a->bits & CHUNK_MAP_KEY) != CHUNK_MAP_KEY)
a_mapelm = (uintptr_t)a;
else {
/*
* Treat keys as though they are lower than anything
* else.
*/
a_mapelm = 0;
}
b_mapelm = (uintptr_t)b;
ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm);
}
return (ret);
}
/* Wrap red-black tree macros in functions. */
rb_gen(__unused static, arena_avail_tree_, arena_avail_tree_t,
arena_chunk_map_t, link, arena_avail_comp)
static inline void
arena_run_rc_incr(arena_run_t *run, arena_bin_t *bin, const void *ptr)
{
arena_chunk_t *chunk;
arena_t *arena;
size_t pagebeg, pageend, i;
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
arena = chunk->arena;
pagebeg = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT;
pageend = ((uintptr_t)ptr + (uintptr_t)(bin->reg_size - 1) -
(uintptr_t)chunk) >> PAGE_SHIFT;
for (i = pagebeg; i <= pageend; i++) {
size_t mapbits = chunk->map[i].bits;
if (mapbits & CHUNK_MAP_DIRTY) {
assert((mapbits & CHUNK_MAP_RC_MASK) == 0);
chunk->ndirty--;
arena->ndirty--;
mapbits ^= CHUNK_MAP_DIRTY;
}
assert((mapbits & CHUNK_MAP_RC_MASK) != CHUNK_MAP_RC_MASK);
mapbits += CHUNK_MAP_RC_ONE;
chunk->map[i].bits = mapbits;
}
}
static inline void
arena_run_rc_decr(arena_run_t *run, arena_bin_t *bin, const void *ptr)
{
arena_chunk_t *chunk;
arena_t *arena;
size_t pagebeg, pageend, mapbits, i;
bool dirtier = false;
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
arena = chunk->arena;
pagebeg = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT;
pageend = ((uintptr_t)ptr + (uintptr_t)(bin->reg_size - 1) -
(uintptr_t)chunk) >> PAGE_SHIFT;
/* First page. */
mapbits = chunk->map[pagebeg].bits;
mapbits -= CHUNK_MAP_RC_ONE;
if ((mapbits & CHUNK_MAP_RC_MASK) == 0) {
dirtier = true;
assert((mapbits & CHUNK_MAP_DIRTY) == 0);
mapbits |= CHUNK_MAP_DIRTY;
chunk->ndirty++;
arena->ndirty++;
}
chunk->map[pagebeg].bits = mapbits;
if (pageend - pagebeg >= 1) {
/*
* Interior pages are completely consumed by the object being
* deallocated, which means that the pages can be
* unconditionally marked dirty.
*/
for (i = pagebeg + 1; i < pageend; i++) {
mapbits = chunk->map[i].bits;
mapbits -= CHUNK_MAP_RC_ONE;
assert((mapbits & CHUNK_MAP_RC_MASK) == 0);
dirtier = true;
assert((mapbits & CHUNK_MAP_DIRTY) == 0);
mapbits |= CHUNK_MAP_DIRTY;
chunk->ndirty++;
arena->ndirty++;
chunk->map[i].bits = mapbits;
}
/* Last page. */
mapbits = chunk->map[pageend].bits;
mapbits -= CHUNK_MAP_RC_ONE;
if ((mapbits & CHUNK_MAP_RC_MASK) == 0) {
dirtier = true;
assert((mapbits & CHUNK_MAP_DIRTY) == 0);
mapbits |= CHUNK_MAP_DIRTY;
chunk->ndirty++;
arena->ndirty++;
}
chunk->map[pageend].bits = mapbits;
}
if (dirtier) {
if (chunk->dirtied == false) {
arena_chunk_tree_dirty_insert(&arena->chunks_dirty,
chunk);
chunk->dirtied = true;
}
/* Enforce opt_lg_dirty_mult. */
if (opt_lg_dirty_mult >= 0 && (arena->nactive >>
opt_lg_dirty_mult) < arena->ndirty)
arena_purge(arena);
}
}
static inline void *
arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
{
void *ret;
unsigned i, mask, bit, regind;
assert(run->magic == ARENA_RUN_MAGIC);
assert(run->regs_minelm < bin->regs_mask_nelms);
/*
* Move the first check outside the loop, so that run->regs_minelm can
* be updated unconditionally, without the possibility of updating it
* multiple times.
*/
i = run->regs_minelm;
mask = run->regs_mask[i];
if (mask != 0) {
/* Usable allocation found. */
bit = ffs((int)mask) - 1;
regind = ((i << (LG_SIZEOF_INT + 3)) + bit);
assert(regind < bin->nregs);
ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+ (bin->reg_size * regind));
/* Clear bit. */
mask ^= (1U << bit);
run->regs_mask[i] = mask;
arena_run_rc_incr(run, bin, ret);
return (ret);
}
for (i++; i < bin->regs_mask_nelms; i++) {
mask = run->regs_mask[i];
if (mask != 0) {
/* Usable allocation found. */
bit = ffs((int)mask) - 1;
regind = ((i << (LG_SIZEOF_INT + 3)) + bit);
assert(regind < bin->nregs);
ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+ (bin->reg_size * regind));
/* Clear bit. */
mask ^= (1U << bit);
run->regs_mask[i] = mask;
/*
* Make a note that nothing before this element
* contains a free region.
*/
run->regs_minelm = i; /* Low payoff: + (mask == 0); */
arena_run_rc_incr(run, bin, ret);
return (ret);
}
}
/* Not reached. */
assert(0);
return (NULL);
}
static inline void
arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
{
unsigned shift, diff, regind, elm, bit;
assert(run->magic == ARENA_RUN_MAGIC);
/*
* Avoid doing division with a variable divisor if possible. Using
* actual division here can reduce allocator throughput by over 20%!
*/
diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
/* Rescale (factor powers of 2 out of the numerator and denominator). */
shift = ffs(size) - 1;
diff >>= shift;
size >>= shift;
if (size == 1) {
/* The divisor was a power of 2. */
regind = diff;
} else {
/*
* To divide by a number D that is not a power of two we
* multiply by (2^21 / D) and then right shift by 21 positions.
*
* X / D
*
* becomes
*
* (X * size_invs[D - 3]) >> SIZE_INV_SHIFT
*
* We can omit the first three elements, because we never
* divide by 0, and 1 and 2 are both powers of two, which are
* handled above.
*/
#define SIZE_INV_SHIFT 21
#define SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s)) + 1)
static const unsigned size_invs[] = {
SIZE_INV(3),
SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
SIZE_INV(12), SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
SIZE_INV(16), SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
SIZE_INV(20), SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
SIZE_INV(24), SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
SIZE_INV(28), SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
};
if (size <= ((sizeof(size_invs) / sizeof(unsigned)) + 2))
regind = (diff * size_invs[size - 3]) >> SIZE_INV_SHIFT;
else
regind = diff / size;
#undef SIZE_INV
#undef SIZE_INV_SHIFT
}
assert(diff == regind * size);
assert(regind < bin->nregs);
elm = regind >> (LG_SIZEOF_INT + 3);
if (elm < run->regs_minelm)
run->regs_minelm = elm;
bit = regind - (elm << (LG_SIZEOF_INT + 3));
assert((run->regs_mask[elm] & (1U << bit)) == 0);
run->regs_mask[elm] |= (1U << bit);
arena_run_rc_decr(run, bin, ptr);
}
static void
arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large,
bool zero)
{
arena_chunk_t *chunk;
size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i;
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
old_ndirty = chunk->ndirty;
run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
>> PAGE_SHIFT);
total_pages = (chunk->map[run_ind].bits & ~PAGE_MASK) >>
PAGE_SHIFT;
need_pages = (size >> PAGE_SHIFT);
assert(need_pages > 0);
assert(need_pages <= total_pages);
rem_pages = total_pages - need_pages;
arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]);
arena->nactive += need_pages;
/* Keep track of trailing unused pages for later use. */
if (rem_pages > 0) {
chunk->map[run_ind+need_pages].bits = (rem_pages <<
PAGE_SHIFT) | (chunk->map[run_ind+need_pages].bits &
CHUNK_MAP_FLAGS_MASK);
chunk->map[run_ind+total_pages-1].bits = (rem_pages <<
PAGE_SHIFT) | (chunk->map[run_ind+total_pages-1].bits &
CHUNK_MAP_FLAGS_MASK);
arena_avail_tree_insert(&arena->runs_avail,
&chunk->map[run_ind+need_pages]);
}
for (i = 0; i < need_pages; i++) {
/* Zero if necessary. */
if (zero) {
if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED)
== 0) {
memset((void *)((uintptr_t)chunk + ((run_ind
+ i) << PAGE_SHIFT)), 0, PAGE_SIZE);
/* CHUNK_MAP_ZEROED is cleared below. */
}
}
/* Update dirty page accounting. */
if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) {
chunk->ndirty--;
arena->ndirty--;
/* CHUNK_MAP_DIRTY is cleared below. */
}
/* Initialize the chunk map. */
if (large) {
chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE
| CHUNK_MAP_ALLOCATED;
} else {
chunk->map[run_ind + i].bits = (i << CHUNK_MAP_PG_SHIFT)
| CHUNK_MAP_ALLOCATED;
}
}
if (large) {
/*
* Set the run size only in the first element for large runs.
* This is primarily a debugging aid, since the lack of size
* info for trailing pages only matters if the application
* tries to operate on an interior pointer.
*/
chunk->map[run_ind].bits |= size;
} else {
/*
* Initialize the first page's refcount to 1, so that the run
* header is protected from dirty page purging.
*/
chunk->map[run_ind].bits += CHUNK_MAP_RC_ONE;
}
}
static arena_chunk_t *
arena_chunk_alloc(arena_t *arena)
{
arena_chunk_t *chunk;
size_t i;
if (arena->spare != NULL) {
chunk = arena->spare;
arena->spare = NULL;
} else {
bool zero;
size_t zeroed;
zero = false;
chunk = (arena_chunk_t *)chunk_alloc(chunksize, &zero);
if (chunk == NULL)
return (NULL);
#ifdef MALLOC_STATS
arena->stats.mapped += chunksize;
#endif
chunk->arena = arena;
chunk->dirtied = false;
/*
* Claim that no pages are in use, since the header is merely
* overhead.
*/
chunk->ndirty = 0;
/*
* Initialize the map to contain one maximal free untouched run.
* Mark the pages as zeroed iff chunk_alloc() returned a zeroed
* chunk.
*/
zeroed = zero ? CHUNK_MAP_ZEROED : 0;
for (i = 0; i < arena_chunk_header_npages; i++)
chunk->map[i].bits = 0;
chunk->map[i].bits = arena_maxclass | zeroed;
for (i++; i < chunk_npages-1; i++)
chunk->map[i].bits = zeroed;
chunk->map[chunk_npages-1].bits = arena_maxclass | zeroed;
}
/* Insert the run into the runs_avail tree. */
arena_avail_tree_insert(&arena->runs_avail,
&chunk->map[arena_chunk_header_npages]);
return (chunk);
}
static void
arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
{
if (arena->spare != NULL) {
if (arena->spare->dirtied) {
arena_chunk_tree_dirty_remove(
&chunk->arena->chunks_dirty, arena->spare);
arena->ndirty -= arena->spare->ndirty;
}
chunk_dealloc((void *)arena->spare, chunksize);
#ifdef MALLOC_STATS
arena->stats.mapped -= chunksize;
#endif
}
/*
* Remove run from runs_avail, regardless of whether this chunk
* will be cached, so that the arena does not use it. Dirty page
* flushing only uses the chunks_dirty tree, so leaving this chunk in
* the chunks_* trees is sufficient for that purpose.
*/
arena_avail_tree_remove(&arena->runs_avail,
&chunk->map[arena_chunk_header_npages]);
arena->spare = chunk;
}
static arena_run_t *
arena_run_alloc(arena_t *arena, size_t size, bool large, bool zero)
{
arena_chunk_t *chunk;
arena_run_t *run;
arena_chunk_map_t *mapelm, key;
assert(size <= arena_maxclass);
assert((size & PAGE_MASK) == 0);
/* Search the arena's chunks for the lowest best fit. */
key.bits = size | CHUNK_MAP_KEY;
mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key);
if (mapelm != NULL) {
arena_chunk_t *run_chunk = CHUNK_ADDR2BASE(mapelm);
size_t pageind = ((uintptr_t)mapelm - (uintptr_t)run_chunk->map)
/ sizeof(arena_chunk_map_t);
run = (arena_run_t *)((uintptr_t)run_chunk + (pageind
<< PAGE_SHIFT));
arena_run_split(arena, run, size, large, zero);
return (run);
}
/*
* No usable runs. Create a new chunk from which to allocate the run.
*/
chunk = arena_chunk_alloc(arena);
if (chunk == NULL)
return (NULL);
run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
PAGE_SHIFT));
/* Update page map. */
arena_run_split(arena, run, size, large, zero);
return (run);
}
#ifdef MALLOC_DEBUG
static arena_chunk_t *
chunks_dirty_iter_cb(arena_chunk_tree_t *tree, arena_chunk_t *chunk, void *arg)
{
size_t *ndirty = (size_t *)arg;
assert(chunk->dirtied);
*ndirty += chunk->ndirty;
return (NULL);
}
#endif
static void
arena_purge(arena_t *arena)
{
arena_chunk_t *chunk;
size_t i, npages;
#ifdef MALLOC_DEBUG
size_t ndirty = 0;
arena_chunk_tree_dirty_iter(&arena->chunks_dirty, NULL,
chunks_dirty_iter_cb, (void *)&ndirty);
assert(ndirty == arena->ndirty);
#endif
assert((arena->nactive >> opt_lg_dirty_mult) < arena->ndirty);
#ifdef MALLOC_STATS
arena->stats.npurge++;
#endif
/*
* Iterate downward through chunks until enough dirty memory has been
* purged. Terminate as soon as possible in order to minimize the
* number of system calls, even if a chunk has only been partially
* purged.
*/
while ((arena->nactive >> (opt_lg_dirty_mult + 1)) < arena->ndirty) {
chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty);
assert(chunk != NULL);
for (i = chunk_npages - 1; chunk->ndirty > 0; i--) {
assert(i >= arena_chunk_header_npages);
if (chunk->map[i].bits & CHUNK_MAP_DIRTY) {
chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
/* Find adjacent dirty run(s). */
for (npages = 1; i > arena_chunk_header_npages
&& (chunk->map[i - 1].bits &
CHUNK_MAP_DIRTY); npages++) {
i--;
chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
}
chunk->ndirty -= npages;
arena->ndirty -= npages;
madvise((void *)((uintptr_t)chunk + (i <<
PAGE_SHIFT)), (npages << PAGE_SHIFT),
MADV_FREE);
#ifdef MALLOC_STATS
arena->stats.nmadvise++;
arena->stats.purged += npages;
#endif
if ((arena->nactive >> (opt_lg_dirty_mult + 1))
>= arena->ndirty)
break;
}
}
if (chunk->ndirty == 0) {
arena_chunk_tree_dirty_remove(&arena->chunks_dirty,
chunk);
chunk->dirtied = false;
}
}
}
static void
arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty)
{
arena_chunk_t *chunk;
size_t size, run_ind, run_pages;
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk)
>> PAGE_SHIFT);
assert(run_ind >= arena_chunk_header_npages);
assert(run_ind < chunk_npages);
if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0)
size = chunk->map[run_ind].bits & ~PAGE_MASK;
else
size = run->bin->run_size;
run_pages = (size >> PAGE_SHIFT);
arena->nactive -= run_pages;
/* Mark pages as unallocated in the chunk map. */
if (dirty) {
size_t i;
for (i = 0; i < run_pages; i++) {
/*
* When (dirty == true), *all* pages within the run
* need to have their dirty bits set, because only
* small runs can create a mixture of clean/dirty
* pages, but such runs are passed to this function
* with (dirty == false).
*/
assert((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY)
== 0);
chunk->ndirty++;
arena->ndirty++;
chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY;
}
} else {
size_t i;
for (i = 0; i < run_pages; i++) {
chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE |
CHUNK_MAP_ALLOCATED);
}
}
chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
CHUNK_MAP_FLAGS_MASK);
chunk->map[run_ind+run_pages-1].bits = size |
(chunk->map[run_ind+run_pages-1].bits & CHUNK_MAP_FLAGS_MASK);
/* Try to coalesce forward. */
if (run_ind + run_pages < chunk_npages &&
(chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) {
size_t nrun_size = chunk->map[run_ind+run_pages].bits &
~PAGE_MASK;
/*
* Remove successor from runs_avail; the coalesced run is
* inserted later.
*/
arena_avail_tree_remove(&arena->runs_avail,
&chunk->map[run_ind+run_pages]);
size += nrun_size;
run_pages = size >> PAGE_SHIFT;
assert((chunk->map[run_ind+run_pages-1].bits & ~PAGE_MASK)
== nrun_size);
chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
CHUNK_MAP_FLAGS_MASK);
chunk->map[run_ind+run_pages-1].bits = size |
(chunk->map[run_ind+run_pages-1].bits &
CHUNK_MAP_FLAGS_MASK);
}
/* Try to coalesce backward. */
if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits &
CHUNK_MAP_ALLOCATED) == 0) {
size_t prun_size = chunk->map[run_ind-1].bits & ~PAGE_MASK;
run_ind -= prun_size >> PAGE_SHIFT;
/*
* Remove predecessor from runs_avail; the coalesced run is
* inserted later.
*/
arena_avail_tree_remove(&arena->runs_avail,
&chunk->map[run_ind]);
size += prun_size;
run_pages = size >> PAGE_SHIFT;
assert((chunk->map[run_ind].bits & ~PAGE_MASK) == prun_size);
chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
CHUNK_MAP_FLAGS_MASK);
chunk->map[run_ind+run_pages-1].bits = size |
(chunk->map[run_ind+run_pages-1].bits &
CHUNK_MAP_FLAGS_MASK);
}
/* Insert into runs_avail, now that coalescing is complete. */
arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]);
/*
* Deallocate chunk if it is now completely unused. The bit
* manipulation checks whether the first run is unallocated and extends
* to the end of the chunk.
*/
if ((chunk->map[arena_chunk_header_npages].bits & (~PAGE_MASK |
CHUNK_MAP_ALLOCATED)) == arena_maxclass)
arena_chunk_dealloc(arena, chunk);
/*
* It is okay to do dirty page processing even if the chunk was
* deallocated above, since in that case it is the spare. Waiting
* until after possible chunk deallocation to do dirty processing
* allows for an old spare to be fully deallocated, thus decreasing the
* chances of spuriously crossing the dirty page purging threshold.
*/
if (dirty) {
if (chunk->dirtied == false) {
arena_chunk_tree_dirty_insert(&arena->chunks_dirty,
chunk);
chunk->dirtied = true;
}
/* Enforce opt_lg_dirty_mult. */
if (opt_lg_dirty_mult >= 0 && (arena->nactive >>
opt_lg_dirty_mult) < arena->ndirty)
arena_purge(arena);
}
}
static void
arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
size_t oldsize, size_t newsize)
{
size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> PAGE_SHIFT;
size_t head_npages = (oldsize - newsize) >> PAGE_SHIFT;
assert(oldsize > newsize);
/*
* Update the chunk map so that arena_run_dalloc() can treat the
* leading run as separately allocated.
*/
assert((chunk->map[pageind].bits & CHUNK_MAP_DIRTY) == 0);
chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE |
CHUNK_MAP_ALLOCATED;
assert((chunk->map[pageind+head_npages].bits & CHUNK_MAP_DIRTY) == 0);
chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE |
CHUNK_MAP_ALLOCATED;
arena_run_dalloc(arena, run, false);
}
static void
arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
size_t oldsize, size_t newsize, bool dirty)
{
size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> PAGE_SHIFT;
size_t npages = newsize >> PAGE_SHIFT;
assert(oldsize > newsize);
/*
* Update the chunk map so that arena_run_dalloc() can treat the
* trailing run as separately allocated.
*/
assert((chunk->map[pageind].bits & CHUNK_MAP_DIRTY) == 0);
chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE |
CHUNK_MAP_ALLOCATED;
assert((chunk->map[pageind+npages].bits & CHUNK_MAP_DIRTY) == 0);
chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE
| CHUNK_MAP_ALLOCATED;
arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize),
dirty);
}
static arena_run_t *
arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
{
arena_chunk_map_t *mapelm;
arena_run_t *run;
unsigned i, remainder;
/* Look for a usable run. */
mapelm = arena_run_tree_first(&bin->runs);
if (mapelm != NULL) {
arena_chunk_t *chunk;
size_t pageind;
/* run is guaranteed to have available space. */
arena_run_tree_remove(&bin->runs, mapelm);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(mapelm);
pageind = (((uintptr_t)mapelm - (uintptr_t)chunk->map) /
sizeof(arena_chunk_map_t));
run = (arena_run_t *)((uintptr_t)chunk + (uintptr_t)((pageind -
((mapelm->bits & CHUNK_MAP_PG_MASK) >> CHUNK_MAP_PG_SHIFT))
<< PAGE_SHIFT));
#ifdef MALLOC_STATS
bin->stats.reruns++;
#endif
return (run);
}
/* No existing runs have any space available. */
/* Allocate a new run. */
run = arena_run_alloc(arena, bin->run_size, false, false);
if (run == NULL)
return (NULL);
/* Initialize run internals. */
run->bin = bin;
for (i = 0; i < bin->regs_mask_nelms - 1; i++)
run->regs_mask[i] = UINT_MAX;
remainder = bin->nregs & ((1U << (LG_SIZEOF_INT + 3)) - 1);
if (remainder == 0)
run->regs_mask[i] = UINT_MAX;
else {
/* The last element has spare bits that need to be unset. */
run->regs_mask[i] = (UINT_MAX >> ((1U << (LG_SIZEOF_INT + 3))
- remainder));
}
run->regs_minelm = 0;
run->nfree = bin->nregs;
#ifdef MALLOC_DEBUG
run->magic = ARENA_RUN_MAGIC;
#endif
#ifdef MALLOC_STATS
bin->stats.nruns++;
bin->stats.curruns++;
if (bin->stats.curruns > bin->stats.highruns)
bin->stats.highruns = bin->stats.curruns;
#endif
return (run);
}
/* bin->runcur must have space available before this function is called. */
static inline void *
arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
{
void *ret;
assert(run->magic == ARENA_RUN_MAGIC);
assert(run->nfree > 0);
ret = arena_run_reg_alloc(run, bin);
assert(ret != NULL);
run->nfree--;
return (ret);
}
/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
static void *
arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
{
bin->runcur = arena_bin_nonfull_run_get(arena, bin);
if (bin->runcur == NULL)
return (NULL);
assert(bin->runcur->magic == ARENA_RUN_MAGIC);
assert(bin->runcur->nfree > 0);
return (arena_bin_malloc_easy(arena, bin, bin->runcur));
}
/*
* Calculate bin->run_size such that it meets the following constraints:
*
* *) bin->run_size >= min_run_size
* *) bin->run_size <= arena_maxclass
* *) bin->run_size <= RUN_MAX_SMALL
* *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
* *) run header size < PAGE_SIZE
*
* bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
* also calculated here, since these settings are all interdependent.
*/
static size_t
arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
{
size_t try_run_size, good_run_size;
unsigned good_nregs, good_mask_nelms, good_reg0_offset;
unsigned try_nregs, try_mask_nelms, try_reg0_offset;
assert(min_run_size >= PAGE_SIZE);
assert(min_run_size <= arena_maxclass);
assert(min_run_size <= RUN_MAX_SMALL);
/*
* Calculate known-valid settings before entering the run_size
* expansion loop, so that the first part of the loop always copies
* valid settings.
*
* The do..while loop iteratively reduces the number of regions until
* the run header and the regions no longer overlap. A closed formula
* would be quite messy, since there is an interdependency between the
* header's mask length and the number of regions.
*/
try_run_size = min_run_size;
try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size)
+ 1; /* Counter-act try_nregs-- in loop. */
do {
try_nregs--;
try_mask_nelms = (try_nregs >> (LG_SIZEOF_INT + 3)) +
((try_nregs & ((1U << (LG_SIZEOF_INT + 3)) - 1)) ? 1 : 0);
try_reg0_offset = try_run_size - (try_nregs * bin->reg_size);
} while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
> try_reg0_offset);
/* run_size expansion loop. */
do {
/*
* Copy valid settings before trying more aggressive settings.
*/
good_run_size = try_run_size;
good_nregs = try_nregs;
good_mask_nelms = try_mask_nelms;
good_reg0_offset = try_reg0_offset;
/* Try more aggressive settings. */
try_run_size += PAGE_SIZE;
try_nregs = ((try_run_size - sizeof(arena_run_t)) /
bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */
do {
try_nregs--;
try_mask_nelms = (try_nregs >> (LG_SIZEOF_INT + 3)) +
((try_nregs & ((1U << (LG_SIZEOF_INT + 3)) - 1)) ?
1 : 0);
try_reg0_offset = try_run_size - (try_nregs *
bin->reg_size);
} while (sizeof(arena_run_t) + (sizeof(unsigned) *
(try_mask_nelms - 1)) > try_reg0_offset);
} while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
&& RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
&& (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size
&& (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1)))
< PAGE_SIZE);
assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
<= good_reg0_offset);
assert((good_mask_nelms << (LG_SIZEOF_INT + 3)) >= good_nregs);
/* Copy final settings. */
bin->run_size = good_run_size;
bin->nregs = good_nregs;
bin->regs_mask_nelms = good_mask_nelms;
bin->reg0_offset = good_reg0_offset;
return (good_run_size);
}
#ifdef MALLOC_TCACHE
static inline void
tcache_event(tcache_t *tcache)
{
if (tcache_gc_incr == 0)
return;
tcache->ev_cnt++;
assert(tcache->ev_cnt <= tcache_gc_incr);
if (tcache->ev_cnt >= tcache_gc_incr) {
size_t binind = tcache->next_gc_bin;
tcache_bin_t *tbin = tcache->tbins[binind];
if (tbin != NULL) {
if (tbin->high_water == 0) {
/*
* This bin went completely unused for an
* entire GC cycle, so throw away the tbin.
*/
assert(tbin->ncached == 0);
tcache_bin_destroy(tcache, tbin, binind);
tcache->tbins[binind] = NULL;
} else {
if (tbin->low_water > 0) {
/*
* Flush (ceiling) half of the objects
* below the low water mark.
*/
tcache_bin_flush(tbin, binind,
tbin->ncached - (tbin->low_water >>
1) - (tbin->low_water & 1));
}
tbin->low_water = tbin->ncached;
tbin->high_water = tbin->ncached;
}
}
tcache->next_gc_bin++;
if (tcache->next_gc_bin == nbins)
tcache->next_gc_bin = 0;
tcache->ev_cnt = 0;
}
}
static inline void *
tcache_bin_alloc(tcache_bin_t *tbin)
{
if (tbin->ncached == 0)
return (NULL);
tbin->ncached--;
if (tbin->ncached < tbin->low_water)
tbin->low_water = tbin->ncached;
return (tbin->slots[tbin->ncached]);
}
static void
tcache_bin_fill(tcache_t *tcache, tcache_bin_t *tbin, size_t binind)
{
arena_t *arena;
arena_bin_t *bin;
arena_run_t *run;
void *ptr;
unsigned i;
assert(tbin->ncached == 0);
arena = tcache->arena;
bin = &arena->bins[binind];
malloc_spin_lock(&arena->lock);
for (i = 0; i < (tcache_nslots >> 1); i++) {
if ((run = bin->runcur) != NULL && run->nfree > 0)
ptr = arena_bin_malloc_easy(arena, bin, run);
else
ptr = arena_bin_malloc_hard(arena, bin);
if (ptr == NULL)
break;
/*
* Fill tbin such that the objects lowest in memory are used
* first.
*/
tbin->slots[(tcache_nslots >> 1) - 1 - i] = ptr;
}
#ifdef MALLOC_STATS
bin->stats.nfills++;
bin->stats.nrequests += tbin->tstats.nrequests;
if (bin->reg_size <= small_maxclass) {
arena->stats.nmalloc_small += (i - tbin->ncached);
arena->stats.allocated_small += (i - tbin->ncached) *
bin->reg_size;
arena->stats.nmalloc_small += tbin->tstats.nrequests;
} else {
arena->stats.nmalloc_medium += (i - tbin->ncached);
arena->stats.allocated_medium += (i - tbin->ncached) *
bin->reg_size;
arena->stats.nmalloc_medium += tbin->tstats.nrequests;
}
tbin->tstats.nrequests = 0;
#endif
malloc_spin_unlock(&arena->lock);
tbin->ncached = i;
if (tbin->ncached > tbin->high_water)
tbin->high_water = tbin->ncached;
}
static inline void *
tcache_alloc(tcache_t *tcache, size_t size, bool zero)
{
void *ret;
tcache_bin_t *tbin;
size_t binind;
if (size <= small_maxclass)
binind = small_size2bin[size];
else {
binind = mbin0 + ((MEDIUM_CEILING(size) - medium_min) >>
lg_mspace);
}
assert(binind < nbins);
tbin = tcache->tbins[binind];
if (tbin == NULL) {
tbin = tcache_bin_create(tcache->arena);
if (tbin == NULL)
return (NULL);
tcache->tbins[binind] = tbin;
}
ret = tcache_bin_alloc(tbin);
if (ret == NULL) {
ret = tcache_alloc_hard(tcache, tbin, binind);
if (ret == NULL)
return (NULL);
}
if (zero == false) {
if (opt_junk)
memset(ret, 0xa5, size);
else if (opt_zero)
memset(ret, 0, size);
} else
memset(ret, 0, size);
#ifdef MALLOC_STATS
tbin->tstats.nrequests++;
#endif
tcache_event(tcache);
return (ret);
}
static void *
tcache_alloc_hard(tcache_t *tcache, tcache_bin_t *tbin, size_t binind)
{
void *ret;
tcache_bin_fill(tcache, tbin, binind);
ret = tcache_bin_alloc(tbin);
return (ret);
}
#endif
static inline void *
arena_malloc_small(arena_t *arena, size_t size, bool zero)
{
void *ret;
arena_bin_t *bin;
arena_run_t *run;
size_t binind;
binind = small_size2bin[size];
assert(binind < mbin0);
bin = &arena->bins[binind];
size = bin->reg_size;
malloc_spin_lock(&arena->lock);
if ((run = bin->runcur) != NULL && run->nfree > 0)
ret = arena_bin_malloc_easy(arena, bin, run);
else
ret = arena_bin_malloc_hard(arena, bin);
if (ret == NULL) {
malloc_spin_unlock(&arena->lock);
return (NULL);
}
#ifdef MALLOC_STATS
# ifdef MALLOC_TCACHE
if (__isthreaded == false) {
# endif
bin->stats.nrequests++;
arena->stats.nmalloc_small++;
# ifdef MALLOC_TCACHE
}
# endif
arena->stats.allocated_small += size;
#endif
malloc_spin_unlock(&arena->lock);
if (zero == false) {
if (opt_junk)
memset(ret, 0xa5, size);
else if (opt_zero)
memset(ret, 0, size);
} else
memset(ret, 0, size);
return (ret);
}
static void *
arena_malloc_medium(arena_t *arena, size_t size, bool zero)
{
void *ret;
arena_bin_t *bin;
arena_run_t *run;
size_t binind;
size = MEDIUM_CEILING(size);
binind = mbin0 + ((size - medium_min) >> lg_mspace);
assert(binind < nbins);
bin = &arena->bins[binind];
assert(bin->reg_size == size);
malloc_spin_lock(&arena->lock);
if ((run = bin->runcur) != NULL && run->nfree > 0)
ret = arena_bin_malloc_easy(arena, bin, run);
else
ret = arena_bin_malloc_hard(arena, bin);
if (ret == NULL) {
malloc_spin_unlock(&arena->lock);
return (NULL);
}
#ifdef MALLOC_STATS
# ifdef MALLOC_TCACHE
if (__isthreaded == false) {
# endif
bin->stats.nrequests++;
arena->stats.nmalloc_medium++;
# ifdef MALLOC_TCACHE
}
# endif
arena->stats.allocated_medium += size;
#endif
malloc_spin_unlock(&arena->lock);
if (zero == false) {
if (opt_junk)
memset(ret, 0xa5, size);
else if (opt_zero)
memset(ret, 0, size);
} else
memset(ret, 0, size);
return (ret);
}
static void *
arena_malloc_large(arena_t *arena, size_t size, bool zero)
{
void *ret;
/* Large allocation. */
size = PAGE_CEILING(size);
malloc_spin_lock(&arena->lock);
ret = (void *)arena_run_alloc(arena, size, true, zero);
if (ret == NULL) {
malloc_spin_unlock(&arena->lock);
return (NULL);
}
#ifdef MALLOC_STATS
arena->stats.nmalloc_large++;
arena->stats.allocated_large += size;
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].nrequests++;
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns++;
if (arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns >
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns) {
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns =
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns;
}
#endif
malloc_spin_unlock(&arena->lock);
if (zero == false) {
if (opt_junk)
memset(ret, 0xa5, size);
else if (opt_zero)
memset(ret, 0, size);
}
return (ret);
}
static inline void *
arena_malloc(size_t size, bool zero)
{
assert(size != 0);
assert(QUANTUM_CEILING(size) <= arena_maxclass);
if (size <= bin_maxclass) {
#ifdef MALLOC_TCACHE
if (__isthreaded && tcache_nslots) {
tcache_t *tcache = tcache_tls;
if ((uintptr_t)tcache > (uintptr_t)1)
return (tcache_alloc(tcache, size, zero));
else if (tcache == NULL) {
tcache = tcache_create(choose_arena());
if (tcache == NULL)
return (NULL);
return (tcache_alloc(tcache, size, zero));
}
}
#endif
if (size <= small_maxclass) {
return (arena_malloc_small(choose_arena(), size,
zero));
} else {
return (arena_malloc_medium(choose_arena(),
size, zero));
}
} else
return (arena_malloc_large(choose_arena(), size, zero));
}
static inline void *
imalloc(size_t size)
{
assert(size != 0);
if (size <= arena_maxclass)
return (arena_malloc(size, false));
else
return (huge_malloc(size, false));
}
static inline void *
icalloc(size_t size)
{
if (size <= arena_maxclass)
return (arena_malloc(size, true));
else
return (huge_malloc(size, true));
}
/* Only handles large allocations that require more than page alignment. */
static void *
arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
{
void *ret;
size_t offset;
arena_chunk_t *chunk;
assert((size & PAGE_MASK) == 0);
assert((alignment & PAGE_MASK) == 0);
malloc_spin_lock(&arena->lock);
ret = (void *)arena_run_alloc(arena, alloc_size, true, false);
if (ret == NULL) {
malloc_spin_unlock(&arena->lock);
return (NULL);
}
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
offset = (uintptr_t)ret & (alignment - 1);
assert((offset & PAGE_MASK) == 0);
assert(offset < alloc_size);
if (offset == 0)
arena_run_trim_tail(arena, chunk, ret, alloc_size, size, false);
else {
size_t leadsize, trailsize;
leadsize = alignment - offset;
if (leadsize > 0) {
arena_run_trim_head(arena, chunk, ret, alloc_size,
alloc_size - leadsize);
ret = (void *)((uintptr_t)ret + leadsize);
}
trailsize = alloc_size - leadsize - size;
if (trailsize != 0) {
/* Trim trailing space. */
assert(trailsize < alloc_size);
arena_run_trim_tail(arena, chunk, ret, size + trailsize,
size, false);
}
}
#ifdef MALLOC_STATS
arena->stats.nmalloc_large++;
arena->stats.allocated_large += size;
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].nrequests++;
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns++;
if (arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns >
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns) {
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns =
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns;
}
#endif
malloc_spin_unlock(&arena->lock);
if (opt_junk)
memset(ret, 0xa5, size);
else if (opt_zero)
memset(ret, 0, size);
return (ret);
}
static inline void *
ipalloc(size_t alignment, size_t size)
{
void *ret;
size_t ceil_size;
/*
* Round size up to the nearest multiple of alignment.
*
* This done, we can take advantage of the fact that for each small
* size class, every object is aligned at the smallest power of two
* that is non-zero in the base two representation of the size. For
* example:
*
* Size | Base 2 | Minimum alignment
* -----+----------+------------------
* 96 | 1100000 | 32
* 144 | 10100000 | 32
* 192 | 11000000 | 64
*
* Depending on runtime settings, it is possible that arena_malloc()
* will further round up to a power of two, but that never causes
* correctness issues.
*/
ceil_size = (size + (alignment - 1)) & (-alignment);
/*
* (ceil_size < size) protects against the combination of maximal
* alignment and size greater than maximal alignment.
*/
if (ceil_size < size) {
/* size_t overflow. */
return (NULL);
}
if (ceil_size <= PAGE_SIZE || (alignment <= PAGE_SIZE
&& ceil_size <= arena_maxclass))
ret = arena_malloc(ceil_size, false);
else {
size_t run_size;
/*
* We can't achieve subpage alignment, so round up alignment
* permanently; it makes later calculations simpler.
*/
alignment = PAGE_CEILING(alignment);
ceil_size = PAGE_CEILING(size);
/*
* (ceil_size < size) protects against very large sizes within
* PAGE_SIZE of SIZE_T_MAX.
*
* (ceil_size + alignment < ceil_size) protects against the
* combination of maximal alignment and ceil_size large enough
* to cause overflow. This is similar to the first overflow
* check above, but it needs to be repeated due to the new
* ceil_size value, which may now be *equal* to maximal
* alignment, whereas before we only detected overflow if the
* original size was *greater* than maximal alignment.
*/
if (ceil_size < size || ceil_size + alignment < ceil_size) {
/* size_t overflow. */
return (NULL);
}
/*
* Calculate the size of the over-size run that arena_palloc()
* would need to allocate in order to guarantee the alignment.
*/
if (ceil_size >= alignment)
run_size = ceil_size + alignment - PAGE_SIZE;
else {
/*
* It is possible that (alignment << 1) will cause
* overflow, but it doesn't matter because we also
* subtract PAGE_SIZE, which in the case of overflow
* leaves us with a very large run_size. That causes
* the first conditional below to fail, which means
* that the bogus run_size value never gets used for
* anything important.
*/
run_size = (alignment << 1) - PAGE_SIZE;
}
if (run_size <= arena_maxclass) {
ret = arena_palloc(choose_arena(), alignment, ceil_size,
run_size);
} else if (alignment <= chunksize)
ret = huge_malloc(ceil_size, false);
else
ret = huge_palloc(alignment, ceil_size);
}
assert(((uintptr_t)ret & (alignment - 1)) == 0);
return (ret);
}
static bool
arena_is_large(const void *ptr)
{
arena_chunk_t *chunk;
size_t pageind, mapbits;
assert(ptr != NULL);
assert(CHUNK_ADDR2BASE(ptr) != ptr);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
mapbits = chunk->map[pageind].bits;
assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
return ((mapbits & CHUNK_MAP_LARGE) != 0);
}
/* Return the size of the allocation pointed to by ptr. */
static size_t
arena_salloc(const void *ptr)
{
size_t ret;
arena_chunk_t *chunk;
size_t pageind, mapbits;
assert(ptr != NULL);
assert(CHUNK_ADDR2BASE(ptr) != ptr);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
mapbits = chunk->map[pageind].bits;
assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
if ((mapbits & CHUNK_MAP_LARGE) == 0) {
arena_run_t *run = (arena_run_t *)((uintptr_t)chunk +
(uintptr_t)((pageind - ((mapbits & CHUNK_MAP_PG_MASK) >>
CHUNK_MAP_PG_SHIFT)) << PAGE_SHIFT));
assert(run->magic == ARENA_RUN_MAGIC);
ret = run->bin->reg_size;
} else {
ret = mapbits & ~PAGE_MASK;
assert(ret != 0);
}
return (ret);
}
static inline size_t
isalloc(const void *ptr)
{
size_t ret;
arena_chunk_t *chunk;
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (chunk != ptr) {
/* Region. */
assert(chunk->arena->magic == ARENA_MAGIC);
ret = arena_salloc(ptr);
} else {
extent_node_t *node, key;
/* Chunk (huge allocation). */
malloc_mutex_lock(&huge_mtx);
/* Extract from tree of huge allocations. */
key.addr = __DECONST(void *, ptr);
node = extent_tree_ad_search(&huge, &key);
assert(node != NULL);
ret = node->size;
malloc_mutex_unlock(&huge_mtx);
}
return (ret);
}
static inline void
arena_dalloc_bin(arena_t *arena, arena_chunk_t *chunk, void *ptr,
arena_chunk_map_t *mapelm)
{
size_t pageind;
arena_run_t *run;
arena_bin_t *bin;
size_t size;
pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
run = (arena_run_t *)((uintptr_t)chunk + (uintptr_t)((pageind -
((mapelm->bits & CHUNK_MAP_PG_MASK) >> CHUNK_MAP_PG_SHIFT)) <<
PAGE_SHIFT));
assert(run->magic == ARENA_RUN_MAGIC);
bin = run->bin;
size = bin->reg_size;
if (opt_junk)
memset(ptr, 0x5a, size);
arena_run_reg_dalloc(run, bin, ptr, size);
run->nfree++;
if (run->nfree == bin->nregs)
arena_dalloc_bin_run(arena, chunk, run, bin);
else if (run->nfree == 1 && run != bin->runcur) {
/*
* Make sure that bin->runcur always refers to the lowest
* non-full run, if one exists.
*/
if (bin->runcur == NULL)
bin->runcur = run;
else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
/* Switch runcur. */
if (bin->runcur->nfree > 0) {
arena_chunk_t *runcur_chunk =
CHUNK_ADDR2BASE(bin->runcur);
size_t runcur_pageind =
(((uintptr_t)bin->runcur -
(uintptr_t)runcur_chunk)) >> PAGE_SHIFT;
arena_chunk_map_t *runcur_mapelm =
&runcur_chunk->map[runcur_pageind];
/* Insert runcur. */
arena_run_tree_insert(&bin->runs,
runcur_mapelm);
}
bin->runcur = run;
} else {
size_t run_pageind = (((uintptr_t)run -
(uintptr_t)chunk)) >> PAGE_SHIFT;
arena_chunk_map_t *run_mapelm =
&chunk->map[run_pageind];
assert(arena_run_tree_search(&bin->runs, run_mapelm) ==
NULL);
arena_run_tree_insert(&bin->runs, run_mapelm);
}
}
#ifdef MALLOC_STATS
if (size <= small_maxclass) {
arena->stats.allocated_small -= size;
arena->stats.ndalloc_small++;
} else {
arena->stats.allocated_medium -= size;
arena->stats.ndalloc_medium++;
}
#endif
}
static void
arena_dalloc_bin_run(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
arena_bin_t *bin)
{
size_t run_ind;
/* Deallocate run. */
if (run == bin->runcur)
bin->runcur = NULL;
else if (bin->nregs != 1) {
size_t run_pageind = (((uintptr_t)run -
(uintptr_t)chunk)) >> PAGE_SHIFT;
arena_chunk_map_t *run_mapelm =
&chunk->map[run_pageind];
/*
* This block's conditional is necessary because if the
* run only contains one region, then it never gets
* inserted into the non-full runs tree.
*/
arena_run_tree_remove(&bin->runs, run_mapelm);
}
/*
* Mark the first page as dirty. The dirty bit for every other page in
* the run is already properly set, which means we can call
* arena_run_dalloc(..., false), thus potentially avoiding the needless
* creation of many dirty pages.
*/
run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk) >> PAGE_SHIFT);
assert((chunk->map[run_ind].bits & CHUNK_MAP_DIRTY) == 0);
chunk->map[run_ind].bits |= CHUNK_MAP_DIRTY;
chunk->ndirty++;
arena->ndirty++;
#ifdef MALLOC_DEBUG
run->magic = 0;
#endif
arena_run_dalloc(arena, run, false);
#ifdef MALLOC_STATS
bin->stats.curruns--;
#endif
if (chunk->dirtied == false) {
arena_chunk_tree_dirty_insert(&arena->chunks_dirty, chunk);
chunk->dirtied = true;
}
/* Enforce opt_lg_dirty_mult. */
if (opt_lg_dirty_mult >= 0 && (arena->nactive >> opt_lg_dirty_mult) <
arena->ndirty)
arena_purge(arena);
}
#ifdef MALLOC_STATS
static void
arena_stats_print(arena_t *arena)
{
malloc_printf("dirty pages: %zu:%zu active:dirty, %"PRIu64" sweep%s,"
" %"PRIu64" madvise%s, %"PRIu64" purged\n",
arena->nactive, arena->ndirty,
arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
arena->stats.purged);
malloc_printf(" allocated nmalloc ndalloc\n");
malloc_printf("small: %12zu %12"PRIu64" %12"PRIu64"\n",
arena->stats.allocated_small, arena->stats.nmalloc_small,
arena->stats.ndalloc_small);
malloc_printf("medium: %12zu %12"PRIu64" %12"PRIu64"\n",
arena->stats.allocated_medium, arena->stats.nmalloc_medium,
arena->stats.ndalloc_medium);
malloc_printf("large: %12zu %12"PRIu64" %12"PRIu64"\n",
arena->stats.allocated_large, arena->stats.nmalloc_large,
arena->stats.ndalloc_large);
malloc_printf("total: %12zu %12"PRIu64" %12"PRIu64"\n",
arena->stats.allocated_small + arena->stats.allocated_medium +
arena->stats.allocated_large, arena->stats.nmalloc_small +
arena->stats.nmalloc_medium + arena->stats.nmalloc_large,
arena->stats.ndalloc_small + arena->stats.ndalloc_medium +
arena->stats.ndalloc_large);
malloc_printf("mapped: %12zu\n", arena->stats.mapped);
if (arena->stats.nmalloc_small + arena->stats.nmalloc_medium > 0) {
unsigned i, gap_start;
#ifdef MALLOC_TCACHE
malloc_printf("bins: bin size regs pgs requests "
"nfills nflushes newruns reruns maxruns curruns\n");
#else
malloc_printf("bins: bin size regs pgs requests "
"newruns reruns maxruns curruns\n");
#endif
for (i = 0, gap_start = UINT_MAX; i < nbins; i++) {
if (arena->bins[i].stats.nruns == 0) {
if (gap_start == UINT_MAX)
gap_start = i;
} else {
if (gap_start != UINT_MAX) {
if (i > gap_start + 1) {
/*
* Gap of more than one size
* class.
*/
malloc_printf("[%u..%u]\n",
gap_start, i - 1);
} else {
/* Gap of one size class. */
malloc_printf("[%u]\n",
gap_start);
}
gap_start = UINT_MAX;
}
malloc_printf(
"%13u %1s %5u %4u %3u %9"PRIu64" %9"PRIu64
#ifdef MALLOC_TCACHE
" %9"PRIu64" %9"PRIu64
#endif
" %9"PRIu64" %7zu %7zu\n",
i,
i < ntbins ? "T" : i < ntbins + nqbins ?
"Q" : i < ntbins + nqbins + ncbins ? "C" :
i < ntbins + nqbins + ncbins + nsbins ? "S"
: "M",
arena->bins[i].reg_size,
arena->bins[i].nregs,
arena->bins[i].run_size >> PAGE_SHIFT,
arena->bins[i].stats.nrequests,
#ifdef MALLOC_TCACHE
arena->bins[i].stats.nfills,
arena->bins[i].stats.nflushes,
#endif
arena->bins[i].stats.nruns,
arena->bins[i].stats.reruns,
arena->bins[i].stats.highruns,
arena->bins[i].stats.curruns);
}
}
if (gap_start != UINT_MAX) {
if (i > gap_start + 1) {
/* Gap of more than one size class. */
malloc_printf("[%u..%u]\n", gap_start, i - 1);
} else {
/* Gap of one size class. */
malloc_printf("[%u]\n", gap_start);
}
}
}
if (arena->stats.nmalloc_large > 0) {
size_t i;
ssize_t gap_start;
size_t nlclasses = (chunksize - PAGE_SIZE) >> PAGE_SHIFT;
malloc_printf(
"large: size pages nrequests maxruns curruns\n");
for (i = 0, gap_start = -1; i < nlclasses; i++) {
if (arena->stats.lstats[i].nrequests == 0) {
if (gap_start == -1)
gap_start = i;
} else {
if (gap_start != -1) {
malloc_printf("[%zu]\n", i - gap_start);
gap_start = -1;
}
malloc_printf(
"%13zu %5zu %9"PRIu64" %9zu %9zu\n",
(i+1) << PAGE_SHIFT, i+1,
arena->stats.lstats[i].nrequests,
arena->stats.lstats[i].highruns,
arena->stats.lstats[i].curruns);
}
}
if (gap_start != -1)
malloc_printf("[%zu]\n", i - gap_start);
}
}
#endif
static void
stats_print_atexit(void)
{
#if (defined(MALLOC_TCACHE) && defined(MALLOC_STATS))
unsigned i;
/*
* Merge stats from extant threads. This is racy, since individual
* threads do not lock when recording tcache stats events. As a
* consequence, the final stats may be slightly out of date by the time
* they are reported, if other threads continue to allocate.
*/
for (i = 0; i < narenas; i++) {
arena_t *arena = arenas[i];
if (arena != NULL) {
tcache_t *tcache;
malloc_spin_lock(&arena->lock);
ql_foreach(tcache, &arena->tcache_ql, link) {
tcache_stats_merge(tcache, arena);
}
malloc_spin_unlock(&arena->lock);
}
}
#endif
malloc_stats_print();
}
#ifdef MALLOC_TCACHE
static void
tcache_bin_flush(tcache_bin_t *tbin, size_t binind, unsigned rem)
{
arena_chunk_t *chunk;
arena_t *arena;
void *ptr;
unsigned i, ndeferred, ncached;
for (ndeferred = tbin->ncached - rem; ndeferred > 0;) {
ncached = ndeferred;
/* Lock the arena associated with the first object. */
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(tbin->slots[0]);
arena = chunk->arena;
malloc_spin_lock(&arena->lock);
/* Deallocate every object that belongs to the locked arena. */
for (i = ndeferred = 0; i < ncached; i++) {
ptr = tbin->slots[i];
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (chunk->arena == arena) {
size_t pageind = (((uintptr_t)ptr -
(uintptr_t)chunk) >> PAGE_SHIFT);
arena_chunk_map_t *mapelm =
&chunk->map[pageind];
arena_dalloc_bin(arena, chunk, ptr, mapelm);
} else {
/*
* This object was allocated via a different
* arena than the one that is currently locked.
* Stash the object, so that it can be handled
* in a future pass.
*/
tbin->slots[ndeferred] = ptr;
ndeferred++;
}
}
#ifdef MALLOC_STATS
arena->bins[binind].stats.nflushes++;
{
arena_bin_t *bin = &arena->bins[binind];
bin->stats.nrequests += tbin->tstats.nrequests;
if (bin->reg_size <= small_maxclass) {
arena->stats.nmalloc_small +=
tbin->tstats.nrequests;
} else {
arena->stats.nmalloc_medium +=
tbin->tstats.nrequests;
}
tbin->tstats.nrequests = 0;
}
#endif
malloc_spin_unlock(&arena->lock);
}
if (rem > 0) {
/*
* Shift the remaining valid pointers to the base of the slots
* array.
*/
memmove(&tbin->slots[0], &tbin->slots[tbin->ncached - rem],
rem * sizeof(void *));
}
tbin->ncached = rem;
}
static inline void
tcache_dalloc(tcache_t *tcache, void *ptr)
{
arena_t *arena;
arena_chunk_t *chunk;
arena_run_t *run;
arena_bin_t *bin;
tcache_bin_t *tbin;
size_t pageind, binind;
arena_chunk_map_t *mapelm;
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
arena = chunk->arena;
pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
mapelm = &chunk->map[pageind];
run = (arena_run_t *)((uintptr_t)chunk + (uintptr_t)((pageind -
((mapelm->bits & CHUNK_MAP_PG_MASK) >> CHUNK_MAP_PG_SHIFT)) <<
PAGE_SHIFT));
assert(run->magic == ARENA_RUN_MAGIC);
bin = run->bin;
binind = ((uintptr_t)bin - (uintptr_t)&arena->bins) /
sizeof(arena_bin_t);
assert(binind < nbins);
if (opt_junk)
memset(ptr, 0x5a, arena->bins[binind].reg_size);
tbin = tcache->tbins[binind];
if (tbin == NULL) {
tbin = tcache_bin_create(choose_arena());
if (tbin == NULL) {
malloc_spin_lock(&arena->lock);
arena_dalloc_bin(arena, chunk, ptr, mapelm);
malloc_spin_unlock(&arena->lock);
return;
}
tcache->tbins[binind] = tbin;
}
if (tbin->ncached == tcache_nslots)
tcache_bin_flush(tbin, binind, (tcache_nslots >> 1));
assert(tbin->ncached < tcache_nslots);
tbin->slots[tbin->ncached] = ptr;
tbin->ncached++;
if (tbin->ncached > tbin->high_water)
tbin->high_water = tbin->ncached;
tcache_event(tcache);
}
#endif
static void
arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr)
{
/* Large allocation. */
malloc_spin_lock(&arena->lock);
#ifndef MALLOC_STATS
if (opt_junk)
#endif
{
size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >>
PAGE_SHIFT;
size_t size = chunk->map[pageind].bits & ~PAGE_MASK;
#ifdef MALLOC_STATS
if (opt_junk)
#endif
memset(ptr, 0x5a, size);
#ifdef MALLOC_STATS
arena->stats.ndalloc_large++;
arena->stats.allocated_large -= size;
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns--;
#endif
}
arena_run_dalloc(arena, (arena_run_t *)ptr, true);
malloc_spin_unlock(&arena->lock);
}
static inline void
arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
{
size_t pageind;
arena_chunk_map_t *mapelm;
assert(arena != NULL);
assert(arena->magic == ARENA_MAGIC);
assert(chunk->arena == arena);
assert(ptr != NULL);
assert(CHUNK_ADDR2BASE(ptr) != ptr);
pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
mapelm = &chunk->map[pageind];
assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
/* Small allocation. */
#ifdef MALLOC_TCACHE
if (__isthreaded && tcache_nslots) {
tcache_t *tcache = tcache_tls;
if ((uintptr_t)tcache > (uintptr_t)1)
tcache_dalloc(tcache, ptr);
else {
arena_dalloc_hard(arena, chunk, ptr, mapelm,
tcache);
}
} else {
#endif
malloc_spin_lock(&arena->lock);
arena_dalloc_bin(arena, chunk, ptr, mapelm);
malloc_spin_unlock(&arena->lock);
#ifdef MALLOC_TCACHE
}
#endif
} else
arena_dalloc_large(arena, chunk, ptr);
}
#ifdef MALLOC_TCACHE
static void
arena_dalloc_hard(arena_t *arena, arena_chunk_t *chunk, void *ptr,
arena_chunk_map_t *mapelm, tcache_t *tcache)
{
if (tcache == NULL) {
tcache = tcache_create(arena);
if (tcache == NULL) {
malloc_spin_lock(&arena->lock);
arena_dalloc_bin(arena, chunk, ptr, mapelm);
malloc_spin_unlock(&arena->lock);
} else
tcache_dalloc(tcache, ptr);
} else {
/* This thread is currently exiting, so directly deallocate. */
assert(tcache == (void *)(uintptr_t)1);
malloc_spin_lock(&arena->lock);
arena_dalloc_bin(arena, chunk, ptr, mapelm);
malloc_spin_unlock(&arena->lock);
}
}
#endif
static inline void
idalloc(void *ptr)
{
arena_chunk_t *chunk;
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (chunk != ptr)
arena_dalloc(chunk->arena, chunk, ptr);
else
huge_dalloc(ptr);
}
static void
arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr,
size_t size, size_t oldsize)
{
assert(size < oldsize);
/*
* Shrink the run, and make trailing pages available for other
* allocations.
*/
malloc_spin_lock(&arena->lock);
arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size,
true);
#ifdef MALLOC_STATS
arena->stats.ndalloc_large++;
arena->stats.allocated_large -= oldsize;
arena->stats.lstats[(oldsize >> PAGE_SHIFT) - 1].curruns--;
arena->stats.nmalloc_large++;
arena->stats.allocated_large += size;
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].nrequests++;
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns++;
if (arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns >
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns) {
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns =
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns;
}
#endif
malloc_spin_unlock(&arena->lock);
}
static bool
arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr,
size_t size, size_t oldsize)
{
size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT;
size_t npages = oldsize >> PAGE_SHIFT;
assert(oldsize == (chunk->map[pageind].bits & ~PAGE_MASK));
/* Try to extend the run. */
assert(size > oldsize);
malloc_spin_lock(&arena->lock);
if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits
& CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits &
~PAGE_MASK) >= size - oldsize) {
/*
* The next run is available and sufficiently large. Split the
* following run, then merge the first part with the existing
* allocation.
*/
arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk +
((pageind+npages) << PAGE_SHIFT)), size - oldsize, true,
false);
chunk->map[pageind].bits = size | CHUNK_MAP_LARGE |
CHUNK_MAP_ALLOCATED;
chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE |
CHUNK_MAP_ALLOCATED;
#ifdef MALLOC_STATS
arena->stats.ndalloc_large++;
arena->stats.allocated_large -= oldsize;
arena->stats.lstats[(oldsize >> PAGE_SHIFT) - 1].curruns--;
arena->stats.nmalloc_large++;
arena->stats.allocated_large += size;
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].nrequests++;
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns++;
if (arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns >
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns) {
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns =
arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns;
}
#endif
malloc_spin_unlock(&arena->lock);
return (false);
}
malloc_spin_unlock(&arena->lock);
return (true);
}
/*
* Try to resize a large allocation, in order to avoid copying. This will
* always fail if growing an object, and the following run is already in use.
*/
static bool
arena_ralloc_large(void *ptr, size_t size, size_t oldsize)
{
size_t psize;
psize = PAGE_CEILING(size);
if (psize == oldsize) {
/* Same size class. */
if (opt_junk && size < oldsize) {
memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize -
size);
}
return (false);
} else {
arena_chunk_t *chunk;
arena_t *arena;
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
arena = chunk->arena;
assert(arena->magic == ARENA_MAGIC);
if (psize < oldsize) {
/* Fill before shrinking in order avoid a race. */
if (opt_junk) {
memset((void *)((uintptr_t)ptr + size), 0x5a,
oldsize - size);
}
arena_ralloc_large_shrink(arena, chunk, ptr, psize,
oldsize);
return (false);
} else {
bool ret = arena_ralloc_large_grow(arena, chunk, ptr,
psize, oldsize);
if (ret == false && opt_zero) {
memset((void *)((uintptr_t)ptr + oldsize), 0,
size - oldsize);
}
return (ret);
}
}
}
static void *
arena_ralloc(void *ptr, size_t size, size_t oldsize)
{
void *ret;
size_t copysize;
/*
* Try to avoid moving the allocation.
*
* posix_memalign() can cause allocation of "large" objects that are
* smaller than bin_maxclass (in order to meet alignment requirements).
* Therefore, do not assume that (oldsize <= bin_maxclass) indicates
* ptr refers to a bin-allocated object.
*/
if (oldsize <= arena_maxclass) {
if (arena_is_large(ptr) == false ) {
if (size <= small_maxclass) {
if (oldsize <= small_maxclass &&
small_size2bin[size] ==
small_size2bin[oldsize])
goto IN_PLACE;
} else if (size <= bin_maxclass) {
if (small_maxclass < oldsize && oldsize <=
bin_maxclass && MEDIUM_CEILING(size) ==
MEDIUM_CEILING(oldsize))
goto IN_PLACE;
}
} else {
assert(size <= arena_maxclass);
if (size > bin_maxclass) {
if (arena_ralloc_large(ptr, size, oldsize) ==
false)
return (ptr);
}
}
}
/* Try to avoid moving the allocation. */
if (size <= small_maxclass) {
if (oldsize <= small_maxclass && small_size2bin[size] ==
small_size2bin[oldsize])
goto IN_PLACE;
} else if (size <= bin_maxclass) {
if (small_maxclass < oldsize && oldsize <= bin_maxclass &&
MEDIUM_CEILING(size) == MEDIUM_CEILING(oldsize))
goto IN_PLACE;
} else {
if (bin_maxclass < oldsize && oldsize <= arena_maxclass) {
assert(size > bin_maxclass);
if (arena_ralloc_large(ptr, size, oldsize) == false)
return (ptr);
}
}
/*
* If we get here, then size and oldsize are different enough that we
* need to move the object. In that case, fall back to allocating new
* space and copying.
*/
ret = arena_malloc(size, false);
if (ret == NULL)
return (NULL);
/* Junk/zero-filling were already done by arena_malloc(). */
copysize = (size < oldsize) ? size : oldsize;
memcpy(ret, ptr, copysize);
idalloc(ptr);
return (ret);
IN_PLACE:
if (opt_junk && size < oldsize)
memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
else if (opt_zero && size > oldsize)
memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
return (ptr);
}
static inline void *
iralloc(void *ptr, size_t size)
{
size_t oldsize;
assert(ptr != NULL);
assert(size != 0);
oldsize = isalloc(ptr);
if (size <= arena_maxclass)
return (arena_ralloc(ptr, size, oldsize));
else
return (huge_ralloc(ptr, size, oldsize));
}
static bool
arena_new(arena_t *arena, unsigned ind)
{
unsigned i;
arena_bin_t *bin;
size_t prev_run_size;
if (malloc_spin_init(&arena->lock))
return (true);
#ifdef MALLOC_STATS
memset(&arena->stats, 0, sizeof(arena_stats_t));
arena->stats.lstats = (malloc_large_stats_t *)base_alloc(
sizeof(malloc_large_stats_t) * ((chunksize - PAGE_SIZE) >>
PAGE_SHIFT));
if (arena->stats.lstats == NULL)
return (true);
memset(arena->stats.lstats, 0, sizeof(malloc_large_stats_t) *
((chunksize - PAGE_SIZE) >> PAGE_SHIFT));
# ifdef MALLOC_TCACHE
ql_new(&arena->tcache_ql);
# endif
#endif
/* Initialize chunks. */
arena_chunk_tree_dirty_new(&arena->chunks_dirty);
arena->spare = NULL;
arena->nactive = 0;
arena->ndirty = 0;
arena_avail_tree_new(&arena->runs_avail);
/* Initialize bins. */
prev_run_size = PAGE_SIZE;
i = 0;
#ifdef MALLOC_TINY
/* (2^n)-spaced tiny bins. */
for (; i < ntbins; i++) {
bin = &arena->bins[i];
bin->runcur = NULL;
arena_run_tree_new(&bin->runs);
bin->reg_size = (1U << (LG_TINY_MIN + i));
prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
#ifdef MALLOC_STATS
memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
#endif
}
#endif
/* Quantum-spaced bins. */
for (; i < ntbins + nqbins; i++) {
bin = &arena->bins[i];
bin->runcur = NULL;
arena_run_tree_new(&bin->runs);
bin->reg_size = (i - ntbins + 1) << LG_QUANTUM;
prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
#ifdef MALLOC_STATS
memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
#endif
}
/* Cacheline-spaced bins. */
for (; i < ntbins + nqbins + ncbins; i++) {
bin = &arena->bins[i];
bin->runcur = NULL;
arena_run_tree_new(&bin->runs);
bin->reg_size = cspace_min + ((i - (ntbins + nqbins)) <<
LG_CACHELINE);
prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
#ifdef MALLOC_STATS
memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
#endif
}
/* Subpage-spaced bins. */
for (; i < ntbins + nqbins + ncbins + nsbins; i++) {
bin = &arena->bins[i];
bin->runcur = NULL;
arena_run_tree_new(&bin->runs);
bin->reg_size = sspace_min + ((i - (ntbins + nqbins + ncbins))
<< LG_SUBPAGE);
prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
#ifdef MALLOC_STATS
memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
#endif
}
/* Medium bins. */
for (; i < nbins; i++) {
bin = &arena->bins[i];
bin->runcur = NULL;
arena_run_tree_new(&bin->runs);
bin->reg_size = medium_min + ((i - (ntbins + nqbins + ncbins +
nsbins)) << lg_mspace);
prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
#ifdef MALLOC_STATS
memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
#endif
}
#ifdef MALLOC_DEBUG
arena->magic = ARENA_MAGIC;
#endif
return (false);
}
/* Create a new arena and insert it into the arenas array at index ind. */
static arena_t *
arenas_extend(unsigned ind)
{
arena_t *ret;
/* Allocate enough space for trailing bins. */
ret = (arena_t *)base_alloc(sizeof(arena_t)
+ (sizeof(arena_bin_t) * (nbins - 1)));
if (ret != NULL && arena_new(ret, ind) == false) {
arenas[ind] = ret;
return (ret);
}
/* Only reached if there is an OOM error. */
/*
* OOM here is quite inconvenient to propagate, since dealing with it
* would require a check for failure in the fast path. Instead, punt
* by using arenas[0]. In practice, this is an extremely unlikely
* failure.
*/
_malloc_message(_getprogname(),
": (malloc) Error initializing arena\n", "", "");
if (opt_abort)
abort();
return (arenas[0]);
}
#ifdef MALLOC_TCACHE
static tcache_bin_t *
tcache_bin_create(arena_t *arena)
{
tcache_bin_t *ret;
size_t tsize;
tsize = sizeof(tcache_bin_t) + (sizeof(void *) * (tcache_nslots - 1));
if (tsize <= small_maxclass)
ret = (tcache_bin_t *)arena_malloc_small(arena, tsize, false);
else if (tsize <= bin_maxclass)
ret = (tcache_bin_t *)arena_malloc_medium(arena, tsize, false);
else
ret = (tcache_bin_t *)imalloc(tsize);
if (ret == NULL)
return (NULL);
#ifdef MALLOC_STATS
memset(&ret->tstats, 0, sizeof(tcache_bin_stats_t));
#endif
ret->low_water = 0;
ret->high_water = 0;
ret->ncached = 0;
return (ret);
}
static void
tcache_bin_destroy(tcache_t *tcache, tcache_bin_t *tbin, unsigned binind)
{
arena_t *arena;
arena_chunk_t *chunk;
size_t pageind, tsize;
arena_chunk_map_t *mapelm;
chunk = CHUNK_ADDR2BASE(tbin);
arena = chunk->arena;
pageind = (((uintptr_t)tbin - (uintptr_t)chunk) >> PAGE_SHIFT);
mapelm = &chunk->map[pageind];
#ifdef MALLOC_STATS
if (tbin->tstats.nrequests != 0) {
arena_t *arena = tcache->arena;
arena_bin_t *bin = &arena->bins[binind];
malloc_spin_lock(&arena->lock);
bin->stats.nrequests += tbin->tstats.nrequests;
if (bin->reg_size <= small_maxclass)
arena->stats.nmalloc_small += tbin->tstats.nrequests;
else
arena->stats.nmalloc_medium += tbin->tstats.nrequests;
malloc_spin_unlock(&arena->lock);
}
#endif
assert(tbin->ncached == 0);
tsize = sizeof(tcache_bin_t) + (sizeof(void *) * (tcache_nslots - 1));
if (tsize <= bin_maxclass) {
malloc_spin_lock(&arena->lock);
arena_dalloc_bin(arena, chunk, tbin, mapelm);
malloc_spin_unlock(&arena->lock);
} else
idalloc(tbin);
}
#ifdef MALLOC_STATS
static void
tcache_stats_merge(tcache_t *tcache, arena_t *arena)
{
unsigned i;
/* Merge and reset tcache stats. */
for (i = 0; i < mbin0; i++) {
arena_bin_t *bin = &arena->bins[i];
tcache_bin_t *tbin = tcache->tbins[i];
if (tbin != NULL) {
bin->stats.nrequests += tbin->tstats.nrequests;
arena->stats.nmalloc_small += tbin->tstats.nrequests;
tbin->tstats.nrequests = 0;
}
}
for (; i < nbins; i++) {
arena_bin_t *bin = &arena->bins[i];
tcache_bin_t *tbin = tcache->tbins[i];
if (tbin != NULL) {
bin->stats.nrequests += tbin->tstats.nrequests;
arena->stats.nmalloc_medium += tbin->tstats.nrequests;
tbin->tstats.nrequests = 0;
}
}
}
#endif
static tcache_t *
tcache_create(arena_t *arena)
{
tcache_t *tcache;
if (sizeof(tcache_t) + (sizeof(tcache_bin_t *) * (nbins - 1)) <=
small_maxclass) {
tcache = (tcache_t *)arena_malloc_small(arena, sizeof(tcache_t)
+ (sizeof(tcache_bin_t *) * (nbins - 1)), true);
} else if (sizeof(tcache_t) + (sizeof(tcache_bin_t *) * (nbins - 1)) <=
bin_maxclass) {
tcache = (tcache_t *)arena_malloc_medium(arena, sizeof(tcache_t)
+ (sizeof(tcache_bin_t *) * (nbins - 1)), true);
} else {
tcache = (tcache_t *)icalloc(sizeof(tcache_t) +
(sizeof(tcache_bin_t *) * (nbins - 1)));
}
if (tcache == NULL)
return (NULL);
#ifdef MALLOC_STATS
/* Link into list of extant tcaches. */
malloc_spin_lock(&arena->lock);
ql_elm_new(tcache, link);
ql_tail_insert(&arena->tcache_ql, tcache, link);
malloc_spin_unlock(&arena->lock);
#endif
tcache->arena = arena;
tcache_tls = tcache;
return (tcache);
}
static void
tcache_destroy(tcache_t *tcache)
{
unsigned i;
#ifdef MALLOC_STATS
/* Unlink from list of extant tcaches. */
malloc_spin_lock(&tcache->arena->lock);
ql_remove(&tcache->arena->tcache_ql, tcache, link);
tcache_stats_merge(tcache, tcache->arena);
malloc_spin_unlock(&tcache->arena->lock);
#endif
for (i = 0; i < nbins; i++) {
tcache_bin_t *tbin = tcache->tbins[i];
if (tbin != NULL) {
tcache_bin_flush(tbin, i, 0);
tcache_bin_destroy(tcache, tbin, i);
}
}
if (arena_salloc(tcache) <= bin_maxclass) {
arena_chunk_t *chunk = CHUNK_ADDR2BASE(tcache);
arena_t *arena = chunk->arena;
size_t pageind = (((uintptr_t)tcache - (uintptr_t)chunk) >>
PAGE_SHIFT);
arena_chunk_map_t *mapelm = &chunk->map[pageind];
malloc_spin_lock(&arena->lock);
arena_dalloc_bin(arena, chunk, tcache, mapelm);
malloc_spin_unlock(&arena->lock);
} else
idalloc(tcache);
}
#endif
/*
* End arena.
*/
/******************************************************************************/
/*
* Begin general internal functions.
*/
static void *
huge_malloc(size_t size, bool zero)
{
void *ret;
size_t csize;
extent_node_t *node;
/* Allocate one or more contiguous chunks for this request. */
csize = CHUNK_CEILING(size);
if (csize == 0) {
/* size is large enough to cause size_t wrap-around. */
return (NULL);
}
/* Allocate an extent node with which to track the chunk. */
node = base_node_alloc();
if (node == NULL)
return (NULL);
ret = chunk_alloc(csize, &zero);
if (ret == NULL) {
base_node_dealloc(node);
return (NULL);
}
/* Insert node into huge. */
node->addr = ret;
node->size = csize;
malloc_mutex_lock(&huge_mtx);
extent_tree_ad_insert(&huge, node);
#ifdef MALLOC_STATS
huge_nmalloc++;
huge_allocated += csize;
#endif
malloc_mutex_unlock(&huge_mtx);
if (zero == false) {
if (opt_junk)
memset(ret, 0xa5, csize);
else if (opt_zero)
memset(ret, 0, csize);
}
return (ret);
}
/* Only handles large allocations that require more than chunk alignment. */
static void *
huge_palloc(size_t alignment, size_t size)
{
void *ret;
size_t alloc_size, chunk_size, offset;
extent_node_t *node;
bool zero;
/*
* This allocation requires alignment that is even larger than chunk
* alignment. This means that huge_malloc() isn't good enough.
*
* Allocate almost twice as many chunks as are demanded by the size or
* alignment, in order to assure the alignment can be achieved, then
* unmap leading and trailing chunks.
*/
assert(alignment >= chunksize);
chunk_size = CHUNK_CEILING(size);
if (size >= alignment)
alloc_size = chunk_size + alignment - chunksize;
else
alloc_size = (alignment << 1) - chunksize;
/* Allocate an extent node with which to track the chunk. */
node = base_node_alloc();
if (node == NULL)
return (NULL);
zero = false;
ret = chunk_alloc(alloc_size, &zero);
if (ret == NULL) {
base_node_dealloc(node);
return (NULL);
}
offset = (uintptr_t)ret & (alignment - 1);
assert((offset & chunksize_mask) == 0);
assert(offset < alloc_size);
if (offset == 0) {
/* Trim trailing space. */
chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
- chunk_size);
} else {
size_t trailsize;
/* Trim leading space. */
chunk_dealloc(ret, alignment - offset);
ret = (void *)((uintptr_t)ret + (alignment - offset));
trailsize = alloc_size - (alignment - offset) - chunk_size;
if (trailsize != 0) {
/* Trim trailing space. */
assert(trailsize < alloc_size);
chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
trailsize);
}
}
/* Insert node into huge. */
node->addr = ret;
node->size = chunk_size;
malloc_mutex_lock(&huge_mtx);
extent_tree_ad_insert(&huge, node);
#ifdef MALLOC_STATS
huge_nmalloc++;
huge_allocated += chunk_size;
#endif
malloc_mutex_unlock(&huge_mtx);
if (opt_junk)
memset(ret, 0xa5, chunk_size);
else if (opt_zero)
memset(ret, 0, chunk_size);
return (ret);
}
static void *
huge_ralloc(void *ptr, size_t size, size_t oldsize)
{
void *ret;
size_t copysize;
/* Avoid moving the allocation if the size class would not change. */
if (oldsize > arena_maxclass &&
CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
if (opt_junk && size < oldsize) {
memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
- size);
} else if (opt_zero && size > oldsize) {
memset((void *)((uintptr_t)ptr + oldsize), 0, size
- oldsize);
}
return (ptr);
}
/*
* If we get here, then size and oldsize are different enough that we
* need to use a different size class. In that case, fall back to
* allocating new space and copying.
*/
ret = huge_malloc(size, false);
if (ret == NULL)
return (NULL);
copysize = (size < oldsize) ? size : oldsize;
memcpy(ret, ptr, copysize);
idalloc(ptr);
return (ret);
}
static void
huge_dalloc(void *ptr)
{
extent_node_t *node, key;
malloc_mutex_lock(&huge_mtx);
/* Extract from tree of huge allocations. */
key.addr = ptr;
node = extent_tree_ad_search(&huge, &key);
assert(node != NULL);
assert(node->addr == ptr);
extent_tree_ad_remove(&huge, node);
#ifdef MALLOC_STATS
huge_ndalloc++;
huge_allocated -= node->size;
#endif
malloc_mutex_unlock(&huge_mtx);
/* Unmap chunk. */
#ifdef MALLOC_DSS
if (opt_dss && opt_junk)
memset(node->addr, 0x5a, node->size);
#endif
chunk_dealloc(node->addr, node->size);
base_node_dealloc(node);
}
static void
malloc_stats_print(void)
{
char s[UMAX2S_BUFSIZE];
_malloc_message("___ Begin malloc statistics ___\n", "", "", "");
_malloc_message("Assertions ",
#ifdef NDEBUG
"disabled",
#else
"enabled",
#endif
"\n", "");
_malloc_message("Boolean MALLOC_OPTIONS: ", opt_abort ? "A" : "a", "", "");
#ifdef MALLOC_DSS
_malloc_message(opt_dss ? "D" : "d", "", "", "");
#endif
_malloc_message(opt_junk ? "J" : "j", "", "", "");
#ifdef MALLOC_DSS
_malloc_message(opt_mmap ? "M" : "m", "", "", "");
#endif
_malloc_message("P", "", "", "");
_malloc_message(opt_utrace ? "U" : "u", "", "", "");
_malloc_message(opt_sysv ? "V" : "v", "", "", "");
_malloc_message(opt_xmalloc ? "X" : "x", "", "", "");
_malloc_message(opt_zero ? "Z" : "z", "", "", "");
_malloc_message("\n", "", "", "");
_malloc_message("CPUs: ", umax2s(ncpus, 10, s), "\n", "");
_malloc_message("Max arenas: ", umax2s(narenas, 10, s), "\n", "");
_malloc_message("Pointer size: ", umax2s(sizeof(void *), 10, s), "\n", "");
_malloc_message("Quantum size: ", umax2s(QUANTUM, 10, s), "\n", "");
_malloc_message("Cacheline size (assumed): ",
umax2s(CACHELINE, 10, s), "\n", "");
_malloc_message("Subpage spacing: ", umax2s(SUBPAGE, 10, s), "\n", "");
_malloc_message("Medium spacing: ", umax2s((1U << lg_mspace), 10, s), "\n",
"");
#ifdef MALLOC_TINY
_malloc_message("Tiny 2^n-spaced sizes: [", umax2s((1U << LG_TINY_MIN), 10,
s), "..", "");
_malloc_message(umax2s((qspace_min >> 1), 10, s), "]\n", "", "");
#endif
_malloc_message("Quantum-spaced sizes: [", umax2s(qspace_min, 10, s), "..",
"");
_malloc_message(umax2s(qspace_max, 10, s), "]\n", "", "");
_malloc_message("Cacheline-spaced sizes: [",
umax2s(cspace_min, 10, s), "..", "");
_malloc_message(umax2s(cspace_max, 10, s), "]\n", "", "");
_malloc_message("Subpage-spaced sizes: [", umax2s(sspace_min, 10, s), "..",
"");
_malloc_message(umax2s(sspace_max, 10, s), "]\n", "", "");
_malloc_message("Medium sizes: [", umax2s(medium_min, 10, s), "..", "");
_malloc_message(umax2s(medium_max, 10, s), "]\n", "", "");
if (opt_lg_dirty_mult >= 0) {
_malloc_message("Min active:dirty page ratio per arena: ",
umax2s((1U << opt_lg_dirty_mult), 10, s), ":1\n", "");
} else {
_malloc_message("Min active:dirty page ratio per arena: N/A\n", "",
"", "");
}
#ifdef MALLOC_TCACHE
_malloc_message("Thread cache slots per size class: ",
tcache_nslots ? umax2s(tcache_nslots, 10, s) : "N/A", "\n", "");
_malloc_message("Thread cache GC sweep interval: ",
(tcache_nslots && tcache_gc_incr > 0) ?
umax2s((1U << opt_lg_tcache_gc_sweep), 10, s) : "N/A", "", "");
_malloc_message(" (increment interval: ",
(tcache_nslots && tcache_gc_incr > 0) ? umax2s(tcache_gc_incr, 10, s)
: "N/A", ")\n", "");
#endif
_malloc_message("Chunk size: ", umax2s(chunksize, 10, s), "", "");
_malloc_message(" (2^", umax2s(opt_lg_chunk, 10, s), ")\n", "");
#ifdef MALLOC_STATS
{
size_t allocated, mapped;
unsigned i;
arena_t *arena;
/* Calculate and print allocated/mapped stats. */
/* arenas. */
for (i = 0, allocated = 0; i < narenas; i++) {
if (arenas[i] != NULL) {
malloc_spin_lock(&arenas[i]->lock);
allocated += arenas[i]->stats.allocated_small;
allocated += arenas[i]->stats.allocated_large;
malloc_spin_unlock(&arenas[i]->lock);
}
}
/* huge/base. */
malloc_mutex_lock(&huge_mtx);
allocated += huge_allocated;
mapped = stats_chunks.curchunks * chunksize;
malloc_mutex_unlock(&huge_mtx);
malloc_mutex_lock(&base_mtx);
mapped += base_mapped;
malloc_mutex_unlock(&base_mtx);
malloc_printf("Allocated: %zu, mapped: %zu\n", allocated,
mapped);
/* Print chunk stats. */
{
chunk_stats_t chunks_stats;
malloc_mutex_lock(&huge_mtx);
chunks_stats = stats_chunks;
malloc_mutex_unlock(&huge_mtx);
malloc_printf("chunks: nchunks "
"highchunks curchunks\n");
malloc_printf(" %13"PRIu64"%13zu%13zu\n",
chunks_stats.nchunks, chunks_stats.highchunks,
chunks_stats.curchunks);
}
/* Print chunk stats. */
malloc_printf(
"huge: nmalloc ndalloc allocated\n");
malloc_printf(" %12"PRIu64" %12"PRIu64" %12zu\n", huge_nmalloc,
huge_ndalloc, huge_allocated);
/* Print stats for each arena. */
for (i = 0; i < narenas; i++) {
arena = arenas[i];
if (arena != NULL) {
malloc_printf("\narenas[%u]:\n", i);
malloc_spin_lock(&arena->lock);
arena_stats_print(arena);
malloc_spin_unlock(&arena->lock);
}
}
}
#endif /* #ifdef MALLOC_STATS */
_malloc_message("--- End malloc statistics ---\n", "", "", "");
}
#ifdef MALLOC_DEBUG
static void
small_size2bin_validate(void)
{
size_t i, size, binind;
assert(small_size2bin[0] == 0xffU);
i = 1;
# ifdef MALLOC_TINY
/* Tiny. */
for (; i < (1U << LG_TINY_MIN); i++) {
size = pow2_ceil(1U << LG_TINY_MIN);
binind = ffs((int)(size >> (LG_TINY_MIN + 1)));
assert(small_size2bin[i] == binind);
}
for (; i < qspace_min; i++) {
size = pow2_ceil(i);
binind = ffs((int)(size >> (LG_TINY_MIN + 1)));
assert(small_size2bin[i] == binind);
}
# endif
/* Quantum-spaced. */
for (; i <= qspace_max; i++) {
size = QUANTUM_CEILING(i);
binind = ntbins + (size >> LG_QUANTUM) - 1;
assert(small_size2bin[i] == binind);
}
/* Cacheline-spaced. */
for (; i <= cspace_max; i++) {
size = CACHELINE_CEILING(i);
binind = ntbins + nqbins + ((size - cspace_min) >>
LG_CACHELINE);
assert(small_size2bin[i] == binind);
}
/* Sub-page. */
for (; i <= sspace_max; i++) {
size = SUBPAGE_CEILING(i);
binind = ntbins + nqbins + ncbins + ((size - sspace_min)
>> LG_SUBPAGE);
assert(small_size2bin[i] == binind);
}
}
#endif
static bool
small_size2bin_init(void)
{
if (opt_lg_qspace_max != LG_QSPACE_MAX_DEFAULT
|| opt_lg_cspace_max != LG_CSPACE_MAX_DEFAULT
|| sizeof(const_small_size2bin) != small_maxclass + 1)
return (small_size2bin_init_hard());
small_size2bin = const_small_size2bin;
#ifdef MALLOC_DEBUG
assert(sizeof(const_small_size2bin) == small_maxclass + 1);
small_size2bin_validate();
#endif
return (false);
}
static bool
small_size2bin_init_hard(void)
{
size_t i, size, binind;
uint8_t *custom_small_size2bin;
assert(opt_lg_qspace_max != LG_QSPACE_MAX_DEFAULT
|| opt_lg_cspace_max != LG_CSPACE_MAX_DEFAULT
|| sizeof(const_small_size2bin) != small_maxclass + 1);
custom_small_size2bin = (uint8_t *)base_alloc(small_maxclass + 1);
if (custom_small_size2bin == NULL)
return (true);
custom_small_size2bin[0] = 0xffU;
i = 1;
#ifdef MALLOC_TINY
/* Tiny. */
for (; i < (1U << LG_TINY_MIN); i++) {
size = pow2_ceil(1U << LG_TINY_MIN);
binind = ffs((int)(size >> (LG_TINY_MIN + 1)));
custom_small_size2bin[i] = binind;
}
for (; i < qspace_min; i++) {
size = pow2_ceil(i);
binind = ffs((int)(size >> (LG_TINY_MIN + 1)));
custom_small_size2bin[i] = binind;
}
#endif
/* Quantum-spaced. */
for (; i <= qspace_max; i++) {
size = QUANTUM_CEILING(i);
binind = ntbins + (size >> LG_QUANTUM) - 1;
custom_small_size2bin[i] = binind;
}
/* Cacheline-spaced. */
for (; i <= cspace_max; i++) {
size = CACHELINE_CEILING(i);
binind = ntbins + nqbins + ((size - cspace_min) >>
LG_CACHELINE);
custom_small_size2bin[i] = binind;
}
/* Sub-page. */
for (; i <= sspace_max; i++) {
size = SUBPAGE_CEILING(i);
binind = ntbins + nqbins + ncbins + ((size - sspace_min) >>
LG_SUBPAGE);
custom_small_size2bin[i] = binind;
}
small_size2bin = custom_small_size2bin;
#ifdef MALLOC_DEBUG
small_size2bin_validate();
#endif
return (false);
}
static unsigned
malloc_ncpus(void)
{
unsigned ret;
size_t retlen = sizeof(ret);
int mib[] = {CTL_HW, HW_NCPU};
if (sysctl(mib, sizeof(mib) / sizeof(int), &ret, &retlen,
(void *)0, 0) == -1) {
/* Error. */
ret = 1;
}
return (ret);
}
/*
* FreeBSD's pthreads implementation calls malloc(3), so the malloc
* implementation has to take pains to avoid infinite recursion during
* initialization.
*/
static inline bool
malloc_init(void)
{
if (malloc_initialized == false)
return (malloc_init_hard());
return (false);
}
static bool
malloc_init_hard(void)
{
unsigned i;
int linklen;
char buf[PATH_MAX + 1];
const char *opts;
malloc_mutex_lock(&init_lock);
if (malloc_initialized) {
/*
* Another thread initialized the allocator before this one
* acquired init_lock.
*/
malloc_mutex_unlock(&init_lock);
return (false);
}
/* Get number of CPUs. */
ncpus = malloc_ncpus();
/*
* Increase the chunk size to the largest page size that is greater
* than the default chunk size and less than or equal to 4MB.
*/
{
size_t pagesizes[MAXPAGESIZES];
int k, nsizes;
nsizes = getpagesizes(pagesizes, MAXPAGESIZES);
for (k = 0; k < nsizes; k++)
if (pagesizes[k] <= (1LU << 22))
while ((1LU << opt_lg_chunk) < pagesizes[k])
opt_lg_chunk++;
}
for (i = 0; i < 3; i++) {
unsigned j;
/* Get runtime configuration. */
switch (i) {
case 0:
if ((linklen = readlink("/etc/malloc.conf", buf,
sizeof(buf) - 1)) != -1) {
/*
* Use the contents of the "/etc/malloc.conf"
* symbolic link's name.
*/
buf[linklen] = '\0';
opts = buf;
} else {
/* No configuration specified. */
buf[0] = '\0';
opts = buf;
}
break;
case 1:
if (issetugid() == 0 && (opts =
getenv("MALLOC_OPTIONS")) != NULL) {
/*
* Do nothing; opts is already initialized to
* the value of the MALLOC_OPTIONS environment
* variable.
*/
} else {
/* No configuration specified. */
buf[0] = '\0';
opts = buf;
}
break;
case 2:
if (_malloc_options != NULL) {
/*
* Use options that were compiled into the
* program.
*/
opts = _malloc_options;
} else {
/* No configuration specified. */
buf[0] = '\0';
opts = buf;
}
break;
default:
/* NOTREACHED */
assert(false);
buf[0] = '\0';
opts = buf;
}
for (j = 0; opts[j] != '\0'; j++) {
unsigned k, nreps;
bool nseen;
/* Parse repetition count, if any. */
for (nreps = 0, nseen = false;; j++, nseen = true) {
switch (opts[j]) {
case '0': case '1': case '2': case '3':
case '4': case '5': case '6': case '7':
case '8': case '9':
nreps *= 10;
nreps += opts[j] - '0';
break;
default:
goto MALLOC_OUT;
}
}
MALLOC_OUT:
if (nseen == false)
nreps = 1;
for (k = 0; k < nreps; k++) {
switch (opts[j]) {
case 'a':
opt_abort = false;
break;
case 'A':
opt_abort = true;
break;
case 'c':
if (opt_lg_cspace_max - 1 >
opt_lg_qspace_max &&
opt_lg_cspace_max >
LG_CACHELINE)
opt_lg_cspace_max--;
break;
case 'C':
if (opt_lg_cspace_max < PAGE_SHIFT
- 1)
opt_lg_cspace_max++;
break;
case 'd':
#ifdef MALLOC_DSS
opt_dss = false;
#endif
break;
case 'D':
#ifdef MALLOC_DSS
opt_dss = true;
#endif
break;
case 'e':
if (opt_lg_medium_max > PAGE_SHIFT)
opt_lg_medium_max--;
break;
case 'E':
if (opt_lg_medium_max + 1 <
opt_lg_chunk)
opt_lg_medium_max++;
break;
case 'f':
if (opt_lg_dirty_mult + 1 <
(sizeof(size_t) << 3))
opt_lg_dirty_mult++;
break;
case 'F':
if (opt_lg_dirty_mult >= 0)
opt_lg_dirty_mult--;
break;
#ifdef MALLOC_TCACHE
case 'g':
if (opt_lg_tcache_gc_sweep >= 0)
opt_lg_tcache_gc_sweep--;
break;
case 'G':
if (opt_lg_tcache_gc_sweep + 1 <
(sizeof(size_t) << 3))
opt_lg_tcache_gc_sweep++;
break;
case 'h':
if (opt_lg_tcache_nslots > 0)
opt_lg_tcache_nslots--;
break;
case 'H':
if (opt_lg_tcache_nslots + 1 <
(sizeof(size_t) << 3))
opt_lg_tcache_nslots++;
break;
#endif
case 'j':
opt_junk = false;
break;
case 'J':
opt_junk = true;
break;
case 'k':
/*
* Chunks always require at least one
* header page, plus enough room to
* hold a run for the largest medium
* size class (one page more than the
* size).
*/
if ((1U << (opt_lg_chunk - 1)) >=
(2U << PAGE_SHIFT) + (1U <<
opt_lg_medium_max))
opt_lg_chunk--;
break;
case 'K':
if (opt_lg_chunk + 1 <
(sizeof(size_t) << 3))
opt_lg_chunk++;
break;
case 'm':
#ifdef MALLOC_DSS
opt_mmap = false;
#endif
break;
case 'M':
#ifdef MALLOC_DSS
opt_mmap = true;
#endif
break;
case 'n':
opt_narenas_lshift--;
break;
case 'N':
opt_narenas_lshift++;
break;
case 'p':
opt_stats_print = false;
break;
case 'P':
opt_stats_print = true;
break;
case 'q':
if (opt_lg_qspace_max > LG_QUANTUM)
opt_lg_qspace_max--;
break;
case 'Q':
if (opt_lg_qspace_max + 1 <
opt_lg_cspace_max)
opt_lg_qspace_max++;
break;
case 'u':
opt_utrace = false;
break;
case 'U':
opt_utrace = true;
break;
case 'v':
opt_sysv = false;
break;
case 'V':
opt_sysv = true;
break;
case 'x':
opt_xmalloc = false;
break;
case 'X':
opt_xmalloc = true;
break;
case 'z':
opt_zero = false;
break;
case 'Z':
opt_zero = true;
break;
default: {
char cbuf[2];
cbuf[0] = opts[j];
cbuf[1] = '\0';
_malloc_message(_getprogname(),
": (malloc) Unsupported character "
"in malloc options: '", cbuf,
"'\n");
}
}
}
}
}
#ifdef MALLOC_DSS
/* Make sure that there is some method for acquiring memory. */
if (opt_dss == false && opt_mmap == false)
opt_mmap = true;
#endif
if (opt_stats_print) {
/* Print statistics at exit. */
atexit(stats_print_atexit);
}
/* Set variables according to the value of opt_lg_[qc]space_max. */
qspace_max = (1U << opt_lg_qspace_max);
cspace_min = CACHELINE_CEILING(qspace_max);
if (cspace_min == qspace_max)
cspace_min += CACHELINE;
cspace_max = (1U << opt_lg_cspace_max);
sspace_min = SUBPAGE_CEILING(cspace_max);
if (sspace_min == cspace_max)
sspace_min += SUBPAGE;
assert(sspace_min < PAGE_SIZE);
sspace_max = PAGE_SIZE - SUBPAGE;
medium_max = (1U << opt_lg_medium_max);
#ifdef MALLOC_TINY
assert(LG_QUANTUM >= LG_TINY_MIN);
#endif
assert(ntbins <= LG_QUANTUM);
nqbins = qspace_max >> LG_QUANTUM;
ncbins = ((cspace_max - cspace_min) >> LG_CACHELINE) + 1;
nsbins = ((sspace_max - sspace_min) >> LG_SUBPAGE) + 1;
/*
* Compute medium size class spacing and the number of medium size
* classes. Limit spacing to no more than pagesize, but if possible
* use the smallest spacing that does not exceed NMBINS_MAX medium size
* classes.
*/
lg_mspace = LG_SUBPAGE;
nmbins = ((medium_max - medium_min) >> lg_mspace) + 1;
while (lg_mspace < PAGE_SHIFT && nmbins > NMBINS_MAX) {
lg_mspace = lg_mspace + 1;
nmbins = ((medium_max - medium_min) >> lg_mspace) + 1;
}
mspace_mask = (1U << lg_mspace) - 1U;
mbin0 = ntbins + nqbins + ncbins + nsbins;
nbins = mbin0 + nmbins;
/*
* The small_size2bin lookup table uses uint8_t to encode each bin
* index, so we cannot support more than 256 small size classes. This
* limit is difficult to exceed (not even possible with 16B quantum and
* 4KiB pages), and such configurations are impractical, but
* nonetheless we need to protect against this case in order to avoid
* undefined behavior.
*/
if (mbin0 > 256) {
char line_buf[UMAX2S_BUFSIZE];
_malloc_message(_getprogname(),
": (malloc) Too many small size classes (",
umax2s(mbin0, 10, line_buf), " > max 256)\n");
abort();
}
if (small_size2bin_init()) {
malloc_mutex_unlock(&init_lock);
return (true);
}
#ifdef MALLOC_TCACHE
if (opt_lg_tcache_nslots > 0) {
tcache_nslots = (1U << opt_lg_tcache_nslots);
/* Compute incremental GC event threshold. */
if (opt_lg_tcache_gc_sweep >= 0) {
tcache_gc_incr = ((1U << opt_lg_tcache_gc_sweep) /
nbins) + (((1U << opt_lg_tcache_gc_sweep) % nbins ==
0) ? 0 : 1);
} else
tcache_gc_incr = 0;
} else
tcache_nslots = 0;
#endif
/* Set variables according to the value of opt_lg_chunk. */
chunksize = (1LU << opt_lg_chunk);
chunksize_mask = chunksize - 1;
chunk_npages = (chunksize >> PAGE_SHIFT);
{
size_t header_size;
/*
* Compute the header size such that it is large enough to
* contain the page map.
*/
header_size = sizeof(arena_chunk_t) +
(sizeof(arena_chunk_map_t) * (chunk_npages - 1));
arena_chunk_header_npages = (header_size >> PAGE_SHIFT) +
((header_size & PAGE_MASK) != 0);
}
arena_maxclass = chunksize - (arena_chunk_header_npages <<
PAGE_SHIFT);
UTRACE((void *)(intptr_t)(-1), 0, 0);
#ifdef MALLOC_STATS
malloc_mutex_init(&chunks_mtx);
memset(&stats_chunks, 0, sizeof(chunk_stats_t));
#endif
/* Various sanity checks that regard configuration. */
assert(chunksize >= PAGE_SIZE);
/* Initialize chunks data. */
malloc_mutex_init(&huge_mtx);
extent_tree_ad_new(&huge);
#ifdef MALLOC_DSS
malloc_mutex_init(&dss_mtx);
dss_base = sbrk(0);
dss_prev = dss_base;
dss_max = dss_base;
extent_tree_szad_new(&dss_chunks_szad);
extent_tree_ad_new(&dss_chunks_ad);
#endif
#ifdef MALLOC_STATS
huge_nmalloc = 0;
huge_ndalloc = 0;
huge_allocated = 0;
#endif
/* Initialize base allocation data structures. */
#ifdef MALLOC_STATS
base_mapped = 0;
#endif
#ifdef MALLOC_DSS
/*
* Allocate a base chunk here, since it doesn't actually have to be
* chunk-aligned. Doing this before allocating any other chunks allows
* the use of space that would otherwise be wasted.
*/
if (opt_dss)
base_pages_alloc(0);
#endif
base_nodes = NULL;
malloc_mutex_init(&base_mtx);
if (ncpus > 1) {
/*
* For SMP systems, create more than one arena per CPU by
* default.
*/
#ifdef MALLOC_TCACHE
if (tcache_nslots) {
/*
* Only large object allocation/deallocation is
* guaranteed to acquire an arena mutex, so we can get
* away with fewer arenas than without thread caching.
*/
opt_narenas_lshift += 1;
} else {
#endif
/*
* All allocations must acquire an arena mutex, so use
* plenty of arenas.
*/
opt_narenas_lshift += 2;
#ifdef MALLOC_TCACHE
}
#endif
}
/* Determine how many arenas to use. */
narenas = ncpus;
if (opt_narenas_lshift > 0) {
if ((narenas << opt_narenas_lshift) > narenas)
narenas <<= opt_narenas_lshift;
/*
* Make sure not to exceed the limits of what base_alloc() can
* handle.
*/
if (narenas * sizeof(arena_t *) > chunksize)
narenas = chunksize / sizeof(arena_t *);
} else if (opt_narenas_lshift < 0) {
if ((narenas >> -opt_narenas_lshift) < narenas)
narenas >>= -opt_narenas_lshift;
/* Make sure there is at least one arena. */
if (narenas == 0)
narenas = 1;
}
#ifdef NO_TLS
if (narenas > 1) {
static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
223, 227, 229, 233, 239, 241, 251, 257, 263};
unsigned nprimes, parenas;
/*
* Pick a prime number of hash arenas that is more than narenas
* so that direct hashing of pthread_self() pointers tends to
* spread allocations evenly among the arenas.
*/
assert((narenas & 1) == 0); /* narenas must be even. */
nprimes = (sizeof(primes) >> LG_SIZEOF_INT);
parenas = primes[nprimes - 1]; /* In case not enough primes. */
for (i = 1; i < nprimes; i++) {
if (primes[i] > narenas) {
parenas = primes[i];
break;
}
}
narenas = parenas;
}
#endif
#ifndef NO_TLS
next_arena = 0;
#endif
/* Allocate and initialize arenas. */
arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
if (arenas == NULL) {
malloc_mutex_unlock(&init_lock);
return (true);
}
/*
* Zero the array. In practice, this should always be pre-zeroed,
* since it was just mmap()ed, but let's be sure.
*/
memset(arenas, 0, sizeof(arena_t *) * narenas);
/*
* Initialize one arena here. The rest are lazily created in
* choose_arena_hard().
*/
arenas_extend(0);
if (arenas[0] == NULL) {
malloc_mutex_unlock(&init_lock);
return (true);
}
#ifndef NO_TLS
/*
* Assign the initial arena to the initial thread, in order to avoid
* spurious creation of an extra arena if the application switches to
* threaded mode.
*/
arenas_map = arenas[0];
#endif
malloc_spin_init(&arenas_lock);
malloc_initialized = true;
malloc_mutex_unlock(&init_lock);
return (false);
}
/*
* End general internal functions.
*/
/******************************************************************************/
/*
* Begin malloc(3)-compatible functions.
*/
void *
malloc(size_t size)
{
void *ret;
if (malloc_init()) {
ret = NULL;
goto OOM;
}
if (size == 0) {
if (opt_sysv == false)
size = 1;
else {
if (opt_xmalloc) {
_malloc_message(_getprogname(),
": (malloc) Error in malloc(): "
"invalid size 0\n", "", "");
abort();
}
ret = NULL;
goto RETURN;
}
}
ret = imalloc(size);
OOM:
if (ret == NULL) {
if (opt_xmalloc) {
_malloc_message(_getprogname(),
": (malloc) Error in malloc(): out of memory\n", "",
"");
abort();
}
errno = ENOMEM;
}
RETURN:
UTRACE(0, size, ret);
return (ret);
}
int
posix_memalign(void **memptr, size_t alignment, size_t size)
{
int ret;
void *result;
if (malloc_init())
result = NULL;
else {
if (size == 0) {
if (opt_sysv == false)
size = 1;
else {
if (opt_xmalloc) {
_malloc_message(_getprogname(),
": (malloc) Error in "
"posix_memalign(): invalid "
"size 0\n", "", "");
abort();
}
result = NULL;
*memptr = NULL;
ret = 0;
goto RETURN;
}
}
/* Make sure that alignment is a large enough power of 2. */
if (((alignment - 1) & alignment) != 0
|| alignment < sizeof(void *)) {
if (opt_xmalloc) {
_malloc_message(_getprogname(),
": (malloc) Error in posix_memalign(): "
"invalid alignment\n", "", "");
abort();
}
result = NULL;
ret = EINVAL;
goto RETURN;
}
result = ipalloc(alignment, size);
}
if (result == NULL) {
if (opt_xmalloc) {
_malloc_message(_getprogname(),
": (malloc) Error in posix_memalign(): out of memory\n",
"", "");
abort();
}
ret = ENOMEM;
goto RETURN;
}
*memptr = result;
ret = 0;
RETURN:
UTRACE(0, size, result);
return (ret);
}
void *
calloc(size_t num, size_t size)
{
void *ret;
size_t num_size;
if (malloc_init()) {
num_size = 0;
ret = NULL;
goto RETURN;
}
num_size = num * size;
if (num_size == 0) {
if ((opt_sysv == false) && ((num == 0) || (size == 0)))
num_size = 1;
else {
ret = NULL;
goto RETURN;
}
/*
* Try to avoid division here. We know that it isn't possible to
* overflow during multiplication if neither operand uses any of the
* most significant half of the bits in a size_t.
*/
} else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
&& (num_size / size != num)) {
/* size_t overflow. */
ret = NULL;
goto RETURN;
}
ret = icalloc(num_size);
RETURN:
if (ret == NULL) {
if (opt_xmalloc) {
_malloc_message(_getprogname(),
": (malloc) Error in calloc(): out of memory\n", "",
"");
abort();
}
errno = ENOMEM;
}
UTRACE(0, num_size, ret);
return (ret);
}
void *
realloc(void *ptr, size_t size)
{
void *ret;
if (size == 0) {
if (opt_sysv == false)
size = 1;
else {
if (ptr != NULL)
idalloc(ptr);
ret = NULL;
goto RETURN;
}
}
if (ptr != NULL) {
assert(malloc_initialized);
ret = iralloc(ptr, size);
if (ret == NULL) {
if (opt_xmalloc) {
_malloc_message(_getprogname(),
": (malloc) Error in realloc(): out of "
"memory\n", "", "");
abort();
}
errno = ENOMEM;
}
} else {
if (malloc_init())
ret = NULL;
else
ret = imalloc(size);
if (ret == NULL) {
if (opt_xmalloc) {
_malloc_message(_getprogname(),
": (malloc) Error in realloc(): out of "
"memory\n", "", "");
abort();
}
errno = ENOMEM;
}
}
RETURN:
UTRACE(ptr, size, ret);
return (ret);
}
void
free(void *ptr)
{
UTRACE(ptr, 0, 0);
if (ptr != NULL) {
assert(malloc_initialized);
idalloc(ptr);
}
}
/*
* End malloc(3)-compatible functions.
*/
/******************************************************************************/
/*
* Begin non-standard functions.
*/
size_t
malloc_usable_size(const void *ptr)
{
assert(ptr != NULL);
return (isalloc(ptr));
}
/*
* End non-standard functions.
*/
/******************************************************************************/
/*
* Begin library-private functions.
*/
/*
* We provide an unpublished interface in order to receive notifications from
* the pthreads library whenever a thread exits. This allows us to clean up
* thread caches.
*/
void
_malloc_thread_cleanup(void)
{
#ifdef MALLOC_TCACHE
tcache_t *tcache = tcache_tls;
if (tcache != NULL) {
assert(tcache != (void *)(uintptr_t)1);
tcache_destroy(tcache);
tcache_tls = (void *)(uintptr_t)1;
}
#endif
}
/*
* The following functions are used by threading libraries for protection of
* malloc during fork(). These functions are only called if the program is
* running in threaded mode, so there is no need to check whether the program
* is threaded here.
*/
void
_malloc_prefork(void)
{
unsigned i;
/* Acquire all mutexes in a safe order. */
malloc_spin_lock(&arenas_lock);
for (i = 0; i < narenas; i++) {
if (arenas[i] != NULL)
malloc_spin_lock(&arenas[i]->lock);
}
malloc_mutex_lock(&base_mtx);
malloc_mutex_lock(&huge_mtx);
#ifdef MALLOC_DSS
malloc_mutex_lock(&dss_mtx);
#endif
}
void
_malloc_postfork(void)
{
unsigned i;
/* Release all mutexes, now that fork() has completed. */
#ifdef MALLOC_DSS
malloc_mutex_unlock(&dss_mtx);
#endif
malloc_mutex_unlock(&huge_mtx);
malloc_mutex_unlock(&base_mtx);
for (i = 0; i < narenas; i++) {
if (arenas[i] != NULL)
malloc_spin_unlock(&arenas[i]->lock);
}
malloc_spin_unlock(&arenas_lock);
}
/*
* End library-private functions.
*/
/******************************************************************************/