freebsd-dev/sys/geom/eli/g_eli.h
Pawel Jakub Dawidek 864cba9669 Add support for Camellia encryption algorithm.
PR:		kern/113790
Submitted by:	Yoshisato YANAGISAWA <yanagisawa@csg.is.titech.ac.jp>
Approved by:	re (bmah)
2007-09-01 06:33:02 +00:00

497 lines
15 KiB
C

/*-
* Copyright (c) 2005-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _G_ELI_H_
#define _G_ELI_H_
#include <sys/endian.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <crypto/sha2/sha2.h>
#include <opencrypto/cryptodev.h>
#ifdef _KERNEL
#include <sys/bio.h>
#include <sys/libkern.h>
#include <geom/geom.h>
#else
#include <stdio.h>
#include <string.h>
#include <strings.h>
#endif
#ifndef _OpenSSL_
#include <sys/md5.h>
#endif
#define G_ELI_CLASS_NAME "ELI"
#define G_ELI_MAGIC "GEOM::ELI"
#define G_ELI_SUFFIX ".eli"
/*
* Version history:
* 0 - Initial version number.
* 1 - Added data authentication support (md_aalgo field and
* G_ELI_FLAG_AUTH flag).
* 2 - Added G_ELI_FLAG_READONLY.
* - IV is generated from offset converted to little-endian
* (flag G_ELI_FLAG_NATIVE_BYTE_ORDER will be set for older versions).
* 3 - Added 'configure' subcommand.
*/
#define G_ELI_VERSION 3
/* ON DISK FLAGS. */
/* Use random, onetime keys. */
#define G_ELI_FLAG_ONETIME 0x00000001
/* Ask for the passphrase from the kernel, before mounting root. */
#define G_ELI_FLAG_BOOT 0x00000002
/* Detach on last close, if we were open for writing. */
#define G_ELI_FLAG_WO_DETACH 0x00000004
/* Detach on last close. */
#define G_ELI_FLAG_RW_DETACH 0x00000008
/* Provide data authentication. */
#define G_ELI_FLAG_AUTH 0x00000010
/* Provider is read-only, we should deny all write attempts. */
#define G_ELI_FLAG_RO 0x00000020
/* RUNTIME FLAGS. */
/* Provider was open for writing. */
#define G_ELI_FLAG_WOPEN 0x00010000
/* Destroy device. */
#define G_ELI_FLAG_DESTROY 0x00020000
/* Provider uses native byte-order for IV generation. */
#define G_ELI_FLAG_NATIVE_BYTE_ORDER 0x00040000
#define SHA512_MDLEN 64
#define G_ELI_AUTH_SECKEYLEN SHA256_DIGEST_LENGTH
#define G_ELI_MAXMKEYS 2
#define G_ELI_MAXKEYLEN 64
#define G_ELI_USERKEYLEN G_ELI_MAXKEYLEN
#define G_ELI_DATAKEYLEN G_ELI_MAXKEYLEN
#define G_ELI_AUTHKEYLEN G_ELI_MAXKEYLEN
#define G_ELI_IVKEYLEN G_ELI_MAXKEYLEN
#define G_ELI_SALTLEN 64
#define G_ELI_DATAIVKEYLEN (G_ELI_DATAKEYLEN + G_ELI_IVKEYLEN)
/* Data-Key, IV-Key, HMAC_SHA512(Derived-Key, Data-Key+IV-Key) */
#define G_ELI_MKEYLEN (G_ELI_DATAIVKEYLEN + SHA512_MDLEN)
#ifdef _KERNEL
extern u_int g_eli_debug;
extern u_int g_eli_overwrites;
extern u_int g_eli_batch;
#define G_ELI_CRYPTO_HW 1
#define G_ELI_CRYPTO_SW 2
#define G_ELI_DEBUG(lvl, ...) do { \
if (g_eli_debug >= (lvl)) { \
printf("GEOM_ELI"); \
if (g_eli_debug > 0) \
printf("[%u]", lvl); \
printf(": "); \
printf(__VA_ARGS__); \
printf("\n"); \
} \
} while (0)
#define G_ELI_LOGREQ(lvl, bp, ...) do { \
if (g_eli_debug >= (lvl)) { \
printf("GEOM_ELI"); \
if (g_eli_debug > 0) \
printf("[%u]", lvl); \
printf(": "); \
printf(__VA_ARGS__); \
printf(" "); \
g_print_bio(bp); \
printf("\n"); \
} \
} while (0)
struct g_eli_worker {
struct g_eli_softc *w_softc;
struct proc *w_proc;
u_int w_number;
uint64_t w_sid;
LIST_ENTRY(g_eli_worker) w_next;
};
struct g_eli_softc {
struct g_geom *sc_geom;
u_int sc_crypto;
uint8_t sc_mkey[G_ELI_DATAIVKEYLEN];
uint8_t sc_ekey[G_ELI_DATAKEYLEN];
u_int sc_ealgo;
u_int sc_ekeylen;
uint8_t sc_akey[G_ELI_AUTHKEYLEN];
u_int sc_aalgo;
u_int sc_akeylen;
u_int sc_alen;
SHA256_CTX sc_akeyctx;
uint8_t sc_ivkey[G_ELI_IVKEYLEN];
SHA256_CTX sc_ivctx;
int sc_nkey;
uint32_t sc_flags;
u_int sc_bytes_per_sector;
u_int sc_data_per_sector;
/* Only for software cryptography. */
struct bio_queue_head sc_queue;
struct mtx sc_queue_mtx;
LIST_HEAD(, g_eli_worker) sc_workers;
};
#define sc_name sc_geom->name
#endif /* _KERNEL */
struct g_eli_metadata {
char md_magic[16]; /* Magic value. */
uint32_t md_version; /* Version number. */
uint32_t md_flags; /* Additional flags. */
uint16_t md_ealgo; /* Encryption algorithm. */
uint16_t md_keylen; /* Key length. */
uint16_t md_aalgo; /* Authentication algorithm. */
uint64_t md_provsize; /* Provider's size. */
uint32_t md_sectorsize; /* Sector size. */
uint8_t md_keys; /* Available keys. */
int32_t md_iterations; /* Number of iterations for PKCS#5v2. */
uint8_t md_salt[G_ELI_SALTLEN]; /* Salt. */
/* Encrypted master key (IV-key, Data-key, HMAC). */
uint8_t md_mkeys[G_ELI_MAXMKEYS * G_ELI_MKEYLEN];
u_char md_hash[16]; /* MD5 hash. */
} __packed;
#ifndef _OpenSSL_
static __inline void
eli_metadata_encode(struct g_eli_metadata *md, u_char *data)
{
MD5_CTX ctx;
u_char *p;
p = data;
bcopy(md->md_magic, p, sizeof(md->md_magic)); p += sizeof(md->md_magic);
le32enc(p, md->md_version); p += sizeof(md->md_version);
le32enc(p, md->md_flags); p += sizeof(md->md_flags);
le16enc(p, md->md_ealgo); p += sizeof(md->md_ealgo);
le16enc(p, md->md_keylen); p += sizeof(md->md_keylen);
le16enc(p, md->md_aalgo); p += sizeof(md->md_aalgo);
le64enc(p, md->md_provsize); p += sizeof(md->md_provsize);
le32enc(p, md->md_sectorsize); p += sizeof(md->md_sectorsize);
*p = md->md_keys; p += sizeof(md->md_keys);
le32enc(p, md->md_iterations); p += sizeof(md->md_iterations);
bcopy(md->md_salt, p, sizeof(md->md_salt)); p += sizeof(md->md_salt);
bcopy(md->md_mkeys, p, sizeof(md->md_mkeys)); p += sizeof(md->md_mkeys);
MD5Init(&ctx);
MD5Update(&ctx, data, p - data);
MD5Final(md->md_hash, &ctx);
bcopy(md->md_hash, p, sizeof(md->md_hash));
}
static __inline int
eli_metadata_decode_v0(const u_char *data, struct g_eli_metadata *md)
{
MD5_CTX ctx;
const u_char *p;
p = data + sizeof(md->md_magic) + sizeof(md->md_version);
md->md_flags = le32dec(p); p += sizeof(md->md_flags);
md->md_ealgo = le16dec(p); p += sizeof(md->md_ealgo);
md->md_keylen = le16dec(p); p += sizeof(md->md_keylen);
md->md_provsize = le64dec(p); p += sizeof(md->md_provsize);
md->md_sectorsize = le32dec(p); p += sizeof(md->md_sectorsize);
md->md_keys = *p; p += sizeof(md->md_keys);
md->md_iterations = le32dec(p); p += sizeof(md->md_iterations);
bcopy(p, md->md_salt, sizeof(md->md_salt)); p += sizeof(md->md_salt);
bcopy(p, md->md_mkeys, sizeof(md->md_mkeys)); p += sizeof(md->md_mkeys);
MD5Init(&ctx);
MD5Update(&ctx, data, p - data);
MD5Final(md->md_hash, &ctx);
if (bcmp(md->md_hash, p, 16) != 0)
return (EINVAL);
return (0);
}
static __inline int
eli_metadata_decode_v1v2v3(const u_char *data, struct g_eli_metadata *md)
{
MD5_CTX ctx;
const u_char *p;
p = data + sizeof(md->md_magic) + sizeof(md->md_version);
md->md_flags = le32dec(p); p += sizeof(md->md_flags);
md->md_ealgo = le16dec(p); p += sizeof(md->md_ealgo);
md->md_keylen = le16dec(p); p += sizeof(md->md_keylen);
md->md_aalgo = le16dec(p); p += sizeof(md->md_aalgo);
md->md_provsize = le64dec(p); p += sizeof(md->md_provsize);
md->md_sectorsize = le32dec(p); p += sizeof(md->md_sectorsize);
md->md_keys = *p; p += sizeof(md->md_keys);
md->md_iterations = le32dec(p); p += sizeof(md->md_iterations);
bcopy(p, md->md_salt, sizeof(md->md_salt)); p += sizeof(md->md_salt);
bcopy(p, md->md_mkeys, sizeof(md->md_mkeys)); p += sizeof(md->md_mkeys);
MD5Init(&ctx);
MD5Update(&ctx, data, p - data);
MD5Final(md->md_hash, &ctx);
if (bcmp(md->md_hash, p, 16) != 0)
return (EINVAL);
return (0);
}
static __inline int
eli_metadata_decode(const u_char *data, struct g_eli_metadata *md)
{
int error;
bcopy(data, md->md_magic, sizeof(md->md_magic));
md->md_version = le32dec(data + sizeof(md->md_magic));
switch (md->md_version) {
case 0:
error = eli_metadata_decode_v0(data, md);
break;
case 1:
case 2:
case 3:
error = eli_metadata_decode_v1v2v3(data, md);
break;
default:
error = EINVAL;
break;
}
return (error);
}
#endif /* !_OpenSSL */
static __inline u_int
g_eli_str2ealgo(const char *name)
{
if (strcasecmp("null", name) == 0)
return (CRYPTO_NULL_CBC);
else if (strcasecmp("aes", name) == 0)
return (CRYPTO_AES_CBC);
else if (strcasecmp("blowfish", name) == 0)
return (CRYPTO_BLF_CBC);
else if (strcasecmp("camellia", name) == 0)
return (CRYPTO_CAMELLIA_CBC);
else if (strcasecmp("3des", name) == 0)
return (CRYPTO_3DES_CBC);
return (CRYPTO_ALGORITHM_MIN - 1);
}
static __inline u_int
g_eli_str2aalgo(const char *name)
{
if (strcasecmp("hmac/md5", name) == 0)
return (CRYPTO_MD5_HMAC);
else if (strcasecmp("hmac/sha1", name) == 0)
return (CRYPTO_SHA1_HMAC);
else if (strcasecmp("hmac/ripemd160", name) == 0)
return (CRYPTO_RIPEMD160_HMAC);
else if (strcasecmp("hmac/sha256", name) == 0)
return (CRYPTO_SHA2_256_HMAC);
else if (strcasecmp("hmac/sha384", name) == 0)
return (CRYPTO_SHA2_384_HMAC);
else if (strcasecmp("hmac/sha512", name) == 0)
return (CRYPTO_SHA2_512_HMAC);
return (CRYPTO_ALGORITHM_MIN - 1);
}
static __inline const char *
g_eli_algo2str(u_int algo)
{
switch (algo) {
case CRYPTO_NULL_CBC:
return ("NULL");
case CRYPTO_AES_CBC:
return ("AES-CBC");
case CRYPTO_BLF_CBC:
return ("Blowfish-CBC");
case CRYPTO_CAMELLIA_CBC:
return ("CAMELLIA-CBC");
case CRYPTO_3DES_CBC:
return ("3DES-CBC");
case CRYPTO_MD5_HMAC:
return ("HMAC/MD5");
case CRYPTO_SHA1_HMAC:
return ("HMAC/SHA1");
case CRYPTO_RIPEMD160_HMAC:
return ("HMAC/RIPEMD160");
case CRYPTO_SHA2_256_HMAC:
return ("HMAC/SHA256");
case CRYPTO_SHA2_384_HMAC:
return ("HMAC/SHA384");
case CRYPTO_SHA2_512_HMAC:
return ("HMAC/SHA512");
}
return ("unknown");
}
static __inline void
eli_metadata_dump(const struct g_eli_metadata *md)
{
static const char hex[] = "0123456789abcdef";
char str[sizeof(md->md_mkeys) * 2 + 1];
u_int i;
printf(" magic: %s\n", md->md_magic);
printf(" version: %u\n", (u_int)md->md_version);
printf(" flags: 0x%x\n", (u_int)md->md_flags);
printf(" ealgo: %s\n", g_eli_algo2str(md->md_ealgo));
printf(" keylen: %u\n", (u_int)md->md_keylen);
if (md->md_flags & G_ELI_FLAG_AUTH)
printf(" aalgo: %s\n", g_eli_algo2str(md->md_aalgo));
printf(" provsize: %ju\n", (uintmax_t)md->md_provsize);
printf("sectorsize: %u\n", (u_int)md->md_sectorsize);
printf(" keys: 0x%02x\n", (u_int)md->md_keys);
printf("iterations: %u\n", (u_int)md->md_iterations);
bzero(str, sizeof(str));
for (i = 0; i < sizeof(md->md_salt); i++) {
str[i * 2] = hex[md->md_salt[i] >> 4];
str[i * 2 + 1] = hex[md->md_salt[i] & 0x0f];
}
printf(" Salt: %s\n", str);
bzero(str, sizeof(str));
for (i = 0; i < sizeof(md->md_mkeys); i++) {
str[i * 2] = hex[md->md_mkeys[i] >> 4];
str[i * 2 + 1] = hex[md->md_mkeys[i] & 0x0f];
}
printf("Master Key: %s\n", str);
bzero(str, sizeof(str));
for (i = 0; i < 16; i++) {
str[i * 2] = hex[md->md_hash[i] >> 4];
str[i * 2 + 1] = hex[md->md_hash[i] & 0x0f];
}
printf(" MD5 hash: %s\n", str);
}
static __inline u_int
g_eli_keylen(u_int algo, u_int keylen)
{
switch (algo) {
case CRYPTO_NULL_CBC:
if (keylen == 0)
keylen = 64 * 8;
else {
if (keylen > 64 * 8)
keylen = 0;
}
return (keylen);
case CRYPTO_AES_CBC: /* FALLTHROUGH */
case CRYPTO_CAMELLIA_CBC:
switch (keylen) {
case 0:
return (128);
case 128:
case 192:
case 256:
return (keylen);
default:
return (0);
}
case CRYPTO_BLF_CBC:
if (keylen == 0)
return (128);
if (keylen < 128 || keylen > 448)
return (0);
if ((keylen % 32) != 0)
return (0);
return (keylen);
case CRYPTO_3DES_CBC:
if (keylen == 0 || keylen == 192)
return (192);
return (0);
default:
return (0);
}
}
static __inline u_int
g_eli_hashlen(u_int algo)
{
switch (algo) {
case CRYPTO_MD5_HMAC:
return (16);
case CRYPTO_SHA1_HMAC:
return (20);
case CRYPTO_RIPEMD160_HMAC:
return (20);
case CRYPTO_SHA2_256_HMAC:
return (32);
case CRYPTO_SHA2_384_HMAC:
return (48);
case CRYPTO_SHA2_512_HMAC:
return (64);
}
return (0);
}
#ifdef _KERNEL
int g_eli_read_metadata(struct g_class *mp, struct g_provider *pp,
struct g_eli_metadata *md);
struct g_geom *g_eli_create(struct gctl_req *req, struct g_class *mp,
struct g_provider *bpp, const struct g_eli_metadata *md,
const u_char *mkey, int nkey);
int g_eli_destroy(struct g_eli_softc *sc, boolean_t force);
int g_eli_access(struct g_provider *pp, int dr, int dw, int de);
void g_eli_config(struct gctl_req *req, struct g_class *mp, const char *verb);
void g_eli_read_done(struct bio *bp);
void g_eli_write_done(struct bio *bp);
int g_eli_crypto_rerun(struct cryptop *crp);
void g_eli_crypto_ivgen(struct g_eli_softc *sc, off_t offset, u_char *iv,
size_t size);
void g_eli_crypto_run(struct g_eli_worker *wr, struct bio *bp);
void g_eli_auth_read(struct g_eli_softc *sc, struct bio *bp);
void g_eli_auth_run(struct g_eli_worker *wr, struct bio *bp);
#endif
void g_eli_mkey_hmac(unsigned char *mkey, const unsigned char *key);
int g_eli_mkey_decrypt(const struct g_eli_metadata *md,
const unsigned char *key, unsigned char *mkey, unsigned *nkeyp);
int g_eli_mkey_encrypt(unsigned algo, const unsigned char *key, unsigned keylen,
unsigned char *mkey);
#ifdef _KERNEL
void g_eli_mkey_propagate(struct g_eli_softc *sc, const unsigned char *mkey);
#endif
int g_eli_crypto_encrypt(u_int algo, u_char *data, size_t datasize,
const u_char *key, size_t keysize);
int g_eli_crypto_decrypt(u_int algo, u_char *data, size_t datasize,
const u_char *key, size_t keysize);
struct hmac_ctx {
SHA512_CTX shactx;
u_char k_opad[128];
};
void g_eli_crypto_hmac_init(struct hmac_ctx *ctx, const uint8_t *hkey,
size_t hkeylen);
void g_eli_crypto_hmac_update(struct hmac_ctx *ctx, const uint8_t *data,
size_t datasize);
void g_eli_crypto_hmac_final(struct hmac_ctx *ctx, uint8_t *md, size_t mdsize);
void g_eli_crypto_hmac(const uint8_t *hkey, size_t hkeysize,
const uint8_t *data, size_t datasize, uint8_t *md, size_t mdsize);
#endif /* !_G_ELI_H_ */