freebsd-dev/sys/net/if_vlan.c
Bjoern A. Zeeb 33553d6e99 For all files including net/vnet.h directly include opt_route.h and
net/route.h.

Remove the hidden include of opt_route.h and net/route.h from net/vnet.h.

We need to make sure that both opt_route.h and net/route.h are included
before net/vnet.h because of the way MRT figures out the number of FIBs
from the kernel option. If we do not, we end up with the default number
of 1 when including net/vnet.h and array sizes are wrong.

This does not change the list of files which depend on opt_route.h
but we can identify them now more easily.
2009-02-27 14:12:05 +00:00

1429 lines
36 KiB
C

/*-
* Copyright 1998 Massachusetts Institute of Technology
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby
* granted, provided that both the above copyright notice and this
* permission notice appear in all copies, that both the above
* copyright notice and this permission notice appear in all
* supporting documentation, and that the name of M.I.T. not be used
* in advertising or publicity pertaining to distribution of the
* software without specific, written prior permission. M.I.T. makes
* no representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied
* warranty.
*
* THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
* ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
* SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
* Might be extended some day to also handle IEEE 802.1p priority
* tagging. This is sort of sneaky in the implementation, since
* we need to pretend to be enough of an Ethernet implementation
* to make arp work. The way we do this is by telling everyone
* that we are an Ethernet, and then catch the packets that
* ether_output() left on our output queue when it calls
* if_start(), rewrite them for use by the real outgoing interface,
* and ask it to send them.
*/
#include "opt_route.h"
#include "opt_vlan.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/rwlock.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/vimage.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_clone.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <net/route.h>
#include <net/vnet.h>
#define VLANNAME "vlan"
#define VLAN_DEF_HWIDTH 4
#define VLAN_IFFLAGS (IFF_BROADCAST | IFF_MULTICAST)
#define UP_AND_RUNNING(ifp) \
((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
LIST_HEAD(ifvlanhead, ifvlan);
struct ifvlantrunk {
struct ifnet *parent; /* parent interface of this trunk */
struct rwlock rw;
#ifdef VLAN_ARRAY
#define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1)
struct ifvlan *vlans[VLAN_ARRAY_SIZE]; /* static table */
#else
struct ifvlanhead *hash; /* dynamic hash-list table */
uint16_t hmask;
uint16_t hwidth;
#endif
int refcnt;
};
struct vlan_mc_entry {
struct ether_addr mc_addr;
SLIST_ENTRY(vlan_mc_entry) mc_entries;
};
struct ifvlan {
struct ifvlantrunk *ifv_trunk;
struct ifnet *ifv_ifp;
#define TRUNK(ifv) ((ifv)->ifv_trunk)
#define PARENT(ifv) ((ifv)->ifv_trunk->parent)
int ifv_pflags; /* special flags we have set on parent */
struct ifv_linkmib {
int ifvm_encaplen; /* encapsulation length */
int ifvm_mtufudge; /* MTU fudged by this much */
int ifvm_mintu; /* min transmission unit */
uint16_t ifvm_proto; /* encapsulation ethertype */
uint16_t ifvm_tag; /* tag to apply on packets leaving if */
} ifv_mib;
SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
#ifndef VLAN_ARRAY
LIST_ENTRY(ifvlan) ifv_list;
#endif
};
#define ifv_proto ifv_mib.ifvm_proto
#define ifv_tag ifv_mib.ifvm_tag
#define ifv_encaplen ifv_mib.ifvm_encaplen
#define ifv_mtufudge ifv_mib.ifvm_mtufudge
#define ifv_mintu ifv_mib.ifvm_mintu
/* Special flags we should propagate to parent. */
static struct {
int flag;
int (*func)(struct ifnet *, int);
} vlan_pflags[] = {
{IFF_PROMISC, ifpromisc},
{IFF_ALLMULTI, if_allmulti},
{0, NULL}
};
SYSCTL_DECL(_net_link);
SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
static int soft_pad = 0;
SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW, &soft_pad, 0,
"pad short frames before tagging");
static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
static eventhandler_tag ifdetach_tag;
/*
* We have a global mutex, that is used to serialize configuration
* changes and isn't used in normal packet delivery.
*
* We also have a per-trunk rwlock, that is locked shared on packet
* processing and exclusive when configuration is changed.
*
* The VLAN_ARRAY substitutes the dynamic hash with a static array
* with 4096 entries. In theory this can give a boost in processing,
* however on practice it does not. Probably this is because array
* is too big to fit into CPU cache.
*/
static struct mtx ifv_mtx;
#define VLAN_LOCK_INIT() mtx_init(&ifv_mtx, "vlan_global", NULL, MTX_DEF)
#define VLAN_LOCK_DESTROY() mtx_destroy(&ifv_mtx)
#define VLAN_LOCK_ASSERT() mtx_assert(&ifv_mtx, MA_OWNED)
#define VLAN_LOCK() mtx_lock(&ifv_mtx)
#define VLAN_UNLOCK() mtx_unlock(&ifv_mtx)
#define TRUNK_LOCK_INIT(trunk) rw_init(&(trunk)->rw, VLANNAME)
#define TRUNK_LOCK_DESTROY(trunk) rw_destroy(&(trunk)->rw)
#define TRUNK_LOCK(trunk) rw_wlock(&(trunk)->rw)
#define TRUNK_UNLOCK(trunk) rw_wunlock(&(trunk)->rw)
#define TRUNK_LOCK_ASSERT(trunk) rw_assert(&(trunk)->rw, RA_WLOCKED)
#define TRUNK_RLOCK(trunk) rw_rlock(&(trunk)->rw)
#define TRUNK_RUNLOCK(trunk) rw_runlock(&(trunk)->rw)
#define TRUNK_LOCK_RASSERT(trunk) rw_assert(&(trunk)->rw, RA_RLOCKED)
#ifndef VLAN_ARRAY
static void vlan_inithash(struct ifvlantrunk *trunk);
static void vlan_freehash(struct ifvlantrunk *trunk);
static int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
static int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
static void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
uint16_t tag);
#endif
static void trunk_destroy(struct ifvlantrunk *trunk);
static void vlan_start(struct ifnet *ifp);
static void vlan_init(void *foo);
static void vlan_input(struct ifnet *ifp, struct mbuf *m);
static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
static int vlan_setflag(struct ifnet *ifp, int flag, int status,
int (*func)(struct ifnet *, int));
static int vlan_setflags(struct ifnet *ifp, int status);
static int vlan_setmulti(struct ifnet *ifp);
static int vlan_unconfig(struct ifnet *ifp);
static int vlan_unconfig_locked(struct ifnet *ifp);
static int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
static void vlan_link_state(struct ifnet *ifp, int link);
static void vlan_capabilities(struct ifvlan *ifv);
static void vlan_trunk_capabilities(struct ifnet *ifp);
static struct ifnet *vlan_clone_match_ethertag(struct if_clone *,
const char *, int *);
static int vlan_clone_match(struct if_clone *, const char *);
static int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
static int vlan_clone_destroy(struct if_clone *, struct ifnet *);
static void vlan_ifdetach(void *arg, struct ifnet *ifp);
static struct if_clone vlan_cloner = IFC_CLONE_INITIALIZER(VLANNAME, NULL,
IF_MAXUNIT, NULL, vlan_clone_match, vlan_clone_create, vlan_clone_destroy);
#ifndef VLAN_ARRAY
#define HASH(n, m) ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
static void
vlan_inithash(struct ifvlantrunk *trunk)
{
int i, n;
/*
* The trunk must not be locked here since we call malloc(M_WAITOK).
* It is OK in case this function is called before the trunk struct
* gets hooked up and becomes visible from other threads.
*/
KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
("%s: hash already initialized", __func__));
trunk->hwidth = VLAN_DEF_HWIDTH;
n = 1 << trunk->hwidth;
trunk->hmask = n - 1;
trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
for (i = 0; i < n; i++)
LIST_INIT(&trunk->hash[i]);
}
static void
vlan_freehash(struct ifvlantrunk *trunk)
{
#ifdef INVARIANTS
int i;
KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
for (i = 0; i < (1 << trunk->hwidth); i++)
KASSERT(LIST_EMPTY(&trunk->hash[i]),
("%s: hash table not empty", __func__));
#endif
free(trunk->hash, M_VLAN);
trunk->hash = NULL;
trunk->hwidth = trunk->hmask = 0;
}
static int
vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
{
int i, b;
struct ifvlan *ifv2;
TRUNK_LOCK_ASSERT(trunk);
KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
b = 1 << trunk->hwidth;
i = HASH(ifv->ifv_tag, trunk->hmask);
LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
if (ifv->ifv_tag == ifv2->ifv_tag)
return (EEXIST);
/*
* Grow the hash when the number of vlans exceeds half of the number of
* hash buckets squared. This will make the average linked-list length
* buckets/2.
*/
if (trunk->refcnt > (b * b) / 2) {
vlan_growhash(trunk, 1);
i = HASH(ifv->ifv_tag, trunk->hmask);
}
LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
trunk->refcnt++;
return (0);
}
static int
vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
{
int i, b;
struct ifvlan *ifv2;
TRUNK_LOCK_ASSERT(trunk);
KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
b = 1 << trunk->hwidth;
i = HASH(ifv->ifv_tag, trunk->hmask);
LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
if (ifv2 == ifv) {
trunk->refcnt--;
LIST_REMOVE(ifv2, ifv_list);
if (trunk->refcnt < (b * b) / 2)
vlan_growhash(trunk, -1);
return (0);
}
panic("%s: vlan not found\n", __func__);
return (ENOENT); /*NOTREACHED*/
}
/*
* Grow the hash larger or smaller if memory permits.
*/
static void
vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
{
struct ifvlan *ifv;
struct ifvlanhead *hash2;
int hwidth2, i, j, n, n2;
TRUNK_LOCK_ASSERT(trunk);
KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
if (howmuch == 0) {
/* Harmless yet obvious coding error */
printf("%s: howmuch is 0\n", __func__);
return;
}
hwidth2 = trunk->hwidth + howmuch;
n = 1 << trunk->hwidth;
n2 = 1 << hwidth2;
/* Do not shrink the table below the default */
if (hwidth2 < VLAN_DEF_HWIDTH)
return;
/* M_NOWAIT because we're called with trunk mutex held */
hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
if (hash2 == NULL) {
printf("%s: out of memory -- hash size not changed\n",
__func__);
return; /* We can live with the old hash table */
}
for (j = 0; j < n2; j++)
LIST_INIT(&hash2[j]);
for (i = 0; i < n; i++)
while ((ifv = LIST_FIRST(&trunk->hash[i])) != NULL) {
LIST_REMOVE(ifv, ifv_list);
j = HASH(ifv->ifv_tag, n2 - 1);
LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
}
free(trunk->hash, M_VLAN);
trunk->hash = hash2;
trunk->hwidth = hwidth2;
trunk->hmask = n2 - 1;
if (bootverbose)
if_printf(trunk->parent,
"VLAN hash table resized from %d to %d buckets\n", n, n2);
}
static __inline struct ifvlan *
vlan_gethash(struct ifvlantrunk *trunk, uint16_t tag)
{
struct ifvlan *ifv;
TRUNK_LOCK_RASSERT(trunk);
LIST_FOREACH(ifv, &trunk->hash[HASH(tag, trunk->hmask)], ifv_list)
if (ifv->ifv_tag == tag)
return (ifv);
return (NULL);
}
#if 0
/* Debugging code to view the hashtables. */
static void
vlan_dumphash(struct ifvlantrunk *trunk)
{
int i;
struct ifvlan *ifv;
for (i = 0; i < (1 << trunk->hwidth); i++) {
printf("%d: ", i);
LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
printf("%s ", ifv->ifv_ifp->if_xname);
printf("\n");
}
}
#endif /* 0 */
#endif /* !VLAN_ARRAY */
static void
trunk_destroy(struct ifvlantrunk *trunk)
{
VLAN_LOCK_ASSERT();
TRUNK_LOCK(trunk);
#ifndef VLAN_ARRAY
vlan_freehash(trunk);
#endif
trunk->parent->if_vlantrunk = NULL;
TRUNK_UNLOCK(trunk);
TRUNK_LOCK_DESTROY(trunk);
free(trunk, M_VLAN);
}
/*
* Program our multicast filter. What we're actually doing is
* programming the multicast filter of the parent. This has the
* side effect of causing the parent interface to receive multicast
* traffic that it doesn't really want, which ends up being discarded
* later by the upper protocol layers. Unfortunately, there's no way
* to avoid this: there really is only one physical interface.
*
* XXX: There is a possible race here if more than one thread is
* modifying the multicast state of the vlan interface at the same time.
*/
static int
vlan_setmulti(struct ifnet *ifp)
{
struct ifnet *ifp_p;
struct ifmultiaddr *ifma, *rifma = NULL;
struct ifvlan *sc;
struct vlan_mc_entry *mc;
struct sockaddr_dl sdl;
int error;
/*VLAN_LOCK_ASSERT();*/
/* Find the parent. */
sc = ifp->if_softc;
ifp_p = PARENT(sc);
CURVNET_SET_QUIET(ifp_p->if_vnet);
bzero((char *)&sdl, sizeof(sdl));
sdl.sdl_len = sizeof(sdl);
sdl.sdl_family = AF_LINK;
sdl.sdl_index = ifp_p->if_index;
sdl.sdl_type = IFT_ETHER;
sdl.sdl_alen = ETHER_ADDR_LEN;
/* First, remove any existing filter entries. */
while ((mc = SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
if (error)
return (error);
SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
free(mc, M_VLAN);
}
/* Now program new ones. */
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
if (mc == NULL)
return (ENOMEM);
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
(char *)&mc->mc_addr, ETHER_ADDR_LEN);
SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
LLADDR(&sdl), ETHER_ADDR_LEN);
error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
if (error)
return (error);
}
CURVNET_RESTORE();
return (0);
}
/*
* A handler for network interface departure events.
* Track departure of trunks here so that we don't access invalid
* pointers or whatever if a trunk is ripped from under us, e.g.,
* by ejecting its hot-plug card.
*/
static void
vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
{
struct ifvlan *ifv;
int i;
/*
* Check if it's a trunk interface first of all
* to avoid needless locking.
*/
if (ifp->if_vlantrunk == NULL)
return;
VLAN_LOCK();
/*
* OK, it's a trunk. Loop over and detach all vlan's on it.
* Check trunk pointer after each vlan_unconfig() as it will
* free it and set to NULL after the last vlan was detached.
*/
#ifdef VLAN_ARRAY
for (i = 0; i < VLAN_ARRAY_SIZE; i++)
if ((ifv = ifp->if_vlantrunk->vlans[i])) {
vlan_unconfig_locked(ifv->ifv_ifp);
if (ifp->if_vlantrunk == NULL)
break;
}
#else /* VLAN_ARRAY */
restart:
for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
if ((ifv = LIST_FIRST(&ifp->if_vlantrunk->hash[i]))) {
vlan_unconfig_locked(ifv->ifv_ifp);
if (ifp->if_vlantrunk)
goto restart; /* trunk->hwidth can change */
else
break;
}
#endif /* VLAN_ARRAY */
/* Trunk should have been destroyed in vlan_unconfig(). */
KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
VLAN_UNLOCK();
}
/*
* VLAN support can be loaded as a module. The only place in the
* system that's intimately aware of this is ether_input. We hook
* into this code through vlan_input_p which is defined there and
* set here. Noone else in the system should be aware of this so
* we use an explicit reference here.
*/
extern void (*vlan_input_p)(struct ifnet *, struct mbuf *);
/* For if_link_state_change() eyes only... */
extern void (*vlan_link_state_p)(struct ifnet *, int);
static int
vlan_modevent(module_t mod, int type, void *data)
{
switch (type) {
case MOD_LOAD:
ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
if (ifdetach_tag == NULL)
return (ENOMEM);
VLAN_LOCK_INIT();
vlan_input_p = vlan_input;
vlan_link_state_p = vlan_link_state;
vlan_trunk_cap_p = vlan_trunk_capabilities;
if_clone_attach(&vlan_cloner);
if (bootverbose)
printf("vlan: initialized, using "
#ifdef VLAN_ARRAY
"full-size arrays"
#else
"hash tables with chaining"
#endif
"\n");
break;
case MOD_UNLOAD:
if_clone_detach(&vlan_cloner);
EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
vlan_input_p = NULL;
vlan_link_state_p = NULL;
vlan_trunk_cap_p = NULL;
VLAN_LOCK_DESTROY();
if (bootverbose)
printf("vlan: unloaded\n");
break;
default:
return (EOPNOTSUPP);
}
return (0);
}
static moduledata_t vlan_mod = {
"if_vlan",
vlan_modevent,
0
};
DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
MODULE_VERSION(if_vlan, 3);
MODULE_DEPEND(if_vlan, miibus, 1, 1, 1);
static struct ifnet *
vlan_clone_match_ethertag(struct if_clone *ifc, const char *name, int *tag)
{
INIT_VNET_NET(curvnet);
const char *cp;
struct ifnet *ifp;
int t = 0;
/* Check for <etherif>.<vlan> style interface names. */
IFNET_RLOCK();
TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if (ifp->if_type != IFT_ETHER)
continue;
if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0)
continue;
cp = name + strlen(ifp->if_xname);
if (*cp != '.')
continue;
for(; *cp != '\0'; cp++) {
if (*cp < '0' || *cp > '9')
continue;
t = (t * 10) + (*cp - '0');
}
if (tag != NULL)
*tag = t;
break;
}
IFNET_RUNLOCK();
return (ifp);
}
static int
vlan_clone_match(struct if_clone *ifc, const char *name)
{
const char *cp;
if (vlan_clone_match_ethertag(ifc, name, NULL) != NULL)
return (1);
if (strncmp(VLANNAME, name, strlen(VLANNAME)) != 0)
return (0);
for (cp = name + 4; *cp != '\0'; cp++) {
if (*cp < '0' || *cp > '9')
return (0);
}
return (1);
}
static int
vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
{
char *dp;
int wildcard;
int unit;
int error;
int tag;
int ethertag;
struct ifvlan *ifv;
struct ifnet *ifp;
struct ifnet *p;
struct vlanreq vlr;
static const u_char eaddr[ETHER_ADDR_LEN]; /* 00:00:00:00:00:00 */
/*
* There are 3 (ugh) ways to specify the cloned device:
* o pass a parameter block with the clone request.
* o specify parameters in the text of the clone device name
* o specify no parameters and get an unattached device that
* must be configured separately.
* The first technique is preferred; the latter two are
* supported for backwards compatibilty.
*/
if (params) {
error = copyin(params, &vlr, sizeof(vlr));
if (error)
return error;
p = ifunit(vlr.vlr_parent);
if (p == NULL)
return ENXIO;
/*
* Don't let the caller set up a VLAN tag with
* anything except VLID bits.
*/
if (vlr.vlr_tag & ~EVL_VLID_MASK)
return (EINVAL);
error = ifc_name2unit(name, &unit);
if (error != 0)
return (error);
ethertag = 1;
tag = vlr.vlr_tag;
wildcard = (unit < 0);
} else if ((p = vlan_clone_match_ethertag(ifc, name, &tag)) != NULL) {
ethertag = 1;
unit = -1;
wildcard = 0;
/*
* Don't let the caller set up a VLAN tag with
* anything except VLID bits.
*/
if (tag & ~EVL_VLID_MASK)
return (EINVAL);
} else {
ethertag = 0;
error = ifc_name2unit(name, &unit);
if (error != 0)
return (error);
wildcard = (unit < 0);
}
error = ifc_alloc_unit(ifc, &unit);
if (error != 0)
return (error);
/* In the wildcard case, we need to update the name. */
if (wildcard) {
for (dp = name; *dp != '\0'; dp++);
if (snprintf(dp, len - (dp-name), "%d", unit) >
len - (dp-name) - 1) {
panic("%s: interface name too long", __func__);
}
}
ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
ifc_free_unit(ifc, unit);
free(ifv, M_VLAN);
return (ENOSPC);
}
SLIST_INIT(&ifv->vlan_mc_listhead);
ifp->if_softc = ifv;
/*
* Set the name manually rather than using if_initname because
* we don't conform to the default naming convention for interfaces.
*/
strlcpy(ifp->if_xname, name, IFNAMSIZ);
ifp->if_dname = ifc->ifc_name;
ifp->if_dunit = unit;
/* NB: flags are not set here */
ifp->if_linkmib = &ifv->ifv_mib;
ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
/* NB: mtu is not set here */
ifp->if_init = vlan_init;
ifp->if_start = vlan_start;
ifp->if_ioctl = vlan_ioctl;
ifp->if_snd.ifq_maxlen = ifqmaxlen;
ifp->if_flags = VLAN_IFFLAGS;
ether_ifattach(ifp, eaddr);
/* Now undo some of the damage... */
ifp->if_baudrate = 0;
ifp->if_type = IFT_L2VLAN;
ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
if (ethertag) {
error = vlan_config(ifv, p, tag);
if (error != 0) {
/*
* Since we've partialy failed, we need to back
* out all the way, otherwise userland could get
* confused. Thus, we destroy the interface.
*/
ether_ifdetach(ifp);
vlan_unconfig(ifp);
if_free_type(ifp, IFT_ETHER);
ifc_free_unit(ifc, unit);
free(ifv, M_VLAN);
return (error);
}
/* Update flags on the parent, if necessary. */
vlan_setflags(ifp, 1);
}
return (0);
}
static int
vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
{
struct ifvlan *ifv = ifp->if_softc;
int unit = ifp->if_dunit;
ether_ifdetach(ifp); /* first, remove it from system-wide lists */
vlan_unconfig(ifp); /* now it can be unconfigured and freed */
if_free_type(ifp, IFT_ETHER);
free(ifv, M_VLAN);
ifc_free_unit(ifc, unit);
return (0);
}
/*
* The ifp->if_init entry point for vlan(4) is a no-op.
*/
static void
vlan_init(void *foo __unused)
{
}
/*
* The if_start method for vlan(4) interface. It doesn't
* raises the IFF_DRV_OACTIVE flag, since it is called
* only from IFQ_HANDOFF() macro in ether_output_frame().
* If the interface queue is full, and vlan_start() is
* not called, the queue would never get emptied and
* interface would stall forever.
*/
static void
vlan_start(struct ifnet *ifp)
{
struct ifvlan *ifv;
struct ifnet *p;
struct mbuf *m;
int error;
ifv = ifp->if_softc;
p = PARENT(ifv);
for (;;) {
IF_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
BPF_MTAP(ifp, m);
/*
* Do not run parent's if_start() if the parent is not up,
* or parent's driver will cause a system crash.
*/
if (!UP_AND_RUNNING(p)) {
m_freem(m);
ifp->if_collisions++;
continue;
}
/*
* Pad the frame to the minimum size allowed if told to.
* This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
* paragraph C.4.4.3.b. It can help to work around buggy
* bridges that violate paragraph C.4.4.3.a from the same
* document, i.e., fail to pad short frames after untagging.
* E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
* untagging it will produce a 62-byte frame, which is a runt
* and requires padding. There are VLAN-enabled network
* devices that just discard such runts instead or mishandle
* them somehow.
*/
if (soft_pad) {
static char pad[8]; /* just zeros */
int n;
for (n = ETHERMIN + ETHER_HDR_LEN - m->m_pkthdr.len;
n > 0; n -= sizeof(pad))
if (!m_append(m, min(n, sizeof(pad)), pad))
break;
if (n > 0) {
if_printf(ifp, "cannot pad short frame\n");
ifp->if_oerrors++;
m_freem(m);
continue;
}
}
/*
* If underlying interface can do VLAN tag insertion itself,
* just pass the packet along. However, we need some way to
* tell the interface where the packet came from so that it
* knows how to find the VLAN tag to use, so we attach a
* packet tag that holds it.
*/
if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
m->m_pkthdr.ether_vtag = ifv->ifv_tag;
m->m_flags |= M_VLANTAG;
} else {
m = ether_vlanencap(m, ifv->ifv_tag);
if (m == NULL) {
if_printf(ifp,
"unable to prepend VLAN header\n");
ifp->if_oerrors++;
continue;
}
}
/*
* Send it, precisely as ether_output() would have.
* We are already running at splimp.
*/
error = (p->if_transmit)(p, m);
if (!error)
ifp->if_opackets++;
else
ifp->if_oerrors++;
}
}
static void
vlan_input(struct ifnet *ifp, struct mbuf *m)
{
struct ifvlantrunk *trunk = ifp->if_vlantrunk;
struct ifvlan *ifv;
uint16_t tag;
KASSERT(trunk != NULL, ("%s: no trunk", __func__));
if (m->m_flags & M_VLANTAG) {
/*
* Packet is tagged, but m contains a normal
* Ethernet frame; the tag is stored out-of-band.
*/
tag = EVL_VLANOFTAG(m->m_pkthdr.ether_vtag);
m->m_flags &= ~M_VLANTAG;
} else {
struct ether_vlan_header *evl;
/*
* Packet is tagged in-band as specified by 802.1q.
*/
switch (ifp->if_type) {
case IFT_ETHER:
if (m->m_len < sizeof(*evl) &&
(m = m_pullup(m, sizeof(*evl))) == NULL) {
if_printf(ifp, "cannot pullup VLAN header\n");
return;
}
evl = mtod(m, struct ether_vlan_header *);
tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
/*
* Remove the 802.1q header by copying the Ethernet
* addresses over it and adjusting the beginning of
* the data in the mbuf. The encapsulated Ethernet
* type field is already in place.
*/
bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
ETHER_HDR_LEN - ETHER_TYPE_LEN);
m_adj(m, ETHER_VLAN_ENCAP_LEN);
break;
default:
#ifdef INVARIANTS
panic("%s: %s has unsupported if_type %u",
__func__, ifp->if_xname, ifp->if_type);
#endif
m_freem(m);
ifp->if_noproto++;
return;
}
}
TRUNK_RLOCK(trunk);
#ifdef VLAN_ARRAY
ifv = trunk->vlans[tag];
#else
ifv = vlan_gethash(trunk, tag);
#endif
if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
TRUNK_RUNLOCK(trunk);
m_freem(m);
ifp->if_noproto++;
return;
}
TRUNK_RUNLOCK(trunk);
m->m_pkthdr.rcvif = ifv->ifv_ifp;
ifv->ifv_ifp->if_ipackets++;
/* Pass it back through the parent's input routine. */
(*ifp->if_input)(ifv->ifv_ifp, m);
}
static int
vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
{
struct ifvlantrunk *trunk;
struct ifnet *ifp;
int error = 0;
/* VID numbers 0x0 and 0xFFF are reserved */
if (tag == 0 || tag == 0xFFF)
return (EINVAL);
if (p->if_type != IFT_ETHER)
return (EPROTONOSUPPORT);
if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
return (EPROTONOSUPPORT);
if (ifv->ifv_trunk)
return (EBUSY);
if (p->if_vlantrunk == NULL) {
trunk = malloc(sizeof(struct ifvlantrunk),
M_VLAN, M_WAITOK | M_ZERO);
#ifndef VLAN_ARRAY
vlan_inithash(trunk);
#endif
VLAN_LOCK();
if (p->if_vlantrunk != NULL) {
/* A race that that is very unlikely to be hit. */
#ifndef VLAN_ARRAY
vlan_freehash(trunk);
#endif
free(trunk, M_VLAN);
goto exists;
}
TRUNK_LOCK_INIT(trunk);
TRUNK_LOCK(trunk);
p->if_vlantrunk = trunk;
trunk->parent = p;
} else {
VLAN_LOCK();
exists:
trunk = p->if_vlantrunk;
TRUNK_LOCK(trunk);
}
ifv->ifv_tag = tag; /* must set this before vlan_inshash() */
#ifdef VLAN_ARRAY
if (trunk->vlans[tag] != NULL) {
error = EEXIST;
goto done;
}
trunk->vlans[tag] = ifv;
trunk->refcnt++;
#else
error = vlan_inshash(trunk, ifv);
if (error)
goto done;
#endif
ifv->ifv_proto = ETHERTYPE_VLAN;
ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
ifv->ifv_mintu = ETHERMIN;
ifv->ifv_pflags = 0;
/*
* If the parent supports the VLAN_MTU capability,
* i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
* use it.
*/
if (p->if_capenable & IFCAP_VLAN_MTU) {
/*
* No need to fudge the MTU since the parent can
* handle extended frames.
*/
ifv->ifv_mtufudge = 0;
} else {
/*
* Fudge the MTU by the encapsulation size. This
* makes us incompatible with strictly compliant
* 802.1Q implementations, but allows us to use
* the feature with other NetBSD implementations,
* which might still be useful.
*/
ifv->ifv_mtufudge = ifv->ifv_encaplen;
}
ifv->ifv_trunk = trunk;
ifp = ifv->ifv_ifp;
ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
ifp->if_baudrate = p->if_baudrate;
/*
* Copy only a selected subset of flags from the parent.
* Other flags are none of our business.
*/
#define VLAN_COPY_FLAGS (IFF_SIMPLEX)
ifp->if_flags &= ~VLAN_COPY_FLAGS;
ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
#undef VLAN_COPY_FLAGS
ifp->if_link_state = p->if_link_state;
vlan_capabilities(ifv);
/*
* Set up our ``Ethernet address'' to reflect the underlying
* physical interface's.
*/
bcopy(IF_LLADDR(p), IF_LLADDR(ifp), ETHER_ADDR_LEN);
/*
* Configure multicast addresses that may already be
* joined on the vlan device.
*/
(void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
/* We are ready for operation now. */
ifp->if_drv_flags |= IFF_DRV_RUNNING;
done:
TRUNK_UNLOCK(trunk);
if (error == 0)
EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_tag);
VLAN_UNLOCK();
return (error);
}
static int
vlan_unconfig(struct ifnet *ifp)
{
int ret;
VLAN_LOCK();
ret = vlan_unconfig_locked(ifp);
VLAN_UNLOCK();
return (ret);
}
static int
vlan_unconfig_locked(struct ifnet *ifp)
{
struct ifvlantrunk *trunk;
struct vlan_mc_entry *mc;
struct ifvlan *ifv;
struct ifnet *parent;
int error;
VLAN_LOCK_ASSERT();
ifv = ifp->if_softc;
trunk = ifv->ifv_trunk;
parent = NULL;
if (trunk != NULL) {
struct sockaddr_dl sdl;
TRUNK_LOCK(trunk);
parent = trunk->parent;
/*
* Since the interface is being unconfigured, we need to
* empty the list of multicast groups that we may have joined
* while we were alive from the parent's list.
*/
bzero((char *)&sdl, sizeof(sdl));
sdl.sdl_len = sizeof(sdl);
sdl.sdl_family = AF_LINK;
sdl.sdl_index = parent->if_index;
sdl.sdl_type = IFT_ETHER;
sdl.sdl_alen = ETHER_ADDR_LEN;
while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
bcopy((char *)&mc->mc_addr, LLADDR(&sdl),
ETHER_ADDR_LEN);
error = if_delmulti(parent, (struct sockaddr *)&sdl);
if (error)
return (error);
SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
free(mc, M_VLAN);
}
vlan_setflags(ifp, 0); /* clear special flags on parent */
#ifdef VLAN_ARRAY
trunk->vlans[ifv->ifv_tag] = NULL;
trunk->refcnt--;
#else
vlan_remhash(trunk, ifv);
#endif
ifv->ifv_trunk = NULL;
/*
* Check if we were the last.
*/
if (trunk->refcnt == 0) {
trunk->parent->if_vlantrunk = NULL;
/*
* XXXGL: If some ithread has already entered
* vlan_input() and is now blocked on the trunk
* lock, then it should preempt us right after
* unlock and finish its work. Then we will acquire
* lock again in trunk_destroy().
*/
TRUNK_UNLOCK(trunk);
trunk_destroy(trunk);
} else
TRUNK_UNLOCK(trunk);
}
/* Disconnect from parent. */
if (ifv->ifv_pflags)
if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
ifp->if_mtu = ETHERMTU;
ifp->if_link_state = LINK_STATE_UNKNOWN;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
/*
* Only dispatch an event if vlan was
* attached, otherwise there is nothing
* to cleanup anyway.
*/
if (parent != NULL)
EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_tag);
return (0);
}
/* Handle a reference counted flag that should be set on the parent as well */
static int
vlan_setflag(struct ifnet *ifp, int flag, int status,
int (*func)(struct ifnet *, int))
{
struct ifvlan *ifv;
int error;
/* XXX VLAN_LOCK_ASSERT(); */
ifv = ifp->if_softc;
status = status ? (ifp->if_flags & flag) : 0;
/* Now "status" contains the flag value or 0 */
/*
* See if recorded parent's status is different from what
* we want it to be. If it is, flip it. We record parent's
* status in ifv_pflags so that we won't clear parent's flag
* we haven't set. In fact, we don't clear or set parent's
* flags directly, but get or release references to them.
* That's why we can be sure that recorded flags still are
* in accord with actual parent's flags.
*/
if (status != (ifv->ifv_pflags & flag)) {
error = (*func)(PARENT(ifv), status);
if (error)
return (error);
ifv->ifv_pflags &= ~flag;
ifv->ifv_pflags |= status;
}
return (0);
}
/*
* Handle IFF_* flags that require certain changes on the parent:
* if "status" is true, update parent's flags respective to our if_flags;
* if "status" is false, forcedly clear the flags set on parent.
*/
static int
vlan_setflags(struct ifnet *ifp, int status)
{
int error, i;
for (i = 0; vlan_pflags[i].flag; i++) {
error = vlan_setflag(ifp, vlan_pflags[i].flag,
status, vlan_pflags[i].func);
if (error)
return (error);
}
return (0);
}
/* Inform all vlans that their parent has changed link state */
static void
vlan_link_state(struct ifnet *ifp, int link)
{
struct ifvlantrunk *trunk = ifp->if_vlantrunk;
struct ifvlan *ifv;
int i;
TRUNK_LOCK(trunk);
#ifdef VLAN_ARRAY
for (i = 0; i < VLAN_ARRAY_SIZE; i++)
if (trunk->vlans[i] != NULL) {
ifv = trunk->vlans[i];
#else
for (i = 0; i < (1 << trunk->hwidth); i++)
LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) {
#endif
ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
if_link_state_change(ifv->ifv_ifp,
trunk->parent->if_link_state);
}
TRUNK_UNLOCK(trunk);
}
static void
vlan_capabilities(struct ifvlan *ifv)
{
struct ifnet *p = PARENT(ifv);
struct ifnet *ifp = ifv->ifv_ifp;
TRUNK_LOCK_ASSERT(TRUNK(ifv));
/*
* If the parent interface can do checksum offloading
* on VLANs, then propagate its hardware-assisted
* checksumming flags. Also assert that checksum
* offloading requires hardware VLAN tagging.
*/
if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM;
if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
p->if_capenable & IFCAP_VLAN_HWTAGGING) {
ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM;
ifp->if_hwassist = p->if_hwassist;
} else {
ifp->if_capenable = 0;
ifp->if_hwassist = 0;
}
}
static void
vlan_trunk_capabilities(struct ifnet *ifp)
{
struct ifvlantrunk *trunk = ifp->if_vlantrunk;
struct ifvlan *ifv;
int i;
TRUNK_LOCK(trunk);
#ifdef VLAN_ARRAY
for (i = 0; i < VLAN_ARRAY_SIZE; i++)
if (trunk->vlans[i] != NULL) {
ifv = trunk->vlans[i];
#else
for (i = 0; i < (1 << trunk->hwidth); i++) {
LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
#endif
vlan_capabilities(ifv);
}
TRUNK_UNLOCK(trunk);
}
static int
vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ifnet *p;
struct ifreq *ifr;
struct ifvlan *ifv;
struct vlanreq vlr;
int error = 0;
ifr = (struct ifreq *)data;
ifv = ifp->if_softc;
switch (cmd) {
case SIOCGIFMEDIA:
VLAN_LOCK();
if (TRUNK(ifv) != NULL) {
error = (*PARENT(ifv)->if_ioctl)(PARENT(ifv),
SIOCGIFMEDIA, data);
VLAN_UNLOCK();
/* Limit the result to the parent's current config. */
if (error == 0) {
struct ifmediareq *ifmr;
ifmr = (struct ifmediareq *)data;
if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
ifmr->ifm_count = 1;
error = copyout(&ifmr->ifm_current,
ifmr->ifm_ulist,
sizeof(int));
}
}
} else {
VLAN_UNLOCK();
error = EINVAL;
}
break;
case SIOCSIFMEDIA:
error = EINVAL;
break;
case SIOCSIFMTU:
/*
* Set the interface MTU.
*/
VLAN_LOCK();
if (TRUNK(ifv) != NULL) {
if (ifr->ifr_mtu >
(PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
ifr->ifr_mtu <
(ifv->ifv_mintu - ifv->ifv_mtufudge))
error = EINVAL;
else
ifp->if_mtu = ifr->ifr_mtu;
} else
error = EINVAL;
VLAN_UNLOCK();
break;
case SIOCSETVLAN:
error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
if (error)
break;
if (vlr.vlr_parent[0] == '\0') {
vlan_unconfig(ifp);
break;
}
p = ifunit(vlr.vlr_parent);
if (p == 0) {
error = ENOENT;
break;
}
/*
* Don't let the caller set up a VLAN tag with
* anything except VLID bits.
*/
if (vlr.vlr_tag & ~EVL_VLID_MASK) {
error = EINVAL;
break;
}
error = vlan_config(ifv, p, vlr.vlr_tag);
if (error)
break;
/* Update flags on the parent, if necessary. */
vlan_setflags(ifp, 1);
break;
case SIOCGETVLAN:
bzero(&vlr, sizeof(vlr));
VLAN_LOCK();
if (TRUNK(ifv) != NULL) {
strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
sizeof(vlr.vlr_parent));
vlr.vlr_tag = ifv->ifv_tag;
}
VLAN_UNLOCK();
error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
break;
case SIOCSIFFLAGS:
/*
* We should propagate selected flags to the parent,
* e.g., promiscuous mode.
*/
if (TRUNK(ifv) != NULL)
error = vlan_setflags(ifp, 1);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/*
* If we don't have a parent, just remember the membership for
* when we do.
*/
if (TRUNK(ifv) != NULL)
error = vlan_setmulti(ifp);
break;
default:
error = ether_ioctl(ifp, cmd, data);
}
return (error);
}