b317cfd4c0
Add a new 'debugger_on_trap' knob separate from 'debugger_on_panic' and make the calls to kdb_trap() in MD fatal trap handlers prior to calling panic() conditional on this new knob instead of 'debugger_on_panic'. Disable the new knob by default. Developers who wish to recover from a fatal fault by adjusting saved register state and retrying the faulting instruction can still do so by enabling the new knob. However, for the more common case this makes the user experience for panics due to a fatal fault match the user experience for other panics, e.g. 'c' in DDB will generate a crash dump and reboot the system rather than being stuck in an infinite loop of fatal fault messages and DDB prompts. Reviewed by: kib, avg MFC after: 2 months Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D17768
1586 lines
39 KiB
C
1586 lines
39 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 1986, 1988, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_shutdown.c 8.3 (Berkeley) 1/21/94
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_ekcd.h"
|
|
#include "opt_kdb.h"
|
|
#include "opt_panic.h"
|
|
#include "opt_sched.h"
|
|
#include "opt_watchdog.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/compressor.h>
|
|
#include <sys/cons.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/jail.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kerneldump.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/watchdog.h>
|
|
|
|
#include <crypto/rijndael/rijndael-api-fst.h>
|
|
#include <crypto/sha2/sha256.h>
|
|
|
|
#include <ddb/ddb.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/dump.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/smp.h>
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_pager.h>
|
|
#include <vm/swap_pager.h>
|
|
|
|
#include <sys/signalvar.h>
|
|
|
|
static MALLOC_DEFINE(M_DUMPER, "dumper", "dumper block buffer");
|
|
|
|
#ifndef PANIC_REBOOT_WAIT_TIME
|
|
#define PANIC_REBOOT_WAIT_TIME 15 /* default to 15 seconds */
|
|
#endif
|
|
static int panic_reboot_wait_time = PANIC_REBOOT_WAIT_TIME;
|
|
SYSCTL_INT(_kern, OID_AUTO, panic_reboot_wait_time, CTLFLAG_RWTUN,
|
|
&panic_reboot_wait_time, 0,
|
|
"Seconds to wait before rebooting after a panic");
|
|
|
|
/*
|
|
* Note that stdarg.h and the ANSI style va_start macro is used for both
|
|
* ANSI and traditional C compilers.
|
|
*/
|
|
#include <machine/stdarg.h>
|
|
|
|
#ifdef KDB
|
|
#ifdef KDB_UNATTENDED
|
|
static int debugger_on_panic = 0;
|
|
#else
|
|
static int debugger_on_panic = 1;
|
|
#endif
|
|
SYSCTL_INT(_debug, OID_AUTO, debugger_on_panic,
|
|
CTLFLAG_RWTUN | CTLFLAG_SECURE,
|
|
&debugger_on_panic, 0, "Run debugger on kernel panic");
|
|
|
|
int debugger_on_trap = 0;
|
|
SYSCTL_INT(_debug, OID_AUTO, debugger_on_trap,
|
|
CTLFLAG_RWTUN | CTLFLAG_SECURE,
|
|
&debugger_on_trap, 0, "Run debugger on kernel trap before panic");
|
|
|
|
#ifdef KDB_TRACE
|
|
static int trace_on_panic = 1;
|
|
static bool trace_all_panics = true;
|
|
#else
|
|
static int trace_on_panic = 0;
|
|
static bool trace_all_panics = false;
|
|
#endif
|
|
SYSCTL_INT(_debug, OID_AUTO, trace_on_panic,
|
|
CTLFLAG_RWTUN | CTLFLAG_SECURE,
|
|
&trace_on_panic, 0, "Print stack trace on kernel panic");
|
|
SYSCTL_BOOL(_debug, OID_AUTO, trace_all_panics, CTLFLAG_RWTUN,
|
|
&trace_all_panics, 0, "Print stack traces on secondary kernel panics");
|
|
#endif /* KDB */
|
|
|
|
static int sync_on_panic = 0;
|
|
SYSCTL_INT(_kern, OID_AUTO, sync_on_panic, CTLFLAG_RWTUN,
|
|
&sync_on_panic, 0, "Do a sync before rebooting from a panic");
|
|
|
|
static bool poweroff_on_panic = 0;
|
|
SYSCTL_BOOL(_kern, OID_AUTO, poweroff_on_panic, CTLFLAG_RWTUN,
|
|
&poweroff_on_panic, 0, "Do a power off instead of a reboot on a panic");
|
|
|
|
static bool powercycle_on_panic = 0;
|
|
SYSCTL_BOOL(_kern, OID_AUTO, powercycle_on_panic, CTLFLAG_RWTUN,
|
|
&powercycle_on_panic, 0, "Do a power cycle instead of a reboot on a panic");
|
|
|
|
static SYSCTL_NODE(_kern, OID_AUTO, shutdown, CTLFLAG_RW, 0,
|
|
"Shutdown environment");
|
|
|
|
#ifndef DIAGNOSTIC
|
|
static int show_busybufs;
|
|
#else
|
|
static int show_busybufs = 1;
|
|
#endif
|
|
SYSCTL_INT(_kern_shutdown, OID_AUTO, show_busybufs, CTLFLAG_RW,
|
|
&show_busybufs, 0, "");
|
|
|
|
int suspend_blocked = 0;
|
|
SYSCTL_INT(_kern, OID_AUTO, suspend_blocked, CTLFLAG_RW,
|
|
&suspend_blocked, 0, "Block suspend due to a pending shutdown");
|
|
|
|
#ifdef EKCD
|
|
FEATURE(ekcd, "Encrypted kernel crash dumps support");
|
|
|
|
MALLOC_DEFINE(M_EKCD, "ekcd", "Encrypted kernel crash dumps data");
|
|
|
|
struct kerneldumpcrypto {
|
|
uint8_t kdc_encryption;
|
|
uint8_t kdc_iv[KERNELDUMP_IV_MAX_SIZE];
|
|
keyInstance kdc_ki;
|
|
cipherInstance kdc_ci;
|
|
uint32_t kdc_dumpkeysize;
|
|
struct kerneldumpkey kdc_dumpkey[];
|
|
};
|
|
#endif
|
|
|
|
struct kerneldumpcomp {
|
|
uint8_t kdc_format;
|
|
struct compressor *kdc_stream;
|
|
uint8_t *kdc_buf;
|
|
size_t kdc_resid;
|
|
};
|
|
|
|
static struct kerneldumpcomp *kerneldumpcomp_create(struct dumperinfo *di,
|
|
uint8_t compression);
|
|
static void kerneldumpcomp_destroy(struct dumperinfo *di);
|
|
static int kerneldumpcomp_write_cb(void *base, size_t len, off_t off, void *arg);
|
|
|
|
static int kerneldump_gzlevel = 6;
|
|
SYSCTL_INT(_kern, OID_AUTO, kerneldump_gzlevel, CTLFLAG_RWTUN,
|
|
&kerneldump_gzlevel, 0,
|
|
"Kernel crash dump compression level");
|
|
|
|
/*
|
|
* Variable panicstr contains argument to first call to panic; used as flag
|
|
* to indicate that the kernel has already called panic.
|
|
*/
|
|
const char *panicstr;
|
|
|
|
int dumping; /* system is dumping */
|
|
int rebooting; /* system is rebooting */
|
|
static struct dumperinfo dumper; /* our selected dumper */
|
|
|
|
/* Context information for dump-debuggers. */
|
|
static struct pcb dumppcb; /* Registers. */
|
|
lwpid_t dumptid; /* Thread ID. */
|
|
|
|
static struct cdevsw reroot_cdevsw = {
|
|
.d_version = D_VERSION,
|
|
.d_name = "reroot",
|
|
};
|
|
|
|
static void poweroff_wait(void *, int);
|
|
static void shutdown_halt(void *junk, int howto);
|
|
static void shutdown_panic(void *junk, int howto);
|
|
static void shutdown_reset(void *junk, int howto);
|
|
static int kern_reroot(void);
|
|
|
|
/* register various local shutdown events */
|
|
static void
|
|
shutdown_conf(void *unused)
|
|
{
|
|
|
|
EVENTHANDLER_REGISTER(shutdown_final, poweroff_wait, NULL,
|
|
SHUTDOWN_PRI_FIRST);
|
|
EVENTHANDLER_REGISTER(shutdown_final, shutdown_halt, NULL,
|
|
SHUTDOWN_PRI_LAST + 100);
|
|
EVENTHANDLER_REGISTER(shutdown_final, shutdown_panic, NULL,
|
|
SHUTDOWN_PRI_LAST + 100);
|
|
EVENTHANDLER_REGISTER(shutdown_final, shutdown_reset, NULL,
|
|
SHUTDOWN_PRI_LAST + 200);
|
|
}
|
|
|
|
SYSINIT(shutdown_conf, SI_SUB_INTRINSIC, SI_ORDER_ANY, shutdown_conf, NULL);
|
|
|
|
/*
|
|
* The only reason this exists is to create the /dev/reroot/ directory,
|
|
* used by reroot code in init(8) as a mountpoint for tmpfs.
|
|
*/
|
|
static void
|
|
reroot_conf(void *unused)
|
|
{
|
|
int error;
|
|
struct cdev *cdev;
|
|
|
|
error = make_dev_p(MAKEDEV_CHECKNAME | MAKEDEV_WAITOK, &cdev,
|
|
&reroot_cdevsw, NULL, UID_ROOT, GID_WHEEL, 0600, "reroot/reroot");
|
|
if (error != 0) {
|
|
printf("%s: failed to create device node, error %d",
|
|
__func__, error);
|
|
}
|
|
}
|
|
|
|
SYSINIT(reroot_conf, SI_SUB_DEVFS, SI_ORDER_ANY, reroot_conf, NULL);
|
|
|
|
/*
|
|
* The system call that results in a reboot.
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
sys_reboot(struct thread *td, struct reboot_args *uap)
|
|
{
|
|
int error;
|
|
|
|
error = 0;
|
|
#ifdef MAC
|
|
error = mac_system_check_reboot(td->td_ucred, uap->opt);
|
|
#endif
|
|
if (error == 0)
|
|
error = priv_check(td, PRIV_REBOOT);
|
|
if (error == 0) {
|
|
if (uap->opt & RB_REROOT)
|
|
error = kern_reroot();
|
|
else
|
|
kern_reboot(uap->opt);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
shutdown_nice_task_fn(void *arg, int pending __unused)
|
|
{
|
|
int howto;
|
|
|
|
howto = (uintptr_t)arg;
|
|
/* Send a signal to init(8) and have it shutdown the world. */
|
|
PROC_LOCK(initproc);
|
|
if (howto & RB_POWEROFF)
|
|
kern_psignal(initproc, SIGUSR2);
|
|
else if (howto & RB_POWERCYCLE)
|
|
kern_psignal(initproc, SIGWINCH);
|
|
else if (howto & RB_HALT)
|
|
kern_psignal(initproc, SIGUSR1);
|
|
else
|
|
kern_psignal(initproc, SIGINT);
|
|
PROC_UNLOCK(initproc);
|
|
}
|
|
|
|
static struct task shutdown_nice_task = TASK_INITIALIZER(0,
|
|
&shutdown_nice_task_fn, NULL);
|
|
|
|
/*
|
|
* Called by events that want to shut down.. e.g <CTL><ALT><DEL> on a PC
|
|
*/
|
|
void
|
|
shutdown_nice(int howto)
|
|
{
|
|
|
|
if (initproc != NULL && !SCHEDULER_STOPPED()) {
|
|
shutdown_nice_task.ta_context = (void *)(uintptr_t)howto;
|
|
taskqueue_enqueue(taskqueue_fast, &shutdown_nice_task);
|
|
} else {
|
|
/*
|
|
* No init(8) running, or scheduler would not allow it
|
|
* to run, so simply reboot.
|
|
*/
|
|
kern_reboot(howto | RB_NOSYNC);
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_uptime(void)
|
|
{
|
|
int f;
|
|
struct timespec ts;
|
|
|
|
getnanouptime(&ts);
|
|
printf("Uptime: ");
|
|
f = 0;
|
|
if (ts.tv_sec >= 86400) {
|
|
printf("%ldd", (long)ts.tv_sec / 86400);
|
|
ts.tv_sec %= 86400;
|
|
f = 1;
|
|
}
|
|
if (f || ts.tv_sec >= 3600) {
|
|
printf("%ldh", (long)ts.tv_sec / 3600);
|
|
ts.tv_sec %= 3600;
|
|
f = 1;
|
|
}
|
|
if (f || ts.tv_sec >= 60) {
|
|
printf("%ldm", (long)ts.tv_sec / 60);
|
|
ts.tv_sec %= 60;
|
|
f = 1;
|
|
}
|
|
printf("%lds\n", (long)ts.tv_sec);
|
|
}
|
|
|
|
int
|
|
doadump(boolean_t textdump)
|
|
{
|
|
boolean_t coredump;
|
|
int error;
|
|
|
|
error = 0;
|
|
if (dumping)
|
|
return (EBUSY);
|
|
if (dumper.dumper == NULL)
|
|
return (ENXIO);
|
|
|
|
savectx(&dumppcb);
|
|
dumptid = curthread->td_tid;
|
|
dumping++;
|
|
|
|
coredump = TRUE;
|
|
#ifdef DDB
|
|
if (textdump && textdump_pending) {
|
|
coredump = FALSE;
|
|
textdump_dumpsys(&dumper);
|
|
}
|
|
#endif
|
|
if (coredump)
|
|
error = dumpsys(&dumper);
|
|
|
|
dumping--;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Shutdown the system cleanly to prepare for reboot, halt, or power off.
|
|
*/
|
|
void
|
|
kern_reboot(int howto)
|
|
{
|
|
static int once = 0;
|
|
|
|
/*
|
|
* Normal paths here don't hold Giant, but we can wind up here
|
|
* unexpectedly with it held. Drop it now so we don't have to
|
|
* drop and pick it up elsewhere. The paths it is locking will
|
|
* never be returned to, and it is preferable to preclude
|
|
* deadlock than to lock against code that won't ever
|
|
* continue.
|
|
*/
|
|
while (mtx_owned(&Giant))
|
|
mtx_unlock(&Giant);
|
|
|
|
#if defined(SMP)
|
|
/*
|
|
* Bind us to the first CPU so that all shutdown code runs there. Some
|
|
* systems don't shutdown properly (i.e., ACPI power off) if we
|
|
* run on another processor.
|
|
*/
|
|
if (!SCHEDULER_STOPPED()) {
|
|
thread_lock(curthread);
|
|
sched_bind(curthread, CPU_FIRST());
|
|
thread_unlock(curthread);
|
|
KASSERT(PCPU_GET(cpuid) == CPU_FIRST(),
|
|
("boot: not running on cpu 0"));
|
|
}
|
|
#endif
|
|
/* We're in the process of rebooting. */
|
|
rebooting = 1;
|
|
|
|
/* We are out of the debugger now. */
|
|
kdb_active = 0;
|
|
|
|
/*
|
|
* Do any callouts that should be done BEFORE syncing the filesystems.
|
|
*/
|
|
EVENTHANDLER_INVOKE(shutdown_pre_sync, howto);
|
|
|
|
/*
|
|
* Now sync filesystems
|
|
*/
|
|
if (!cold && (howto & RB_NOSYNC) == 0 && once == 0) {
|
|
once = 1;
|
|
bufshutdown(show_busybufs);
|
|
}
|
|
|
|
print_uptime();
|
|
|
|
cngrab();
|
|
|
|
/*
|
|
* Ok, now do things that assume all filesystem activity has
|
|
* been completed.
|
|
*/
|
|
EVENTHANDLER_INVOKE(shutdown_post_sync, howto);
|
|
|
|
if ((howto & (RB_HALT|RB_DUMP)) == RB_DUMP && !cold && !dumping)
|
|
doadump(TRUE);
|
|
|
|
/* Now that we're going to really halt the system... */
|
|
EVENTHANDLER_INVOKE(shutdown_final, howto);
|
|
|
|
for(;;) ; /* safety against shutdown_reset not working */
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* The system call that results in changing the rootfs.
|
|
*/
|
|
static int
|
|
kern_reroot(void)
|
|
{
|
|
struct vnode *oldrootvnode, *vp;
|
|
struct mount *mp, *devmp;
|
|
int error;
|
|
|
|
if (curproc != initproc)
|
|
return (EPERM);
|
|
|
|
/*
|
|
* Mark the filesystem containing currently-running executable
|
|
* (the temporary copy of init(8)) busy.
|
|
*/
|
|
vp = curproc->p_textvp;
|
|
error = vn_lock(vp, LK_SHARED);
|
|
if (error != 0)
|
|
return (error);
|
|
mp = vp->v_mount;
|
|
error = vfs_busy(mp, MBF_NOWAIT);
|
|
if (error != 0) {
|
|
vfs_ref(mp);
|
|
VOP_UNLOCK(vp, 0);
|
|
error = vfs_busy(mp, 0);
|
|
vn_lock(vp, LK_SHARED | LK_RETRY);
|
|
vfs_rel(mp);
|
|
if (error != 0) {
|
|
VOP_UNLOCK(vp, 0);
|
|
return (ENOENT);
|
|
}
|
|
if (vp->v_iflag & VI_DOOMED) {
|
|
VOP_UNLOCK(vp, 0);
|
|
vfs_unbusy(mp);
|
|
return (ENOENT);
|
|
}
|
|
}
|
|
VOP_UNLOCK(vp, 0);
|
|
|
|
/*
|
|
* Remove the filesystem containing currently-running executable
|
|
* from the mount list, to prevent it from being unmounted
|
|
* by vfs_unmountall(), and to avoid confusing vfs_mountroot().
|
|
*
|
|
* Also preserve /dev - forcibly unmounting it could cause driver
|
|
* reinitialization.
|
|
*/
|
|
|
|
vfs_ref(rootdevmp);
|
|
devmp = rootdevmp;
|
|
rootdevmp = NULL;
|
|
|
|
mtx_lock(&mountlist_mtx);
|
|
TAILQ_REMOVE(&mountlist, mp, mnt_list);
|
|
TAILQ_REMOVE(&mountlist, devmp, mnt_list);
|
|
mtx_unlock(&mountlist_mtx);
|
|
|
|
oldrootvnode = rootvnode;
|
|
|
|
/*
|
|
* Unmount everything except for the two filesystems preserved above.
|
|
*/
|
|
vfs_unmountall();
|
|
|
|
/*
|
|
* Add /dev back; vfs_mountroot() will move it into its new place.
|
|
*/
|
|
mtx_lock(&mountlist_mtx);
|
|
TAILQ_INSERT_HEAD(&mountlist, devmp, mnt_list);
|
|
mtx_unlock(&mountlist_mtx);
|
|
rootdevmp = devmp;
|
|
vfs_rel(rootdevmp);
|
|
|
|
/*
|
|
* Mount the new rootfs.
|
|
*/
|
|
vfs_mountroot();
|
|
|
|
/*
|
|
* Update all references to the old rootvnode.
|
|
*/
|
|
mountcheckdirs(oldrootvnode, rootvnode);
|
|
|
|
/*
|
|
* Add the temporary filesystem back and unbusy it.
|
|
*/
|
|
mtx_lock(&mountlist_mtx);
|
|
TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
|
|
mtx_unlock(&mountlist_mtx);
|
|
vfs_unbusy(mp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If the shutdown was a clean halt, behave accordingly.
|
|
*/
|
|
static void
|
|
shutdown_halt(void *junk, int howto)
|
|
{
|
|
|
|
if (howto & RB_HALT) {
|
|
printf("\n");
|
|
printf("The operating system has halted.\n");
|
|
printf("Please press any key to reboot.\n\n");
|
|
switch (cngetc()) {
|
|
case -1: /* No console, just die */
|
|
cpu_halt();
|
|
/* NOTREACHED */
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check to see if the system paniced, pause and then reboot
|
|
* according to the specified delay.
|
|
*/
|
|
static void
|
|
shutdown_panic(void *junk, int howto)
|
|
{
|
|
int loop;
|
|
|
|
if (howto & RB_DUMP) {
|
|
if (panic_reboot_wait_time != 0) {
|
|
if (panic_reboot_wait_time != -1) {
|
|
printf("Automatic reboot in %d seconds - "
|
|
"press a key on the console to abort\n",
|
|
panic_reboot_wait_time);
|
|
for (loop = panic_reboot_wait_time * 10;
|
|
loop > 0; --loop) {
|
|
DELAY(1000 * 100); /* 1/10th second */
|
|
/* Did user type a key? */
|
|
if (cncheckc() != -1)
|
|
break;
|
|
}
|
|
if (!loop)
|
|
return;
|
|
}
|
|
} else { /* zero time specified - reboot NOW */
|
|
return;
|
|
}
|
|
printf("--> Press a key on the console to reboot,\n");
|
|
printf("--> or switch off the system now.\n");
|
|
cngetc();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Everything done, now reset
|
|
*/
|
|
static void
|
|
shutdown_reset(void *junk, int howto)
|
|
{
|
|
|
|
printf("Rebooting...\n");
|
|
DELAY(1000000); /* wait 1 sec for printf's to complete and be read */
|
|
|
|
/*
|
|
* Acquiring smp_ipi_mtx here has a double effect:
|
|
* - it disables interrupts avoiding CPU0 preemption
|
|
* by fast handlers (thus deadlocking against other CPUs)
|
|
* - it avoids deadlocks against smp_rendezvous() or, more
|
|
* generally, threads busy-waiting, with this spinlock held,
|
|
* and waiting for responses by threads on other CPUs
|
|
* (ie. smp_tlb_shootdown()).
|
|
*
|
|
* For the !SMP case it just needs to handle the former problem.
|
|
*/
|
|
#ifdef SMP
|
|
mtx_lock_spin(&smp_ipi_mtx);
|
|
#else
|
|
spinlock_enter();
|
|
#endif
|
|
|
|
/* cpu_boot(howto); */ /* doesn't do anything at the moment */
|
|
cpu_reset();
|
|
/* NOTREACHED */ /* assuming reset worked */
|
|
}
|
|
|
|
#if defined(WITNESS) || defined(INVARIANT_SUPPORT)
|
|
static int kassert_warn_only = 0;
|
|
#ifdef KDB
|
|
static int kassert_do_kdb = 0;
|
|
#endif
|
|
#ifdef KTR
|
|
static int kassert_do_ktr = 0;
|
|
#endif
|
|
static int kassert_do_log = 1;
|
|
static int kassert_log_pps_limit = 4;
|
|
static int kassert_log_mute_at = 0;
|
|
static int kassert_log_panic_at = 0;
|
|
static int kassert_suppress_in_panic = 0;
|
|
static int kassert_warnings = 0;
|
|
|
|
SYSCTL_NODE(_debug, OID_AUTO, kassert, CTLFLAG_RW, NULL, "kassert options");
|
|
|
|
#ifdef KASSERT_PANIC_OPTIONAL
|
|
#define KASSERT_RWTUN CTLFLAG_RWTUN
|
|
#else
|
|
#define KASSERT_RWTUN CTLFLAG_RDTUN
|
|
#endif
|
|
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, warn_only, KASSERT_RWTUN,
|
|
&kassert_warn_only, 0,
|
|
"KASSERT triggers a panic (0) or just a warning (1)");
|
|
|
|
#ifdef KDB
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, do_kdb, KASSERT_RWTUN,
|
|
&kassert_do_kdb, 0, "KASSERT will enter the debugger");
|
|
#endif
|
|
|
|
#ifdef KTR
|
|
SYSCTL_UINT(_debug_kassert, OID_AUTO, do_ktr, KASSERT_RWTUN,
|
|
&kassert_do_ktr, 0,
|
|
"KASSERT does a KTR, set this to the KTRMASK you want");
|
|
#endif
|
|
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, do_log, KASSERT_RWTUN,
|
|
&kassert_do_log, 0,
|
|
"If warn_only is enabled, log (1) or do not log (0) assertion violations");
|
|
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, warnings, KASSERT_RWTUN,
|
|
&kassert_warnings, 0, "number of KASSERTs that have been triggered");
|
|
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, log_panic_at, KASSERT_RWTUN,
|
|
&kassert_log_panic_at, 0, "max number of KASSERTS before we will panic");
|
|
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, log_pps_limit, KASSERT_RWTUN,
|
|
&kassert_log_pps_limit, 0, "limit number of log messages per second");
|
|
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, log_mute_at, KASSERT_RWTUN,
|
|
&kassert_log_mute_at, 0, "max number of KASSERTS to log");
|
|
|
|
SYSCTL_INT(_debug_kassert, OID_AUTO, suppress_in_panic, KASSERT_RWTUN,
|
|
&kassert_suppress_in_panic, 0,
|
|
"KASSERTs will be suppressed while handling a panic");
|
|
#undef KASSERT_RWTUN
|
|
|
|
static int kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS);
|
|
|
|
SYSCTL_PROC(_debug_kassert, OID_AUTO, kassert,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE, NULL, 0,
|
|
kassert_sysctl_kassert, "I", "set to trigger a test kassert");
|
|
|
|
static int
|
|
kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, i;
|
|
|
|
error = sysctl_wire_old_buffer(req, sizeof(int));
|
|
if (error == 0) {
|
|
i = 0;
|
|
error = sysctl_handle_int(oidp, &i, 0, req);
|
|
}
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
KASSERT(0, ("kassert_sysctl_kassert triggered kassert %d", i));
|
|
return (0);
|
|
}
|
|
|
|
#ifdef KASSERT_PANIC_OPTIONAL
|
|
/*
|
|
* Called by KASSERT, this decides if we will panic
|
|
* or if we will log via printf and/or ktr.
|
|
*/
|
|
void
|
|
kassert_panic(const char *fmt, ...)
|
|
{
|
|
static char buf[256];
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
(void)vsnprintf(buf, sizeof(buf), fmt, ap);
|
|
va_end(ap);
|
|
|
|
/*
|
|
* If we are suppressing secondary panics, log the warning but do not
|
|
* re-enter panic/kdb.
|
|
*/
|
|
if (panicstr != NULL && kassert_suppress_in_panic) {
|
|
if (kassert_do_log) {
|
|
printf("KASSERT failed: %s\n", buf);
|
|
#ifdef KDB
|
|
if (trace_all_panics && trace_on_panic)
|
|
kdb_backtrace();
|
|
#endif
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* panic if we're not just warning, or if we've exceeded
|
|
* kassert_log_panic_at warnings.
|
|
*/
|
|
if (!kassert_warn_only ||
|
|
(kassert_log_panic_at > 0 &&
|
|
kassert_warnings >= kassert_log_panic_at)) {
|
|
va_start(ap, fmt);
|
|
vpanic(fmt, ap);
|
|
/* NORETURN */
|
|
}
|
|
#ifdef KTR
|
|
if (kassert_do_ktr)
|
|
CTR0(ktr_mask, buf);
|
|
#endif /* KTR */
|
|
/*
|
|
* log if we've not yet met the mute limit.
|
|
*/
|
|
if (kassert_do_log &&
|
|
(kassert_log_mute_at == 0 ||
|
|
kassert_warnings < kassert_log_mute_at)) {
|
|
static struct timeval lasterr;
|
|
static int curerr;
|
|
|
|
if (ppsratecheck(&lasterr, &curerr, kassert_log_pps_limit)) {
|
|
printf("KASSERT failed: %s\n", buf);
|
|
kdb_backtrace();
|
|
}
|
|
}
|
|
#ifdef KDB
|
|
if (kassert_do_kdb) {
|
|
kdb_enter(KDB_WHY_KASSERT, buf);
|
|
}
|
|
#endif
|
|
atomic_add_int(&kassert_warnings, 1);
|
|
}
|
|
#endif /* KASSERT_PANIC_OPTIONAL */
|
|
#endif
|
|
|
|
/*
|
|
* Panic is called on unresolvable fatal errors. It prints "panic: mesg",
|
|
* and then reboots. If we are called twice, then we avoid trying to sync
|
|
* the disks as this often leads to recursive panics.
|
|
*/
|
|
void
|
|
panic(const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
vpanic(fmt, ap);
|
|
}
|
|
|
|
void
|
|
vpanic(const char *fmt, va_list ap)
|
|
{
|
|
#ifdef SMP
|
|
cpuset_t other_cpus;
|
|
#endif
|
|
struct thread *td = curthread;
|
|
int bootopt, newpanic;
|
|
static char buf[256];
|
|
|
|
spinlock_enter();
|
|
|
|
#ifdef SMP
|
|
/*
|
|
* stop_cpus_hard(other_cpus) should prevent multiple CPUs from
|
|
* concurrently entering panic. Only the winner will proceed
|
|
* further.
|
|
*/
|
|
if (panicstr == NULL && !kdb_active) {
|
|
other_cpus = all_cpus;
|
|
CPU_CLR(PCPU_GET(cpuid), &other_cpus);
|
|
stop_cpus_hard(other_cpus);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Ensure that the scheduler is stopped while panicking, even if panic
|
|
* has been entered from kdb.
|
|
*/
|
|
td->td_stopsched = 1;
|
|
|
|
bootopt = RB_AUTOBOOT;
|
|
newpanic = 0;
|
|
if (panicstr)
|
|
bootopt |= RB_NOSYNC;
|
|
else {
|
|
bootopt |= RB_DUMP;
|
|
panicstr = fmt;
|
|
newpanic = 1;
|
|
}
|
|
|
|
if (newpanic) {
|
|
(void)vsnprintf(buf, sizeof(buf), fmt, ap);
|
|
panicstr = buf;
|
|
cngrab();
|
|
printf("panic: %s\n", buf);
|
|
} else {
|
|
printf("panic: ");
|
|
vprintf(fmt, ap);
|
|
printf("\n");
|
|
}
|
|
#ifdef SMP
|
|
printf("cpuid = %d\n", PCPU_GET(cpuid));
|
|
#endif
|
|
printf("time = %jd\n", (intmax_t )time_second);
|
|
#ifdef KDB
|
|
if ((newpanic || trace_all_panics) && trace_on_panic)
|
|
kdb_backtrace();
|
|
if (debugger_on_panic)
|
|
kdb_enter(KDB_WHY_PANIC, "panic");
|
|
#endif
|
|
/*thread_lock(td); */
|
|
td->td_flags |= TDF_INPANIC;
|
|
/* thread_unlock(td); */
|
|
if (!sync_on_panic)
|
|
bootopt |= RB_NOSYNC;
|
|
if (poweroff_on_panic)
|
|
bootopt |= RB_POWEROFF;
|
|
if (powercycle_on_panic)
|
|
bootopt |= RB_POWERCYCLE;
|
|
kern_reboot(bootopt);
|
|
}
|
|
|
|
/*
|
|
* Support for poweroff delay.
|
|
*
|
|
* Please note that setting this delay too short might power off your machine
|
|
* before the write cache on your hard disk has been flushed, leading to
|
|
* soft-updates inconsistencies.
|
|
*/
|
|
#ifndef POWEROFF_DELAY
|
|
# define POWEROFF_DELAY 5000
|
|
#endif
|
|
static int poweroff_delay = POWEROFF_DELAY;
|
|
|
|
SYSCTL_INT(_kern_shutdown, OID_AUTO, poweroff_delay, CTLFLAG_RW,
|
|
&poweroff_delay, 0, "Delay before poweroff to write disk caches (msec)");
|
|
|
|
static void
|
|
poweroff_wait(void *junk, int howto)
|
|
{
|
|
|
|
if ((howto & (RB_POWEROFF | RB_POWERCYCLE)) == 0 || poweroff_delay <= 0)
|
|
return;
|
|
DELAY(poweroff_delay * 1000);
|
|
}
|
|
|
|
/*
|
|
* Some system processes (e.g. syncer) need to be stopped at appropriate
|
|
* points in their main loops prior to a system shutdown, so that they
|
|
* won't interfere with the shutdown process (e.g. by holding a disk buf
|
|
* to cause sync to fail). For each of these system processes, register
|
|
* shutdown_kproc() as a handler for one of shutdown events.
|
|
*/
|
|
static int kproc_shutdown_wait = 60;
|
|
SYSCTL_INT(_kern_shutdown, OID_AUTO, kproc_shutdown_wait, CTLFLAG_RW,
|
|
&kproc_shutdown_wait, 0, "Max wait time (sec) to stop for each process");
|
|
|
|
void
|
|
kproc_shutdown(void *arg, int howto)
|
|
{
|
|
struct proc *p;
|
|
int error;
|
|
|
|
if (panicstr)
|
|
return;
|
|
|
|
p = (struct proc *)arg;
|
|
printf("Waiting (max %d seconds) for system process `%s' to stop... ",
|
|
kproc_shutdown_wait, p->p_comm);
|
|
error = kproc_suspend(p, kproc_shutdown_wait * hz);
|
|
|
|
if (error == EWOULDBLOCK)
|
|
printf("timed out\n");
|
|
else
|
|
printf("done\n");
|
|
}
|
|
|
|
void
|
|
kthread_shutdown(void *arg, int howto)
|
|
{
|
|
struct thread *td;
|
|
int error;
|
|
|
|
if (panicstr)
|
|
return;
|
|
|
|
td = (struct thread *)arg;
|
|
printf("Waiting (max %d seconds) for system thread `%s' to stop... ",
|
|
kproc_shutdown_wait, td->td_name);
|
|
error = kthread_suspend(td, kproc_shutdown_wait * hz);
|
|
|
|
if (error == EWOULDBLOCK)
|
|
printf("timed out\n");
|
|
else
|
|
printf("done\n");
|
|
}
|
|
|
|
static char dumpdevname[sizeof(((struct cdev*)NULL)->si_name)];
|
|
SYSCTL_STRING(_kern_shutdown, OID_AUTO, dumpdevname, CTLFLAG_RD,
|
|
dumpdevname, 0, "Device for kernel dumps");
|
|
|
|
static int _dump_append(struct dumperinfo *di, void *virtual,
|
|
vm_offset_t physical, size_t length);
|
|
|
|
#ifdef EKCD
|
|
static struct kerneldumpcrypto *
|
|
kerneldumpcrypto_create(size_t blocksize, uint8_t encryption,
|
|
const uint8_t *key, uint32_t encryptedkeysize, const uint8_t *encryptedkey)
|
|
{
|
|
struct kerneldumpcrypto *kdc;
|
|
struct kerneldumpkey *kdk;
|
|
uint32_t dumpkeysize;
|
|
|
|
dumpkeysize = roundup2(sizeof(*kdk) + encryptedkeysize, blocksize);
|
|
kdc = malloc(sizeof(*kdc) + dumpkeysize, M_EKCD, M_WAITOK | M_ZERO);
|
|
|
|
arc4rand(kdc->kdc_iv, sizeof(kdc->kdc_iv), 0);
|
|
|
|
kdc->kdc_encryption = encryption;
|
|
switch (kdc->kdc_encryption) {
|
|
case KERNELDUMP_ENC_AES_256_CBC:
|
|
if (rijndael_makeKey(&kdc->kdc_ki, DIR_ENCRYPT, 256, key) <= 0)
|
|
goto failed;
|
|
break;
|
|
default:
|
|
goto failed;
|
|
}
|
|
|
|
kdc->kdc_dumpkeysize = dumpkeysize;
|
|
kdk = kdc->kdc_dumpkey;
|
|
kdk->kdk_encryption = kdc->kdc_encryption;
|
|
memcpy(kdk->kdk_iv, kdc->kdc_iv, sizeof(kdk->kdk_iv));
|
|
kdk->kdk_encryptedkeysize = htod32(encryptedkeysize);
|
|
memcpy(kdk->kdk_encryptedkey, encryptedkey, encryptedkeysize);
|
|
|
|
return (kdc);
|
|
failed:
|
|
explicit_bzero(kdc, sizeof(*kdc) + dumpkeysize);
|
|
free(kdc, M_EKCD);
|
|
return (NULL);
|
|
}
|
|
|
|
static int
|
|
kerneldumpcrypto_init(struct kerneldumpcrypto *kdc)
|
|
{
|
|
uint8_t hash[SHA256_DIGEST_LENGTH];
|
|
SHA256_CTX ctx;
|
|
struct kerneldumpkey *kdk;
|
|
int error;
|
|
|
|
error = 0;
|
|
|
|
if (kdc == NULL)
|
|
return (0);
|
|
|
|
/*
|
|
* When a user enters ddb it can write a crash dump multiple times.
|
|
* Each time it should be encrypted using a different IV.
|
|
*/
|
|
SHA256_Init(&ctx);
|
|
SHA256_Update(&ctx, kdc->kdc_iv, sizeof(kdc->kdc_iv));
|
|
SHA256_Final(hash, &ctx);
|
|
bcopy(hash, kdc->kdc_iv, sizeof(kdc->kdc_iv));
|
|
|
|
switch (kdc->kdc_encryption) {
|
|
case KERNELDUMP_ENC_AES_256_CBC:
|
|
if (rijndael_cipherInit(&kdc->kdc_ci, MODE_CBC,
|
|
kdc->kdc_iv) <= 0) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
kdk = kdc->kdc_dumpkey;
|
|
memcpy(kdk->kdk_iv, kdc->kdc_iv, sizeof(kdk->kdk_iv));
|
|
out:
|
|
explicit_bzero(hash, sizeof(hash));
|
|
return (error);
|
|
}
|
|
|
|
static uint32_t
|
|
kerneldumpcrypto_dumpkeysize(const struct kerneldumpcrypto *kdc)
|
|
{
|
|
|
|
if (kdc == NULL)
|
|
return (0);
|
|
return (kdc->kdc_dumpkeysize);
|
|
}
|
|
#endif /* EKCD */
|
|
|
|
static struct kerneldumpcomp *
|
|
kerneldumpcomp_create(struct dumperinfo *di, uint8_t compression)
|
|
{
|
|
struct kerneldumpcomp *kdcomp;
|
|
int format;
|
|
|
|
switch (compression) {
|
|
case KERNELDUMP_COMP_GZIP:
|
|
format = COMPRESS_GZIP;
|
|
break;
|
|
case KERNELDUMP_COMP_ZSTD:
|
|
format = COMPRESS_ZSTD;
|
|
break;
|
|
default:
|
|
return (NULL);
|
|
}
|
|
|
|
kdcomp = malloc(sizeof(*kdcomp), M_DUMPER, M_WAITOK | M_ZERO);
|
|
kdcomp->kdc_format = compression;
|
|
kdcomp->kdc_stream = compressor_init(kerneldumpcomp_write_cb,
|
|
format, di->maxiosize, kerneldump_gzlevel, di);
|
|
if (kdcomp->kdc_stream == NULL) {
|
|
free(kdcomp, M_DUMPER);
|
|
return (NULL);
|
|
}
|
|
kdcomp->kdc_buf = malloc(di->maxiosize, M_DUMPER, M_WAITOK | M_NODUMP);
|
|
return (kdcomp);
|
|
}
|
|
|
|
static void
|
|
kerneldumpcomp_destroy(struct dumperinfo *di)
|
|
{
|
|
struct kerneldumpcomp *kdcomp;
|
|
|
|
kdcomp = di->kdcomp;
|
|
if (kdcomp == NULL)
|
|
return;
|
|
compressor_fini(kdcomp->kdc_stream);
|
|
explicit_bzero(kdcomp->kdc_buf, di->maxiosize);
|
|
free(kdcomp->kdc_buf, M_DUMPER);
|
|
free(kdcomp, M_DUMPER);
|
|
}
|
|
|
|
/* Registration of dumpers */
|
|
int
|
|
set_dumper(struct dumperinfo *di, const char *devname, struct thread *td,
|
|
uint8_t compression, uint8_t encryption, const uint8_t *key,
|
|
uint32_t encryptedkeysize, const uint8_t *encryptedkey)
|
|
{
|
|
size_t wantcopy;
|
|
int error;
|
|
|
|
error = priv_check(td, PRIV_SETDUMPER);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if (dumper.dumper != NULL)
|
|
return (EBUSY);
|
|
dumper = *di;
|
|
dumper.blockbuf = NULL;
|
|
dumper.kdcrypto = NULL;
|
|
dumper.kdcomp = NULL;
|
|
|
|
if (encryption != KERNELDUMP_ENC_NONE) {
|
|
#ifdef EKCD
|
|
dumper.kdcrypto = kerneldumpcrypto_create(di->blocksize,
|
|
encryption, key, encryptedkeysize, encryptedkey);
|
|
if (dumper.kdcrypto == NULL) {
|
|
error = EINVAL;
|
|
goto cleanup;
|
|
}
|
|
#else
|
|
error = EOPNOTSUPP;
|
|
goto cleanup;
|
|
#endif
|
|
}
|
|
|
|
wantcopy = strlcpy(dumpdevname, devname, sizeof(dumpdevname));
|
|
if (wantcopy >= sizeof(dumpdevname)) {
|
|
printf("set_dumper: device name truncated from '%s' -> '%s'\n",
|
|
devname, dumpdevname);
|
|
}
|
|
|
|
if (compression != KERNELDUMP_COMP_NONE) {
|
|
/*
|
|
* We currently can't support simultaneous encryption and
|
|
* compression.
|
|
*/
|
|
if (encryption != KERNELDUMP_ENC_NONE) {
|
|
error = EOPNOTSUPP;
|
|
goto cleanup;
|
|
}
|
|
dumper.kdcomp = kerneldumpcomp_create(&dumper, compression);
|
|
if (dumper.kdcomp == NULL) {
|
|
error = EINVAL;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
dumper.blockbuf = malloc(di->blocksize, M_DUMPER, M_WAITOK | M_ZERO);
|
|
return (0);
|
|
|
|
cleanup:
|
|
(void)clear_dumper(td);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
clear_dumper(struct thread *td)
|
|
{
|
|
int error;
|
|
|
|
error = priv_check(td, PRIV_SETDUMPER);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
#ifdef NETDUMP
|
|
netdump_mbuf_drain();
|
|
#endif
|
|
|
|
#ifdef EKCD
|
|
if (dumper.kdcrypto != NULL) {
|
|
explicit_bzero(dumper.kdcrypto, sizeof(*dumper.kdcrypto) +
|
|
dumper.kdcrypto->kdc_dumpkeysize);
|
|
free(dumper.kdcrypto, M_EKCD);
|
|
}
|
|
#endif
|
|
|
|
kerneldumpcomp_destroy(&dumper);
|
|
|
|
if (dumper.blockbuf != NULL) {
|
|
explicit_bzero(dumper.blockbuf, dumper.blocksize);
|
|
free(dumper.blockbuf, M_DUMPER);
|
|
}
|
|
explicit_bzero(&dumper, sizeof(dumper));
|
|
dumpdevname[0] = '\0';
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dump_check_bounds(struct dumperinfo *di, off_t offset, size_t length)
|
|
{
|
|
|
|
if (di->mediasize > 0 && length != 0 && (offset < di->mediaoffset ||
|
|
offset - di->mediaoffset + length > di->mediasize)) {
|
|
if (di->kdcomp != NULL && offset >= di->mediaoffset) {
|
|
printf(
|
|
"Compressed dump failed to fit in device boundaries.\n");
|
|
return (E2BIG);
|
|
}
|
|
|
|
printf("Attempt to write outside dump device boundaries.\n"
|
|
"offset(%jd), mediaoffset(%jd), length(%ju), mediasize(%jd).\n",
|
|
(intmax_t)offset, (intmax_t)di->mediaoffset,
|
|
(uintmax_t)length, (intmax_t)di->mediasize);
|
|
return (ENOSPC);
|
|
}
|
|
if (length % di->blocksize != 0) {
|
|
printf("Attempt to write partial block of length %ju.\n",
|
|
(uintmax_t)length);
|
|
return (EINVAL);
|
|
}
|
|
if (offset % di->blocksize != 0) {
|
|
printf("Attempt to write at unaligned offset %jd.\n",
|
|
(intmax_t)offset);
|
|
return (EINVAL);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifdef EKCD
|
|
static int
|
|
dump_encrypt(struct kerneldumpcrypto *kdc, uint8_t *buf, size_t size)
|
|
{
|
|
|
|
switch (kdc->kdc_encryption) {
|
|
case KERNELDUMP_ENC_AES_256_CBC:
|
|
if (rijndael_blockEncrypt(&kdc->kdc_ci, &kdc->kdc_ki, buf,
|
|
8 * size, buf) <= 0) {
|
|
return (EIO);
|
|
}
|
|
if (rijndael_cipherInit(&kdc->kdc_ci, MODE_CBC,
|
|
buf + size - 16 /* IV size for AES-256-CBC */) <= 0) {
|
|
return (EIO);
|
|
}
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* Encrypt data and call dumper. */
|
|
static int
|
|
dump_encrypted_write(struct dumperinfo *di, void *virtual,
|
|
vm_offset_t physical, off_t offset, size_t length)
|
|
{
|
|
static uint8_t buf[KERNELDUMP_BUFFER_SIZE];
|
|
struct kerneldumpcrypto *kdc;
|
|
int error;
|
|
size_t nbytes;
|
|
|
|
kdc = di->kdcrypto;
|
|
|
|
while (length > 0) {
|
|
nbytes = MIN(length, sizeof(buf));
|
|
bcopy(virtual, buf, nbytes);
|
|
|
|
if (dump_encrypt(kdc, buf, nbytes) != 0)
|
|
return (EIO);
|
|
|
|
error = dump_write(di, buf, physical, offset, nbytes);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
offset += nbytes;
|
|
virtual = (void *)((uint8_t *)virtual + nbytes);
|
|
length -= nbytes;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
#endif /* EKCD */
|
|
|
|
static int
|
|
kerneldumpcomp_write_cb(void *base, size_t length, off_t offset, void *arg)
|
|
{
|
|
struct dumperinfo *di;
|
|
size_t resid, rlength;
|
|
int error;
|
|
|
|
di = arg;
|
|
|
|
if (length % di->blocksize != 0) {
|
|
/*
|
|
* This must be the final write after flushing the compression
|
|
* stream. Write as many full blocks as possible and stash the
|
|
* residual data in the dumper's block buffer. It will be
|
|
* padded and written in dump_finish().
|
|
*/
|
|
rlength = rounddown(length, di->blocksize);
|
|
if (rlength != 0) {
|
|
error = _dump_append(di, base, 0, rlength);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
resid = length - rlength;
|
|
memmove(di->blockbuf, (uint8_t *)base + rlength, resid);
|
|
di->kdcomp->kdc_resid = resid;
|
|
return (EAGAIN);
|
|
}
|
|
return (_dump_append(di, base, 0, length));
|
|
}
|
|
|
|
/*
|
|
* Write kernel dump headers at the beginning and end of the dump extent.
|
|
* Write the kernel dump encryption key after the leading header if we were
|
|
* configured to do so.
|
|
*/
|
|
static int
|
|
dump_write_headers(struct dumperinfo *di, struct kerneldumpheader *kdh)
|
|
{
|
|
#ifdef EKCD
|
|
struct kerneldumpcrypto *kdc;
|
|
#endif
|
|
void *buf, *key;
|
|
size_t hdrsz;
|
|
uint64_t extent;
|
|
uint32_t keysize;
|
|
int error;
|
|
|
|
hdrsz = sizeof(*kdh);
|
|
if (hdrsz > di->blocksize)
|
|
return (ENOMEM);
|
|
|
|
#ifdef EKCD
|
|
kdc = di->kdcrypto;
|
|
key = kdc->kdc_dumpkey;
|
|
keysize = kerneldumpcrypto_dumpkeysize(kdc);
|
|
#else
|
|
key = NULL;
|
|
keysize = 0;
|
|
#endif
|
|
|
|
/*
|
|
* If the dump device has special handling for headers, let it take care
|
|
* of writing them out.
|
|
*/
|
|
if (di->dumper_hdr != NULL)
|
|
return (di->dumper_hdr(di, kdh, key, keysize));
|
|
|
|
if (hdrsz == di->blocksize)
|
|
buf = kdh;
|
|
else {
|
|
buf = di->blockbuf;
|
|
memset(buf, 0, di->blocksize);
|
|
memcpy(buf, kdh, hdrsz);
|
|
}
|
|
|
|
extent = dtoh64(kdh->dumpextent);
|
|
#ifdef EKCD
|
|
if (kdc != NULL) {
|
|
error = dump_write(di, kdc->kdc_dumpkey, 0,
|
|
di->mediaoffset + di->mediasize - di->blocksize - extent -
|
|
keysize, keysize);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
error = dump_write(di, buf, 0,
|
|
di->mediaoffset + di->mediasize - 2 * di->blocksize - extent -
|
|
keysize, di->blocksize);
|
|
if (error == 0)
|
|
error = dump_write(di, buf, 0, di->mediaoffset + di->mediasize -
|
|
di->blocksize, di->blocksize);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Don't touch the first SIZEOF_METADATA bytes on the dump device. This is to
|
|
* protect us from metadata and metadata from us.
|
|
*/
|
|
#define SIZEOF_METADATA (64 * 1024)
|
|
|
|
/*
|
|
* Do some preliminary setup for a kernel dump: initialize state for encryption,
|
|
* if requested, and make sure that we have enough space on the dump device.
|
|
*
|
|
* We set things up so that the dump ends before the last sector of the dump
|
|
* device, at which the trailing header is written.
|
|
*
|
|
* +-----------+------+-----+----------------------------+------+
|
|
* | | lhdr | key | ... kernel dump ... | thdr |
|
|
* +-----------+------+-----+----------------------------+------+
|
|
* 1 blk opt <------- dump extent --------> 1 blk
|
|
*
|
|
* Dumps written using dump_append() start at the beginning of the extent.
|
|
* Uncompressed dumps will use the entire extent, but compressed dumps typically
|
|
* will not. The true length of the dump is recorded in the leading and trailing
|
|
* headers once the dump has been completed.
|
|
*
|
|
* The dump device may provide a callback, in which case it will initialize
|
|
* dumpoff and take care of laying out the headers.
|
|
*/
|
|
int
|
|
dump_start(struct dumperinfo *di, struct kerneldumpheader *kdh)
|
|
{
|
|
uint64_t dumpextent, span;
|
|
uint32_t keysize;
|
|
int error;
|
|
|
|
#ifdef EKCD
|
|
error = kerneldumpcrypto_init(di->kdcrypto);
|
|
if (error != 0)
|
|
return (error);
|
|
keysize = kerneldumpcrypto_dumpkeysize(di->kdcrypto);
|
|
#else
|
|
error = 0;
|
|
keysize = 0;
|
|
#endif
|
|
|
|
if (di->dumper_start != NULL) {
|
|
error = di->dumper_start(di);
|
|
} else {
|
|
dumpextent = dtoh64(kdh->dumpextent);
|
|
span = SIZEOF_METADATA + dumpextent + 2 * di->blocksize +
|
|
keysize;
|
|
if (di->mediasize < span) {
|
|
if (di->kdcomp == NULL)
|
|
return (E2BIG);
|
|
|
|
/*
|
|
* We don't yet know how much space the compressed dump
|
|
* will occupy, so try to use the whole swap partition
|
|
* (minus the first 64KB) in the hope that the
|
|
* compressed dump will fit. If that doesn't turn out to
|
|
* be enough, the bounds checking in dump_write()
|
|
* will catch us and cause the dump to fail.
|
|
*/
|
|
dumpextent = di->mediasize - span + dumpextent;
|
|
kdh->dumpextent = htod64(dumpextent);
|
|
}
|
|
|
|
/*
|
|
* The offset at which to begin writing the dump.
|
|
*/
|
|
di->dumpoff = di->mediaoffset + di->mediasize - di->blocksize -
|
|
dumpextent;
|
|
}
|
|
di->origdumpoff = di->dumpoff;
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
_dump_append(struct dumperinfo *di, void *virtual, vm_offset_t physical,
|
|
size_t length)
|
|
{
|
|
int error;
|
|
|
|
#ifdef EKCD
|
|
if (di->kdcrypto != NULL)
|
|
error = dump_encrypted_write(di, virtual, physical, di->dumpoff,
|
|
length);
|
|
else
|
|
#endif
|
|
error = dump_write(di, virtual, physical, di->dumpoff, length);
|
|
if (error == 0)
|
|
di->dumpoff += length;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Write to the dump device starting at dumpoff. When compression is enabled,
|
|
* writes to the device will be performed using a callback that gets invoked
|
|
* when the compression stream's output buffer is full.
|
|
*/
|
|
int
|
|
dump_append(struct dumperinfo *di, void *virtual, vm_offset_t physical,
|
|
size_t length)
|
|
{
|
|
void *buf;
|
|
|
|
if (di->kdcomp != NULL) {
|
|
/* Bounce through a buffer to avoid CRC errors. */
|
|
if (length > di->maxiosize)
|
|
return (EINVAL);
|
|
buf = di->kdcomp->kdc_buf;
|
|
memmove(buf, virtual, length);
|
|
return (compressor_write(di->kdcomp->kdc_stream, buf, length));
|
|
}
|
|
return (_dump_append(di, virtual, physical, length));
|
|
}
|
|
|
|
/*
|
|
* Write to the dump device at the specified offset.
|
|
*/
|
|
int
|
|
dump_write(struct dumperinfo *di, void *virtual, vm_offset_t physical,
|
|
off_t offset, size_t length)
|
|
{
|
|
int error;
|
|
|
|
error = dump_check_bounds(di, offset, length);
|
|
if (error != 0)
|
|
return (error);
|
|
return (di->dumper(di->priv, virtual, physical, offset, length));
|
|
}
|
|
|
|
/*
|
|
* Perform kernel dump finalization: flush the compression stream, if necessary,
|
|
* write the leading and trailing kernel dump headers now that we know the true
|
|
* length of the dump, and optionally write the encryption key following the
|
|
* leading header.
|
|
*/
|
|
int
|
|
dump_finish(struct dumperinfo *di, struct kerneldumpheader *kdh)
|
|
{
|
|
int error;
|
|
|
|
if (di->kdcomp != NULL) {
|
|
error = compressor_flush(di->kdcomp->kdc_stream);
|
|
if (error == EAGAIN) {
|
|
/* We have residual data in di->blockbuf. */
|
|
error = dump_write(di, di->blockbuf, 0, di->dumpoff,
|
|
di->blocksize);
|
|
di->dumpoff += di->kdcomp->kdc_resid;
|
|
di->kdcomp->kdc_resid = 0;
|
|
}
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* We now know the size of the compressed dump, so update the
|
|
* header accordingly and recompute parity.
|
|
*/
|
|
kdh->dumplength = htod64(di->dumpoff - di->origdumpoff);
|
|
kdh->parity = 0;
|
|
kdh->parity = kerneldump_parity(kdh);
|
|
|
|
compressor_reset(di->kdcomp->kdc_stream);
|
|
}
|
|
|
|
error = dump_write_headers(di, kdh);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
(void)dump_write(di, NULL, 0, 0, 0);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
dump_init_header(const struct dumperinfo *di, struct kerneldumpheader *kdh,
|
|
char *magic, uint32_t archver, uint64_t dumplen)
|
|
{
|
|
size_t dstsize;
|
|
|
|
bzero(kdh, sizeof(*kdh));
|
|
strlcpy(kdh->magic, magic, sizeof(kdh->magic));
|
|
strlcpy(kdh->architecture, MACHINE_ARCH, sizeof(kdh->architecture));
|
|
kdh->version = htod32(KERNELDUMPVERSION);
|
|
kdh->architectureversion = htod32(archver);
|
|
kdh->dumplength = htod64(dumplen);
|
|
kdh->dumpextent = kdh->dumplength;
|
|
kdh->dumptime = htod64(time_second);
|
|
#ifdef EKCD
|
|
kdh->dumpkeysize = htod32(kerneldumpcrypto_dumpkeysize(di->kdcrypto));
|
|
#else
|
|
kdh->dumpkeysize = 0;
|
|
#endif
|
|
kdh->blocksize = htod32(di->blocksize);
|
|
strlcpy(kdh->hostname, prison0.pr_hostname, sizeof(kdh->hostname));
|
|
dstsize = sizeof(kdh->versionstring);
|
|
if (strlcpy(kdh->versionstring, version, dstsize) >= dstsize)
|
|
kdh->versionstring[dstsize - 2] = '\n';
|
|
if (panicstr != NULL)
|
|
strlcpy(kdh->panicstring, panicstr, sizeof(kdh->panicstring));
|
|
if (di->kdcomp != NULL)
|
|
kdh->compression = di->kdcomp->kdc_format;
|
|
kdh->parity = kerneldump_parity(kdh);
|
|
}
|
|
|
|
#ifdef DDB
|
|
DB_SHOW_COMMAND(panic, db_show_panic)
|
|
{
|
|
|
|
if (panicstr == NULL)
|
|
db_printf("panicstr not set\n");
|
|
else
|
|
db_printf("panic: %s\n", panicstr);
|
|
}
|
|
#endif
|