freebsd-dev/sys/netinet/ip_mroute.c
2002-06-26 21:00:53 +00:00

2258 lines
53 KiB
C

/*
* IP multicast forwarding procedures
*
* Written by David Waitzman, BBN Labs, August 1988.
* Modified by Steve Deering, Stanford, February 1989.
* Modified by Mark J. Steiglitz, Stanford, May, 1991
* Modified by Van Jacobson, LBL, January 1993
* Modified by Ajit Thyagarajan, PARC, August 1993
* Modified by Bill Fenner, PARC, April 1995
*
* MROUTING Revision: 3.5
* $FreeBSD$
*/
#include "opt_mrouting.h"
#include "opt_random_ip_id.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sockio.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/igmp.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/ip_encap.h>
#include <netinet/ip_mroute.h>
#include <netinet/ip_var.h>
#include <netinet/udp.h>
#include <machine/in_cksum.h>
#ifndef MROUTING
extern u_long _ip_mcast_src(int vifi);
extern int _ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
struct ip_moptions *imo);
extern int _ip_mrouter_done(void);
extern int _ip_mrouter_get(struct socket *so, struct sockopt *sopt);
extern int _ip_mrouter_set(struct socket *so, struct sockopt *sopt);
extern int _mrt_ioctl(int req, caddr_t data);
/*
* Dummy routines and globals used when multicast routing is not compiled in.
*/
struct socket *ip_mrouter = NULL;
u_int rsvpdebug = 0;
int
_ip_mrouter_set(so, sopt)
struct socket *so;
struct sockopt *sopt;
{
return(EOPNOTSUPP);
}
int (*ip_mrouter_set)(struct socket *, struct sockopt *) = _ip_mrouter_set;
int
_ip_mrouter_get(so, sopt)
struct socket *so;
struct sockopt *sopt;
{
return(EOPNOTSUPP);
}
int (*ip_mrouter_get)(struct socket *, struct sockopt *) = _ip_mrouter_get;
int
_ip_mrouter_done()
{
return(0);
}
int (*ip_mrouter_done)(void) = _ip_mrouter_done;
int
_ip_mforward(ip, ifp, m, imo)
struct ip *ip;
struct ifnet *ifp;
struct mbuf *m;
struct ip_moptions *imo;
{
return(0);
}
int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
struct ip_moptions *) = _ip_mforward;
int
_mrt_ioctl(int req, caddr_t data)
{
return EOPNOTSUPP;
}
int (*mrt_ioctl)(int, caddr_t) = _mrt_ioctl;
void
rsvp_input(m, off) /* XXX must fixup manually */
struct mbuf *m;
int off;
{
/* Can still get packets with rsvp_on = 0 if there is a local member
* of the group to which the RSVP packet is addressed. But in this
* case we want to throw the packet away.
*/
if (!rsvp_on) {
m_freem(m);
return;
}
if (ip_rsvpd != NULL) {
if (rsvpdebug)
printf("rsvp_input: Sending packet up old-style socket\n");
rip_input(m, off);
return;
}
/* Drop the packet */
m_freem(m);
}
int (*legal_vif_num)(int) = 0;
/*
* This should never be called, since IP_MULTICAST_VIF should fail, but
* just in case it does get called, the code a little lower in ip_output
* will assign the packet a local address.
*/
u_long
_ip_mcast_src(int vifi) { return INADDR_ANY; }
u_long (*ip_mcast_src)(int) = _ip_mcast_src;
int
ip_rsvp_vif_init(so, sopt)
struct socket *so;
struct sockopt *sopt;
{
return(EINVAL);
}
int
ip_rsvp_vif_done(so, sopt)
struct socket *so;
struct sockopt *sopt;
{
return(EINVAL);
}
void
ip_rsvp_force_done(so)
struct socket *so;
{
return;
}
#else /* MROUTING */
#define M_HASCL(m) ((m)->m_flags & M_EXT)
static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
#ifndef MROUTE_KLD
/* The socket used to communicate with the multicast routing daemon. */
struct socket *ip_mrouter = NULL;
#endif
#if defined(MROUTING) || defined(MROUTE_KLD)
static struct mrtstat mrtstat;
SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
&mrtstat, mrtstat, "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
#endif
static struct mfc *mfctable[MFCTBLSIZ];
static u_char nexpire[MFCTBLSIZ];
static struct vif viftable[MAXVIFS];
static u_int mrtdebug = 0; /* debug level */
#define DEBUG_MFC 0x02
#define DEBUG_FORWARD 0x04
#define DEBUG_EXPIRE 0x08
#define DEBUG_XMIT 0x10
static u_int tbfdebug = 0; /* tbf debug level */
static u_int rsvpdebug = 0; /* rsvp debug level */
static struct callout_handle expire_upcalls_ch;
#define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
#define UPCALL_EXPIRE 6 /* number of timeouts */
/*
* Define the token bucket filter structures
* tbftable -> each vif has one of these for storing info
*/
static struct tbf tbftable[MAXVIFS];
#define TBF_REPROCESS (hz / 100) /* 100x / second */
/*
* 'Interfaces' associated with decapsulator (so we can tell
* packets that went through it from ones that get reflected
* by a broken gateway). These interfaces are never linked into
* the system ifnet list & no routes point to them. I.e., packets
* can't be sent this way. They only exist as a placeholder for
* multicast source verification.
*/
static struct ifnet multicast_decap_if[MAXVIFS];
#define ENCAP_TTL 64
#define ENCAP_PROTO IPPROTO_IPIP /* 4 */
/* prototype IP hdr for encapsulated packets */
static struct ip multicast_encap_iphdr = {
#if BYTE_ORDER == LITTLE_ENDIAN
sizeof(struct ip) >> 2, IPVERSION,
#else
IPVERSION, sizeof(struct ip) >> 2,
#endif
0, /* tos */
sizeof(struct ip), /* total length */
0, /* id */
0, /* frag offset */
ENCAP_TTL, ENCAP_PROTO,
0, /* checksum */
};
/*
* Private variables.
*/
static vifi_t numvifs = 0;
static const struct encaptab *encap_cookie = NULL;
/*
* one-back cache used by mroute_encapcheck to locate a tunnel's vif
* given a datagram's src ip address.
*/
static u_long last_encap_src;
static struct vif *last_encap_vif;
static u_long X_ip_mcast_src(int vifi);
static int X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo);
static int X_ip_mrouter_done(void);
static int X_ip_mrouter_get(struct socket *so, struct sockopt *m);
static int X_ip_mrouter_set(struct socket *so, struct sockopt *m);
static int X_legal_vif_num(int vif);
static int X_mrt_ioctl(int cmd, caddr_t data);
static int get_sg_cnt(struct sioc_sg_req *);
static int get_vif_cnt(struct sioc_vif_req *);
static int ip_mrouter_init(struct socket *, int);
static int add_vif(struct vifctl *);
static int del_vif(vifi_t);
static int add_mfc(struct mfcctl *);
static int del_mfc(struct mfcctl *);
static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
static int set_assert(int);
static void expire_upcalls(void *);
static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *,
vifi_t);
static void phyint_send(struct ip *, struct vif *, struct mbuf *);
static void encap_send(struct ip *, struct vif *, struct mbuf *);
static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
static void tbf_queue(struct vif *, struct mbuf *);
static void tbf_process_q(struct vif *);
static void tbf_reprocess_q(void *);
static int tbf_dq_sel(struct vif *, struct ip *);
static void tbf_send_packet(struct vif *, struct mbuf *);
static void tbf_update_tokens(struct vif *);
static int priority(struct vif *, struct ip *);
/*
* whether or not special PIM assert processing is enabled.
*/
static int pim_assert;
/*
* Rate limit for assert notification messages, in usec
*/
#define ASSERT_MSG_TIME 3000000
/*
* Hash function for a source, group entry
*/
#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
((g) >> 20) ^ ((g) >> 10) ^ (g))
/*
* Find a route for a given origin IP address and Multicast group address
* Type of service parameter to be added in the future!!!
*/
#define MFCFIND(o, g, rt) { \
register struct mfc *_rt = mfctable[MFCHASH(o,g)]; \
rt = NULL; \
++mrtstat.mrts_mfc_lookups; \
while (_rt) { \
if ((_rt->mfc_origin.s_addr == o) && \
(_rt->mfc_mcastgrp.s_addr == g) && \
(_rt->mfc_stall == NULL)) { \
rt = _rt; \
break; \
} \
_rt = _rt->mfc_next; \
} \
if (rt == NULL) { \
++mrtstat.mrts_mfc_misses; \
} \
}
/*
* Macros to compute elapsed time efficiently
* Borrowed from Van Jacobson's scheduling code
*/
#define TV_DELTA(a, b, delta) { \
register int xxs; \
\
delta = (a).tv_usec - (b).tv_usec; \
if ((xxs = (a).tv_sec - (b).tv_sec)) { \
switch (xxs) { \
case 2: \
delta += 1000000; \
/* fall through */ \
case 1: \
delta += 1000000; \
break; \
default: \
delta += (1000000 * xxs); \
} \
} \
}
#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
(a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
#ifdef UPCALL_TIMING
u_long upcall_data[51];
static void collate(struct timeval *);
#endif /* UPCALL_TIMING */
/*
* Handle MRT setsockopt commands to modify the multicast routing tables.
*/
static int
X_ip_mrouter_set(so, sopt)
struct socket *so;
struct sockopt *sopt;
{
int error, optval;
vifi_t vifi;
struct vifctl vifc;
struct mfcctl mfc;
if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
return (EPERM);
error = 0;
switch (sopt->sopt_name) {
case MRT_INIT:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
break;
error = ip_mrouter_init(so, optval);
break;
case MRT_DONE:
error = ip_mrouter_done();
break;
case MRT_ADD_VIF:
error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
if (error)
break;
error = add_vif(&vifc);
break;
case MRT_DEL_VIF:
error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
if (error)
break;
error = del_vif(vifi);
break;
case MRT_ADD_MFC:
case MRT_DEL_MFC:
error = sooptcopyin(sopt, &mfc, sizeof mfc, sizeof mfc);
if (error)
break;
if (sopt->sopt_name == MRT_ADD_MFC)
error = add_mfc(&mfc);
else
error = del_mfc(&mfc);
break;
case MRT_ASSERT:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
break;
set_assert(optval);
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
#ifndef MROUTE_KLD
int (*ip_mrouter_set)(struct socket *, struct sockopt *) = X_ip_mrouter_set;
#endif
/*
* Handle MRT getsockopt commands
*/
static int
X_ip_mrouter_get(so, sopt)
struct socket *so;
struct sockopt *sopt;
{
int error;
static int version = 0x0305; /* !!! why is this here? XXX */
switch (sopt->sopt_name) {
case MRT_VERSION:
error = sooptcopyout(sopt, &version, sizeof version);
break;
case MRT_ASSERT:
error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
#ifndef MROUTE_KLD
int (*ip_mrouter_get)(struct socket *, struct sockopt *) = X_ip_mrouter_get;
#endif
/*
* Handle ioctl commands to obtain information from the cache
*/
static int
X_mrt_ioctl(cmd, data)
int cmd;
caddr_t data;
{
int error = 0;
switch (cmd) {
case (SIOCGETVIFCNT):
return (get_vif_cnt((struct sioc_vif_req *)data));
break;
case (SIOCGETSGCNT):
return (get_sg_cnt((struct sioc_sg_req *)data));
break;
default:
return (EINVAL);
break;
}
return error;
}
#ifndef MROUTE_KLD
int (*mrt_ioctl)(int, caddr_t) = X_mrt_ioctl;
#endif
/*
* returns the packet, byte, rpf-failure count for the source group provided
*/
static int
get_sg_cnt(req)
register struct sioc_sg_req *req;
{
register struct mfc *rt;
int s;
s = splnet();
MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
splx(s);
if (rt != NULL) {
req->pktcnt = rt->mfc_pkt_cnt;
req->bytecnt = rt->mfc_byte_cnt;
req->wrong_if = rt->mfc_wrong_if;
} else
req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
return 0;
}
/*
* returns the input and output packet and byte counts on the vif provided
*/
static int
get_vif_cnt(req)
register struct sioc_vif_req *req;
{
register vifi_t vifi = req->vifi;
if (vifi >= numvifs) return EINVAL;
req->icount = viftable[vifi].v_pkt_in;
req->ocount = viftable[vifi].v_pkt_out;
req->ibytes = viftable[vifi].v_bytes_in;
req->obytes = viftable[vifi].v_bytes_out;
return 0;
}
/*
* Enable multicast routing
*/
static int
ip_mrouter_init(so, version)
struct socket *so;
int version;
{
if (mrtdebug)
log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
so->so_type, so->so_proto->pr_protocol);
if (so->so_type != SOCK_RAW ||
so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP;
if (version != 1)
return ENOPROTOOPT;
if (ip_mrouter != NULL) return EADDRINUSE;
ip_mrouter = so;
bzero((caddr_t)mfctable, sizeof(mfctable));
bzero((caddr_t)nexpire, sizeof(nexpire));
pim_assert = 0;
expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
if (mrtdebug)
log(LOG_DEBUG, "ip_mrouter_init\n");
return 0;
}
/*
* Disable multicast routing
*/
static int
X_ip_mrouter_done()
{
vifi_t vifi;
int i;
struct ifnet *ifp;
struct ifreq ifr;
struct mfc *rt;
struct rtdetq *rte;
int s;
s = splnet();
/*
* For each phyint in use, disable promiscuous reception of all IP
* multicasts.
*/
for (vifi = 0; vifi < numvifs; vifi++) {
if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
!(viftable[vifi].v_flags & VIFF_TUNNEL)) {
((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr
= INADDR_ANY;
ifp = viftable[vifi].v_ifp;
if_allmulti(ifp, 0);
}
}
bzero((caddr_t)tbftable, sizeof(tbftable));
bzero((caddr_t)viftable, sizeof(viftable));
numvifs = 0;
pim_assert = 0;
untimeout(expire_upcalls, (caddr_t)NULL, expire_upcalls_ch);
/*
* Free all multicast forwarding cache entries.
*/
for (i = 0; i < MFCTBLSIZ; i++) {
for (rt = mfctable[i]; rt != NULL; ) {
struct mfc *nr = rt->mfc_next;
for (rte = rt->mfc_stall; rte != NULL; ) {
struct rtdetq *n = rte->next;
m_freem(rte->m);
free(rte, M_MRTABLE);
rte = n;
}
free(rt, M_MRTABLE);
rt = nr;
}
}
bzero((caddr_t)mfctable, sizeof(mfctable));
/*
* Reset de-encapsulation cache
*/
last_encap_src = 0;
last_encap_vif = NULL;
if (encap_cookie) {
encap_detach(encap_cookie);
encap_cookie = NULL;
}
ip_mrouter = NULL;
splx(s);
if (mrtdebug)
log(LOG_DEBUG, "ip_mrouter_done\n");
return 0;
}
#ifndef MROUTE_KLD
int (*ip_mrouter_done)(void) = X_ip_mrouter_done;
#endif
/*
* Set PIM assert processing global
*/
static int
set_assert(i)
int i;
{
if ((i != 1) && (i != 0))
return EINVAL;
pim_assert = i;
return 0;
}
/*
* Decide if a packet is from a tunnelled peer.
* Return 0 if not, 64 if so.
*/
static int
mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
{
struct ip *ip = mtod(m, struct ip *);
int hlen = ip->ip_hl << 2;
register struct vif *vifp;
/*
* don't claim the packet if it's not to a multicast destination or if
* we don't have an encapsulating tunnel with the source.
* Note: This code assumes that the remote site IP address
* uniquely identifies the tunnel (i.e., that this site has
* at most one tunnel with the remote site).
*/
if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) {
return 0;
}
if (ip->ip_src.s_addr != last_encap_src) {
register struct vif *vife;
vifp = viftable;
vife = vifp + numvifs;
last_encap_src = ip->ip_src.s_addr;
last_encap_vif = 0;
for ( ; vifp < vife; ++vifp)
if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
== VIFF_TUNNEL)
last_encap_vif = vifp;
break;
}
}
if ((vifp = last_encap_vif) == 0) {
last_encap_src = 0;
return 0;
}
return 64;
}
/*
* De-encapsulate a packet and feed it back through ip input (this
* routine is called whenever IP gets a packet that mroute_encap_func()
* claimed).
*/
static void
mroute_encap_input(struct mbuf *m, int off)
{
struct ip *ip = mtod(m, struct ip *);
int hlen = ip->ip_hl << 2;
if (hlen > sizeof(struct ip))
ip_stripoptions(m, (struct mbuf *) 0);
m->m_data += sizeof(struct ip);
m->m_len -= sizeof(struct ip);
m->m_pkthdr.len -= sizeof(struct ip);
m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
(void) IF_HANDOFF(&ipintrq, m, NULL);
/*
* normally we would need a "schednetisr(NETISR_IP)"
* here but we were called by ip_input and it is going
* to loop back & try to dequeue the packet we just
* queued as soon as we return so we avoid the
* unnecessary software interrrupt.
*/
}
extern struct domain inetdomain;
static struct protosw mroute_encap_protosw =
{ SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR,
mroute_encap_input, 0, 0, rip_ctloutput,
0,
0, 0, 0, 0,
&rip_usrreqs
};
/*
* Add a vif to the vif table
*/
static int
add_vif(vifcp)
register struct vifctl *vifcp;
{
register struct vif *vifp = viftable + vifcp->vifc_vifi;
static struct sockaddr_in sin = {sizeof sin, AF_INET};
struct ifaddr *ifa;
struct ifnet *ifp;
int error, s;
struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
if (vifcp->vifc_vifi >= MAXVIFS) return EINVAL;
if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE;
/* Find the interface with an address in AF_INET family */
sin.sin_addr = vifcp->vifc_lcl_addr;
ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
if (ifa == 0) return EADDRNOTAVAIL;
ifp = ifa->ifa_ifp;
if (vifcp->vifc_flags & VIFF_TUNNEL) {
if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
/*
* An encapsulating tunnel is wanted. Tell
* mroute_encap_input() to start paying attention
* to encapsulated packets.
*/
if (encap_cookie == NULL) {
encap_cookie = encap_attach_func(AF_INET, -1,
mroute_encapcheck,
(struct protosw *)&mroute_encap_protosw, NULL);
if (encap_cookie == NULL) {
printf("ip_mroute: unable to attach encap\n");
return (EIO); /* XXX */
}
for (s = 0; s < MAXVIFS; ++s) {
multicast_decap_if[s].if_name = "mdecap";
multicast_decap_if[s].if_unit = s;
}
}
/*
* Set interface to fake encapsulator interface
*/
ifp = &multicast_decap_if[vifcp->vifc_vifi];
/*
* Prepare cached route entry
*/
bzero(&vifp->v_route, sizeof(vifp->v_route));
} else {
log(LOG_ERR, "source routed tunnels not supported\n");
return EOPNOTSUPP;
}
} else {
/* Make sure the interface supports multicast */
if ((ifp->if_flags & IFF_MULTICAST) == 0)
return EOPNOTSUPP;
/* Enable promiscuous reception of all IP multicasts from the if */
s = splnet();
error = if_allmulti(ifp, 1);
splx(s);
if (error)
return error;
}
s = splnet();
/* define parameters for the tbf structure */
vifp->v_tbf = v_tbf;
GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
vifp->v_tbf->tbf_n_tok = 0;
vifp->v_tbf->tbf_q_len = 0;
vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
vifp->v_flags = vifcp->vifc_flags;
vifp->v_threshold = vifcp->vifc_threshold;
vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
vifp->v_ifp = ifp;
/* scaling up here allows division by 1024 in critical code */
vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
vifp->v_rsvp_on = 0;
vifp->v_rsvpd = NULL;
/* initialize per vif pkt counters */
vifp->v_pkt_in = 0;
vifp->v_pkt_out = 0;
vifp->v_bytes_in = 0;
vifp->v_bytes_out = 0;
splx(s);
/* Adjust numvifs up if the vifi is higher than numvifs */
if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
if (mrtdebug)
log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
vifcp->vifc_vifi,
(u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
(vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
(u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
vifcp->vifc_threshold,
vifcp->vifc_rate_limit);
return 0;
}
/*
* Delete a vif from the vif table
*/
static int
del_vif(vifi)
vifi_t vifi;
{
register struct vif *vifp = &viftable[vifi];
register struct mbuf *m;
struct ifnet *ifp;
struct ifreq ifr;
int s;
if (vifi >= numvifs) return EINVAL;
if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL;
s = splnet();
if (!(vifp->v_flags & VIFF_TUNNEL)) {
((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
ifp = vifp->v_ifp;
if_allmulti(ifp, 0);
}
if (vifp == last_encap_vif) {
last_encap_vif = 0;
last_encap_src = 0;
}
/*
* Free packets queued at the interface
*/
while (vifp->v_tbf->tbf_q) {
m = vifp->v_tbf->tbf_q;
vifp->v_tbf->tbf_q = m->m_act;
m_freem(m);
}
bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
bzero((caddr_t)vifp, sizeof (*vifp));
if (mrtdebug)
log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
/* Adjust numvifs down */
for (vifi = numvifs; vifi > 0; vifi--)
if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break;
numvifs = vifi;
splx(s);
return 0;
}
/*
* Add an mfc entry
*/
static int
add_mfc(mfccp)
struct mfcctl *mfccp;
{
struct mfc *rt;
u_long hash;
struct rtdetq *rte;
register u_short nstl;
int s;
int i;
MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
/* If an entry already exists, just update the fields */
if (rt) {
if (mrtdebug & DEBUG_MFC)
log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
(u_long)ntohl(mfccp->mfcc_origin.s_addr),
(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
mfccp->mfcc_parent);
s = splnet();
rt->mfc_parent = mfccp->mfcc_parent;
for (i = 0; i < numvifs; i++)
rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
splx(s);
return 0;
}
/*
* Find the entry for which the upcall was made and update
*/
s = splnet();
hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
(rt->mfc_stall != NULL)) {
if (nstl++)
log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
"multiple kernel entries",
(u_long)ntohl(mfccp->mfcc_origin.s_addr),
(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
mfccp->mfcc_parent, (void *)rt->mfc_stall);
if (mrtdebug & DEBUG_MFC)
log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
(u_long)ntohl(mfccp->mfcc_origin.s_addr),
(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
mfccp->mfcc_parent, (void *)rt->mfc_stall);
rt->mfc_origin = mfccp->mfcc_origin;
rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
rt->mfc_parent = mfccp->mfcc_parent;
for (i = 0; i < numvifs; i++)
rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
/* initialize pkt counters per src-grp */
rt->mfc_pkt_cnt = 0;
rt->mfc_byte_cnt = 0;
rt->mfc_wrong_if = 0;
rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
rt->mfc_expire = 0; /* Don't clean this guy up */
nexpire[hash]--;
/* free packets Qed at the end of this entry */
for (rte = rt->mfc_stall; rte != NULL; ) {
struct rtdetq *n = rte->next;
ip_mdq(rte->m, rte->ifp, rt, -1);
m_freem(rte->m);
#ifdef UPCALL_TIMING
collate(&(rte->t));
#endif /* UPCALL_TIMING */
free(rte, M_MRTABLE);
rte = n;
}
rt->mfc_stall = NULL;
}
}
/*
* It is possible that an entry is being inserted without an upcall
*/
if (nstl == 0) {
if (mrtdebug & DEBUG_MFC)
log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
mfccp->mfcc_parent);
for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
rt->mfc_origin = mfccp->mfcc_origin;
rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
rt->mfc_parent = mfccp->mfcc_parent;
for (i = 0; i < numvifs; i++)
rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
/* initialize pkt counters per src-grp */
rt->mfc_pkt_cnt = 0;
rt->mfc_byte_cnt = 0;
rt->mfc_wrong_if = 0;
rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
if (rt->mfc_expire)
nexpire[hash]--;
rt->mfc_expire = 0;
}
}
if (rt == NULL) {
/* no upcall, so make a new entry */
rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
if (rt == NULL) {
splx(s);
return ENOBUFS;
}
/* insert new entry at head of hash chain */
rt->mfc_origin = mfccp->mfcc_origin;
rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
rt->mfc_parent = mfccp->mfcc_parent;
for (i = 0; i < numvifs; i++)
rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
/* initialize pkt counters per src-grp */
rt->mfc_pkt_cnt = 0;
rt->mfc_byte_cnt = 0;
rt->mfc_wrong_if = 0;
rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
rt->mfc_expire = 0;
rt->mfc_stall = NULL;
/* link into table */
rt->mfc_next = mfctable[hash];
mfctable[hash] = rt;
}
}
splx(s);
return 0;
}
#ifdef UPCALL_TIMING
/*
* collect delay statistics on the upcalls
*/
static void collate(t)
register struct timeval *t;
{
register u_long d;
register struct timeval tp;
register u_long delta;
GET_TIME(tp);
if (TV_LT(*t, tp))
{
TV_DELTA(tp, *t, delta);
d = delta >> 10;
if (d > 50)
d = 50;
++upcall_data[d];
}
}
#endif /* UPCALL_TIMING */
/*
* Delete an mfc entry
*/
static int
del_mfc(mfccp)
struct mfcctl *mfccp;
{
struct in_addr origin;
struct in_addr mcastgrp;
struct mfc *rt;
struct mfc **nptr;
u_long hash;
int s;
origin = mfccp->mfcc_origin;
mcastgrp = mfccp->mfcc_mcastgrp;
hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
if (mrtdebug & DEBUG_MFC)
log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
(u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
s = splnet();
nptr = &mfctable[hash];
while ((rt = *nptr) != NULL) {
if (origin.s_addr == rt->mfc_origin.s_addr &&
mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
rt->mfc_stall == NULL)
break;
nptr = &rt->mfc_next;
}
if (rt == NULL) {
splx(s);
return EADDRNOTAVAIL;
}
*nptr = rt->mfc_next;
free(rt, M_MRTABLE);
splx(s);
return 0;
}
/*
* Send a message to mrouted on the multicast routing socket
*/
static int
socket_send(s, mm, src)
struct socket *s;
struct mbuf *mm;
struct sockaddr_in *src;
{
if (s) {
if (sbappendaddr(&s->so_rcv,
(struct sockaddr *)src,
mm, (struct mbuf *)0) != 0) {
sorwakeup(s);
return 0;
}
}
m_freem(mm);
return -1;
}
/*
* IP multicast forwarding function. This function assumes that the packet
* pointed to by "ip" has arrived on (or is about to be sent to) the interface
* pointed to by "ifp", and the packet is to be relayed to other networks
* that have members of the packet's destination IP multicast group.
*
* The packet is returned unscathed to the caller, unless it is
* erroneous, in which case a non-zero return value tells the caller to
* discard it.
*/
#define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
static int
X_ip_mforward(ip, ifp, m, imo)
register struct ip *ip;
struct ifnet *ifp;
struct mbuf *m;
struct ip_moptions *imo;
{
register struct mfc *rt;
register u_char *ipoptions;
static struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
static int srctun = 0;
register struct mbuf *mm;
int s;
vifi_t vifi;
struct vif *vifp;
if (mrtdebug & DEBUG_FORWARD)
log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
(u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
(void *)ifp);
if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
(ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
/*
* Packet arrived via a physical interface or
* an encapsulated tunnel.
*/
} else {
/*
* Packet arrived through a source-route tunnel.
* Source-route tunnels are no longer supported.
*/
if ((srctun++ % 1000) == 0)
log(LOG_ERR,
"ip_mforward: received source-routed packet from %lx\n",
(u_long)ntohl(ip->ip_src.s_addr));
return 1;
}
if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) {
if (ip->ip_ttl < 255)
ip->ip_ttl++; /* compensate for -1 in *_send routines */
if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
vifp = viftable + vifi;
printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n",
(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
vifi,
(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
}
return (ip_mdq(m, ifp, NULL, vifi));
}
if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
if(!imo)
printf("In fact, no options were specified at all\n");
}
/*
* Don't forward a packet with time-to-live of zero or one,
* or a packet destined to a local-only group.
*/
if (ip->ip_ttl <= 1 ||
ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
return 0;
/*
* Determine forwarding vifs from the forwarding cache table
*/
s = splnet();
MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
/* Entry exists, so forward if necessary */
if (rt != NULL) {
splx(s);
return (ip_mdq(m, ifp, rt, -1));
} else {
/*
* If we don't have a route for packet's origin,
* Make a copy of the packet &
* send message to routing daemon
*/
register struct mbuf *mb0;
register struct rtdetq *rte;
register u_long hash;
int hlen = ip->ip_hl << 2;
#ifdef UPCALL_TIMING
struct timeval tp;
GET_TIME(tp);
#endif
mrtstat.mrts_no_route++;
if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
(u_long)ntohl(ip->ip_src.s_addr),
(u_long)ntohl(ip->ip_dst.s_addr));
/*
* Allocate mbufs early so that we don't do extra work if we are
* just going to fail anyway. Make sure to pullup the header so
* that other people can't step on it.
*/
rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
if (rte == NULL) {
splx(s);
return ENOBUFS;
}
mb0 = m_copy(m, 0, M_COPYALL);
if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
mb0 = m_pullup(mb0, hlen);
if (mb0 == NULL) {
free(rte, M_MRTABLE);
splx(s);
return ENOBUFS;
}
/* is there an upcall waiting for this packet? */
hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
(ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
(rt->mfc_stall != NULL))
break;
}
if (rt == NULL) {
int i;
struct igmpmsg *im;
/* no upcall, so make a new entry */
rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
if (rt == NULL) {
free(rte, M_MRTABLE);
m_freem(mb0);
splx(s);
return ENOBUFS;
}
/* Make a copy of the header to send to the user level process */
mm = m_copy(mb0, 0, hlen);
if (mm == NULL) {
free(rte, M_MRTABLE);
m_freem(mb0);
free(rt, M_MRTABLE);
splx(s);
return ENOBUFS;
}
/*
* Send message to routing daemon to install
* a route into the kernel table
*/
k_igmpsrc.sin_addr = ip->ip_src;
im = mtod(mm, struct igmpmsg *);
im->im_msgtype = IGMPMSG_NOCACHE;
im->im_mbz = 0;
mrtstat.mrts_upcalls++;
if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
++mrtstat.mrts_upq_sockfull;
free(rte, M_MRTABLE);
m_freem(mb0);
free(rt, M_MRTABLE);
splx(s);
return ENOBUFS;
}
/* insert new entry at head of hash chain */
rt->mfc_origin.s_addr = ip->ip_src.s_addr;
rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr;
rt->mfc_expire = UPCALL_EXPIRE;
nexpire[hash]++;
for (i = 0; i < numvifs; i++)
rt->mfc_ttls[i] = 0;
rt->mfc_parent = -1;
/* link into table */
rt->mfc_next = mfctable[hash];
mfctable[hash] = rt;
rt->mfc_stall = rte;
} else {
/* determine if q has overflowed */
int npkts = 0;
struct rtdetq **p;
for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
npkts++;
if (npkts > MAX_UPQ) {
mrtstat.mrts_upq_ovflw++;
free(rte, M_MRTABLE);
m_freem(mb0);
splx(s);
return 0;
}
/* Add this entry to the end of the queue */
*p = rte;
}
rte->m = mb0;
rte->ifp = ifp;
#ifdef UPCALL_TIMING
rte->t = tp;
#endif
rte->next = NULL;
splx(s);
return 0;
}
}
#ifndef MROUTE_KLD
int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
struct ip_moptions *) = X_ip_mforward;
#endif
/*
* Clean up the cache entry if upcall is not serviced
*/
static void
expire_upcalls(void *unused)
{
struct rtdetq *rte;
struct mfc *mfc, **nptr;
int i;
int s;
s = splnet();
for (i = 0; i < MFCTBLSIZ; i++) {
if (nexpire[i] == 0)
continue;
nptr = &mfctable[i];
for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
/*
* Skip real cache entries
* Make sure it wasn't marked to not expire (shouldn't happen)
* If it expires now
*/
if (mfc->mfc_stall != NULL &&
mfc->mfc_expire != 0 &&
--mfc->mfc_expire == 0) {
if (mrtdebug & DEBUG_EXPIRE)
log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
(u_long)ntohl(mfc->mfc_origin.s_addr),
(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
/*
* drop all the packets
* free the mbuf with the pkt, if, timing info
*/
for (rte = mfc->mfc_stall; rte; ) {
struct rtdetq *n = rte->next;
m_freem(rte->m);
free(rte, M_MRTABLE);
rte = n;
}
++mrtstat.mrts_cache_cleanups;
nexpire[i]--;
*nptr = mfc->mfc_next;
free(mfc, M_MRTABLE);
} else {
nptr = &mfc->mfc_next;
}
}
}
splx(s);
expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
}
/*
* Packet forwarding routine once entry in the cache is made
*/
static int
ip_mdq(m, ifp, rt, xmt_vif)
register struct mbuf *m;
register struct ifnet *ifp;
register struct mfc *rt;
register vifi_t xmt_vif;
{
register struct ip *ip = mtod(m, struct ip *);
register vifi_t vifi;
register struct vif *vifp;
register int plen = ip->ip_len;
/*
* Macro to send packet on vif. Since RSVP packets don't get counted on
* input, they shouldn't get counted on output, so statistics keeping is
* separate.
*/
#define MC_SEND(ip,vifp,m) { \
if ((vifp)->v_flags & VIFF_TUNNEL) \
encap_send((ip), (vifp), (m)); \
else \
phyint_send((ip), (vifp), (m)); \
}
/*
* If xmt_vif is not -1, send on only the requested vif.
*
* (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
*/
if (xmt_vif < numvifs) {
MC_SEND(ip, viftable + xmt_vif, m);
return 1;
}
/*
* Don't forward if it didn't arrive from the parent vif for its origin.
*/
vifi = rt->mfc_parent;
if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
/* came in the wrong interface */
if (mrtdebug & DEBUG_FORWARD)
log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
++mrtstat.mrts_wrong_if;
++rt->mfc_wrong_if;
/*
* If we are doing PIM assert processing, and we are forwarding
* packets on this interface, and it is a broadcast medium
* interface (and not a tunnel), send a message to the routing daemon.
*/
if (pim_assert && rt->mfc_ttls[vifi] &&
(ifp->if_flags & IFF_BROADCAST) &&
!(viftable[vifi].v_flags & VIFF_TUNNEL)) {
struct sockaddr_in k_igmpsrc;
struct mbuf *mm;
struct igmpmsg *im;
int hlen = ip->ip_hl << 2;
struct timeval now;
register u_long delta;
GET_TIME(now);
TV_DELTA(rt->mfc_last_assert, now, delta);
if (delta > ASSERT_MSG_TIME) {
mm = m_copy(m, 0, hlen);
if (mm && (M_HASCL(mm) || mm->m_len < hlen))
mm = m_pullup(mm, hlen);
if (mm == NULL) {
return ENOBUFS;
}
rt->mfc_last_assert = now;
im = mtod(mm, struct igmpmsg *);
im->im_msgtype = IGMPMSG_WRONGVIF;
im->im_mbz = 0;
im->im_vif = vifi;
k_igmpsrc.sin_addr = im->im_src;
socket_send(ip_mrouter, mm, &k_igmpsrc);
}
}
return 0;
}
/* If I sourced this packet, it counts as output, else it was input. */
if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
viftable[vifi].v_pkt_out++;
viftable[vifi].v_bytes_out += plen;
} else {
viftable[vifi].v_pkt_in++;
viftable[vifi].v_bytes_in += plen;
}
rt->mfc_pkt_cnt++;
rt->mfc_byte_cnt += plen;
/*
* For each vif, decide if a copy of the packet should be forwarded.
* Forward if:
* - the ttl exceeds the vif's threshold
* - there are group members downstream on interface
*/
for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
if ((rt->mfc_ttls[vifi] > 0) &&
(ip->ip_ttl > rt->mfc_ttls[vifi])) {
vifp->v_pkt_out++;
vifp->v_bytes_out += plen;
MC_SEND(ip, vifp, m);
}
return 0;
}
/*
* check if a vif number is legal/ok. This is used by ip_output, to export
* numvifs there,
*/
static int
X_legal_vif_num(vif)
int vif;
{
if (vif >= 0 && vif < numvifs)
return(1);
else
return(0);
}
#ifndef MROUTE_KLD
int (*legal_vif_num)(int) = X_legal_vif_num;
#endif
/*
* Return the local address used by this vif
*/
static u_long
X_ip_mcast_src(vifi)
int vifi;
{
if (vifi >= 0 && vifi < numvifs)
return viftable[vifi].v_lcl_addr.s_addr;
else
return INADDR_ANY;
}
#ifndef MROUTE_KLD
u_long (*ip_mcast_src)(int) = X_ip_mcast_src;
#endif
static void
phyint_send(ip, vifp, m)
struct ip *ip;
struct vif *vifp;
struct mbuf *m;
{
register struct mbuf *mb_copy;
register int hlen = ip->ip_hl << 2;
/*
* Make a new reference to the packet; make sure that
* the IP header is actually copied, not just referenced,
* so that ip_output() only scribbles on the copy.
*/
mb_copy = m_copy(m, 0, M_COPYALL);
if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
mb_copy = m_pullup(mb_copy, hlen);
if (mb_copy == NULL)
return;
if (vifp->v_rate_limit == 0)
tbf_send_packet(vifp, mb_copy);
else
tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
}
static void
encap_send(ip, vifp, m)
register struct ip *ip;
register struct vif *vifp;
register struct mbuf *m;
{
register struct mbuf *mb_copy;
register struct ip *ip_copy;
register int i, len = ip->ip_len;
/*
* copy the old packet & pullup its IP header into the
* new mbuf so we can modify it. Try to fill the new
* mbuf since if we don't the ethernet driver will.
*/
MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
if (mb_copy == NULL)
return;
mb_copy->m_data += max_linkhdr;
mb_copy->m_len = sizeof(multicast_encap_iphdr);
if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
m_freem(mb_copy);
return;
}
i = MHLEN - M_LEADINGSPACE(mb_copy);
if (i > len)
i = len;
mb_copy = m_pullup(mb_copy, i);
if (mb_copy == NULL)
return;
mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
/*
* fill in the encapsulating IP header.
*/
ip_copy = mtod(mb_copy, struct ip *);
*ip_copy = multicast_encap_iphdr;
#ifdef RANDOM_IP_ID
ip_copy->ip_id = ip_randomid();
#else
ip_copy->ip_id = htons(ip_id++);
#endif
ip_copy->ip_len += len;
ip_copy->ip_src = vifp->v_lcl_addr;
ip_copy->ip_dst = vifp->v_rmt_addr;
/*
* turn the encapsulated IP header back into a valid one.
*/
ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
--ip->ip_ttl;
ip->ip_len = htons(ip->ip_len);
ip->ip_off = htons(ip->ip_off);
ip->ip_sum = 0;
mb_copy->m_data += sizeof(multicast_encap_iphdr);
ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
mb_copy->m_data -= sizeof(multicast_encap_iphdr);
if (vifp->v_rate_limit == 0)
tbf_send_packet(vifp, mb_copy);
else
tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
}
/*
* Token bucket filter module
*/
static void
tbf_control(vifp, m, ip, p_len)
register struct vif *vifp;
register struct mbuf *m;
register struct ip *ip;
register u_long p_len;
{
register struct tbf *t = vifp->v_tbf;
if (p_len > MAX_BKT_SIZE) {
/* drop if packet is too large */
mrtstat.mrts_pkt2large++;
m_freem(m);
return;
}
tbf_update_tokens(vifp);
/* if there are enough tokens,
* and the queue is empty,
* send this packet out
*/
if (t->tbf_q_len == 0) {
/* queue empty, send packet if enough tokens */
if (p_len <= t->tbf_n_tok) {
t->tbf_n_tok -= p_len;
tbf_send_packet(vifp, m);
} else {
/* queue packet and timeout till later */
tbf_queue(vifp, m);
timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
}
} else if (t->tbf_q_len < t->tbf_max_q_len) {
/* finite queue length, so queue pkts and process queue */
tbf_queue(vifp, m);
tbf_process_q(vifp);
} else {
/* queue length too much, try to dq and queue and process */
if (!tbf_dq_sel(vifp, ip)) {
mrtstat.mrts_q_overflow++;
m_freem(m);
return;
} else {
tbf_queue(vifp, m);
tbf_process_q(vifp);
}
}
return;
}
/*
* adds a packet to the queue at the interface
*/
static void
tbf_queue(vifp, m)
register struct vif *vifp;
register struct mbuf *m;
{
register int s = splnet();
register struct tbf *t = vifp->v_tbf;
if (t->tbf_t == NULL) {
/* Queue was empty */
t->tbf_q = m;
} else {
/* Insert at tail */
t->tbf_t->m_act = m;
}
/* Set new tail pointer */
t->tbf_t = m;
#ifdef DIAGNOSTIC
/* Make sure we didn't get fed a bogus mbuf */
if (m->m_act)
panic("tbf_queue: m_act");
#endif
m->m_act = NULL;
t->tbf_q_len++;
splx(s);
}
/*
* processes the queue at the interface
*/
static void
tbf_process_q(vifp)
register struct vif *vifp;
{
register struct mbuf *m;
register int len;
register int s = splnet();
register struct tbf *t = vifp->v_tbf;
/* loop through the queue at the interface and send as many packets
* as possible
*/
while (t->tbf_q_len > 0) {
m = t->tbf_q;
len = mtod(m, struct ip *)->ip_len;
/* determine if the packet can be sent */
if (len <= t->tbf_n_tok) {
/* if so,
* reduce no of tokens, dequeue the packet,
* send the packet.
*/
t->tbf_n_tok -= len;
t->tbf_q = m->m_act;
if (--t->tbf_q_len == 0)
t->tbf_t = NULL;
m->m_act = NULL;
tbf_send_packet(vifp, m);
} else break;
}
splx(s);
}
static void
tbf_reprocess_q(xvifp)
void *xvifp;
{
register struct vif *vifp = xvifp;
if (ip_mrouter == NULL)
return;
tbf_update_tokens(vifp);
tbf_process_q(vifp);
if (vifp->v_tbf->tbf_q_len)
timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
}
/* function that will selectively discard a member of the queue
* based on the precedence value and the priority
*/
static int
tbf_dq_sel(vifp, ip)
register struct vif *vifp;
register struct ip *ip;
{
register int s = splnet();
register u_int p;
register struct mbuf *m, *last;
register struct mbuf **np;
register struct tbf *t = vifp->v_tbf;
p = priority(vifp, ip);
np = &t->tbf_q;
last = NULL;
while ((m = *np) != NULL) {
if (p > priority(vifp, mtod(m, struct ip *))) {
*np = m->m_act;
/* If we're removing the last packet, fix the tail pointer */
if (m == t->tbf_t)
t->tbf_t = last;
m_freem(m);
/* it's impossible for the queue to be empty, but
* we check anyway. */
if (--t->tbf_q_len == 0)
t->tbf_t = NULL;
splx(s);
mrtstat.mrts_drop_sel++;
return(1);
}
np = &m->m_act;
last = m;
}
splx(s);
return(0);
}
static void
tbf_send_packet(vifp, m)
register struct vif *vifp;
register struct mbuf *m;
{
struct ip_moptions imo;
int error;
static struct route ro;
int s = splnet();
if (vifp->v_flags & VIFF_TUNNEL) {
/* If tunnel options */
ip_output(m, (struct mbuf *)0, &vifp->v_route,
IP_FORWARDING, (struct ip_moptions *)0);
} else {
imo.imo_multicast_ifp = vifp->v_ifp;
imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
imo.imo_multicast_loop = 1;
imo.imo_multicast_vif = -1;
/*
* Re-entrancy should not be a problem here, because
* the packets that we send out and are looped back at us
* should get rejected because they appear to come from
* the loopback interface, thus preventing looping.
*/
error = ip_output(m, (struct mbuf *)0, &ro,
IP_FORWARDING, &imo);
if (mrtdebug & DEBUG_XMIT)
log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
vifp - viftable, error);
}
splx(s);
}
/* determine the current time and then
* the elapsed time (between the last time and time now)
* in milliseconds & update the no. of tokens in the bucket
*/
static void
tbf_update_tokens(vifp)
register struct vif *vifp;
{
struct timeval tp;
register u_long tm;
register int s = splnet();
register struct tbf *t = vifp->v_tbf;
GET_TIME(tp);
TV_DELTA(tp, t->tbf_last_pkt_t, tm);
/*
* This formula is actually
* "time in seconds" * "bytes/second".
*
* (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
*
* The (1000/1024) was introduced in add_vif to optimize
* this divide into a shift.
*/
t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
t->tbf_last_pkt_t = tp;
if (t->tbf_n_tok > MAX_BKT_SIZE)
t->tbf_n_tok = MAX_BKT_SIZE;
splx(s);
}
static int
priority(vifp, ip)
register struct vif *vifp;
register struct ip *ip;
{
register int prio;
/* temporary hack; may add general packet classifier some day */
/*
* The UDP port space is divided up into four priority ranges:
* [0, 16384) : unclassified - lowest priority
* [16384, 32768) : audio - highest priority
* [32768, 49152) : whiteboard - medium priority
* [49152, 65536) : video - low priority
*/
if (ip->ip_p == IPPROTO_UDP) {
struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
switch (ntohs(udp->uh_dport) & 0xc000) {
case 0x4000:
prio = 70;
break;
case 0x8000:
prio = 60;
break;
case 0xc000:
prio = 55;
break;
default:
prio = 50;
break;
}
if (tbfdebug > 1)
log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio);
} else {
prio = 50;
}
return prio;
}
/*
* End of token bucket filter modifications
*/
int
ip_rsvp_vif_init(so, sopt)
struct socket *so;
struct sockopt *sopt;
{
int error, i, s;
if (rsvpdebug)
printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
so->so_type, so->so_proto->pr_protocol);
if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
return EOPNOTSUPP;
/* Check mbuf. */
error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
if (error)
return (error);
if (rsvpdebug)
printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", i, rsvp_on);
s = splnet();
/* Check vif. */
if (!legal_vif_num(i)) {
splx(s);
return EADDRNOTAVAIL;
}
/* Check if socket is available. */
if (viftable[i].v_rsvpd != NULL) {
splx(s);
return EADDRINUSE;
}
viftable[i].v_rsvpd = so;
/* This may seem silly, but we need to be sure we don't over-increment
* the RSVP counter, in case something slips up.
*/
if (!viftable[i].v_rsvp_on) {
viftable[i].v_rsvp_on = 1;
rsvp_on++;
}
splx(s);
return 0;
}
int
ip_rsvp_vif_done(so, sopt)
struct socket *so;
struct sockopt *sopt;
{
int error, i, s;
if (rsvpdebug)
printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
so->so_type, so->so_proto->pr_protocol);
if (so->so_type != SOCK_RAW ||
so->so_proto->pr_protocol != IPPROTO_RSVP)
return EOPNOTSUPP;
error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
if (error)
return (error);
s = splnet();
/* Check vif. */
if (!legal_vif_num(i)) {
splx(s);
return EADDRNOTAVAIL;
}
if (rsvpdebug)
printf("ip_rsvp_vif_done: v_rsvpd = %p so = %p\n",
viftable[i].v_rsvpd, so);
/*
* XXX as an additional consistency check, one could make sure
* that viftable[i].v_rsvpd == so, otherwise passing so as
* first parameter is pretty useless.
*/
viftable[i].v_rsvpd = NULL;
/*
* This may seem silly, but we need to be sure we don't over-decrement
* the RSVP counter, in case something slips up.
*/
if (viftable[i].v_rsvp_on) {
viftable[i].v_rsvp_on = 0;
rsvp_on--;
}
splx(s);
return 0;
}
void
ip_rsvp_force_done(so)
struct socket *so;
{
int vifi;
register int s;
/* Don't bother if it is not the right type of socket. */
if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
return;
s = splnet();
/* The socket may be attached to more than one vif...this
* is perfectly legal.
*/
for (vifi = 0; vifi < numvifs; vifi++) {
if (viftable[vifi].v_rsvpd == so) {
viftable[vifi].v_rsvpd = NULL;
/* This may seem silly, but we need to be sure we don't
* over-decrement the RSVP counter, in case something slips up.
*/
if (viftable[vifi].v_rsvp_on) {
viftable[vifi].v_rsvp_on = 0;
rsvp_on--;
}
}
}
splx(s);
return;
}
void
rsvp_input(m, off)
struct mbuf *m;
int off;
{
int vifi;
register struct ip *ip = mtod(m, struct ip *);
static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
register int s;
struct ifnet *ifp;
if (rsvpdebug)
printf("rsvp_input: rsvp_on %d\n",rsvp_on);
/* Can still get packets with rsvp_on = 0 if there is a local member
* of the group to which the RSVP packet is addressed. But in this
* case we want to throw the packet away.
*/
if (!rsvp_on) {
m_freem(m);
return;
}
s = splnet();
if (rsvpdebug)
printf("rsvp_input: check vifs\n");
#ifdef DIAGNOSTIC
if (!(m->m_flags & M_PKTHDR))
panic("rsvp_input no hdr");
#endif
ifp = m->m_pkthdr.rcvif;
/* Find which vif the packet arrived on. */
for (vifi = 0; vifi < numvifs; vifi++)
if (viftable[vifi].v_ifp == ifp)
break;
if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
/*
* If the old-style non-vif-associated socket is set,
* then use it. Otherwise, drop packet since there
* is no specific socket for this vif.
*/
if (ip_rsvpd != NULL) {
if (rsvpdebug)
printf("rsvp_input: Sending packet up old-style socket\n");
rip_input(m, off); /* xxx */
} else {
if (rsvpdebug && vifi == numvifs)
printf("rsvp_input: Can't find vif for packet.\n");
else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
printf("rsvp_input: No socket defined for vif %d\n",vifi);
m_freem(m);
}
splx(s);
return;
}
rsvp_src.sin_addr = ip->ip_src;
if (rsvpdebug && m)
printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
if (rsvpdebug)
printf("rsvp_input: Failed to append to socket\n");
} else {
if (rsvpdebug)
printf("rsvp_input: send packet up\n");
}
splx(s);
}
#ifdef MROUTE_KLD
static int
ip_mroute_modevent(module_t mod, int type, void *unused)
{
int s;
switch (type) {
static u_long (*old_ip_mcast_src)(int);
static int (*old_ip_mrouter_set)(struct socket *,
struct sockopt *);
static int (*old_ip_mrouter_get)(struct socket *,
struct sockopt *);
static int (*old_ip_mrouter_done)(void);
static int (*old_ip_mforward)(struct ip *, struct ifnet *,
struct mbuf *, struct ip_moptions *);
static int (*old_mrt_ioctl)(int, caddr_t);
static int (*old_legal_vif_num)(int);
case MOD_LOAD:
s = splnet();
/* XXX Protect against multiple loading */
old_ip_mcast_src = ip_mcast_src;
ip_mcast_src = X_ip_mcast_src;
old_ip_mrouter_get = ip_mrouter_get;
ip_mrouter_get = X_ip_mrouter_get;
old_ip_mrouter_set = ip_mrouter_set;
ip_mrouter_set = X_ip_mrouter_set;
old_ip_mrouter_done = ip_mrouter_done;
ip_mrouter_done = X_ip_mrouter_done;
old_ip_mforward = ip_mforward;
ip_mforward = X_ip_mforward;
old_mrt_ioctl = mrt_ioctl;
mrt_ioctl = X_mrt_ioctl;
old_legal_vif_num = legal_vif_num;
legal_vif_num = X_legal_vif_num;
splx(s);
return 0;
case MOD_UNLOAD:
if (ip_mrouter)
return EINVAL;
s = splnet();
ip_mrouter_get = old_ip_mrouter_get;
ip_mrouter_set = old_ip_mrouter_set;
ip_mrouter_done = old_ip_mrouter_done;
ip_mforward = old_ip_mforward;
mrt_ioctl = old_mrt_ioctl;
legal_vif_num = old_legal_vif_num;
splx(s);
return 0;
default:
break;
}
return 0;
}
static moduledata_t ip_mroutemod = {
"ip_mroute",
ip_mroute_modevent,
0
};
DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
#endif /* MROUTE_KLD */
#endif /* MROUTING */