be25b01844
Submitted by: mr
250 lines
5.6 KiB
C++
250 lines
5.6 KiB
C++
// This may look like C code, but it is really -*- C++ -*-
|
|
/*
|
|
Copyright (C) 1988 Free Software Foundation
|
|
written by Doug Lea (dl@rocky.oswego.edu)
|
|
|
|
This file is part of the GNU C++ Library. This library is free
|
|
software; you can redistribute it and/or modify it under the terms of
|
|
the GNU Library General Public License as published by the Free
|
|
Software Foundation; either version 2 of the License, or (at your
|
|
option) any later version. This library is distributed in the hope
|
|
that it will be useful, but WITHOUT ANY WARRANTY; without even the
|
|
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the GNU Library General Public License for more details.
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#ifndef _Complex_h
|
|
#ifdef __GNUG__
|
|
#pragma interface
|
|
#endif
|
|
#define _Complex_h 1
|
|
|
|
|
|
#include <iostream.h>
|
|
#include <math.h>
|
|
|
|
class Complex
|
|
{
|
|
#ifdef __ATT_complex__
|
|
public:
|
|
#else
|
|
protected:
|
|
#endif
|
|
|
|
double re;
|
|
double im;
|
|
|
|
public:
|
|
|
|
double real() const;
|
|
double imag() const;
|
|
|
|
Complex();
|
|
Complex(const Complex& y);
|
|
Complex(double r, double i=0);
|
|
|
|
~Complex();
|
|
|
|
Complex& operator = (const Complex& y);
|
|
|
|
Complex& operator += (const Complex& y);
|
|
Complex& operator += (double y);
|
|
Complex& operator -= (const Complex& y);
|
|
Complex& operator -= (double y);
|
|
Complex& operator *= (const Complex& y);
|
|
Complex& operator *= (double y);
|
|
|
|
Complex& operator /= (const Complex& y);
|
|
Complex& operator /= (double y);
|
|
|
|
void error(const char* msg) const;
|
|
};
|
|
|
|
|
|
// non-inline functions
|
|
|
|
Complex operator / (const Complex& x, const Complex& y);
|
|
Complex operator / (const Complex& x, double y);
|
|
Complex operator / (double x, const Complex& y);
|
|
|
|
Complex cos(const Complex& x);
|
|
Complex sin(const Complex& x);
|
|
|
|
Complex cosh(const Complex& x);
|
|
Complex sinh(const Complex& x);
|
|
|
|
Complex exp(const Complex& x);
|
|
Complex log(const Complex& x);
|
|
|
|
Complex pow(const Complex& x, int p);
|
|
Complex pow(const Complex& x, const Complex& p);
|
|
Complex pow(const Complex& x, double y);
|
|
Complex sqrt(const Complex& x);
|
|
|
|
istream& operator >> (istream& s, Complex& x);
|
|
ostream& operator << (ostream& s, const Complex& x);
|
|
|
|
|
|
// inline members
|
|
|
|
inline double Complex::real() const { return re; }
|
|
inline double Complex::imag() const { return im; }
|
|
|
|
inline Complex::Complex() {}
|
|
inline Complex::Complex(const Complex& y) :re(y.real()), im(y.imag()) {}
|
|
inline Complex::Complex(double r, double i) :re(r), im(i) {}
|
|
|
|
inline Complex::~Complex() {}
|
|
|
|
inline Complex& Complex::operator = (const Complex& y)
|
|
{
|
|
re = y.real(); im = y.imag(); return *this;
|
|
}
|
|
|
|
inline Complex& Complex::operator += (const Complex& y)
|
|
{
|
|
re += y.real(); im += y.imag(); return *this;
|
|
}
|
|
|
|
inline Complex& Complex::operator += (double y)
|
|
{
|
|
re += y; return *this;
|
|
}
|
|
|
|
inline Complex& Complex::operator -= (const Complex& y)
|
|
{
|
|
re -= y.real(); im -= y.imag(); return *this;
|
|
}
|
|
|
|
inline Complex& Complex::operator -= (double y)
|
|
{
|
|
re -= y; return *this;
|
|
}
|
|
|
|
inline Complex& Complex::operator *= (const Complex& y)
|
|
{
|
|
double r = re * y.real() - im * y.imag();
|
|
im = re * y.imag() + im * y.real();
|
|
re = r;
|
|
return *this;
|
|
}
|
|
|
|
inline Complex& Complex::operator *= (double y)
|
|
{
|
|
re *= y; im *= y; return *this;
|
|
}
|
|
|
|
|
|
// functions
|
|
|
|
inline int operator == (const Complex& x, const Complex& y)
|
|
{
|
|
return x.real() == y.real() && x.imag() == y.imag();
|
|
}
|
|
|
|
inline int operator == (const Complex& x, double y)
|
|
{
|
|
return x.imag() == 0.0 && x.real() == y;
|
|
}
|
|
|
|
inline int operator != (const Complex& x, const Complex& y)
|
|
{
|
|
return x.real() != y.real() || x.imag() != y.imag();
|
|
}
|
|
|
|
inline int operator != (const Complex& x, double y)
|
|
{
|
|
return x.imag() != 0.0 || x.real() != y;
|
|
}
|
|
|
|
inline Complex operator - (const Complex& x)
|
|
{
|
|
return Complex(-x.real(), -x.imag());
|
|
}
|
|
|
|
inline Complex conj(const Complex& x)
|
|
{
|
|
return Complex(x.real(), -x.imag());
|
|
}
|
|
|
|
inline Complex operator + (const Complex& x, const Complex& y)
|
|
{
|
|
return Complex(x.real() + y.real(), x.imag() + y.imag());
|
|
}
|
|
|
|
inline Complex operator + (const Complex& x, double y)
|
|
{
|
|
return Complex(x.real() + y, x.imag());
|
|
}
|
|
|
|
inline Complex operator + (double x, const Complex& y)
|
|
{
|
|
return Complex(x + y.real(), y.imag());
|
|
}
|
|
|
|
inline Complex operator - (const Complex& x, const Complex& y)
|
|
{
|
|
return Complex(x.real() - y.real(), x.imag() - y.imag());
|
|
}
|
|
|
|
inline Complex operator - (const Complex& x, double y)
|
|
{
|
|
return Complex(x.real() - y, x.imag());
|
|
}
|
|
|
|
inline Complex operator - (double x, const Complex& y)
|
|
{
|
|
return Complex(x - y.real(), -y.imag());
|
|
}
|
|
|
|
inline Complex operator * (const Complex& x, const Complex& y)
|
|
{
|
|
return Complex(x.real() * y.real() - x.imag() * y.imag(),
|
|
x.real() * y.imag() + x.imag() * y.real());
|
|
}
|
|
|
|
inline Complex operator * (const Complex& x, double y)
|
|
{
|
|
return Complex(x.real() * y, x.imag() * y);
|
|
}
|
|
|
|
inline Complex operator * (double x, const Complex& y)
|
|
{
|
|
return Complex(x * y.real(), x * y.imag());
|
|
}
|
|
|
|
inline double real(const Complex& x)
|
|
{
|
|
return x.real();
|
|
}
|
|
|
|
inline double imag(const Complex& x)
|
|
{
|
|
return x.imag();
|
|
}
|
|
|
|
inline double abs(const Complex& x)
|
|
{
|
|
return hypot(x.real(), x.imag());
|
|
}
|
|
|
|
inline double norm(const Complex& x)
|
|
{
|
|
return (x.real() * x.real() + x.imag() * x.imag());
|
|
}
|
|
|
|
inline double arg(const Complex& x)
|
|
{
|
|
return atan2(x.imag(), x.real());
|
|
}
|
|
|
|
inline Complex polar(double r, double t)
|
|
{
|
|
return Complex(r * cos(t), r * sin(t));
|
|
}
|
|
|
|
#endif
|