freebsd-dev/sys/pci/if_sf.c
Yoshihiro Takahashi d4fcf3cba5 Remove bus_{mem,p}io.h and related code for a micro-optimization on i386
and amd64.  The optimization is a trivial on recent machines.

Reviewed by:	-arch (imp, marcel, dfr)
2005-05-29 04:42:30 +00:00

1559 lines
37 KiB
C

/*-
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
* Programming manual is available from:
* http://download.adaptec.com/pdfs/user_guides/aic6915_pg.pdf.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Department of Electical Engineering
* Columbia University, New York City
*/
/*
* The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
* controller designed with flexibility and reducing CPU load in mind.
* The Starfire offers high and low priority buffer queues, a
* producer/consumer index mechanism and several different buffer
* queue and completion queue descriptor types. Any one of a number
* of different driver designs can be used, depending on system and
* OS requirements. This driver makes use of type0 transmit frame
* descriptors (since BSD fragments packets across an mbuf chain)
* and two RX buffer queues prioritized on size (one queue for small
* frames that will fit into a single mbuf, another with full size
* mbuf clusters for everything else). The producer/consumer indexes
* and completion queues are also used.
*
* One downside to the Starfire has to do with alignment: buffer
* queues must be aligned on 256-byte boundaries, and receive buffers
* must be aligned on longword boundaries. The receive buffer alignment
* causes problems on the Alpha platform, where the packet payload
* should be longword aligned. There is no simple way around this.
*
* For receive filtering, the Starfire offers 16 perfect filter slots
* and a 512-bit hash table.
*
* The Starfire has no internal transceiver, relying instead on an
* external MII-based transceiver. Accessing registers on external
* PHYs is done through a special register map rather than with the
* usual bitbang MDIO method.
*
* Acesssing the registers on the Starfire is a little tricky. The
* Starfire has a 512K internal register space. When programmed for
* PCI memory mapped mode, the entire register space can be accessed
* directly. However in I/O space mode, only 256 bytes are directly
* mapped into PCI I/O space. The other registers can be accessed
* indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
* registers inside the 256-byte I/O window.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#define SF_USEIOSPACE
#include <pci/if_sfreg.h>
MODULE_DEPEND(sf, pci, 1, 1, 1);
MODULE_DEPEND(sf, ether, 1, 1, 1);
MODULE_DEPEND(sf, miibus, 1, 1, 1);
static struct sf_type sf_devs[] = {
{ AD_VENDORID, AD_DEVICEID_STARFIRE,
"Adaptec AIC-6915 10/100BaseTX" },
{ 0, 0, NULL }
};
static int sf_probe(device_t);
static int sf_attach(device_t);
static int sf_detach(device_t);
static void sf_intr(void *);
static void sf_stats_update(void *);
static void sf_rxeof(struct sf_softc *);
static void sf_txeof(struct sf_softc *);
static int sf_encap(struct sf_softc *, struct sf_tx_bufdesc_type0 *,
struct mbuf *);
static void sf_start(struct ifnet *);
static int sf_ioctl(struct ifnet *, u_long, caddr_t);
static void sf_init(void *);
static void sf_stop(struct sf_softc *);
static void sf_watchdog(struct ifnet *);
static void sf_shutdown(device_t);
static int sf_ifmedia_upd(struct ifnet *);
static void sf_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void sf_reset(struct sf_softc *);
static int sf_init_rx_ring(struct sf_softc *);
static void sf_init_tx_ring(struct sf_softc *);
static int sf_newbuf(struct sf_softc *, struct sf_rx_bufdesc_type0 *,
struct mbuf *);
static void sf_setmulti(struct sf_softc *);
static int sf_setperf(struct sf_softc *, int, caddr_t);
static int sf_sethash(struct sf_softc *, caddr_t, int);
#ifdef notdef
static int sf_setvlan(struct sf_softc *, int, u_int32_t);
#endif
static u_int8_t sf_read_eeprom(struct sf_softc *, int);
static int sf_miibus_readreg(device_t, int, int);
static int sf_miibus_writereg(device_t, int, int, int);
static void sf_miibus_statchg(device_t);
#ifdef DEVICE_POLLING
static void sf_poll(struct ifnet *ifp, enum poll_cmd cmd,
int count);
static void sf_poll_locked(struct ifnet *ifp, enum poll_cmd cmd,
int count);
#endif /* DEVICE_POLLING */
static u_int32_t csr_read_4(struct sf_softc *, int);
static void csr_write_4(struct sf_softc *, int, u_int32_t);
static void sf_txthresh_adjust(struct sf_softc *);
#ifdef SF_USEIOSPACE
#define SF_RES SYS_RES_IOPORT
#define SF_RID SF_PCI_LOIO
#else
#define SF_RES SYS_RES_MEMORY
#define SF_RID SF_PCI_LOMEM
#endif
static device_method_t sf_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, sf_probe),
DEVMETHOD(device_attach, sf_attach),
DEVMETHOD(device_detach, sf_detach),
DEVMETHOD(device_shutdown, sf_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, sf_miibus_readreg),
DEVMETHOD(miibus_writereg, sf_miibus_writereg),
DEVMETHOD(miibus_statchg, sf_miibus_statchg),
{ 0, 0 }
};
static driver_t sf_driver = {
"sf",
sf_methods,
sizeof(struct sf_softc),
};
static devclass_t sf_devclass;
DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0);
DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
#define SF_SETBIT(sc, reg, x) \
csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
#define SF_CLRBIT(sc, reg, x) \
csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
static u_int32_t
csr_read_4(sc, reg)
struct sf_softc *sc;
int reg;
{
u_int32_t val;
#ifdef SF_USEIOSPACE
CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
#else
val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
#endif
return(val);
}
static u_int8_t
sf_read_eeprom(sc, reg)
struct sf_softc *sc;
int reg;
{
u_int8_t val;
val = (csr_read_4(sc, SF_EEADDR_BASE +
(reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
return(val);
}
static void
csr_write_4(sc, reg, val)
struct sf_softc *sc;
int reg;
u_int32_t val;
{
#ifdef SF_USEIOSPACE
CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
#else
CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
#endif
}
/*
* Copy the address 'mac' into the perfect RX filter entry at
* offset 'idx.' The perfect filter only has 16 entries so do
* some sanity tests.
*/
static int
sf_setperf(sc, idx, mac)
struct sf_softc *sc;
int idx;
caddr_t mac;
{
u_int16_t *p;
if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
return(EINVAL);
if (mac == NULL)
return(EINVAL);
p = (u_int16_t *)mac;
csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
(idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
(idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
(idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
return(0);
}
/*
* Set the bit in the 512-bit hash table that corresponds to the
* specified mac address 'mac.' If 'prio' is nonzero, update the
* priority hash table instead of the filter hash table.
*/
static int
sf_sethash(sc, mac, prio)
struct sf_softc *sc;
caddr_t mac;
int prio;
{
u_int32_t h;
if (mac == NULL)
return(EINVAL);
h = ether_crc32_be(mac, ETHER_ADDR_LEN) >> 23;
if (prio) {
SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
(SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
} else {
SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
(SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
}
return(0);
}
#ifdef notdef
/*
* Set a VLAN tag in the receive filter.
*/
static int
sf_setvlan(sc, idx, vlan)
struct sf_softc *sc;
int idx;
u_int32_t vlan;
{
if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
return(EINVAL);
csr_write_4(sc, SF_RXFILT_HASH_BASE +
(idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
return(0);
}
#endif
static int
sf_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct sf_softc *sc;
int i;
u_int32_t val = 0;
sc = device_get_softc(dev);
for (i = 0; i < SF_TIMEOUT; i++) {
val = csr_read_4(sc, SF_PHY_REG(phy, reg));
if (val & SF_MII_DATAVALID)
break;
}
if (i == SF_TIMEOUT)
return(0);
if ((val & 0x0000FFFF) == 0xFFFF)
return(0);
return(val & 0x0000FFFF);
}
static int
sf_miibus_writereg(dev, phy, reg, val)
device_t dev;
int phy, reg, val;
{
struct sf_softc *sc;
int i;
int busy;
sc = device_get_softc(dev);
csr_write_4(sc, SF_PHY_REG(phy, reg), val);
for (i = 0; i < SF_TIMEOUT; i++) {
busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
if (!(busy & SF_MII_BUSY))
break;
}
return(0);
}
static void
sf_miibus_statchg(dev)
device_t dev;
{
struct sf_softc *sc;
struct mii_data *mii;
sc = device_get_softc(dev);
mii = device_get_softc(sc->sf_miibus);
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
} else {
SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
}
}
static void
sf_setmulti(sc)
struct sf_softc *sc;
{
struct ifnet *ifp;
int i;
struct ifmultiaddr *ifma;
u_int8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
ifp = &sc->arpcom.ac_if;
/* First zot all the existing filters. */
for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
sf_setperf(sc, i, (char *)&dummy);
for (i = SF_RXFILT_HASH_BASE;
i < (SF_RXFILT_HASH_MAX + 1); i += 4)
csr_write_4(sc, i, 0);
SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
/* Now program new ones. */
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
} else {
i = 1;
TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
/*
* Program the first 15 multicast groups
* into the perfect filter. For all others,
* use the hash table.
*/
if (i < SF_RXFILT_PERFECT_CNT) {
sf_setperf(sc, i,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
i++;
continue;
}
sf_sethash(sc,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
}
}
}
/*
* Set media options.
*/
static int
sf_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct sf_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->sf_miibus);
sc->sf_link = 0;
if (mii->mii_instance) {
struct mii_softc *miisc;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
mii_mediachg(mii);
return(0);
}
/*
* Report current media status.
*/
static void
sf_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct sf_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->sf_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
static int
sf_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct sf_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error = 0;
SF_LOCK(sc);
switch(command) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->sf_if_flags & IFF_PROMISC)) {
SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->sf_if_flags & IFF_PROMISC) {
SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
} else if (!(ifp->if_flags & IFF_RUNNING))
sf_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
sf_stop(sc);
}
sc->sf_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
sf_setmulti(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->sf_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
case SIOCSIFCAP:
ifp->if_capenable &= ~IFCAP_POLLING;
ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
SF_UNLOCK(sc);
return(error);
}
static void
sf_reset(sc)
struct sf_softc *sc;
{
register int i;
csr_write_4(sc, SF_GEN_ETH_CTL, 0);
SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
DELAY(1000);
SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
for (i = 0; i < SF_TIMEOUT; i++) {
DELAY(10);
if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
break;
}
if (i == SF_TIMEOUT)
printf("sf%d: reset never completed!\n", sc->sf_unit);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
}
/*
* Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
* We also check the subsystem ID so that we can identify exactly which
* NIC has been found, if possible.
*/
static int
sf_probe(dev)
device_t dev;
{
struct sf_type *t;
t = sf_devs;
while(t->sf_name != NULL) {
if ((pci_get_vendor(dev) == t->sf_vid) &&
(pci_get_device(dev) == t->sf_did)) {
switch((pci_read_config(dev,
SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
case AD_SUBSYSID_62011_REV0:
case AD_SUBSYSID_62011_REV1:
device_set_desc(dev,
"Adaptec ANA-62011 10/100BaseTX");
return (BUS_PROBE_DEFAULT);
case AD_SUBSYSID_62022:
device_set_desc(dev,
"Adaptec ANA-62022 10/100BaseTX");
return (BUS_PROBE_DEFAULT);
case AD_SUBSYSID_62044_REV0:
case AD_SUBSYSID_62044_REV1:
device_set_desc(dev,
"Adaptec ANA-62044 10/100BaseTX");
return (BUS_PROBE_DEFAULT);
case AD_SUBSYSID_62020:
device_set_desc(dev,
"Adaptec ANA-62020 10/100BaseFX");
return (BUS_PROBE_DEFAULT);
case AD_SUBSYSID_69011:
device_set_desc(dev,
"Adaptec ANA-69011 10/100BaseTX");
return (BUS_PROBE_DEFAULT);
default:
device_set_desc(dev, t->sf_name);
return (BUS_PROBE_DEFAULT);
break;
}
}
t++;
}
return(ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
sf_attach(dev)
device_t dev;
{
int i;
struct sf_softc *sc;
struct ifnet *ifp;
int unit, rid, error = 0;
sc = device_get_softc(dev);
unit = device_get_unit(dev);
mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
rid = SF_RID;
sc->sf_res = bus_alloc_resource_any(dev, SF_RES, &rid, RF_ACTIVE);
if (sc->sf_res == NULL) {
printf ("sf%d: couldn't map ports\n", unit);
error = ENXIO;
goto fail;
}
sc->sf_btag = rman_get_bustag(sc->sf_res);
sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
/* Allocate interrupt */
rid = 0;
sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->sf_irq == NULL) {
printf("sf%d: couldn't map interrupt\n", unit);
error = ENXIO;
goto fail;
}
callout_handle_init(&sc->sf_stat_ch);
/* Reset the adapter. */
sf_reset(sc);
/*
* Get station address from the EEPROM.
*/
for (i = 0; i < ETHER_ADDR_LEN; i++)
sc->arpcom.ac_enaddr[i] =
sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
sc->sf_unit = unit;
/* Allocate the descriptor queues. */
sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc->sf_ldata == NULL) {
printf("sf%d: no memory for list buffers!\n", unit);
error = ENXIO;
goto fail;
}
bzero(sc->sf_ldata, sizeof(struct sf_list_data));
/* Do MII setup. */
if (mii_phy_probe(dev, &sc->sf_miibus,
sf_ifmedia_upd, sf_ifmedia_sts)) {
printf("sf%d: MII without any phy!\n", sc->sf_unit);
error = ENXIO;
goto fail;
}
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
IFF_NEEDSGIANT;
ifp->if_ioctl = sf_ioctl;
ifp->if_start = sf_start;
ifp->if_watchdog = sf_watchdog;
ifp->if_init = sf_init;
ifp->if_baudrate = 10000000;
IFQ_SET_MAXLEN(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
ifp->if_snd.ifq_drv_maxlen = SF_TX_DLIST_CNT - 1;
IFQ_SET_READY(&ifp->if_snd);
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif /* DEVICE_POLLING */
ifp->if_capenable = ifp->if_capabilities;
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, sc->arpcom.ac_enaddr);
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
sf_intr, sc, &sc->sf_intrhand);
if (error) {
printf("sf%d: couldn't set up irq\n", unit);
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error)
sf_detach(dev);
return(error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
sf_detach(dev)
device_t dev;
{
struct sf_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->sf_mtx), ("sf mutex not initialized"));
SF_LOCK(sc);
ifp = &sc->arpcom.ac_if;
/* These should only be active if attach succeeded */
if (device_is_attached(dev)) {
sf_stop(sc);
ether_ifdetach(ifp);
}
if (sc->sf_miibus)
device_delete_child(dev, sc->sf_miibus);
bus_generic_detach(dev);
if (sc->sf_intrhand)
bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
if (sc->sf_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
if (sc->sf_res)
bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
if (sc->sf_ldata)
contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
SF_UNLOCK(sc);
mtx_destroy(&sc->sf_mtx);
return(0);
}
static int
sf_init_rx_ring(sc)
struct sf_softc *sc;
{
struct sf_list_data *ld;
int i;
ld = sc->sf_ldata;
bzero((char *)ld->sf_rx_dlist_big,
sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
bzero((char *)ld->sf_rx_clist,
sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
for (i = 0; i < SF_RX_DLIST_CNT; i++) {
if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
return(ENOBUFS);
}
return(0);
}
static void
sf_init_tx_ring(sc)
struct sf_softc *sc;
{
struct sf_list_data *ld;
int i;
ld = sc->sf_ldata;
bzero((char *)ld->sf_tx_dlist,
sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
bzero((char *)ld->sf_tx_clist,
sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
for (i = 0; i < SF_TX_DLIST_CNT; i++)
ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
for (i = 0; i < SF_TX_CLIST_CNT; i++)
ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
sc->sf_tx_cnt = 0;
}
static int
sf_newbuf(sc, c, m)
struct sf_softc *sc;
struct sf_rx_bufdesc_type0 *c;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL)
return(ENOBUFS);
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, sizeof(u_int64_t));
c->sf_mbuf = m_new;
c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
c->sf_valid = 1;
return(0);
}
/*
* The starfire is programmed to use 'normal' mode for packet reception,
* which means we use the consumer/producer model for both the buffer
* descriptor queue and the completion descriptor queue. The only problem
* with this is that it involves a lot of register accesses: we have to
* read the RX completion consumer and producer indexes and the RX buffer
* producer index, plus the RX completion consumer and RX buffer producer
* indexes have to be updated. It would have been easier if Adaptec had
* put each index in a separate register, especially given that the damn
* NIC has a 512K register space.
*
* In spite of all the lovely features that Adaptec crammed into the 6915,
* it is marred by one truly stupid design flaw, which is that receive
* buffer addresses must be aligned on a longword boundary. This forces
* the packet payload to be unaligned, which is suboptimal on the x86 and
* completely unuseable on the Alpha. Our only recourse is to copy received
* packets into properly aligned buffers before handing them off.
*/
static void
sf_rxeof(sc)
struct sf_softc *sc;
{
struct mbuf *m;
struct ifnet *ifp;
struct sf_rx_bufdesc_type0 *desc;
struct sf_rx_cmpdesc_type3 *cur_rx;
u_int32_t rxcons, rxprod;
int cmpprodidx, cmpconsidx, bufprodidx;
SF_LOCK_ASSERT(sc);
ifp = &sc->arpcom.ac_if;
rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
cmpconsidx = SF_IDX_LO(rxcons);
bufprodidx = SF_IDX_LO(rxprod);
while (cmpconsidx != cmpprodidx) {
struct mbuf *m0;
#ifdef DEVICE_POLLING
if (ifp->if_flags & IFF_POLLING) {
if (sc->rxcycles <= 0)
break;
sc->rxcycles--;
}
#endif /* DEVICE_POLLING */
cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
m = desc->sf_mbuf;
SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
SF_INC(bufprodidx, SF_RX_DLIST_CNT);
if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
ifp->if_ierrors++;
sf_newbuf(sc, desc, m);
continue;
}
m0 = m_devget(mtod(m, char *), cur_rx->sf_len, ETHER_ALIGN,
ifp, NULL);
sf_newbuf(sc, desc, m);
if (m0 == NULL) {
ifp->if_ierrors++;
continue;
}
m = m0;
ifp->if_ipackets++;
SF_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
SF_LOCK(sc);
}
csr_write_4(sc, SF_CQ_CONSIDX,
(rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
csr_write_4(sc, SF_RXDQ_PTR_Q1,
(rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
}
/*
* Read the transmit status from the completion queue and release
* mbufs. Note that the buffer descriptor index in the completion
* descriptor is an offset from the start of the transmit buffer
* descriptor list in bytes. This is important because the manual
* gives the impression that it should match the producer/consumer
* index, which is the offset in 8 byte blocks.
*/
static void
sf_txeof(sc)
struct sf_softc *sc;
{
int txcons, cmpprodidx, cmpconsidx;
struct sf_tx_cmpdesc_type1 *cur_cmp;
struct sf_tx_bufdesc_type0 *cur_tx;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
txcons = csr_read_4(sc, SF_CQ_CONSIDX);
cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
cmpconsidx = SF_IDX_HI(txcons);
while (cmpconsidx != cmpprodidx) {
cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
ifp->if_opackets++;
else {
if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
sf_txthresh_adjust(sc);
ifp->if_oerrors++;
}
sc->sf_tx_cnt--;
if (cur_tx->sf_mbuf != NULL) {
m_freem(cur_tx->sf_mbuf);
cur_tx->sf_mbuf = NULL;
} else
break;
SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
}
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
csr_write_4(sc, SF_CQ_CONSIDX,
(txcons & ~SF_CQ_CONSIDX_TXQ) |
((cmpconsidx << 16) & 0xFFFF0000));
}
static void
sf_txthresh_adjust(sc)
struct sf_softc *sc;
{
u_int32_t txfctl;
u_int8_t txthresh;
txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
if (txthresh < 0xFF) {
txthresh++;
txfctl &= ~SF_TXFRMCTL_TXTHRESH;
txfctl |= txthresh;
#ifdef DIAGNOSTIC
printf("sf%d: tx underrun, increasing "
"tx threshold to %d bytes\n",
sc->sf_unit, txthresh * 4);
#endif
csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
}
}
#ifdef DEVICE_POLLING
static void
sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct sf_softc *sc = ifp->if_softc;
SF_LOCK(sc);
sf_poll_locked(ifp, cmd, count);
SF_UNLOCK(sc);
}
static void
sf_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct sf_softc *sc = ifp->if_softc;
SF_LOCK_ASSERT(sc);
if (!(ifp->if_capenable & IFCAP_POLLING)) {
ether_poll_deregister(ifp);
cmd = POLL_DEREGISTER;
}
if (cmd == POLL_DEREGISTER) {
/* Final call, enable interrupts. */
csr_write_4(sc, SF_IMR, SF_INTRS);
return;
}
sc->rxcycles = count;
sf_rxeof(sc);
sf_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
sf_start(ifp);
if (cmd == POLL_AND_CHECK_STATUS) {
u_int32_t status;
status = csr_read_4(sc, SF_ISR);
if (status)
csr_write_4(sc, SF_ISR, status);
if (status & SF_ISR_TX_LOFIFO)
sf_txthresh_adjust(sc);
if (status & SF_ISR_ABNORMALINTR) {
if (status & SF_ISR_STATSOFLOW) {
untimeout(sf_stats_update, sc,
sc->sf_stat_ch);
sf_stats_update(sc);
} else
sf_init(sc);
}
}
}
#endif /* DEVICE_POLLING */
static void
sf_intr(arg)
void *arg;
{
struct sf_softc *sc;
struct ifnet *ifp;
u_int32_t status;
sc = arg;
SF_LOCK(sc);
ifp = &sc->arpcom.ac_if;
#ifdef DEVICE_POLLING
if (ifp->if_flags & IFF_POLLING)
goto done_locked;
if ((ifp->if_capenable & IFCAP_POLLING) &&
ether_poll_register(sf_poll, ifp)) {
/* OK, disable interrupts. */
csr_write_4(sc, SF_IMR, 0x00000000);
sf_poll_locked(ifp, 0, 1);
goto done_locked;
}
#endif /* DEVICE_POLLING */
if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) {
SF_UNLOCK(sc);
return;
}
/* Disable interrupts. */
csr_write_4(sc, SF_IMR, 0x00000000);
for (;;) {
status = csr_read_4(sc, SF_ISR);
if (status)
csr_write_4(sc, SF_ISR, status);
if (!(status & SF_INTRS))
break;
if (status & SF_ISR_RXDQ1_DMADONE)
sf_rxeof(sc);
if (status & SF_ISR_TX_TXDONE ||
status & SF_ISR_TX_DMADONE ||
status & SF_ISR_TX_QUEUEDONE)
sf_txeof(sc);
if (status & SF_ISR_TX_LOFIFO)
sf_txthresh_adjust(sc);
if (status & SF_ISR_ABNORMALINTR) {
if (status & SF_ISR_STATSOFLOW) {
untimeout(sf_stats_update, sc,
sc->sf_stat_ch);
sf_stats_update(sc);
} else
sf_init(sc);
}
}
/* Re-enable interrupts. */
csr_write_4(sc, SF_IMR, SF_INTRS);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
sf_start(ifp);
#ifdef DEVICE_POLLING
done_locked:
#endif /* DEVICE_POLLING */
SF_UNLOCK(sc);
}
static void
sf_init(xsc)
void *xsc;
{
struct sf_softc *sc;
struct ifnet *ifp;
struct mii_data *mii;
int i;
sc = xsc;
SF_LOCK(sc);
ifp = &sc->arpcom.ac_if;
mii = device_get_softc(sc->sf_miibus);
sf_stop(sc);
sf_reset(sc);
/* Init all the receive filter registers */
for (i = SF_RXFILT_PERFECT_BASE;
i < (SF_RXFILT_HASH_MAX + 1); i += 4)
csr_write_4(sc, i, 0);
/* Empty stats counter registers. */
for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
csr_write_4(sc, SF_STATS_BASE +
(i + sizeof(u_int32_t)), 0);
/* Init our MAC address */
csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
if (sf_init_rx_ring(sc) == ENOBUFS) {
printf("sf%d: initialization failed: no "
"memory for rx buffers\n", sc->sf_unit);
SF_UNLOCK(sc);
return;
}
sf_init_tx_ring(sc);
csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
} else {
SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
}
if (ifp->if_flags & IFF_BROADCAST) {
SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
} else {
SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
}
/*
* Load the multicast filter.
*/
sf_setmulti(sc);
/* Init the completion queue indexes */
csr_write_4(sc, SF_CQ_CONSIDX, 0);
csr_write_4(sc, SF_CQ_PRODIDX, 0);
/* Init the RX completion queue */
csr_write_4(sc, SF_RXCQ_CTL_1,
vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
/* Init RX DMA control. */
SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
/* Init the RX buffer descriptor queue. */
csr_write_4(sc, SF_RXDQ_ADDR_Q1,
vtophys(sc->sf_ldata->sf_rx_dlist_big));
csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
/* Init the TX completion queue */
csr_write_4(sc, SF_TXCQ_CTL,
vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
/* Init the TX buffer descriptor queue. */
csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
vtophys(sc->sf_ldata->sf_tx_dlist));
SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
csr_write_4(sc, SF_TXDQ_CTL,
SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
/* Enable autopadding of short TX frames. */
SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
#ifdef DEVICE_POLLING
/* Disable interrupts if we are polling. */
if (ifp->if_flags & IFF_POLLING)
csr_write_4(sc, SF_IMR, 0x00000000);
else
#endif /* DEVICE_POLLING */
/* Enable interrupts. */
csr_write_4(sc, SF_IMR, SF_INTRS);
SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
/* Enable the RX and TX engines. */
SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
/*mii_mediachg(mii);*/
sf_ifmedia_upd(ifp);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
SF_UNLOCK(sc);
}
static int
sf_encap(sc, c, m_head)
struct sf_softc *sc;
struct sf_tx_bufdesc_type0 *c;
struct mbuf *m_head;
{
int frag = 0;
struct sf_frag *f = NULL;
struct mbuf *m;
m = m_head;
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (frag == SF_MAXFRAGS)
break;
f = &c->sf_frags[frag];
if (frag == 0)
f->sf_pktlen = m_head->m_pkthdr.len;
f->sf_fraglen = m->m_len;
f->sf_addr = vtophys(mtod(m, vm_offset_t));
frag++;
}
}
if (m != NULL) {
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("sf%d: no memory for tx list\n", sc->sf_unit);
return(1);
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
printf("sf%d: no memory for tx list\n",
sc->sf_unit);
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
f = &c->sf_frags[0];
f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
f->sf_addr = vtophys(mtod(m_head, caddr_t));
frag = 1;
}
c->sf_mbuf = m_head;
c->sf_id = SF_TX_BUFDESC_ID;
c->sf_fragcnt = frag;
c->sf_intr = 1;
c->sf_caltcp = 0;
c->sf_crcen = 1;
return(0);
}
static void
sf_start(ifp)
struct ifnet *ifp;
{
struct sf_softc *sc;
struct sf_tx_bufdesc_type0 *cur_tx = NULL;
struct mbuf *m_head = NULL;
int i, txprod;
sc = ifp->if_softc;
SF_LOCK(sc);
if (!sc->sf_link && ifp->if_snd.ifq_len < 10) {
SF_UNLOCK(sc);
return;
}
if (ifp->if_flags & IFF_OACTIVE) {
SF_UNLOCK(sc);
return;
}
txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
i = SF_IDX_HI(txprod) >> 4;
if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
printf("sf%d: TX ring full, resetting\n", sc->sf_unit);
sf_init(sc);
txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
i = SF_IDX_HI(txprod) >> 4;
}
while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
ifp->if_flags |= IFF_OACTIVE;
cur_tx = NULL;
break;
}
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
if (sf_encap(sc, cur_tx, m_head)) {
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
cur_tx = NULL;
break;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
SF_INC(i, SF_TX_DLIST_CNT);
sc->sf_tx_cnt++;
/*
* Don't get the TX DMA queue get too full.
*/
if (sc->sf_tx_cnt > 64)
break;
}
if (cur_tx == NULL) {
SF_UNLOCK(sc);
return;
}
/* Transmit */
csr_write_4(sc, SF_TXDQ_PRODIDX,
(txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
((i << 20) & 0xFFFF0000));
ifp->if_timer = 5;
SF_UNLOCK(sc);
}
static void
sf_stop(sc)
struct sf_softc *sc;
{
int i;
struct ifnet *ifp;
SF_LOCK(sc);
ifp = &sc->arpcom.ac_if;
untimeout(sf_stats_update, sc, sc->sf_stat_ch);
#ifdef DEVICE_POLLING
ether_poll_deregister(ifp);
#endif /* DEVICE_POLLING */
csr_write_4(sc, SF_GEN_ETH_CTL, 0);
csr_write_4(sc, SF_CQ_CONSIDX, 0);
csr_write_4(sc, SF_CQ_PRODIDX, 0);
csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
csr_write_4(sc, SF_RXDQ_CTL_1, 0);
csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
csr_write_4(sc, SF_TXCQ_CTL, 0);
csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
csr_write_4(sc, SF_TXDQ_CTL, 0);
sf_reset(sc);
sc->sf_link = 0;
for (i = 0; i < SF_RX_DLIST_CNT; i++) {
if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
}
}
for (i = 0; i < SF_TX_DLIST_CNT; i++) {
if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
}
}
ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
SF_UNLOCK(sc);
}
/*
* Note: it is important that this function not be interrupted. We
* use a two-stage register access scheme: if we are interrupted in
* between setting the indirect address register and reading from the
* indirect data register, the contents of the address register could
* be changed out from under us.
*/
static void
sf_stats_update(xsc)
void *xsc;
{
struct sf_softc *sc;
struct ifnet *ifp;
struct mii_data *mii;
struct sf_stats stats;
u_int32_t *ptr;
int i;
sc = xsc;
SF_LOCK(sc);
ifp = &sc->arpcom.ac_if;
mii = device_get_softc(sc->sf_miibus);
ptr = (u_int32_t *)&stats;
for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
ptr[i] = csr_read_4(sc, SF_STATS_BASE +
(i + sizeof(u_int32_t)));
for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
csr_write_4(sc, SF_STATS_BASE +
(i + sizeof(u_int32_t)), 0);
ifp->if_collisions += stats.sf_tx_single_colls +
stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
mii_tick(mii);
if (!sc->sf_link && mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->sf_link++;
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
sf_start(ifp);
}
sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
SF_UNLOCK(sc);
}
static void
sf_watchdog(ifp)
struct ifnet *ifp;
{
struct sf_softc *sc;
sc = ifp->if_softc;
SF_LOCK(sc);
ifp->if_oerrors++;
printf("sf%d: watchdog timeout\n", sc->sf_unit);
sf_stop(sc);
sf_reset(sc);
sf_init(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
sf_start(ifp);
SF_UNLOCK(sc);
}
static void
sf_shutdown(dev)
device_t dev;
{
struct sf_softc *sc;
sc = device_get_softc(dev);
sf_stop(sc);
}