freebsd-dev/contrib/elftoolchain/elfdump/elfdump.c
Ed Maste d003e0d7fe Update ELF Tool Chain to upstream r3769
This contains many small bugfixes and documentation improvements.

Sponsored by:	The FreeBSD Foundation
2019-12-05 13:20:15 +00:00

2684 lines
68 KiB
C

/*-
* Copyright (c) 2007-2012 Kai Wang
* Copyright (c) 2003 David O'Brien. All rights reserved.
* Copyright (c) 2001 Jake Burkholder
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/stat.h>
#include <ar.h>
#include <assert.h>
#include <err.h>
#include <fcntl.h>
#include <gelf.h>
#include <getopt.h>
#include <libelftc.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#ifdef USE_LIBARCHIVE_AR
#include <archive.h>
#include <archive_entry.h>
#endif
#include "_elftc.h"
ELFTC_VCSID("$Id: elfdump.c 3762 2019-06-28 21:06:24Z emaste $");
#if defined(ELFTC_NEED_ELF_NOTE_DEFINITION)
#include "native-elf-format.h"
#if ELFTC_CLASS == ELFCLASS32
typedef Elf32_Nhdr Elf_Note;
#else
typedef Elf64_Nhdr Elf_Note;
#endif
#endif
/* elfdump(1) options. */
#define ED_DYN (1<<0)
#define ED_EHDR (1<<1)
#define ED_GOT (1<<2)
#define ED_HASH (1<<3)
#define ED_INTERP (1<<4)
#define ED_NOTE (1<<5)
#define ED_PHDR (1<<6)
#define ED_REL (1<<7)
#define ED_SHDR (1<<8)
#define ED_SYMTAB (1<<9)
#define ED_SYMVER (1<<10)
#define ED_CHECKSUM (1<<11)
#define ED_ALL ((1<<12)-1)
/* elfdump(1) run control flags. */
#define SOLARIS_FMT (1<<0)
#define PRINT_FILENAME (1<<1)
#define PRINT_ARSYM (1<<2)
#define ONLY_ARSYM (1<<3)
/* Convenient print macro. */
#define PRT(...) fprintf(ed->out, __VA_ARGS__)
/* Internal data structure for sections. */
struct section {
const char *name; /* section name */
Elf_Scn *scn; /* section scn */
uint64_t off; /* section offset */
uint64_t sz; /* section size */
uint64_t entsize; /* section entsize */
uint64_t align; /* section alignment */
uint64_t type; /* section type */
uint64_t flags; /* section flags */
uint64_t addr; /* section virtual addr */
uint32_t link; /* section link ndx */
uint32_t info; /* section info ndx */
};
struct spec_name {
const char *name;
STAILQ_ENTRY(spec_name) sn_list;
};
/* Structure encapsulates the global data for readelf(1). */
struct elfdump {
FILE *out; /* output redirection. */
const char *filename; /* current processing file. */
const char *archive; /* archive name */
int options; /* command line options. */
int flags; /* run control flags. */
Elf *elf; /* underlying ELF descriptor. */
#ifndef USE_LIBARCHIVE_AR
Elf *ar; /* ar(1) archive descriptor. */
#endif
GElf_Ehdr ehdr; /* ELF header. */
int ec; /* ELF class. */
size_t shnum; /* #sections. */
struct section *sl; /* list of sections. */
STAILQ_HEAD(, spec_name) snl; /* list of names specified by -N. */
};
/* Relocation entry. */
struct rel_entry {
union {
GElf_Rel rel;
GElf_Rela rela;
} u_r;
const char *symn;
uint32_t type;
};
#if defined(ELFTC_NEED_BYTEORDER_EXTENSIONS)
static __inline uint32_t
be32dec(const void *pp)
{
unsigned char const *p = (unsigned char const *)pp;
return ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]);
}
static __inline uint32_t
le32dec(const void *pp)
{
unsigned char const *p = (unsigned char const *)pp;
return ((p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0]);
}
#endif
/* http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#tag_encodings */
static const char *
d_tags(uint64_t tag)
{
static char unknown_buf[64];
switch (tag) {
case DT_NULL: return "DT_NULL";
case DT_NEEDED: return "DT_NEEDED";
case DT_PLTRELSZ: return "DT_PLTRELSZ";
case DT_PLTGOT: return "DT_PLTGOT";
case DT_HASH: return "DT_HASH";
case DT_STRTAB: return "DT_STRTAB";
case DT_SYMTAB: return "DT_SYMTAB";
case DT_RELA: return "DT_RELA";
case DT_RELASZ: return "DT_RELASZ";
case DT_RELAENT: return "DT_RELAENT";
case DT_STRSZ: return "DT_STRSZ";
case DT_SYMENT: return "DT_SYMENT";
case DT_INIT: return "DT_INIT";
case DT_FINI: return "DT_FINI";
case DT_SONAME: return "DT_SONAME";
case DT_RPATH: return "DT_RPATH";
case DT_SYMBOLIC: return "DT_SYMBOLIC";
case DT_REL: return "DT_REL";
case DT_RELSZ: return "DT_RELSZ";
case DT_RELENT: return "DT_RELENT";
case DT_PLTREL: return "DT_PLTREL";
case DT_DEBUG: return "DT_DEBUG";
case DT_TEXTREL: return "DT_TEXTREL";
case DT_JMPREL: return "DT_JMPREL";
case DT_BIND_NOW: return "DT_BIND_NOW";
case DT_INIT_ARRAY: return "DT_INIT_ARRAY";
case DT_FINI_ARRAY: return "DT_FINI_ARRAY";
case DT_INIT_ARRAYSZ: return "DT_INIT_ARRAYSZ";
case DT_FINI_ARRAYSZ: return "DT_FINI_ARRAYSZ";
case DT_RUNPATH: return "DT_RUNPATH";
case DT_FLAGS: return "DT_FLAGS";
case DT_PREINIT_ARRAY: return "DT_PREINIT_ARRAY"; /* XXX DT_ENCODING */
case DT_PREINIT_ARRAYSZ:return "DT_PREINIT_ARRAYSZ";
/* 0x6000000D - 0x6ffff000 operating system-specific semantics */
case 0x6ffffdf5: return "DT_GNU_PRELINKED";
case 0x6ffffdf6: return "DT_GNU_CONFLICTSZ";
case 0x6ffffdf7: return "DT_GNU_LIBLISTSZ";
case 0x6ffffdf8: return "DT_SUNW_CHECKSUM";
case DT_PLTPADSZ: return "DT_PLTPADSZ";
case DT_MOVEENT: return "DT_MOVEENT";
case DT_MOVESZ: return "DT_MOVESZ";
case 0x6ffffdfc: return "DT_FEATURE";
case DT_POSFLAG_1: return "DT_POSFLAG_1";
case DT_SYMINSZ: return "DT_SYMINSZ";
case DT_SYMINENT: return "DT_SYMINENT (DT_VALRNGHI)";
case DT_ADDRRNGLO: return "DT_ADDRRNGLO";
case DT_GNU_HASH: return "DT_GNU_HASH";
case 0x6ffffef8: return "DT_GNU_CONFLICT";
case 0x6ffffef9: return "DT_GNU_LIBLIST";
case 0x6ffffefa: return "DT_CONFIG";
case 0x6ffffefb: return "DT_DEPAUDIT";
case 0x6ffffefc: return "DT_AUDIT";
case 0x6ffffefd: return "DT_PLTPAD";
case 0x6ffffefe: return "DT_MOVETAB";
case DT_SYMINFO: return "DT_SYMINFO (DT_ADDRRNGHI)";
case DT_RELACOUNT: return "DT_RELACOUNT";
case DT_RELCOUNT: return "DT_RELCOUNT";
case DT_FLAGS_1: return "DT_FLAGS_1";
case DT_VERDEF: return "DT_VERDEF";
case DT_VERDEFNUM: return "DT_VERDEFNUM";
case DT_VERNEED: return "DT_VERNEED";
case DT_VERNEEDNUM: return "DT_VERNEEDNUM";
case 0x6ffffff0: return "DT_GNU_VERSYM";
/* 0x70000000 - 0x7fffffff processor-specific semantics */
case 0x70000000: return "DT_IA_64_PLT_RESERVE";
case DT_AUXILIARY: return "DT_AUXILIARY";
case DT_USED: return "DT_USED";
case DT_FILTER: return "DT_FILTER";
}
snprintf(unknown_buf, sizeof(unknown_buf),
"<unknown: %#llx>", (unsigned long long)tag);
return (unknown_buf);
}
static const char *
e_machines(unsigned int mach)
{
static char machdesc[64];
switch (mach) {
case EM_NONE: return "EM_NONE";
case EM_M32: return "EM_M32";
case EM_SPARC: return "EM_SPARC";
case EM_386: return "EM_386";
case EM_68K: return "EM_68K";
case EM_88K: return "EM_88K";
case EM_IAMCU: return "EM_IAMCU";
case EM_860: return "EM_860";
case EM_MIPS: return "EM_MIPS";
case EM_PPC: return "EM_PPC";
case EM_PPC64: return "EM_PPC64";
case EM_ARM: return "EM_ARM";
case EM_ALPHA: return "EM_ALPHA (legacy)";
case EM_SPARCV9:return "EM_SPARCV9";
case EM_IA_64: return "EM_IA_64";
case EM_X86_64: return "EM_X86_64";
case EM_AARCH64:return "EM_AARCH64";
case EM_RISCV: return "EM_RISCV";
}
snprintf(machdesc, sizeof(machdesc),
"(unknown machine) -- type 0x%x", mach);
return (machdesc);
}
static const char *
elf_type_str(unsigned int type)
{
static char s_type[32];
switch (type)
{
case ET_NONE: return "ET_NONE";
case ET_REL: return "ET_REL";
case ET_EXEC: return "ET_EXEC";
case ET_DYN: return "ET_DYN";
case ET_CORE: return "ET_CORE";
}
if (type >= ET_LOPROC)
snprintf(s_type, sizeof(s_type), "<proc: %#x>", type);
else if (type >= ET_LOOS && type <= ET_HIOS)
snprintf(s_type, sizeof(s_type), "<os: %#x>", type);
else
snprintf(s_type, sizeof(s_type), "<unknown: %#x", type);
return (s_type);
}
static const char *
elf_version_str(unsigned int ver)
{
static char s_ver[32];
switch (ver) {
case EV_NONE: return "EV_NONE";
case EV_CURRENT: return "EV_CURRENT";
}
snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>", ver);
return (s_ver);
}
static const char *
elf_class_str(unsigned int class)
{
static char s_class[32];
switch (class) {
case ELFCLASSNONE: return "ELFCLASSNONE";
case ELFCLASS32: return "ELFCLASS32";
case ELFCLASS64: return "ELFCLASS64";
}
snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class);
return (s_class);
}
static const char *
elf_data_str(unsigned int data)
{
static char s_data[32];
switch (data) {
case ELFDATANONE: return "ELFDATANONE";
case ELFDATA2LSB: return "ELFDATA2LSB";
case ELFDATA2MSB: return "ELFDATA2MSB";
}
snprintf(s_data, sizeof(s_data), "<unknown: %#x>", data);
return (s_data);
}
static const char *ei_abis[256] = {
"ELFOSABI_NONE", "ELFOSABI_HPUX", "ELFOSABI_NETBSD", "ELFOSABI_LINUX",
"ELFOSABI_HURD", "ELFOSABI_86OPEN", "ELFOSABI_SOLARIS", "ELFOSABI_AIX",
"ELFOSABI_IRIX", "ELFOSABI_FREEBSD", "ELFOSABI_TRU64",
"ELFOSABI_MODESTO", "ELFOSABI_OPENBSD",
[17] = "ELFOSABI_CLOUDABI",
[64] = "ELFOSABI_ARM_AEABI",
[97] = "ELFOSABI_ARM",
[255] = "ELFOSABI_STANDALONE"
};
static const char *
elf_phdr_type_str(unsigned int type)
{
static char s_type[32];
switch (type) {
case PT_NULL: return "PT_NULL";
case PT_LOAD: return "PT_LOAD";
case PT_DYNAMIC: return "PT_DYNAMIC";
case PT_INTERP: return "PT_INTERP";
case PT_NOTE: return "PT_NOTE";
case PT_SHLIB: return "PT_SHLIB";
case PT_PHDR: return "PT_PHDR";
case PT_TLS: return "PT_TLS";
case PT_GNU_EH_FRAME: return "PT_GNU_EH_FRAME";
case PT_GNU_STACK: return "PT_GNU_STACK";
case PT_GNU_RELRO: return "PT_GNU_RELRO";
case PT_OPENBSD_RANDOMIZE: return "PT_OPENBSD_RANDOMIZE";
case PT_OPENBSD_WXNEEDED: return "PT_OPENBSD_WXNEEDED";
case PT_OPENBSD_BOOTDATA: return "PT_OPENBSD_BOOTDATA";
}
snprintf(s_type, sizeof(s_type), "<unknown: %#x>", type);
return (s_type);
}
static const char *p_flags[] = {
"", "PF_X", "PF_W", "PF_X|PF_W", "PF_R", "PF_X|PF_R", "PF_W|PF_R",
"PF_X|PF_W|PF_R"
};
static const char *
sh_name(struct elfdump *ed, int ndx)
{
static char num[10];
switch (ndx) {
case SHN_UNDEF: return "UNDEF";
case SHN_ABS: return "ABS";
case SHN_COMMON: return "COMMON";
default:
if ((uint64_t)ndx < ed->shnum)
return (ed->sl[ndx].name);
else {
snprintf(num, sizeof(num), "%d", ndx);
return (num);
}
}
}
/* http://www.sco.com/developers/gabi/latest/ch4.sheader.html#sh_type */
static const char *
sh_types(uint64_t mach, uint64_t sht) {
static char unknown_buf[64];
if (sht < 0x60000000) {
switch (sht) {
case SHT_NULL: return "SHT_NULL";
case SHT_PROGBITS: return "SHT_PROGBITS";
case SHT_SYMTAB: return "SHT_SYMTAB";
case SHT_STRTAB: return "SHT_STRTAB";
case SHT_RELA: return "SHT_RELA";
case SHT_HASH: return "SHT_HASH";
case SHT_DYNAMIC: return "SHT_DYNAMIC";
case SHT_NOTE: return "SHT_NOTE";
case SHT_NOBITS: return "SHT_NOBITS";
case SHT_REL: return "SHT_REL";
case SHT_SHLIB: return "SHT_SHLIB";
case SHT_DYNSYM: return "SHT_DYNSYM";
case SHT_INIT_ARRAY: return "SHT_INIT_ARRAY";
case SHT_FINI_ARRAY: return "SHT_FINI_ARRAY";
case SHT_PREINIT_ARRAY: return "SHT_PREINIT_ARRAY";
case SHT_GROUP: return "SHT_GROUP";
case SHT_SYMTAB_SHNDX: return "SHT_SYMTAB_SHNDX";
}
} else if (sht < 0x70000000) {
/* 0x60000000-0x6fffffff operating system-specific semantics */
switch (sht) {
case 0x6ffffff0: return "XXX:VERSYM";
case SHT_SUNW_dof: return "SHT_SUNW_dof";
case SHT_GNU_HASH: return "SHT_GNU_HASH";
case 0x6ffffff7: return "SHT_GNU_LIBLIST";
case 0x6ffffffc: return "XXX:VERDEF";
case SHT_SUNW_verdef: return "SHT_SUNW(GNU)_verdef";
case SHT_SUNW_verneed: return "SHT_SUNW(GNU)_verneed";
case SHT_SUNW_versym: return "SHT_SUNW(GNU)_versym";
}
} else if (sht < 0x80000000) {
/* 0x70000000 - 0x7fffffff processor-specific semantics */
switch (mach) {
case EM_ARM:
switch (sht) {
case SHT_ARM_EXIDX: return "SHT_ARM_EXIDX";
case SHT_ARM_PREEMPTMAP: return "SHT_ARM_PREEMPTMAP";
case SHT_ARM_ATTRIBUTES: return "SHT_ARM_ATTRIBUTES";
case SHT_ARM_DEBUGOVERLAY:
return "SHT_ARM_DEBUGOVERLAY";
case SHT_ARM_OVERLAYSECTION:
return "SHT_ARM_OVERLAYSECTION";
}
break;
case EM_IA_64:
switch (sht) {
case 0x70000000: return "SHT_IA_64_EXT";
case 0x70000001: return "SHT_IA_64_UNWIND";
}
break;
case EM_MIPS:
switch (sht) {
case SHT_MIPS_REGINFO: return "SHT_MIPS_REGINFO";
case SHT_MIPS_OPTIONS: return "SHT_MIPS_OPTIONS";
case SHT_MIPS_ABIFLAGS: return "SHT_MIPS_ABIFLAGS";
}
break;
}
switch (sht) {
case 0x7ffffffd: return "XXX:AUXILIARY";
case 0x7fffffff: return "XXX:FILTER";
}
}
/* 0x80000000 - 0xffffffff application programs */
snprintf(unknown_buf, sizeof(unknown_buf),
"<unknown: %#llx>", (unsigned long long)sht);
return (unknown_buf);
}
/*
* Define known section flags. These flags are defined in the order
* they are to be printed out.
*/
#define DEFINE_SHFLAGS() \
DEFINE_SHF(WRITE) \
DEFINE_SHF(ALLOC) \
DEFINE_SHF(EXECINSTR) \
DEFINE_SHF(MERGE) \
DEFINE_SHF(STRINGS) \
DEFINE_SHF(INFO_LINK) \
DEFINE_SHF(LINK_ORDER) \
DEFINE_SHF(OS_NONCONFORMING) \
DEFINE_SHF(GROUP) \
DEFINE_SHF(TLS) \
DEFINE_SHF(COMPRESSED)
#undef DEFINE_SHF
#define DEFINE_SHF(F) "SHF_" #F "|"
#define ALLSHFLAGS DEFINE_SHFLAGS()
static const char *
sh_flags(uint64_t shf)
{
static char flg[sizeof(ALLSHFLAGS)+1];
flg[0] = '\0';
#undef DEFINE_SHF
#define DEFINE_SHF(N) \
if (shf & SHF_##N) \
strcat(flg, "SHF_" #N "|"); \
DEFINE_SHFLAGS()
flg[strlen(flg) - 1] = '\0'; /* Remove the trailing "|". */
return (flg);
}
static const char *
st_type(unsigned int mach, unsigned int type)
{
static char s_type[32];
switch (type) {
case STT_NOTYPE: return "STT_NOTYPE";
case STT_OBJECT: return "STT_OBJECT";
case STT_FUNC: return "STT_FUNC";
case STT_SECTION: return "STT_SECTION";
case STT_FILE: return "STT_FILE";
case STT_COMMON: return "STT_COMMON";
case STT_TLS: return "STT_TLS";
case 13:
if (mach == EM_SPARCV9)
return "STT_SPARC_REGISTER";
break;
}
snprintf(s_type, sizeof(s_type), "<unknown: %#x>", type);
return (s_type);
}
static const char *
st_type_S(unsigned int type)
{
static char s_type[32];
switch (type) {
case STT_NOTYPE: return "NOTY";
case STT_OBJECT: return "OBJT";
case STT_FUNC: return "FUNC";
case STT_SECTION: return "SECT";
case STT_FILE: return "FILE";
}
snprintf(s_type, sizeof(s_type), "<unknown: %#x>", type);
return (s_type);
}
static const char *
st_bindings(unsigned int sbind)
{
static char s_sbind[32];
switch (sbind) {
case STB_LOCAL: return "STB_LOCAL";
case STB_GLOBAL: return "STB_GLOBAL";
case STB_WEAK: return "STB_WEAK";
case STB_GNU_UNIQUE: return "STB_GNU_UNIQUE";
default:
if (sbind >= STB_LOOS && sbind <= STB_HIOS)
return "OS";
else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC)
return "PROC";
else
snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>",
sbind);
return (s_sbind);
}
}
static const char *
st_bindings_S(unsigned int sbind)
{
static char s_sbind[32];
switch (sbind) {
case STB_LOCAL: return "LOCL";
case STB_GLOBAL: return "GLOB";
case STB_WEAK: return "WEAK";
case STB_GNU_UNIQUE: return "UNIQ";
default:
if (sbind >= STB_LOOS && sbind <= STB_HIOS)
return "OS";
else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC)
return "PROC";
else
snprintf(s_sbind, sizeof(s_sbind), "<%#x>",
sbind);
return (s_sbind);
}
}
static unsigned char st_others[] = {
'D', 'I', 'H', 'P'
};
static void add_name(struct elfdump *ed, const char *name);
static void elf_print_object(struct elfdump *ed);
static void elf_print_elf(struct elfdump *ed);
static void elf_print_ehdr(struct elfdump *ed);
static void elf_print_phdr(struct elfdump *ed);
static void elf_print_shdr(struct elfdump *ed);
static void elf_print_symtab(struct elfdump *ed, int i);
static void elf_print_symtabs(struct elfdump *ed);
static void elf_print_symver(struct elfdump *ed);
static void elf_print_verdef(struct elfdump *ed, struct section *s);
static void elf_print_verneed(struct elfdump *ed, struct section *s);
static void elf_print_interp(struct elfdump *ed);
static void elf_print_dynamic(struct elfdump *ed);
static void elf_print_rel_entry(struct elfdump *ed, struct section *s,
int j, struct rel_entry *r);
static void elf_print_rela(struct elfdump *ed, struct section *s,
Elf_Data *data);
static void elf_print_rel(struct elfdump *ed, struct section *s,
Elf_Data *data);
static void elf_print_reloc(struct elfdump *ed);
static void elf_print_got(struct elfdump *ed);
static void elf_print_got_section(struct elfdump *ed, struct section *s);
static void elf_print_note(struct elfdump *ed);
static void elf_print_svr4_hash(struct elfdump *ed, struct section *s);
static void elf_print_svr4_hash64(struct elfdump *ed, struct section *s);
static void elf_print_gnu_hash(struct elfdump *ed, struct section *s);
static void elf_print_hash(struct elfdump *ed);
static void elf_print_checksum(struct elfdump *ed);
static void find_gotrel(struct elfdump *ed, struct section *gs,
struct rel_entry *got);
static struct spec_name *find_name(struct elfdump *ed, const char *name);
static int get_ent_count(const struct section *s, int *ent_count);
static const char *get_symbol_name(struct elfdump *ed, uint32_t symtab, int i);
static const char *get_string(struct elfdump *ed, int strtab, size_t off);
static void get_versym(struct elfdump *ed, int i, uint16_t **vs, int *nvs);
static void load_sections(struct elfdump *ed);
static void unload_sections(struct elfdump *ed);
static void usage(void);
#ifdef USE_LIBARCHIVE_AR
static int ac_detect_ar(int fd);
static void ac_print_ar(struct elfdump *ed, int fd);
#else
static void elf_print_ar(struct elfdump *ed, int fd);
#endif /* USE_LIBARCHIVE_AR */
static struct option elfdump_longopts[] =
{
{ "help", no_argument, NULL, 'H' },
{ "version", no_argument, NULL, 'V' },
{ NULL, 0, NULL, 0 }
};
int
main(int ac, char **av)
{
struct elfdump *ed, ed_storage;
struct spec_name *sn;
int ch, i;
ed = &ed_storage;
memset(ed, 0, sizeof(*ed));
STAILQ_INIT(&ed->snl);
ed->out = stdout;
while ((ch = getopt_long(ac, av, "acdeiGHhknN:prsSvVw:",
elfdump_longopts, NULL)) != -1)
switch (ch) {
case 'a':
ed->options = ED_ALL;
break;
case 'c':
ed->options |= ED_SHDR;
break;
case 'd':
ed->options |= ED_DYN;
break;
case 'e':
ed->options |= ED_EHDR;
break;
case 'i':
ed->options |= ED_INTERP;
break;
case 'G':
ed->options |= ED_GOT;
break;
case 'h':
ed->options |= ED_HASH;
break;
case 'k':
ed->options |= ED_CHECKSUM;
break;
case 'n':
ed->options |= ED_NOTE;
break;
case 'N':
add_name(ed, optarg);
break;
case 'p':
ed->options |= ED_PHDR;
break;
case 'r':
ed->options |= ED_REL;
break;
case 's':
ed->options |= ED_SYMTAB;
break;
case 'S':
ed->flags |= SOLARIS_FMT;
break;
case 'v':
ed->options |= ED_SYMVER;
break;
case 'V':
(void) printf("%s (%s)\n", ELFTC_GETPROGNAME(),
elftc_version());
exit(EXIT_SUCCESS);
break;
case 'w':
if ((ed->out = fopen(optarg, "w")) == NULL)
err(EXIT_FAILURE, "%s", optarg);
break;
case '?':
case 'H':
default:
usage();
}
ac -= optind;
av += optind;
if (ed->options == 0)
ed->options = ED_ALL;
sn = NULL;
if (ed->options & ED_SYMTAB &&
(STAILQ_EMPTY(&ed->snl) || (sn = find_name(ed, "ARSYM")) != NULL)) {
ed->flags |= PRINT_ARSYM;
if (sn != NULL) {
STAILQ_REMOVE(&ed->snl, sn, spec_name, sn_list);
if (STAILQ_EMPTY(&ed->snl))
ed->flags |= ONLY_ARSYM;
}
}
if (ac == 0)
usage();
if (ac > 1)
ed->flags |= PRINT_FILENAME;
if (elf_version(EV_CURRENT) == EV_NONE)
errx(EXIT_FAILURE, "ELF library initialization failed: %s",
elf_errmsg(-1));
for (i = 0; i < ac; i++) {
ed->filename = av[i];
ed->archive = NULL;
elf_print_object(ed);
}
exit(EXIT_SUCCESS);
}
#ifdef USE_LIBARCHIVE_AR
/* Archive symbol table entry. */
struct arsym_entry {
char *sym_name;
size_t off;
};
/*
* Convenient wrapper for general libarchive error handling.
*/
#define AC(CALL) do { \
if ((CALL)) { \
warnx("%s", archive_error_string(a)); \
return; \
} \
} while (0)
/*
* Detect an ar(1) archive using libarchive(3).
*/
static int
ac_detect_ar(int fd)
{
struct archive *a;
struct archive_entry *entry;
int r;
r = -1;
if ((a = archive_read_new()) == NULL)
return (0);
archive_read_support_format_ar(a);
if (archive_read_open_fd(a, fd, 10240) == ARCHIVE_OK)
r = archive_read_next_header(a, &entry);
archive_read_close(a);
archive_read_free(a);
return (r == ARCHIVE_OK);
}
/*
* Dump an ar(1) archive using libarchive(3).
*/
static void
ac_print_ar(struct elfdump *ed, int fd)
{
struct archive *a;
struct archive_entry *entry;
struct arsym_entry *arsym;
const char *name;
char idx[10], *b;
void *buff;
size_t size;
uint32_t cnt, i;
int r;
if (lseek(fd, 0, SEEK_SET) == -1)
err(EXIT_FAILURE, "lseek failed");
if ((a = archive_read_new()) == NULL)
errx(EXIT_FAILURE, "%s", archive_error_string(a));
archive_read_support_format_ar(a);
AC(archive_read_open_fd(a, fd, 10240));
for(;;) {
r = archive_read_next_header(a, &entry);
if (r == ARCHIVE_FATAL)
errx(EXIT_FAILURE, "%s", archive_error_string(a));
if (r == ARCHIVE_EOF)
break;
if (r == ARCHIVE_WARN || r == ARCHIVE_RETRY)
warnx("%s", archive_error_string(a));
if (r == ARCHIVE_RETRY)
continue;
name = archive_entry_pathname(entry);
size = archive_entry_size(entry);
if (size == 0)
continue;
if ((buff = malloc(size)) == NULL) {
warn("malloc failed");
continue;
}
if (archive_read_data(a, buff, size) != (ssize_t)size) {
warnx("%s", archive_error_string(a));
free(buff);
continue;
}
/*
* Note that when processing arsym via libarchive, there is
* no way to tell which member a certain symbol belongs to,
* since we can not just "lseek" to a member offset and read
* the member header.
*/
if (!strcmp(name, "/") && ed->flags & PRINT_ARSYM) {
b = buff;
cnt = be32dec(b);
if (cnt == 0) {
free(buff);
continue;
}
arsym = calloc(cnt, sizeof(*arsym));
if (arsym == NULL)
err(EXIT_FAILURE, "calloc failed");
b += sizeof(uint32_t);
for (i = 0; i < cnt; i++) {
arsym[i].off = be32dec(b);
b += sizeof(uint32_t);
}
for (i = 0; i < cnt; i++) {
arsym[i].sym_name = b;
b += strlen(b) + 1;
}
if (ed->flags & SOLARIS_FMT) {
PRT("\nSymbol Table: (archive)\n");
PRT(" index offset symbol\n");
} else
PRT("\nsymbol table (archive):\n");
for (i = 0; i < cnt; i++) {
if (ed->flags & SOLARIS_FMT) {
snprintf(idx, sizeof(idx), "[%d]", i);
PRT("%10s ", idx);
PRT("0x%8.8jx ",
(uintmax_t)arsym[i].off);
PRT("%s\n", arsym[i].sym_name);
} else {
PRT("\nentry: %d\n", i);
PRT("\toffset: %#jx\n",
(uintmax_t)arsym[i].off);
PRT("\tsymbol: %s\n",
arsym[i].sym_name);
}
}
free(arsym);
free(buff);
/* No need to continue if we only dump ARSYM. */
if (ed->flags & ONLY_ARSYM) {
AC(archive_read_close(a));
AC(archive_read_free(a));
return;
}
continue;
}
if ((ed->elf = elf_memory(buff, size)) == NULL) {
warnx("elf_memroy() failed: %s",
elf_errmsg(-1));
free(buff);
continue;
}
/* Skip non-ELF member. */
if (elf_kind(ed->elf) == ELF_K_ELF) {
printf("\n%s(%s):\n", ed->archive, name);
elf_print_elf(ed);
}
elf_end(ed->elf);
free(buff);
}
AC(archive_read_close(a));
AC(archive_read_free(a));
}
#else /* USE_LIBARCHIVE_AR */
/*
* Dump an ar(1) archive.
*/
static void
elf_print_ar(struct elfdump *ed, int fd)
{
Elf *e;
Elf_Arhdr *arh;
Elf_Arsym *arsym;
Elf_Cmd cmd;
char idx[21];
size_t cnt, i;
ed->ar = ed->elf;
if (ed->flags & PRINT_ARSYM) {
cnt = 0;
if ((arsym = elf_getarsym(ed->ar, &cnt)) == NULL) {
warnx("elf_getarsym failed: %s", elf_errmsg(-1));
goto print_members;
}
if (cnt == 0)
goto print_members;
if (ed->flags & SOLARIS_FMT) {
PRT("\nSymbol Table: (archive)\n");
PRT(" index offset member name and symbol\n");
} else
PRT("\nsymbol table (archive):\n");
for (i = 0; i < cnt - 1; i++) {
if (elf_rand(ed->ar, arsym[i].as_off) !=
arsym[i].as_off) {
warnx("elf_rand failed: %s", elf_errmsg(-1));
break;
}
if ((e = elf_begin(fd, ELF_C_READ, ed->ar)) == NULL) {
warnx("elf_begin failed: %s", elf_errmsg(-1));
break;
}
if ((arh = elf_getarhdr(e)) == NULL) {
warnx("elf_getarhdr failed: %s",
elf_errmsg(-1));
break;
}
if (ed->flags & SOLARIS_FMT) {
snprintf(idx, sizeof(idx), "[%zu]", i);
PRT("%10s ", idx);
PRT("0x%8.8jx ",
(uintmax_t)arsym[i].as_off);
PRT("(%s):%s\n", arh->ar_name,
arsym[i].as_name);
} else {
PRT("\nentry: %zu\n", i);
PRT("\toffset: %#jx\n",
(uintmax_t)arsym[i].as_off);
PRT("\tmember: %s\n", arh->ar_name);
PRT("\tsymbol: %s\n", arsym[i].as_name);
}
elf_end(e);
}
/* No need to continue if we only dump ARSYM. */
if (ed->flags & ONLY_ARSYM)
return;
}
print_members:
/* Rewind the archive. */
if (elf_rand(ed->ar, SARMAG) != SARMAG) {
warnx("elf_rand failed: %s", elf_errmsg(-1));
return;
}
/* Dump each member of the archive. */
cmd = ELF_C_READ;
while ((ed->elf = elf_begin(fd, cmd, ed->ar)) != NULL) {
/* Skip non-ELF member. */
if (elf_kind(ed->elf) == ELF_K_ELF) {
if ((arh = elf_getarhdr(ed->elf)) == NULL) {
warnx("elf_getarhdr failed: %s",
elf_errmsg(-1));
break;
}
printf("\n%s(%s):\n", ed->archive, arh->ar_name);
elf_print_elf(ed);
}
cmd = elf_next(ed->elf);
elf_end(ed->elf);
}
}
#endif /* USE_LIBARCHIVE_AR */
/*
* Dump an object. (ELF object or ar(1) archive)
*/
static void
elf_print_object(struct elfdump *ed)
{
int fd;
if ((fd = open(ed->filename, O_RDONLY)) == -1) {
warn("open %s failed", ed->filename);
return;
}
#ifdef USE_LIBARCHIVE_AR
if (ac_detect_ar(fd)) {
ed->archive = ed->filename;
ac_print_ar(ed, fd);
return;
}
#endif /* USE_LIBARCHIVE_AR */
if ((ed->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) {
warnx("elf_begin() failed: %s", elf_errmsg(-1));
return;
}
switch (elf_kind(ed->elf)) {
case ELF_K_NONE:
warnx("Not an ELF file.");
return;
case ELF_K_ELF:
if (ed->flags & PRINT_FILENAME)
printf("\n%s:\n", ed->filename);
elf_print_elf(ed);
break;
case ELF_K_AR:
#ifndef USE_LIBARCHIVE_AR
ed->archive = ed->filename;
elf_print_ar(ed, fd);
#endif
break;
default:
warnx("Internal: libelf returned unknown elf kind.");
return;
}
elf_end(ed->elf);
}
/*
* Dump an ELF object.
*/
static void
elf_print_elf(struct elfdump *ed)
{
if (gelf_getehdr(ed->elf, &ed->ehdr) == NULL) {
warnx("gelf_getehdr failed: %s", elf_errmsg(-1));
return;
}
if ((ed->ec = gelf_getclass(ed->elf)) == ELFCLASSNONE) {
warnx("gelf_getclass failed: %s", elf_errmsg(-1));
return;
}
if (ed->options & (ED_SHDR | ED_DYN | ED_REL | ED_GOT | ED_SYMTAB |
ED_SYMVER | ED_NOTE | ED_HASH))
load_sections(ed);
if (ed->options & ED_EHDR)
elf_print_ehdr(ed);
if (ed->options & ED_PHDR)
elf_print_phdr(ed);
if (ed->options & ED_INTERP)
elf_print_interp(ed);
if (ed->options & ED_SHDR)
elf_print_shdr(ed);
if (ed->options & ED_DYN)
elf_print_dynamic(ed);
if (ed->options & ED_REL)
elf_print_reloc(ed);
if (ed->options & ED_GOT)
elf_print_got(ed);
if (ed->options & ED_SYMTAB)
elf_print_symtabs(ed);
if (ed->options & ED_SYMVER)
elf_print_symver(ed);
if (ed->options & ED_NOTE)
elf_print_note(ed);
if (ed->options & ED_HASH)
elf_print_hash(ed);
if (ed->options & ED_CHECKSUM)
elf_print_checksum(ed);
unload_sections(ed);
}
/*
* Read the section headers from ELF object and store them in the
* internal cache.
*/
static void
load_sections(struct elfdump *ed)
{
struct section *s;
const char *name;
Elf_Scn *scn;
GElf_Shdr sh;
size_t shstrndx, ndx;
int elferr;
assert(ed->sl == NULL);
if (!elf_getshnum(ed->elf, &ed->shnum)) {
warnx("elf_getshnum failed: %s", elf_errmsg(-1));
return;
}
if (ed->shnum == 0)
return;
if ((ed->sl = calloc(ed->shnum, sizeof(*ed->sl))) == NULL)
err(EXIT_FAILURE, "calloc failed");
if (!elf_getshstrndx(ed->elf, &shstrndx)) {
warnx("elf_getshstrndx failed: %s", elf_errmsg(-1));
return;
}
if ((scn = elf_getscn(ed->elf, 0)) == NULL) {
warnx("elf_getscn failed: %s", elf_errmsg(-1));
return;
}
(void) elf_errno();
do {
if (gelf_getshdr(scn, &sh) == NULL) {
warnx("gelf_getshdr failed: %s", elf_errmsg(-1));
(void) elf_errno();
continue;
}
if ((name = elf_strptr(ed->elf, shstrndx, sh.sh_name)) == NULL) {
(void) elf_errno();
name = "ERROR";
}
if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF)
if ((elferr = elf_errno()) != 0) {
warnx("elf_ndxscn failed: %s",
elf_errmsg(elferr));
continue;
}
if (ndx >= ed->shnum) {
warnx("section index of '%s' out of range", name);
continue;
}
s = &ed->sl[ndx];
s->name = name;
s->scn = scn;
s->off = sh.sh_offset;
s->sz = sh.sh_size;
s->entsize = sh.sh_entsize;
s->align = sh.sh_addralign;
s->type = sh.sh_type;
s->flags = sh.sh_flags;
s->addr = sh.sh_addr;
s->link = sh.sh_link;
s->info = sh.sh_info;
} while ((scn = elf_nextscn(ed->elf, scn)) != NULL);
elferr = elf_errno();
if (elferr != 0)
warnx("elf_nextscn failed: %s", elf_errmsg(elferr));
}
/*
* Release section related resources.
*/
static void
unload_sections(struct elfdump *ed)
{
if (ed->sl != NULL) {
free(ed->sl);
ed->sl = NULL;
}
}
/*
* Add a name to the '-N' name list.
*/
static void
add_name(struct elfdump *ed, const char *name)
{
struct spec_name *sn;
if (find_name(ed, name))
return;
if ((sn = malloc(sizeof(*sn))) == NULL) {
warn("malloc failed");
return;
}
sn->name = name;
STAILQ_INSERT_TAIL(&ed->snl, sn, sn_list);
}
/*
* Lookup a name in the '-N' name list.
*/
static struct spec_name *
find_name(struct elfdump *ed, const char *name)
{
struct spec_name *sn;
STAILQ_FOREACH(sn, &ed->snl, sn_list) {
if (!strcmp(sn->name, name))
return (sn);
}
return (NULL);
}
/*
* Retrieve the name of a symbol using the section index of the symbol
* table and the index of the symbol within that table.
*/
static const char *
get_symbol_name(struct elfdump *ed, uint32_t symtab, int i)
{
static char sname[64];
struct section *s;
const char *name;
GElf_Sym sym;
Elf_Data *data;
int elferr;
if (symtab >= ed->shnum)
return ("");
s = &ed->sl[symtab];
if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM)
return ("");
(void) elf_errno();
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s", elf_errmsg(elferr));
return ("");
}
if (gelf_getsym(data, i, &sym) != &sym)
return ("");
if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) {
if (sym.st_shndx < ed->shnum) {
snprintf(sname, sizeof(sname), "%s (section)",
ed->sl[sym.st_shndx].name);
return (sname);
} else
return ("");
}
if ((name = elf_strptr(ed->elf, s->link, sym.st_name)) == NULL)
return ("");
return (name);
}
/*
* Retrieve a string using string table section index and the string offset.
*/
static const char*
get_string(struct elfdump *ed, int strtab, size_t off)
{
const char *name;
if ((name = elf_strptr(ed->elf, strtab, off)) == NULL)
return ("");
return (name);
}
/*
* Dump the ELF Executable Header.
*/
static void
elf_print_ehdr(struct elfdump *ed)
{
if (!STAILQ_EMPTY(&ed->snl))
return;
if (ed->flags & SOLARIS_FMT) {
PRT("\nELF Header\n");
PRT(" ei_magic: { %#x, %c, %c, %c }\n",
ed->ehdr.e_ident[0], ed->ehdr.e_ident[1],
ed->ehdr.e_ident[2], ed->ehdr.e_ident[3]);
PRT(" ei_class: %-18s",
elf_class_str(ed->ehdr.e_ident[EI_CLASS]));
PRT(" ei_data: %s\n",
elf_data_str(ed->ehdr.e_ident[EI_DATA]));
PRT(" e_machine: %-18s", e_machines(ed->ehdr.e_machine));
PRT(" e_version: %s\n",
elf_version_str(ed->ehdr.e_version));
PRT(" e_type: %s\n", elf_type_str(ed->ehdr.e_type));
PRT(" e_flags: %18d\n", ed->ehdr.e_flags);
PRT(" e_entry: %#18jx", (uintmax_t)ed->ehdr.e_entry);
PRT(" e_ehsize: %6d", ed->ehdr.e_ehsize);
PRT(" e_shstrndx:%5d\n", ed->ehdr.e_shstrndx);
PRT(" e_shoff: %#18jx", (uintmax_t)ed->ehdr.e_shoff);
PRT(" e_shentsize: %3d", ed->ehdr.e_shentsize);
PRT(" e_shnum: %5d\n", ed->ehdr.e_shnum);
PRT(" e_phoff: %#18jx", (uintmax_t)ed->ehdr.e_phoff);
PRT(" e_phentsize: %3d", ed->ehdr.e_phentsize);
PRT(" e_phnum: %5d\n", ed->ehdr.e_phnum);
} else {
PRT("\nelf header:\n");
PRT("\n");
PRT("\te_ident: %s %s %s\n",
elf_class_str(ed->ehdr.e_ident[EI_CLASS]),
elf_data_str(ed->ehdr.e_ident[EI_DATA]),
ei_abis[ed->ehdr.e_ident[EI_OSABI]]);
PRT("\te_type: %s\n", elf_type_str(ed->ehdr.e_type));
PRT("\te_machine: %s\n", e_machines(ed->ehdr.e_machine));
PRT("\te_version: %s\n", elf_version_str(ed->ehdr.e_version));
PRT("\te_entry: %#jx\n", (uintmax_t)ed->ehdr.e_entry);
PRT("\te_phoff: %ju\n", (uintmax_t)ed->ehdr.e_phoff);
PRT("\te_shoff: %ju\n", (uintmax_t) ed->ehdr.e_shoff);
PRT("\te_flags: %u\n", ed->ehdr.e_flags);
PRT("\te_ehsize: %u\n", ed->ehdr.e_ehsize);
PRT("\te_phentsize: %u\n", ed->ehdr.e_phentsize);
PRT("\te_phnum: %u\n", ed->ehdr.e_phnum);
PRT("\te_shentsize: %u\n", ed->ehdr.e_shentsize);
PRT("\te_shnum: %u\n", ed->ehdr.e_shnum);
PRT("\te_shstrndx: %u\n", ed->ehdr.e_shstrndx);
}
}
/*
* Dump the ELF Program Header Table.
*/
static void
elf_print_phdr(struct elfdump *ed)
{
GElf_Phdr ph;
size_t phnum, i;
int header;
if (elf_getphnum(ed->elf, &phnum) == 0) {
warnx("elf_getphnum failed: %s", elf_errmsg(-1));
return;
}
header = 0;
for (i = 0; i < phnum; i++) {
if (gelf_getphdr(ed->elf, i, &ph) != &ph) {
warnx("elf_getphdr failed: %s", elf_errmsg(-1));
continue;
}
if (!STAILQ_EMPTY(&ed->snl) &&
find_name(ed, elf_phdr_type_str(ph.p_type)) == NULL)
continue;
if (ed->flags & SOLARIS_FMT) {
PRT("\nProgram Header[%zu]:\n", i);
PRT(" p_vaddr: %#-14jx", (uintmax_t)ph.p_vaddr);
PRT(" p_flags: [ %s ]\n",
p_flags[ph.p_flags & 0x7]);
PRT(" p_paddr: %#-14jx", (uintmax_t)ph.p_paddr);
PRT(" p_type: [ %s ]\n",
elf_phdr_type_str(ph.p_type));
PRT(" p_filesz: %#-14jx",
(uintmax_t)ph.p_filesz);
PRT(" p_memsz: %#jx\n", (uintmax_t)ph.p_memsz);
PRT(" p_offset: %#-14jx",
(uintmax_t)ph.p_offset);
PRT(" p_align: %#jx\n", (uintmax_t)ph.p_align);
} else {
if (!header) {
PRT("\nprogram header:\n");
header = 1;
}
PRT("\n");
PRT("entry: %zu\n", i);
PRT("\tp_type: %s\n", elf_phdr_type_str(ph.p_type));
PRT("\tp_offset: %ju\n", (uintmax_t)ph.p_offset);
PRT("\tp_vaddr: %#jx\n", (uintmax_t)ph.p_vaddr);
PRT("\tp_paddr: %#jx\n", (uintmax_t)ph.p_paddr);
PRT("\tp_filesz: %ju\n", (uintmax_t)ph.p_filesz);
PRT("\tp_memsz: %ju\n", (uintmax_t)ph.p_memsz);
PRT("\tp_flags: %s\n", p_flags[ph.p_flags & 0x7]);
PRT("\tp_align: %ju\n", (uintmax_t)ph.p_align);
}
}
}
/*
* Dump the ELF Section Header Table.
*/
static void
elf_print_shdr(struct elfdump *ed)
{
struct section *s;
size_t i;
if (!STAILQ_EMPTY(&ed->snl))
return;
if ((ed->flags & SOLARIS_FMT) == 0)
PRT("\nsection header:\n");
for (i = 0; i < ed->shnum; i++) {
s = &ed->sl[i];
if (ed->flags & SOLARIS_FMT) {
if (i == 0)
continue;
PRT("\nSection Header[%zu]:", i);
PRT(" sh_name: %s\n", s->name);
PRT(" sh_addr: %#-14jx", (uintmax_t)s->addr);
if (s->flags != 0)
PRT(" sh_flags: [ %s ]\n", sh_flags(s->flags));
else
PRT(" sh_flags: 0\n");
PRT(" sh_size: %#-14jx", (uintmax_t)s->sz);
PRT(" sh_type: [ %s ]\n",
sh_types(ed->ehdr.e_machine, s->type));
PRT(" sh_offset: %#-14jx", (uintmax_t)s->off);
PRT(" sh_entsize: %#jx\n", (uintmax_t)s->entsize);
PRT(" sh_link: %-14u", s->link);
PRT(" sh_info: %u\n", s->info);
PRT(" sh_addralign: %#jx\n", (uintmax_t)s->align);
} else {
PRT("\n");
PRT("entry: %ju\n", (uintmax_t)i);
PRT("\tsh_name: %s\n", s->name);
PRT("\tsh_type: %s\n",
sh_types(ed->ehdr.e_machine, s->type));
PRT("\tsh_flags: %s\n", sh_flags(s->flags));
PRT("\tsh_addr: %#jx\n", (uintmax_t)s->addr);
PRT("\tsh_offset: %ju\n", (uintmax_t)s->off);
PRT("\tsh_size: %ju\n", (uintmax_t)s->sz);
PRT("\tsh_link: %u\n", s->link);
PRT("\tsh_info: %u\n", s->info);
PRT("\tsh_addralign: %ju\n", (uintmax_t)s->align);
PRT("\tsh_entsize: %ju\n", (uintmax_t)s->entsize);
}
}
}
/*
* Return number of entries in the given section. We'd prefer ent_count be a
* size_t, but libelf APIs already use int for section indices.
*/
static int
get_ent_count(const struct section *s, int *ent_count)
{
if (s->entsize == 0) {
warnx("section %s has entry size 0", s->name);
return (0);
} else if (s->sz / s->entsize > INT_MAX) {
warnx("section %s has invalid section count", s->name);
return (0);
}
*ent_count = (int)(s->sz / s->entsize);
return (1);
}
/*
* Retrieve the content of the corresponding SHT_SUNW_versym section for
* a symbol table section.
*/
static void
get_versym(struct elfdump *ed, int i, uint16_t **vs, int *nvs)
{
struct section *s;
Elf_Data *data;
size_t j;
int elferr;
s = NULL;
for (j = 0; j < ed->shnum; j++) {
s = &ed->sl[j];
if (s->type == SHT_SUNW_versym && s->link == (uint32_t)i)
break;
}
if (j >= ed->shnum) {
*vs = NULL;
return;
}
(void) elf_errno();
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s", elf_errmsg(elferr));
*vs = NULL;
return;
}
*vs = data->d_buf;
assert(data->d_size == s->sz);
if (!get_ent_count(s, nvs))
*nvs = 0;
}
/*
* Dump the symbol table section.
*/
static void
elf_print_symtab(struct elfdump *ed, int i)
{
struct section *s;
const char *name;
uint16_t *vs;
char idx[13];
Elf_Data *data;
GElf_Sym sym;
int len, j, elferr, nvs;
s = &ed->sl[i];
if (ed->flags & SOLARIS_FMT)
PRT("\nSymbol Table Section: %s\n", s->name);
else
PRT("\nsymbol table (%s):\n", s->name);
(void) elf_errno();
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s", elf_errmsg(elferr));
return;
}
vs = NULL;
nvs = 0;
assert(data->d_size == s->sz);
if (!get_ent_count(s, &len))
return;
if (ed->flags & SOLARIS_FMT) {
if (ed->ec == ELFCLASS32)
PRT(" index value ");
else
PRT(" index value ");
PRT("size type bind oth ver shndx name\n");
get_versym(ed, i, &vs, &nvs);
if (vs != NULL && nvs != len) {
warnx("#symbol not equal to #versym");
vs = NULL;
}
}
for (j = 0; j < len; j++) {
if (gelf_getsym(data, j, &sym) != &sym) {
warnx("gelf_getsym failed: %s", elf_errmsg(-1));
continue;
}
name = get_string(ed, s->link, sym.st_name);
if (ed->flags & SOLARIS_FMT) {
snprintf(idx, sizeof(idx), "[%d]", j);
if (ed->ec == ELFCLASS32)
PRT("%10s ", idx);
else
PRT("%10s ", idx);
PRT("0x%8.8jx ", (uintmax_t)sym.st_value);
if (ed->ec == ELFCLASS32)
PRT("0x%8.8jx ", (uintmax_t)sym.st_size);
else
PRT("0x%12.12jx ", (uintmax_t)sym.st_size);
PRT("%s ", st_type_S(GELF_ST_TYPE(sym.st_info)));
PRT("%s ", st_bindings_S(GELF_ST_BIND(sym.st_info)));
PRT("%c ", st_others[sym.st_other]);
PRT("%3u ", (vs == NULL ? 0 : vs[j]));
PRT("%-11.11s ", sh_name(ed, sym.st_shndx));
PRT("%s\n", name);
} else {
PRT("\nentry: %d\n", j);
PRT("\tst_name: %s\n", name);
PRT("\tst_value: %#jx\n", (uintmax_t)sym.st_value);
PRT("\tst_size: %ju\n", (uintmax_t)sym.st_size);
PRT("\tst_info: %s %s\n",
st_type(ed->ehdr.e_machine,
GELF_ST_TYPE(sym.st_info)),
st_bindings(GELF_ST_BIND(sym.st_info)));
PRT("\tst_shndx: %ju\n", (uintmax_t)sym.st_shndx);
}
}
}
/*
* Dump the symbol tables. (.dynsym and .symtab)
*/
static void
elf_print_symtabs(struct elfdump *ed)
{
size_t i;
for (i = 0; i < ed->shnum; i++)
if ((ed->sl[i].type == SHT_SYMTAB ||
ed->sl[i].type == SHT_DYNSYM) &&
(STAILQ_EMPTY(&ed->snl) || find_name(ed, ed->sl[i].name)))
elf_print_symtab(ed, i);
}
/*
* Dump the content of .dynamic section.
*/
static void
elf_print_dynamic(struct elfdump *ed)
{
struct section *s;
const char *name;
char idx[13];
Elf_Data *data;
GElf_Dyn dyn;
int elferr, i, len;
s = NULL;
for (i = 0; (size_t)i < ed->shnum; i++) {
s = &ed->sl[i];
if (s->type == SHT_DYNAMIC &&
(STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name)))
break;
}
if ((size_t)i >= ed->shnum)
return;
if (ed->flags & SOLARIS_FMT) {
PRT("Dynamic Section: %s\n", s->name);
PRT(" index tag value\n");
} else
PRT("\ndynamic:\n");
(void) elf_errno();
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s", elf_errmsg(elferr));
return;
}
assert(data->d_size == s->sz);
if (!get_ent_count(s, &len))
return;
for (i = 0; i < len; i++) {
if (gelf_getdyn(data, i, &dyn) != &dyn) {
warnx("gelf_getdyn failed: %s", elf_errmsg(-1));
continue;
}
if (ed->flags & SOLARIS_FMT) {
snprintf(idx, sizeof(idx), "[%d]", i);
PRT("%10s %-16s ", idx, d_tags(dyn.d_tag));
} else {
PRT("\n");
PRT("entry: %d\n", i);
PRT("\td_tag: %s\n", d_tags(dyn.d_tag));
}
switch(dyn.d_tag) {
case DT_NEEDED:
case DT_SONAME:
case DT_RPATH:
case DT_RUNPATH:
if ((name = elf_strptr(ed->elf, s->link,
dyn.d_un.d_val)) == NULL)
name = "";
if (ed->flags & SOLARIS_FMT)
PRT("%#-16jx %s\n", (uintmax_t)dyn.d_un.d_val,
name);
else
PRT("\td_val: %s\n", name);
break;
case DT_PLTRELSZ:
case DT_RELA:
case DT_RELASZ:
case DT_RELAENT:
case DT_RELACOUNT:
case DT_STRSZ:
case DT_SYMENT:
case DT_RELSZ:
case DT_RELENT:
case DT_PLTREL:
case DT_VERDEF:
case DT_VERDEFNUM:
case DT_VERNEED:
case DT_VERNEEDNUM:
case DT_VERSYM:
if (ed->flags & SOLARIS_FMT)
PRT("%#jx\n", (uintmax_t)dyn.d_un.d_val);
else
PRT("\td_val: %ju\n",
(uintmax_t)dyn.d_un.d_val);
break;
case DT_PLTGOT:
case DT_HASH:
case DT_GNU_HASH:
case DT_STRTAB:
case DT_SYMTAB:
case DT_INIT:
case DT_FINI:
case DT_REL:
case DT_JMPREL:
case DT_DEBUG:
if (ed->flags & SOLARIS_FMT)
PRT("%#jx\n", (uintmax_t)dyn.d_un.d_ptr);
else
PRT("\td_ptr: %#jx\n",
(uintmax_t)dyn.d_un.d_ptr);
break;
case DT_NULL:
case DT_SYMBOLIC:
case DT_TEXTREL:
default:
if (ed->flags & SOLARIS_FMT)
PRT("\n");
break;
}
}
}
/*
* Dump a .rel/.rela section entry.
*/
static void
elf_print_rel_entry(struct elfdump *ed, struct section *s, int j,
struct rel_entry *r)
{
if (ed->flags & SOLARIS_FMT) {
PRT(" %-23s ", elftc_reloc_type_str(ed->ehdr.e_machine,
GELF_R_TYPE(r->u_r.rel.r_info)));
PRT("%#12jx ", (uintmax_t)r->u_r.rel.r_offset);
if (r->type == SHT_RELA)
PRT("%10jd ", (intmax_t)r->u_r.rela.r_addend);
else
PRT(" ");
PRT("%-14s ", s->name);
PRT("%s\n", r->symn);
} else {
PRT("\n");
PRT("entry: %d\n", j);
PRT("\tr_offset: %#jx\n", (uintmax_t)r->u_r.rel.r_offset);
if (ed->ec == ELFCLASS32)
PRT("\tr_info: %#jx\n", (uintmax_t)
ELF32_R_INFO(ELF64_R_SYM(r->u_r.rel.r_info),
ELF64_R_TYPE(r->u_r.rel.r_info)));
else
PRT("\tr_info: %#jx\n", (uintmax_t)r->u_r.rel.r_info);
if (r->type == SHT_RELA)
PRT("\tr_addend: %jd\n",
(intmax_t)r->u_r.rela.r_addend);
}
}
/*
* Dump a relocation section of type SHT_RELA.
*/
static void
elf_print_rela(struct elfdump *ed, struct section *s, Elf_Data *data)
{
struct rel_entry r;
int j, len;
if (ed->flags & SOLARIS_FMT) {
PRT("\nRelocation Section: %s\n", s->name);
PRT(" type offset "
"addend section with respect to\n");
} else
PRT("\nrelocation with addend (%s):\n", s->name);
r.type = SHT_RELA;
assert(data->d_size == s->sz);
if (!get_ent_count(s, &len))
return;
for (j = 0; j < len; j++) {
if (gelf_getrela(data, j, &r.u_r.rela) != &r.u_r.rela) {
warnx("gelf_getrela failed: %s",
elf_errmsg(-1));
continue;
}
r.symn = get_symbol_name(ed, s->link,
GELF_R_SYM(r.u_r.rela.r_info));
elf_print_rel_entry(ed, s, j, &r);
}
}
/*
* Dump a relocation section of type SHT_REL.
*/
static void
elf_print_rel(struct elfdump *ed, struct section *s, Elf_Data *data)
{
struct rel_entry r;
int j, len;
if (ed->flags & SOLARIS_FMT) {
PRT("\nRelocation Section: %s\n", s->name);
PRT(" type offset "
"section with respect to\n");
} else
PRT("\nrelocation (%s):\n", s->name);
r.type = SHT_REL;
assert(data->d_size == s->sz);
if (!get_ent_count(s, &len))
return;
for (j = 0; j < len; j++) {
if (gelf_getrel(data, j, &r.u_r.rel) != &r.u_r.rel) {
warnx("gelf_getrel failed: %s", elf_errmsg(-1));
continue;
}
r.symn = get_symbol_name(ed, s->link,
GELF_R_SYM(r.u_r.rel.r_info));
elf_print_rel_entry(ed, s, j, &r);
}
}
/*
* Dump relocation sections.
*/
static void
elf_print_reloc(struct elfdump *ed)
{
struct section *s;
Elf_Data *data;
size_t i;
int elferr;
for (i = 0; i < ed->shnum; i++) {
s = &ed->sl[i];
if ((s->type == SHT_REL || s->type == SHT_RELA) &&
(STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name))) {
(void) elf_errno();
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s",
elf_errmsg(elferr));
continue;
}
if (s->type == SHT_REL)
elf_print_rel(ed, s, data);
else
elf_print_rela(ed, s, data);
}
}
}
/*
* Dump the content of PT_INTERP segment.
*/
static void
elf_print_interp(struct elfdump *ed)
{
const char *s;
GElf_Phdr phdr;
size_t filesize, i, phnum;
if (!STAILQ_EMPTY(&ed->snl) && find_name(ed, "PT_INTERP") == NULL)
return;
if ((s = elf_rawfile(ed->elf, &filesize)) == NULL) {
warnx("elf_rawfile failed: %s", elf_errmsg(-1));
return;
}
if (!elf_getphnum(ed->elf, &phnum)) {
warnx("elf_getphnum failed: %s", elf_errmsg(-1));
return;
}
for (i = 0; i < phnum; i++) {
if (gelf_getphdr(ed->elf, i, &phdr) != &phdr) {
warnx("elf_getphdr failed: %s", elf_errmsg(-1));
continue;
}
if (phdr.p_type == PT_INTERP) {
if (phdr.p_offset >= filesize) {
warnx("invalid phdr offset");
continue;
}
PRT("\ninterp:\n");
PRT("\t%s\n", s + phdr.p_offset);
}
}
}
/*
* Search the relocation sections for entries referring to the .got section.
*/
static void
find_gotrel(struct elfdump *ed, struct section *gs, struct rel_entry *got)
{
struct section *s;
struct rel_entry r;
Elf_Data *data;
size_t i;
int elferr, j, k, len;
for(i = 0; i < ed->shnum; i++) {
s = &ed->sl[i];
if (s->type != SHT_REL && s->type != SHT_RELA)
continue;
(void) elf_errno();
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s",
elf_errmsg(elferr));
return;
}
memset(&r, 0, sizeof(struct rel_entry));
r.type = s->type;
assert(data->d_size == s->sz);
if (!get_ent_count(s, &len))
return;
for (j = 0; j < len; j++) {
if (s->type == SHT_REL) {
if (gelf_getrel(data, j, &r.u_r.rel) !=
&r.u_r.rel) {
warnx("gelf_getrel failed: %s",
elf_errmsg(-1));
continue;
}
} else {
if (gelf_getrela(data, j, &r.u_r.rela) !=
&r.u_r.rela) {
warnx("gelf_getrel failed: %s",
elf_errmsg(-1));
continue;
}
}
if (r.u_r.rel.r_offset >= gs->addr &&
r.u_r.rel.r_offset < gs->addr + gs->sz) {
r.symn = get_symbol_name(ed, s->link,
GELF_R_SYM(r.u_r.rel.r_info));
k = (r.u_r.rel.r_offset - gs->addr) /
gs->entsize;
memcpy(&got[k], &r, sizeof(struct rel_entry));
}
}
}
}
static void
elf_print_got_section(struct elfdump *ed, struct section *s)
{
struct rel_entry *got;
Elf_Data *data, dst;
int elferr, i, len;
if (s->entsize == 0) {
/* XXX IA64 GOT section generated by gcc has entry size 0. */
if (s->align != 0)
s->entsize = s->align;
else
return;
}
if (!get_ent_count(s, &len))
return;
if (ed->flags & SOLARIS_FMT)
PRT("\nGlobal Offset Table Section: %s (%d entries)\n",
s->name, len);
else
PRT("\nglobal offset table: %s\n", s->name);
(void) elf_errno();
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s", elf_errmsg(elferr));
return;
}
/*
* GOT section has section type SHT_PROGBITS, thus libelf treats it as
* byte stream and will not perform any translation on it. As a result,
* an exlicit call to gelf_xlatetom is needed here. Depends on arch,
* GOT section should be translated to either WORD or XWORD.
*/
if (ed->ec == ELFCLASS32)
data->d_type = ELF_T_WORD;
else
data->d_type = ELF_T_XWORD;
memcpy(&dst, data, sizeof(Elf_Data));
if (gelf_xlatetom(ed->elf, &dst, data, ed->ehdr.e_ident[EI_DATA]) !=
&dst) {
warnx("gelf_xlatetom failed: %s", elf_errmsg(-1));
return;
}
assert(dst.d_size == s->sz);
if (ed->flags & SOLARIS_FMT) {
/*
* In verbose/Solaris mode, we search the relocation sections
* and try to find the corresponding reloc entry for each GOT
* section entry.
*/
if ((got = calloc(len, sizeof(struct rel_entry))) == NULL)
err(EXIT_FAILURE, "calloc failed");
find_gotrel(ed, s, got);
if (ed->ec == ELFCLASS32) {
PRT(" ndx addr value reloc ");
PRT("addend symbol\n");
} else {
PRT(" ndx addr value ");
PRT("reloc addend symbol\n");
}
for(i = 0; i < len; i++) {
PRT("[%5.5d] ", i);
if (ed->ec == ELFCLASS32) {
PRT("%-8.8jx ",
(uintmax_t) (s->addr + i * s->entsize));
PRT("%-8.8x ", *((uint32_t *)dst.d_buf + i));
} else {
PRT("%-16.16jx ",
(uintmax_t) (s->addr + i * s->entsize));
PRT("%-16.16jx ",
(uintmax_t) *((uint64_t *)dst.d_buf + i));
}
PRT("%-18s ", elftc_reloc_type_str(ed->ehdr.e_machine,
GELF_R_TYPE(got[i].u_r.rel.r_info)));
if (ed->ec == ELFCLASS32)
PRT("%-8.8jd ",
(intmax_t)got[i].u_r.rela.r_addend);
else
PRT("%-12.12jd ",
(intmax_t)got[i].u_r.rela.r_addend);
if (got[i].symn == NULL)
got[i].symn = "";
PRT("%s\n", got[i].symn);
}
free(got);
} else {
for(i = 0; i < len; i++) {
PRT("\nentry: %d\n", i);
if (ed->ec == ELFCLASS32)
PRT("\t%#x\n", *((uint32_t *)dst.d_buf + i));
else
PRT("\t%#jx\n",
(uintmax_t) *((uint64_t *)dst.d_buf + i));
}
}
}
/*
* Dump the content of Global Offset Table section.
*/
static void
elf_print_got(struct elfdump *ed)
{
struct section *s;
size_t i;
if (!STAILQ_EMPTY(&ed->snl))
return;
s = NULL;
for (i = 0; i < ed->shnum; i++) {
s = &ed->sl[i];
if (s->name && !strncmp(s->name, ".got", 4) &&
(STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name)))
elf_print_got_section(ed, s);
}
}
/*
* Dump the content of .note.ABI-tag section.
*/
static void
elf_print_note(struct elfdump *ed)
{
struct section *s;
Elf_Data *data;
Elf_Note *en;
uint32_t namesz;
uint32_t descsz;
uint32_t desc;
size_t count;
int elferr, i;
uint8_t *src;
char idx[17];
s = NULL;
for (i = 0; (size_t)i < ed->shnum; i++) {
s = &ed->sl[i];
if (s->type == SHT_NOTE && s->name &&
!strcmp(s->name, ".note.ABI-tag") &&
(STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name)))
break;
}
if ((size_t)i >= ed->shnum)
return;
if (ed->flags & SOLARIS_FMT)
PRT("\nNote Section: %s\n", s->name);
else
PRT("\nnote (%s):\n", s->name);
(void) elf_errno();
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s", elf_errmsg(elferr));
return;
}
src = data->d_buf;
count = data->d_size;
while (count > sizeof(Elf_Note)) {
en = (Elf_Note *) (uintptr_t) src;
namesz = en->n_namesz;
descsz = en->n_descsz;
src += sizeof(Elf_Note);
count -= sizeof(Elf_Note);
if (roundup2(namesz, 4) + roundup2(descsz, 4) > count) {
warnx("truncated note section");
return;
}
if (ed->flags & SOLARIS_FMT) {
PRT("\n type %#x\n", en->n_type);
PRT(" namesz %#x:\n", en->n_namesz);
PRT("%s\n", src);
} else
PRT("\t%s ", src);
src += roundup2(namesz, 4);
count -= roundup2(namesz, 4);
/*
* Note that we dump the whole desc part if we're in
* "Solaris mode", while in the normal mode, we only look
* at the first 4 bytes (a 32bit word) of the desc, i.e,
* we assume that it's always a FreeBSD version number.
*/
if (ed->flags & SOLARIS_FMT) {
PRT(" descsz %#x:", en->n_descsz);
for (i = 0; (uint32_t)i < descsz; i++) {
if ((i & 0xF) == 0) {
snprintf(idx, sizeof(idx), "desc[%d]",
i);
PRT("\n %-9s", idx);
} else if ((i & 0x3) == 0)
PRT(" ");
PRT(" %2.2x", src[i]);
}
PRT("\n");
} else {
if (ed->ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
desc = be32dec(src);
else
desc = le32dec(src);
PRT("%d\n", desc);
}
src += roundup2(descsz, 4);
count -= roundup2(descsz, 4);
}
}
/*
* Dump a hash table.
*/
static void
elf_print_svr4_hash(struct elfdump *ed, struct section *s)
{
Elf_Data *data;
uint32_t *buf;
uint32_t *bucket, *chain;
uint32_t nbucket, nchain;
uint32_t *bl, *c, maxl, total;
uint32_t i, j;
int first, elferr;
char idx[10];
if (ed->flags & SOLARIS_FMT)
PRT("\nHash Section: %s\n", s->name);
else
PRT("\nhash table (%s):\n", s->name);
(void) elf_errno();
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s",
elf_errmsg(elferr));
return;
}
if (data->d_size < 2 * sizeof(uint32_t)) {
warnx(".hash section too small");
return;
}
buf = data->d_buf;
nbucket = buf[0];
nchain = buf[1];
if (nbucket <= 0 || nchain <= 0) {
warnx("Malformed .hash section");
return;
}
if (data->d_size !=
((uint64_t)nbucket + (uint64_t)nchain + 2) * sizeof(uint32_t)) {
warnx("Malformed .hash section");
return;
}
bucket = &buf[2];
chain = &buf[2 + nbucket];
if (ed->flags & SOLARIS_FMT) {
maxl = 0;
if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
err(EXIT_FAILURE, "calloc failed");
for (i = 0; i < nbucket; i++)
for (j = bucket[i]; j > 0 && j < nchain; j = chain[j])
if (++bl[i] > maxl)
maxl = bl[i];
if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
err(EXIT_FAILURE, "calloc failed");
for (i = 0; i < nbucket; i++)
c[bl[i]]++;
PRT(" bucket symndx name\n");
for (i = 0; i < nbucket; i++) {
first = 1;
for (j = bucket[i]; j > 0 && j < nchain; j = chain[j]) {
if (first) {
PRT("%10d ", i);
first = 0;
} else
PRT(" ");
snprintf(idx, sizeof(idx), "[%d]", j);
PRT("%-10s ", idx);
PRT("%s\n", get_symbol_name(ed, s->link, j));
}
}
PRT("\n");
total = 0;
for (i = 0; i <= maxl; i++) {
total += c[i] * i;
PRT("%10u buckets contain %8d symbols\n", c[i], i);
}
PRT("%10u buckets %8u symbols (globals)\n", nbucket,
total);
} else {
PRT("\nnbucket: %u\n", nbucket);
PRT("nchain: %u\n\n", nchain);
for (i = 0; i < nbucket; i++)
PRT("bucket[%d]:\n\t%u\n\n", i, bucket[i]);
for (i = 0; i < nchain; i++)
PRT("chain[%d]:\n\t%u\n\n", i, chain[i]);
}
}
/*
* Dump a 64bit hash table.
*/
static void
elf_print_svr4_hash64(struct elfdump *ed, struct section *s)
{
Elf_Data *data, dst;
uint64_t *buf;
uint64_t *bucket, *chain;
uint64_t nbucket, nchain;
uint64_t *bl, *c, j, maxl, total;
size_t i;
int elferr, first;
char idx[10];
if (ed->flags & SOLARIS_FMT)
PRT("\nHash Section: %s\n", s->name);
else
PRT("\nhash table (%s):\n", s->name);
/*
* ALPHA uses 64-bit hash entries. Since libelf assumes that
* .hash section contains only 32-bit entry, an explicit
* gelf_xlatetom is needed here.
*/
(void) elf_errno();
if ((data = elf_rawdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_rawdata failed: %s",
elf_errmsg(elferr));
return;
}
data->d_type = ELF_T_XWORD;
memcpy(&dst, data, sizeof(Elf_Data));
if (gelf_xlatetom(ed->elf, &dst, data,
ed->ehdr.e_ident[EI_DATA]) != &dst) {
warnx("gelf_xlatetom failed: %s", elf_errmsg(-1));
return;
}
if (dst.d_size < 2 * sizeof(uint64_t)) {
warnx(".hash section too small");
return;
}
buf = dst.d_buf;
nbucket = buf[0];
nchain = buf[1];
if (nbucket <= 0 || nchain <= 0) {
warnx("Malformed .hash section");
return;
}
if (dst.d_size != (nbucket + nchain + 2) * sizeof(uint64_t)) {
warnx("Malformed .hash section");
return;
}
bucket = &buf[2];
chain = &buf[2 + nbucket];
if (ed->flags & SOLARIS_FMT) {
maxl = 0;
if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
err(EXIT_FAILURE, "calloc failed");
for (i = 0; i < nbucket; i++)
for (j = bucket[i]; j > 0 && j < nchain; j = chain[j])
if (++bl[i] > maxl)
maxl = bl[i];
if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
err(EXIT_FAILURE, "calloc failed");
for (i = 0; i < nbucket; i++)
c[bl[i]]++;
PRT(" bucket symndx name\n");
for (i = 0; i < nbucket; i++) {
first = 1;
for (j = bucket[i]; j > 0 && j < nchain; j = chain[j]) {
if (first) {
PRT("%10zu ", i);
first = 0;
} else
PRT(" ");
snprintf(idx, sizeof(idx), "[%zu]", (size_t)j);
PRT("%-10s ", idx);
PRT("%s\n", get_symbol_name(ed, s->link, j));
}
}
PRT("\n");
total = 0;
for (i = 0; i <= maxl; i++) {
total += c[i] * i;
PRT("%10ju buckets contain %8zu symbols\n",
(uintmax_t)c[i], i);
}
PRT("%10ju buckets %8ju symbols (globals)\n",
(uintmax_t)nbucket, (uintmax_t)total);
} else {
PRT("\nnbucket: %ju\n", (uintmax_t)nbucket);
PRT("nchain: %ju\n\n", (uintmax_t)nchain);
for (i = 0; i < nbucket; i++)
PRT("bucket[%zu]:\n\t%ju\n\n", i, (uintmax_t)bucket[i]);
for (i = 0; i < nchain; i++)
PRT("chain[%zu]:\n\t%ju\n\n", i, (uintmax_t)chain[i]);
}
}
/*
* Dump a GNU hash table.
*/
static void
elf_print_gnu_hash(struct elfdump *ed, struct section *s)
{
struct section *ds;
Elf_Data *data;
uint32_t *buf;
uint32_t *bucket, *chain;
uint32_t nbucket, nchain, symndx, maskwords, shift2;
uint32_t *bl, *c, maxl, total;
uint32_t i, j;
int first, elferr, dynsymcount;
char idx[10];
if (ed->flags & SOLARIS_FMT)
PRT("\nGNU Hash Section: %s\n", s->name);
else
PRT("\ngnu hash table (%s):\n", s->name);
(void) elf_errno();
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s",
elf_errmsg(elferr));
return;
}
if (data->d_size < 4 * sizeof(uint32_t)) {
warnx(".gnu.hash section too small");
return;
}
buf = data->d_buf;
nbucket = buf[0];
symndx = buf[1];
maskwords = buf[2];
shift2 = buf[3];
buf += 4;
if (s->link >= ed->shnum) {
warnx("Malformed .gnu.hash section");
return;
}
ds = &ed->sl[s->link];
if (!get_ent_count(ds, &dynsymcount))
return;
if (symndx >= (uint32_t)dynsymcount) {
warnx("Malformed .gnu.hash section");
return;
}
nchain = dynsymcount - symndx;
if (data->d_size != 4 * sizeof(uint32_t) + maskwords *
(ed->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) +
((uint64_t)nbucket + (uint64_t)nchain) * sizeof(uint32_t)) {
warnx("Malformed .gnu.hash section");
return;
}
bucket = buf + (ed->ec == ELFCLASS32 ? maskwords : maskwords * 2);
chain = bucket + nbucket;
if (ed->flags & SOLARIS_FMT) {
maxl = 0;
if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
err(EXIT_FAILURE, "calloc failed");
for (i = 0; i < nbucket; i++)
for (j = bucket[i]; j > 0 && j - symndx < nchain; j++) {
if (++bl[i] > maxl)
maxl = bl[i];
if (chain[j - symndx] & 1)
break;
}
if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
err(EXIT_FAILURE, "calloc failed");
for (i = 0; i < nbucket; i++)
c[bl[i]]++;
PRT(" bucket symndx name\n");
for (i = 0; i < nbucket; i++) {
first = 1;
for (j = bucket[i]; j > 0 && j - symndx < nchain; j++) {
if (first) {
PRT("%10d ", i);
first = 0;
} else
PRT(" ");
snprintf(idx, sizeof(idx), "[%d]", j );
PRT("%-10s ", idx);
PRT("%s\n", get_symbol_name(ed, s->link, j));
if (chain[j - symndx] & 1)
break;
}
}
PRT("\n");
total = 0;
for (i = 0; i <= maxl; i++) {
total += c[i] * i;
PRT("%10u buckets contain %8d symbols\n", c[i], i);
}
PRT("%10u buckets %8u symbols (globals)\n", nbucket,
total);
} else {
PRT("\nnbucket: %u\n", nbucket);
PRT("symndx: %u\n", symndx);
PRT("maskwords: %u\n", maskwords);
PRT("shift2: %u\n", shift2);
PRT("nchain: %u\n\n", nchain);
for (i = 0; i < nbucket; i++)
PRT("bucket[%d]:\n\t%u\n\n", i, bucket[i]);
for (i = 0; i < nchain; i++)
PRT("chain[%d]:\n\t%u\n\n", i, chain[i]);
}
}
/*
* Dump hash tables.
*/
static void
elf_print_hash(struct elfdump *ed)
{
struct section *s;
size_t i;
for (i = 0; i < ed->shnum; i++) {
s = &ed->sl[i];
if ((s->type == SHT_HASH || s->type == SHT_GNU_HASH) &&
(STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name))) {
if (s->type == SHT_GNU_HASH)
elf_print_gnu_hash(ed, s);
else if (ed->ehdr.e_machine == EM_ALPHA &&
s->entsize == 8)
elf_print_svr4_hash64(ed, s);
else
elf_print_svr4_hash(ed, s);
}
}
}
/*
* Dump the content of a Version Definition(SHT_SUNW_Verdef) Section.
*/
static void
elf_print_verdef(struct elfdump *ed, struct section *s)
{
Elf_Data *data;
Elf32_Verdef *vd;
Elf32_Verdaux *vda;
const char *str;
char idx[10];
uint8_t *buf, *end, *buf2;
int i, j, elferr, count;
if (ed->flags & SOLARIS_FMT)
PRT("Version Definition Section: %s\n", s->name);
else
PRT("\nversion definition section (%s):\n", s->name);
(void) elf_errno();
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s",
elf_errmsg(elferr));
return;
}
buf = data->d_buf;
end = buf + data->d_size;
i = 0;
if (ed->flags & SOLARIS_FMT)
PRT(" index version dependency\n");
while (buf + sizeof(Elf32_Verdef) <= end) {
vd = (Elf32_Verdef *) (uintptr_t) buf;
if (ed->flags & SOLARIS_FMT) {
snprintf(idx, sizeof(idx), "[%d]", vd->vd_ndx);
PRT("%10s ", idx);
} else {
PRT("\nentry: %d\n", i++);
PRT("\tvd_version: %u\n", vd->vd_version);
PRT("\tvd_flags: %u\n", vd->vd_flags);
PRT("\tvd_ndx: %u\n", vd->vd_ndx);
PRT("\tvd_cnt: %u\n", vd->vd_cnt);
PRT("\tvd_hash: %u\n", vd->vd_hash);
PRT("\tvd_aux: %u\n", vd->vd_aux);
PRT("\tvd_next: %u\n\n", vd->vd_next);
}
buf2 = buf + vd->vd_aux;
j = 0;
count = 0;
while (buf2 + sizeof(Elf32_Verdaux) <= end && j < vd->vd_cnt) {
vda = (Elf32_Verdaux *) (uintptr_t) buf2;
str = get_string(ed, s->link, vda->vda_name);
if (ed->flags & SOLARIS_FMT) {
if (count == 0)
PRT("%-26.26s", str);
else if (count == 1)
PRT(" %-20.20s", str);
else {
PRT("\n%40.40s", "");
PRT("%s", str);
}
} else {
PRT("\t\tvda: %d\n", j++);
PRT("\t\t\tvda_name: %s\n", str);
PRT("\t\t\tvda_next: %u\n", vda->vda_next);
}
if (vda->vda_next == 0) {
if (ed->flags & SOLARIS_FMT) {
if (vd->vd_flags & VER_FLG_BASE) {
if (count == 0)
PRT("%-20.20s", "");
PRT("%s", "[ BASE ]");
}
PRT("\n");
}
break;
}
if (ed->flags & SOLARIS_FMT)
count++;
buf2 += vda->vda_next;
}
if (vd->vd_next == 0)
break;
buf += vd->vd_next;
}
}
/*
* Dump the content of a Version Needed(SHT_SUNW_Verneed) Section.
*/
static void
elf_print_verneed(struct elfdump *ed, struct section *s)
{
Elf_Data *data;
Elf32_Verneed *vn;
Elf32_Vernaux *vna;
uint8_t *buf, *end, *buf2;
int i, j, elferr, first;
if (ed->flags & SOLARIS_FMT)
PRT("\nVersion Needed Section: %s\n", s->name);
else
PRT("\nversion need section (%s):\n", s->name);
(void) elf_errno();
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
elferr = elf_errno();
if (elferr != 0)
warnx("elf_getdata failed: %s",
elf_errmsg(elferr));
return;
}
buf = data->d_buf;
end = buf + data->d_size;
if (ed->flags & SOLARIS_FMT)
PRT(" file version\n");
i = 0;
while (buf + sizeof(Elf32_Verneed) <= end) {
vn = (Elf32_Verneed *) (uintptr_t) buf;
if (ed->flags & SOLARIS_FMT)
PRT(" %-26.26s ",
get_string(ed, s->link, vn->vn_file));
else {
PRT("\nentry: %d\n", i++);
PRT("\tvn_version: %u\n", vn->vn_version);
PRT("\tvn_cnt: %u\n", vn->vn_cnt);
PRT("\tvn_file: %s\n",
get_string(ed, s->link, vn->vn_file));
PRT("\tvn_aux: %u\n", vn->vn_aux);
PRT("\tvn_next: %u\n\n", vn->vn_next);
}
buf2 = buf + vn->vn_aux;
j = 0;
first = 1;
while (buf2 + sizeof(Elf32_Vernaux) <= end && j < vn->vn_cnt) {
vna = (Elf32_Vernaux *) (uintptr_t) buf2;
if (ed->flags & SOLARIS_FMT) {
if (!first)
PRT("%40.40s", "");
else
first = 0;
PRT("%s\n", get_string(ed, s->link,
vna->vna_name));
} else {
PRT("\t\tvna: %d\n", j++);
PRT("\t\t\tvna_hash: %u\n", vna->vna_hash);
PRT("\t\t\tvna_flags: %u\n", vna->vna_flags);
PRT("\t\t\tvna_other: %u\n", vna->vna_other);
PRT("\t\t\tvna_name: %s\n",
get_string(ed, s->link, vna->vna_name));
PRT("\t\t\tvna_next: %u\n", vna->vna_next);
}
if (vna->vna_next == 0)
break;
buf2 += vna->vna_next;
}
if (vn->vn_next == 0)
break;
buf += vn->vn_next;
}
}
/*
* Dump the symbol-versioning sections.
*/
static void
elf_print_symver(struct elfdump *ed)
{
struct section *s;
size_t i;
for (i = 0; i < ed->shnum; i++) {
s = &ed->sl[i];
if (!STAILQ_EMPTY(&ed->snl) && !find_name(ed, s->name))
continue;
if (s->type == SHT_SUNW_verdef)
elf_print_verdef(ed, s);
if (s->type == SHT_SUNW_verneed)
elf_print_verneed(ed, s);
}
}
/*
* Dump the ELF checksum. See gelf_checksum(3) for details.
*/
static void
elf_print_checksum(struct elfdump *ed)
{
if (!STAILQ_EMPTY(&ed->snl))
return;
PRT("\nelf checksum: %#lx\n", gelf_checksum(ed->elf));
}
#define USAGE_MESSAGE "\
Usage: %s [options] file...\n\
Display information about ELF objects and ar(1) archives.\n\n\
Options:\n\
-a Show all information.\n\
-c Show shared headers.\n\
-d Show dynamic symbols.\n\
-e Show the ELF header.\n\
-G Show the GOT.\n\
-H | --help Show a usage message and exit.\n\
-h Show hash values.\n\
-i Show the dynamic interpreter.\n\
-k Show the ELF checksum.\n\
-n Show the contents of note sections.\n\
-N NAME Show the section named \"NAME\".\n\
-p Show the program header.\n\
-r Show relocations.\n\
-s Show the symbol table.\n\
-S Use the Solaris elfdump format.\n\
-v Show symbol-versioning information.\n\
-V | --version Print a version identifier and exit.\n\
-w FILE Write output to \"FILE\".\n"
static void
usage(void)
{
fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME());
exit(EXIT_FAILURE);
}