freebsd-dev/sys/compat/linux/linux_misc.c

2899 lines
65 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2002 Doug Rabson
* Copyright (c) 1994-1995 Søren Schmidt
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
#include <sys/param.h>
#include <sys/blist.h>
#include <sys/fcntl.h>
#if defined(__i386__)
#include <sys/imgact_aout.h>
#endif
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/msgbuf.h>
#include <sys/mutex.h>
#include <sys/namei.h>
#include <sys/poll.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/procctl.h>
#include <sys/reboot.h>
#include <sys/racct.h>
#include <sys/random.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/sdt.h>
#include <sys/signalvar.h>
#include <sys/stat.h>
#include <sys/syscallsubr.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <sys/wait.h>
#include <sys/cpuset.h>
#include <sys/uio.h>
#include <security/mac/mac_framework.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>
#include <vm/swap_pager.h>
#ifdef COMPAT_LINUX32
#include <machine/../linux32/linux.h>
#include <machine/../linux32/linux32_proto.h>
#else
#include <machine/../linux/linux.h>
#include <machine/../linux/linux_proto.h>
#endif
#include <compat/linux/linux_common.h>
#include <compat/linux/linux_dtrace.h>
#include <compat/linux/linux_file.h>
#include <compat/linux/linux_mib.h>
#include <compat/linux/linux_signal.h>
#include <compat/linux/linux_timer.h>
#include <compat/linux/linux_util.h>
#include <compat/linux/linux_sysproto.h>
#include <compat/linux/linux_emul.h>
#include <compat/linux/linux_misc.h>
int stclohz; /* Statistics clock frequency */
static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = {
RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK,
RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE,
RLIMIT_MEMLOCK, RLIMIT_AS
};
struct l_sysinfo {
l_long uptime; /* Seconds since boot */
l_ulong loads[3]; /* 1, 5, and 15 minute load averages */
#define LINUX_SYSINFO_LOADS_SCALE 65536
l_ulong totalram; /* Total usable main memory size */
l_ulong freeram; /* Available memory size */
l_ulong sharedram; /* Amount of shared memory */
l_ulong bufferram; /* Memory used by buffers */
l_ulong totalswap; /* Total swap space size */
l_ulong freeswap; /* swap space still available */
l_ushort procs; /* Number of current processes */
l_ushort pads;
l_ulong totalhigh;
l_ulong freehigh;
l_uint mem_unit;
char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */
};
struct l_pselect6arg {
l_uintptr_t ss;
l_size_t ss_len;
};
static int linux_utimensat_lts_to_ts(struct l_timespec *,
struct timespec *);
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
static int linux_utimensat_lts64_to_ts(struct l_timespec64 *,
struct timespec *);
#endif
static int linux_common_utimensat(struct thread *, int,
const char *, struct timespec *, int);
static int linux_common_pselect6(struct thread *, l_int,
l_fd_set *, l_fd_set *, l_fd_set *,
struct timespec *, l_uintptr_t *);
static int linux_common_ppoll(struct thread *, struct pollfd *,
uint32_t, struct timespec *, l_sigset_t *,
l_size_t);
static int linux_pollin(struct thread *, struct pollfd *,
struct pollfd *, u_int);
static int linux_pollout(struct thread *, struct pollfd *,
struct pollfd *, u_int);
int
linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args)
{
struct l_sysinfo sysinfo;
int i, j;
struct timespec ts;
bzero(&sysinfo, sizeof(sysinfo));
getnanouptime(&ts);
if (ts.tv_nsec != 0)
ts.tv_sec++;
sysinfo.uptime = ts.tv_sec;
/* Use the information from the mib to get our load averages */
for (i = 0; i < 3; i++)
sysinfo.loads[i] = averunnable.ldavg[i] *
LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale;
sysinfo.totalram = physmem * PAGE_SIZE;
sysinfo.freeram = (u_long)vm_free_count() * PAGE_SIZE;
/*
* sharedram counts pages allocated to named, swap-backed objects such
* as shared memory segments and tmpfs files. There is no cheap way to
* compute this, so just leave the field unpopulated. Linux itself only
* started setting this field in the 3.x timeframe.
*/
sysinfo.sharedram = 0;
sysinfo.bufferram = 0;
swap_pager_status(&i, &j);
sysinfo.totalswap = i * PAGE_SIZE;
sysinfo.freeswap = (i - j) * PAGE_SIZE;
sysinfo.procs = nprocs;
/*
* Platforms supported by the emulation layer do not have a notion of
* high memory.
*/
sysinfo.totalhigh = 0;
sysinfo.freehigh = 0;
sysinfo.mem_unit = 1;
return (copyout(&sysinfo, args->info, sizeof(sysinfo)));
}
#ifdef LINUX_LEGACY_SYSCALLS
int
linux_alarm(struct thread *td, struct linux_alarm_args *args)
{
struct itimerval it, old_it;
u_int secs;
int error __diagused;
secs = args->secs;
/*
* Linux alarm() is always successful. Limit secs to INT32_MAX / 2
* to match kern_setitimer()'s limit to avoid error from it.
*
* XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit
* platforms.
*/
if (secs > INT32_MAX / 2)
secs = INT32_MAX / 2;
it.it_value.tv_sec = secs;
it.it_value.tv_usec = 0;
timevalclear(&it.it_interval);
error = kern_setitimer(td, ITIMER_REAL, &it, &old_it);
KASSERT(error == 0, ("kern_setitimer returns %d", error));
if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) ||
old_it.it_value.tv_usec >= 500000)
old_it.it_value.tv_sec++;
td->td_retval[0] = old_it.it_value.tv_sec;
return (0);
}
#endif
int
linux_brk(struct thread *td, struct linux_brk_args *args)
{
struct vmspace *vm = td->td_proc->p_vmspace;
uintptr_t new, old;
old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize);
new = (uintptr_t)args->dsend;
if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new))
td->td_retval[0] = (register_t)new;
else
td->td_retval[0] = (register_t)old;
return (0);
}
#if defined(__i386__)
/* XXX: what about amd64/linux32? */
int
linux_uselib(struct thread *td, struct linux_uselib_args *args)
{
struct nameidata ni;
struct vnode *vp;
struct exec *a_out;
vm_map_t map;
vm_map_entry_t entry;
struct vattr attr;
vm_offset_t vmaddr;
unsigned long file_offset;
unsigned long bss_size;
char *library;
ssize_t aresid;
int error;
bool locked, opened, textset;
a_out = NULL;
vp = NULL;
locked = false;
textset = false;
opened = false;
if (!LUSECONVPATH(td)) {
NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1,
UIO_USERSPACE, args->library);
error = namei(&ni);
} else {
LCONVPATHEXIST(args->library, &library);
NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1,
UIO_SYSSPACE, library);
error = namei(&ni);
LFREEPATH(library);
}
if (error)
goto cleanup;
vp = ni.ni_vp;
NDFREE_PNBUF(&ni);
/*
* From here on down, we have a locked vnode that must be unlocked.
* XXX: The code below largely duplicates exec_check_permissions().
*/
locked = true;
/* Executable? */
error = VOP_GETATTR(vp, &attr, td->td_ucred);
if (error)
goto cleanup;
if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
((attr.va_mode & 0111) == 0) || (attr.va_type != VREG)) {
/* EACCESS is what exec(2) returns. */
error = ENOEXEC;
goto cleanup;
}
/* Sensible size? */
if (attr.va_size == 0) {
error = ENOEXEC;
goto cleanup;
}
/* Can we access it? */
error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td);
if (error)
goto cleanup;
/*
* XXX: This should use vn_open() so that it is properly authorized,
* and to reduce code redundancy all over the place here.
* XXX: Not really, it duplicates far more of exec_check_permissions()
* than vn_open().
*/
#ifdef MAC
error = mac_vnode_check_open(td->td_ucred, vp, VREAD);
if (error)
goto cleanup;
#endif
error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL);
if (error)
goto cleanup;
opened = true;
/* Pull in executable header into exec_map */
error = vm_mmap(exec_map, (vm_offset_t *)&a_out, PAGE_SIZE,
VM_PROT_READ, VM_PROT_READ, 0, OBJT_VNODE, vp, 0);
if (error)
goto cleanup;
/* Is it a Linux binary ? */
if (((a_out->a_magic >> 16) & 0xff) != 0x64) {
error = ENOEXEC;
goto cleanup;
}
/*
* While we are here, we should REALLY do some more checks
*/
/* Set file/virtual offset based on a.out variant. */
switch ((int)(a_out->a_magic & 0xffff)) {
case 0413: /* ZMAGIC */
file_offset = 1024;
break;
case 0314: /* QMAGIC */
file_offset = 0;
break;
default:
error = ENOEXEC;
goto cleanup;
}
bss_size = round_page(a_out->a_bss);
/* Check various fields in header for validity/bounds. */
if (a_out->a_text & PAGE_MASK || a_out->a_data & PAGE_MASK) {
error = ENOEXEC;
goto cleanup;
}
/* text + data can't exceed file size */
if (a_out->a_data + a_out->a_text > attr.va_size) {
error = EFAULT;
goto cleanup;
}
/*
* text/data/bss must not exceed limits
* XXX - this is not complete. it should check current usage PLUS
* the resources needed by this library.
*/
PROC_LOCK(td->td_proc);
if (a_out->a_text > maxtsiz ||
a_out->a_data + bss_size > lim_cur_proc(td->td_proc, RLIMIT_DATA) ||
racct_set(td->td_proc, RACCT_DATA, a_out->a_data +
bss_size) != 0) {
PROC_UNLOCK(td->td_proc);
error = ENOMEM;
goto cleanup;
}
PROC_UNLOCK(td->td_proc);
/*
* Prevent more writers.
*/
error = VOP_SET_TEXT(vp);
if (error != 0)
goto cleanup;
textset = true;
/*
* Lock no longer needed
*/
locked = false;
VOP_UNLOCK(vp);
/*
* Check if file_offset page aligned. Currently we cannot handle
* misalinged file offsets, and so we read in the entire image
* (what a waste).
*/
if (file_offset & PAGE_MASK) {
/* Map text+data read/write/execute */
/* a_entry is the load address and is page aligned */
vmaddr = trunc_page(a_out->a_entry);
/* get anon user mapping, read+write+execute */
error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0,
&vmaddr, a_out->a_text + a_out->a_data, 0, VMFS_NO_SPACE,
VM_PROT_ALL, VM_PROT_ALL, 0);
if (error)
goto cleanup;
error = vn_rdwr(UIO_READ, vp, (void *)vmaddr, file_offset,
a_out->a_text + a_out->a_data, UIO_USERSPACE, 0,
td->td_ucred, NOCRED, &aresid, td);
if (error != 0)
goto cleanup;
if (aresid != 0) {
error = ENOEXEC;
goto cleanup;
}
} else {
/*
* for QMAGIC, a_entry is 20 bytes beyond the load address
* to skip the executable header
*/
vmaddr = trunc_page(a_out->a_entry);
/*
* Map it all into the process's space as a single
* copy-on-write "data" segment.
*/
map = &td->td_proc->p_vmspace->vm_map;
error = vm_mmap(map, &vmaddr,
a_out->a_text + a_out->a_data, VM_PROT_ALL, VM_PROT_ALL,
MAP_PRIVATE | MAP_FIXED, OBJT_VNODE, vp, file_offset);
if (error)
goto cleanup;
vm_map_lock(map);
if (!vm_map_lookup_entry(map, vmaddr, &entry)) {
vm_map_unlock(map);
error = EDOOFUS;
goto cleanup;
}
entry->eflags |= MAP_ENTRY_VN_EXEC;
vm_map_unlock(map);
textset = false;
}
if (bss_size != 0) {
/* Calculate BSS start address */
vmaddr = trunc_page(a_out->a_entry) + a_out->a_text +
a_out->a_data;
/* allocate some 'anon' space */
error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0,
&vmaddr, bss_size, 0, VMFS_NO_SPACE, VM_PROT_ALL,
VM_PROT_ALL, 0);
if (error)
goto cleanup;
}
cleanup:
if (opened) {
if (locked)
VOP_UNLOCK(vp);
locked = false;
VOP_CLOSE(vp, FREAD, td->td_ucred, td);
}
if (textset) {
if (!locked) {
locked = true;
VOP_LOCK(vp, LK_SHARED | LK_RETRY);
}
VOP_UNSET_TEXT_CHECKED(vp);
}
if (locked)
VOP_UNLOCK(vp);
/* Release the temporary mapping. */
if (a_out)
kmap_free_wakeup(exec_map, (vm_offset_t)a_out, PAGE_SIZE);
return (error);
}
#endif /* __i386__ */
#ifdef LINUX_LEGACY_SYSCALLS
int
linux_select(struct thread *td, struct linux_select_args *args)
{
l_timeval ltv;
struct timeval tv0, tv1, utv, *tvp;
int error;
/*
* Store current time for computation of the amount of
* time left.
*/
if (args->timeout) {
if ((error = copyin(args->timeout, &ltv, sizeof(ltv))))
goto select_out;
utv.tv_sec = ltv.tv_sec;
utv.tv_usec = ltv.tv_usec;
if (itimerfix(&utv)) {
/*
* The timeval was invalid. Convert it to something
* valid that will act as it does under Linux.
*/
utv.tv_sec += utv.tv_usec / 1000000;
utv.tv_usec %= 1000000;
if (utv.tv_usec < 0) {
utv.tv_sec -= 1;
utv.tv_usec += 1000000;
}
if (utv.tv_sec < 0)
timevalclear(&utv);
}
microtime(&tv0);
tvp = &utv;
} else
tvp = NULL;
error = kern_select(td, args->nfds, args->readfds, args->writefds,
args->exceptfds, tvp, LINUX_NFDBITS);
if (error)
goto select_out;
if (args->timeout) {
if (td->td_retval[0]) {
/*
* Compute how much time was left of the timeout,
* by subtracting the current time and the time
* before we started the call, and subtracting
* that result from the user-supplied value.
*/
microtime(&tv1);
timevalsub(&tv1, &tv0);
timevalsub(&utv, &tv1);
if (utv.tv_sec < 0)
timevalclear(&utv);
} else
timevalclear(&utv);
ltv.tv_sec = utv.tv_sec;
ltv.tv_usec = utv.tv_usec;
if ((error = copyout(&ltv, args->timeout, sizeof(ltv))))
goto select_out;
}
select_out:
return (error);
}
#endif
int
linux_mremap(struct thread *td, struct linux_mremap_args *args)
{
uintptr_t addr;
size_t len;
int error = 0;
if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) {
td->td_retval[0] = 0;
return (EINVAL);
}
/*
* Check for the page alignment.
* Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK.
*/
if (args->addr & PAGE_MASK) {
td->td_retval[0] = 0;
return (EINVAL);
}
args->new_len = round_page(args->new_len);
args->old_len = round_page(args->old_len);
if (args->new_len > args->old_len) {
td->td_retval[0] = 0;
return (ENOMEM);
}
if (args->new_len < args->old_len) {
addr = args->addr + args->new_len;
len = args->old_len - args->new_len;
error = kern_munmap(td, addr, len);
}
td->td_retval[0] = error ? 0 : (uintptr_t)args->addr;
return (error);
}
#define LINUX_MS_ASYNC 0x0001
#define LINUX_MS_INVALIDATE 0x0002
#define LINUX_MS_SYNC 0x0004
int
linux_msync(struct thread *td, struct linux_msync_args *args)
{
return (kern_msync(td, args->addr, args->len,
args->fl & ~LINUX_MS_SYNC));
}
#ifdef LINUX_LEGACY_SYSCALLS
int
linux_time(struct thread *td, struct linux_time_args *args)
{
struct timeval tv;
l_time_t tm;
int error;
microtime(&tv);
tm = tv.tv_sec;
if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm))))
return (error);
td->td_retval[0] = tm;
return (0);
}
#endif
struct l_times_argv {
l_clock_t tms_utime;
l_clock_t tms_stime;
l_clock_t tms_cutime;
l_clock_t tms_cstime;
};
/*
* Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value.
* Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK
* auxiliary vector entry.
*/
#define CLK_TCK 100
#define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK))
#define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz))
#define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER_2004000 ? \
CONVNTCK(r) : CONVOTCK(r))
int
linux_times(struct thread *td, struct linux_times_args *args)
{
struct timeval tv, utime, stime, cutime, cstime;
struct l_times_argv tms;
struct proc *p;
int error;
if (args->buf != NULL) {
p = td->td_proc;
PROC_LOCK(p);
PROC_STATLOCK(p);
calcru(p, &utime, &stime);
PROC_STATUNLOCK(p);
calccru(p, &cutime, &cstime);
PROC_UNLOCK(p);
tms.tms_utime = CONVTCK(utime);
tms.tms_stime = CONVTCK(stime);
tms.tms_cutime = CONVTCK(cutime);
tms.tms_cstime = CONVTCK(cstime);
if ((error = copyout(&tms, args->buf, sizeof(tms))))
return (error);
}
microuptime(&tv);
td->td_retval[0] = (int)CONVTCK(tv);
return (0);
}
int
linux_newuname(struct thread *td, struct linux_newuname_args *args)
{
struct l_new_utsname utsname;
char osname[LINUX_MAX_UTSNAME];
char osrelease[LINUX_MAX_UTSNAME];
char *p;
linux_get_osname(td, osname);
linux_get_osrelease(td, osrelease);
bzero(&utsname, sizeof(utsname));
strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME);
getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME);
getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME);
strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME);
strlcpy(utsname.version, version, LINUX_MAX_UTSNAME);
for (p = utsname.version; *p != '\0'; ++p)
if (*p == '\n') {
*p = '\0';
break;
}
#if defined(__amd64__)
/*
* On amd64, Linux uname(2) needs to return "x86_64"
* for both 64-bit and 32-bit applications. On 32-bit,
* the string returned by getauxval(AT_PLATFORM) needs
* to remain "i686", though.
*/
strlcpy(utsname.machine, "x86_64", LINUX_MAX_UTSNAME);
#elif defined(__aarch64__)
strlcpy(utsname.machine, "aarch64", LINUX_MAX_UTSNAME);
#elif defined(__i386__)
strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME);
#endif
return (copyout(&utsname, args->buf, sizeof(utsname)));
}
struct l_utimbuf {
l_time_t l_actime;
l_time_t l_modtime;
};
#ifdef LINUX_LEGACY_SYSCALLS
int
linux_utime(struct thread *td, struct linux_utime_args *args)
{
struct timeval tv[2], *tvp;
struct l_utimbuf lut;
char *fname;
int error;
if (args->times) {
if ((error = copyin(args->times, &lut, sizeof lut)) != 0)
return (error);
tv[0].tv_sec = lut.l_actime;
tv[0].tv_usec = 0;
tv[1].tv_sec = lut.l_modtime;
tv[1].tv_usec = 0;
tvp = tv;
} else
tvp = NULL;
if (!LUSECONVPATH(td)) {
error = kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
tvp, UIO_SYSSPACE);
} else {
LCONVPATHEXIST(args->fname, &fname);
error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp,
UIO_SYSSPACE);
LFREEPATH(fname);
}
return (error);
}
#endif
#ifdef LINUX_LEGACY_SYSCALLS
int
linux_utimes(struct thread *td, struct linux_utimes_args *args)
{
l_timeval ltv[2];
struct timeval tv[2], *tvp = NULL;
char *fname;
int error;
if (args->tptr != NULL) {
if ((error = copyin(args->tptr, ltv, sizeof ltv)) != 0)
return (error);
tv[0].tv_sec = ltv[0].tv_sec;
tv[0].tv_usec = ltv[0].tv_usec;
tv[1].tv_sec = ltv[1].tv_sec;
tv[1].tv_usec = ltv[1].tv_usec;
tvp = tv;
}
if (!LUSECONVPATH(td)) {
error = kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
tvp, UIO_SYSSPACE);
} else {
LCONVPATHEXIST(args->fname, &fname);
error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE,
tvp, UIO_SYSSPACE);
LFREEPATH(fname);
}
return (error);
}
#endif
static int
linux_utimensat_lts_to_ts(struct l_timespec *l_times, struct timespec *times)
{
if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
l_times->tv_nsec != LINUX_UTIME_NOW &&
(l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
return (EINVAL);
times->tv_sec = l_times->tv_sec;
switch (l_times->tv_nsec)
{
case LINUX_UTIME_OMIT:
times->tv_nsec = UTIME_OMIT;
break;
case LINUX_UTIME_NOW:
times->tv_nsec = UTIME_NOW;
break;
default:
times->tv_nsec = l_times->tv_nsec;
}
return (0);
}
static int
linux_common_utimensat(struct thread *td, int ldfd, const char *pathname,
struct timespec *timesp, int lflags)
{
char *path = NULL;
int error, dfd, flags = 0;
dfd = (ldfd == LINUX_AT_FDCWD) ? AT_FDCWD : ldfd;
if (lflags & ~(LINUX_AT_SYMLINK_NOFOLLOW | LINUX_AT_EMPTY_PATH))
return (EINVAL);
if (timesp != NULL) {
/* This breaks POSIX, but is what the Linux kernel does
* _on purpose_ (documented in the man page for utimensat(2)),
* so we must follow that behaviour. */
if (timesp[0].tv_nsec == UTIME_OMIT &&
timesp[1].tv_nsec == UTIME_OMIT)
return (0);
}
if (lflags & LINUX_AT_SYMLINK_NOFOLLOW)
flags |= AT_SYMLINK_NOFOLLOW;
if (lflags & LINUX_AT_EMPTY_PATH)
flags |= AT_EMPTY_PATH;
if (!LUSECONVPATH(td)) {
if (pathname != NULL) {
return (kern_utimensat(td, dfd, pathname,
UIO_USERSPACE, timesp, UIO_SYSSPACE, flags));
}
}
if (pathname != NULL)
LCONVPATHEXIST_AT(pathname, &path, dfd);
else if (lflags != 0)
return (EINVAL);
if (path == NULL)
error = kern_futimens(td, dfd, timesp, UIO_SYSSPACE);
else {
error = kern_utimensat(td, dfd, path, UIO_SYSSPACE, timesp,
UIO_SYSSPACE, flags);
LFREEPATH(path);
}
return (error);
}
int
linux_utimensat(struct thread *td, struct linux_utimensat_args *args)
{
struct l_timespec l_times[2];
struct timespec times[2], *timesp;
int error;
if (args->times != NULL) {
error = copyin(args->times, l_times, sizeof(l_times));
if (error != 0)
return (error);
error = linux_utimensat_lts_to_ts(&l_times[0], &times[0]);
if (error != 0)
return (error);
error = linux_utimensat_lts_to_ts(&l_times[1], &times[1]);
if (error != 0)
return (error);
timesp = times;
} else
timesp = NULL;
return (linux_common_utimensat(td, args->dfd, args->pathname,
timesp, args->flags));
}
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
static int
linux_utimensat_lts64_to_ts(struct l_timespec64 *l_times, struct timespec *times)
{
if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
l_times->tv_nsec != LINUX_UTIME_NOW &&
(l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
return (EINVAL);
times->tv_sec = l_times->tv_sec;
switch (l_times->tv_nsec)
{
case LINUX_UTIME_OMIT:
times->tv_nsec = UTIME_OMIT;
break;
case LINUX_UTIME_NOW:
times->tv_nsec = UTIME_NOW;
break;
default:
times->tv_nsec = l_times->tv_nsec;
}
return (0);
}
int
linux_utimensat_time64(struct thread *td, struct linux_utimensat_time64_args *args)
{
struct l_timespec64 l_times[2];
struct timespec times[2], *timesp;
int error;
if (args->times64 != NULL) {
error = copyin(args->times64, l_times, sizeof(l_times));
if (error != 0)
return (error);
error = linux_utimensat_lts64_to_ts(&l_times[0], &times[0]);
if (error != 0)
return (error);
error = linux_utimensat_lts64_to_ts(&l_times[1], &times[1]);
if (error != 0)
return (error);
timesp = times;
} else
timesp = NULL;
return (linux_common_utimensat(td, args->dfd, args->pathname,
timesp, args->flags));
}
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
#ifdef LINUX_LEGACY_SYSCALLS
int
linux_futimesat(struct thread *td, struct linux_futimesat_args *args)
{
l_timeval ltv[2];
struct timeval tv[2], *tvp = NULL;
char *fname;
int error, dfd;
dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
if (args->utimes != NULL) {
if ((error = copyin(args->utimes, ltv, sizeof ltv)) != 0)
return (error);
tv[0].tv_sec = ltv[0].tv_sec;
tv[0].tv_usec = ltv[0].tv_usec;
tv[1].tv_sec = ltv[1].tv_sec;
tv[1].tv_usec = ltv[1].tv_usec;
tvp = tv;
}
if (!LUSECONVPATH(td)) {
error = kern_utimesat(td, dfd, args->filename, UIO_USERSPACE,
tvp, UIO_SYSSPACE);
} else {
LCONVPATHEXIST_AT(args->filename, &fname, dfd);
error = kern_utimesat(td, dfd, fname, UIO_SYSSPACE,
tvp, UIO_SYSSPACE);
LFREEPATH(fname);
}
return (error);
}
#endif
static int
linux_common_wait(struct thread *td, int pid, int *statusp,
int options, struct __wrusage *wrup)
{
siginfo_t siginfo;
idtype_t idtype;
id_t id;
int error, status, tmpstat;
if (pid == WAIT_ANY) {
idtype = P_ALL;
id = 0;
} else if (pid < 0) {
idtype = P_PGID;
id = (id_t)-pid;
} else {
idtype = P_PID;
id = (id_t)pid;
}
/*
* For backward compatibility we implicitly add flags WEXITED
* and WTRAPPED here.
*/
options |= WEXITED | WTRAPPED;
error = kern_wait6(td, idtype, id, &status, options, wrup, &siginfo);
if (error)
return (error);
if (statusp) {
tmpstat = status & 0xffff;
if (WIFSIGNALED(tmpstat)) {
tmpstat = (tmpstat & 0xffffff80) |
bsd_to_linux_signal(WTERMSIG(tmpstat));
} else if (WIFSTOPPED(tmpstat)) {
tmpstat = (tmpstat & 0xffff00ff) |
(bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8);
#if defined(__aarch64__) || (defined(__amd64__) && !defined(COMPAT_LINUX32))
if (WSTOPSIG(status) == SIGTRAP) {
tmpstat = linux_ptrace_status(td,
siginfo.si_pid, tmpstat);
}
#endif
} else if (WIFCONTINUED(tmpstat)) {
tmpstat = 0xffff;
}
error = copyout(&tmpstat, statusp, sizeof(int));
}
return (error);
}
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
int
linux_waitpid(struct thread *td, struct linux_waitpid_args *args)
{
struct linux_wait4_args wait4_args;
wait4_args.pid = args->pid;
wait4_args.status = args->status;
wait4_args.options = args->options;
wait4_args.rusage = NULL;
return (linux_wait4(td, &wait4_args));
}
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
int
linux_wait4(struct thread *td, struct linux_wait4_args *args)
{
int error, options;
struct __wrusage wru, *wrup;
if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG |
LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
return (EINVAL);
options = WEXITED;
linux_to_bsd_waitopts(args->options, &options);
if (args->rusage != NULL)
wrup = &wru;
else
wrup = NULL;
error = linux_common_wait(td, args->pid, args->status, options, wrup);
if (error != 0)
return (error);
if (args->rusage != NULL)
error = linux_copyout_rusage(&wru.wru_self, args->rusage);
return (error);
}
int
linux_waitid(struct thread *td, struct linux_waitid_args *args)
{
int status, options, sig;
struct __wrusage wru;
siginfo_t siginfo;
l_siginfo_t lsi;
idtype_t idtype;
int error;
options = 0;
linux_to_bsd_waitopts(args->options, &options);
if (options & ~(WNOHANG | WNOWAIT | WEXITED | WUNTRACED | WCONTINUED))
return (EINVAL);
if (!(options & (WEXITED | WUNTRACED | WCONTINUED)))
return (EINVAL);
switch (args->idtype) {
case LINUX_P_ALL:
idtype = P_ALL;
break;
case LINUX_P_PID:
if (args->id <= 0)
return (EINVAL);
idtype = P_PID;
break;
case LINUX_P_PGID:
if (args->id <= 0)
return (EINVAL);
idtype = P_PGID;
break;
default:
return (EINVAL);
}
error = kern_wait6(td, idtype, args->id, &status, options,
&wru, &siginfo);
if (error != 0)
return (error);
if (args->rusage != NULL) {
error = linux_copyout_rusage(&wru.wru_children,
args->rusage);
if (error != 0)
return (error);
}
if (args->info != NULL) {
bzero(&lsi, sizeof(lsi));
if (td->td_retval[0] != 0) {
sig = bsd_to_linux_signal(siginfo.si_signo);
siginfo_to_lsiginfo(&siginfo, &lsi, sig);
}
error = copyout(&lsi, args->info, sizeof(lsi));
}
td->td_retval[0] = 0;
return (error);
}
#ifdef LINUX_LEGACY_SYSCALLS
int
linux_mknod(struct thread *td, struct linux_mknod_args *args)
{
char *path;
int error;
enum uio_seg seg;
bool convpath;
convpath = LUSECONVPATH(td);
if (!convpath) {
path = args->path;
seg = UIO_USERSPACE;
} else {
LCONVPATHCREAT(args->path, &path);
seg = UIO_SYSSPACE;
}
switch (args->mode & S_IFMT) {
case S_IFIFO:
case S_IFSOCK:
error = kern_mkfifoat(td, AT_FDCWD, path, seg,
args->mode);
break;
case S_IFCHR:
case S_IFBLK:
error = kern_mknodat(td, AT_FDCWD, path, seg,
args->mode, args->dev);
break;
case S_IFDIR:
error = EPERM;
break;
case 0:
args->mode |= S_IFREG;
/* FALLTHROUGH */
case S_IFREG:
error = kern_openat(td, AT_FDCWD, path, seg,
O_WRONLY | O_CREAT | O_TRUNC, args->mode);
if (error == 0)
kern_close(td, td->td_retval[0]);
break;
default:
error = EINVAL;
break;
}
if (convpath)
LFREEPATH(path);
return (error);
}
#endif
int
linux_mknodat(struct thread *td, struct linux_mknodat_args *args)
{
char *path;
int error, dfd;
enum uio_seg seg;
bool convpath;
dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
convpath = LUSECONVPATH(td);
if (!convpath) {
path = __DECONST(char *, args->filename);
seg = UIO_USERSPACE;
} else {
LCONVPATHCREAT_AT(args->filename, &path, dfd);
seg = UIO_SYSSPACE;
}
switch (args->mode & S_IFMT) {
case S_IFIFO:
case S_IFSOCK:
error = kern_mkfifoat(td, dfd, path, seg, args->mode);
break;
case S_IFCHR:
case S_IFBLK:
error = kern_mknodat(td, dfd, path, seg, args->mode,
args->dev);
break;
case S_IFDIR:
error = EPERM;
break;
case 0:
args->mode |= S_IFREG;
/* FALLTHROUGH */
case S_IFREG:
error = kern_openat(td, dfd, path, seg,
O_WRONLY | O_CREAT | O_TRUNC, args->mode);
if (error == 0)
kern_close(td, td->td_retval[0]);
break;
default:
error = EINVAL;
break;
}
if (convpath)
LFREEPATH(path);
return (error);
}
/*
* UGH! This is just about the dumbest idea I've ever heard!!
*/
int
linux_personality(struct thread *td, struct linux_personality_args *args)
{
struct linux_pemuldata *pem;
struct proc *p = td->td_proc;
uint32_t old;
PROC_LOCK(p);
pem = pem_find(p);
old = pem->persona;
if (args->per != 0xffffffff)
pem->persona = args->per;
PROC_UNLOCK(p);
td->td_retval[0] = old;
return (0);
}
struct l_itimerval {
l_timeval it_interval;
l_timeval it_value;
};
#define B2L_ITIMERVAL(bip, lip) \
(bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \
(bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \
(bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \
(bip)->it_value.tv_usec = (lip)->it_value.tv_usec;
int
linux_setitimer(struct thread *td, struct linux_setitimer_args *uap)
{
int error;
struct l_itimerval ls;
struct itimerval aitv, oitv;
if (uap->itv == NULL) {
uap->itv = uap->oitv;
return (linux_getitimer(td, (struct linux_getitimer_args *)uap));
}
error = copyin(uap->itv, &ls, sizeof(ls));
if (error != 0)
return (error);
B2L_ITIMERVAL(&aitv, &ls);
error = kern_setitimer(td, uap->which, &aitv, &oitv);
if (error != 0 || uap->oitv == NULL)
return (error);
B2L_ITIMERVAL(&ls, &oitv);
return (copyout(&ls, uap->oitv, sizeof(ls)));
}
int
linux_getitimer(struct thread *td, struct linux_getitimer_args *uap)
{
int error;
struct l_itimerval ls;
struct itimerval aitv;
error = kern_getitimer(td, uap->which, &aitv);
if (error != 0)
return (error);
B2L_ITIMERVAL(&ls, &aitv);
return (copyout(&ls, uap->itv, sizeof(ls)));
}
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
int
linux_nice(struct thread *td, struct linux_nice_args *args)
{
return (kern_setpriority(td, PRIO_PROCESS, 0, args->inc));
}
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
int
linux_setgroups(struct thread *td, struct linux_setgroups_args *args)
{
struct ucred *newcred, *oldcred;
l_gid_t *linux_gidset;
gid_t *bsd_gidset;
int ngrp, error;
struct proc *p;
ngrp = args->gidsetsize;
if (ngrp < 0 || ngrp >= ngroups_max + 1)
return (EINVAL);
linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK);
error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t));
if (error)
goto out;
newcred = crget();
crextend(newcred, ngrp + 1);
p = td->td_proc;
PROC_LOCK(p);
oldcred = p->p_ucred;
crcopy(newcred, oldcred);
/*
* cr_groups[0] holds egid. Setting the whole set from
* the supplied set will cause egid to be changed too.
* Keep cr_groups[0] unchanged to prevent that.
*/
if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) {
PROC_UNLOCK(p);
crfree(newcred);
goto out;
}
if (ngrp > 0) {
newcred->cr_ngroups = ngrp + 1;
bsd_gidset = newcred->cr_groups;
ngrp--;
while (ngrp >= 0) {
bsd_gidset[ngrp + 1] = linux_gidset[ngrp];
ngrp--;
}
} else
newcred->cr_ngroups = 1;
setsugid(p);
proc_set_cred(p, newcred);
PROC_UNLOCK(p);
crfree(oldcred);
error = 0;
out:
free(linux_gidset, M_LINUX);
return (error);
}
int
linux_getgroups(struct thread *td, struct linux_getgroups_args *args)
{
struct ucred *cred;
l_gid_t *linux_gidset;
gid_t *bsd_gidset;
int bsd_gidsetsz, ngrp, error;
cred = td->td_ucred;
bsd_gidset = cred->cr_groups;
bsd_gidsetsz = cred->cr_ngroups - 1;
/*
* cr_groups[0] holds egid. Returning the whole set
* here will cause a duplicate. Exclude cr_groups[0]
* to prevent that.
*/
if ((ngrp = args->gidsetsize) == 0) {
td->td_retval[0] = bsd_gidsetsz;
return (0);
}
if (ngrp < bsd_gidsetsz)
return (EINVAL);
ngrp = 0;
linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset),
M_LINUX, M_WAITOK);
while (ngrp < bsd_gidsetsz) {
linux_gidset[ngrp] = bsd_gidset[ngrp + 1];
ngrp++;
}
error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t));
free(linux_gidset, M_LINUX);
if (error)
return (error);
td->td_retval[0] = ngrp;
return (0);
}
static bool
linux_get_dummy_limit(l_uint resource, struct rlimit *rlim)
{
if (linux_dummy_rlimits == 0)
return (false);
switch (resource) {
case LINUX_RLIMIT_LOCKS:
case LINUX_RLIMIT_SIGPENDING:
case LINUX_RLIMIT_MSGQUEUE:
case LINUX_RLIMIT_RTTIME:
rlim->rlim_cur = LINUX_RLIM_INFINITY;
rlim->rlim_max = LINUX_RLIM_INFINITY;
return (true);
case LINUX_RLIMIT_NICE:
case LINUX_RLIMIT_RTPRIO:
rlim->rlim_cur = 0;
rlim->rlim_max = 0;
return (true);
default:
return (false);
}
}
int
linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args)
{
struct rlimit bsd_rlim;
struct l_rlimit rlim;
u_int which;
int error;
if (args->resource >= LINUX_RLIM_NLIMITS)
return (EINVAL);
which = linux_to_bsd_resource[args->resource];
if (which == -1)
return (EINVAL);
error = copyin(args->rlim, &rlim, sizeof(rlim));
if (error)
return (error);
bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur;
bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max;
return (kern_setrlimit(td, which, &bsd_rlim));
}
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
int
linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args)
{
struct l_rlimit rlim;
struct rlimit bsd_rlim;
u_int which;
if (linux_get_dummy_limit(args->resource, &bsd_rlim)) {
rlim.rlim_cur = bsd_rlim.rlim_cur;
rlim.rlim_max = bsd_rlim.rlim_max;
return (copyout(&rlim, args->rlim, sizeof(rlim)));
}
if (args->resource >= LINUX_RLIM_NLIMITS)
return (EINVAL);
which = linux_to_bsd_resource[args->resource];
if (which == -1)
return (EINVAL);
lim_rlimit(td, which, &bsd_rlim);
#ifdef COMPAT_LINUX32
rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur;
if (rlim.rlim_cur == UINT_MAX)
rlim.rlim_cur = INT_MAX;
rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max;
if (rlim.rlim_max == UINT_MAX)
rlim.rlim_max = INT_MAX;
#else
rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur;
if (rlim.rlim_cur == ULONG_MAX)
rlim.rlim_cur = LONG_MAX;
rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max;
if (rlim.rlim_max == ULONG_MAX)
rlim.rlim_max = LONG_MAX;
#endif
return (copyout(&rlim, args->rlim, sizeof(rlim)));
}
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
int
linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args)
{
struct l_rlimit rlim;
struct rlimit bsd_rlim;
u_int which;
if (linux_get_dummy_limit(args->resource, &bsd_rlim)) {
rlim.rlim_cur = bsd_rlim.rlim_cur;
rlim.rlim_max = bsd_rlim.rlim_max;
return (copyout(&rlim, args->rlim, sizeof(rlim)));
}
if (args->resource >= LINUX_RLIM_NLIMITS)
return (EINVAL);
which = linux_to_bsd_resource[args->resource];
if (which == -1)
return (EINVAL);
lim_rlimit(td, which, &bsd_rlim);
rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur;
rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max;
return (copyout(&rlim, args->rlim, sizeof(rlim)));
}
int
linux_sched_setscheduler(struct thread *td,
struct linux_sched_setscheduler_args *args)
{
struct sched_param sched_param;
struct thread *tdt;
int error, policy;
switch (args->policy) {
case LINUX_SCHED_OTHER:
policy = SCHED_OTHER;
break;
case LINUX_SCHED_FIFO:
policy = SCHED_FIFO;
break;
case LINUX_SCHED_RR:
policy = SCHED_RR;
break;
default:
return (EINVAL);
}
error = copyin(args->param, &sched_param, sizeof(sched_param));
if (error)
return (error);
if (linux_map_sched_prio) {
switch (policy) {
case SCHED_OTHER:
if (sched_param.sched_priority != 0)
return (EINVAL);
sched_param.sched_priority =
PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
break;
case SCHED_FIFO:
case SCHED_RR:
if (sched_param.sched_priority < 1 ||
sched_param.sched_priority >= LINUX_MAX_RT_PRIO)
return (EINVAL);
/*
* Map [1, LINUX_MAX_RT_PRIO - 1] to
* [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
*/
sched_param.sched_priority =
(sched_param.sched_priority - 1) *
(RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
(LINUX_MAX_RT_PRIO - 1);
break;
}
}
tdt = linux_tdfind(td, args->pid, -1);
if (tdt == NULL)
return (ESRCH);
error = kern_sched_setscheduler(td, tdt, policy, &sched_param);
PROC_UNLOCK(tdt->td_proc);
return (error);
}
int
linux_sched_getscheduler(struct thread *td,
struct linux_sched_getscheduler_args *args)
{
struct thread *tdt;
int error, policy;
tdt = linux_tdfind(td, args->pid, -1);
if (tdt == NULL)
return (ESRCH);
error = kern_sched_getscheduler(td, tdt, &policy);
PROC_UNLOCK(tdt->td_proc);
switch (policy) {
case SCHED_OTHER:
td->td_retval[0] = LINUX_SCHED_OTHER;
break;
case SCHED_FIFO:
td->td_retval[0] = LINUX_SCHED_FIFO;
break;
case SCHED_RR:
td->td_retval[0] = LINUX_SCHED_RR;
break;
}
return (error);
}
int
linux_sched_get_priority_max(struct thread *td,
struct linux_sched_get_priority_max_args *args)
{
struct sched_get_priority_max_args bsd;
if (linux_map_sched_prio) {
switch (args->policy) {
case LINUX_SCHED_OTHER:
td->td_retval[0] = 0;
return (0);
case LINUX_SCHED_FIFO:
case LINUX_SCHED_RR:
td->td_retval[0] = LINUX_MAX_RT_PRIO - 1;
return (0);
default:
return (EINVAL);
}
}
switch (args->policy) {
case LINUX_SCHED_OTHER:
bsd.policy = SCHED_OTHER;
break;
case LINUX_SCHED_FIFO:
bsd.policy = SCHED_FIFO;
break;
case LINUX_SCHED_RR:
bsd.policy = SCHED_RR;
break;
default:
return (EINVAL);
}
return (sys_sched_get_priority_max(td, &bsd));
}
int
linux_sched_get_priority_min(struct thread *td,
struct linux_sched_get_priority_min_args *args)
{
struct sched_get_priority_min_args bsd;
if (linux_map_sched_prio) {
switch (args->policy) {
case LINUX_SCHED_OTHER:
td->td_retval[0] = 0;
return (0);
case LINUX_SCHED_FIFO:
case LINUX_SCHED_RR:
td->td_retval[0] = 1;
return (0);
default:
return (EINVAL);
}
}
switch (args->policy) {
case LINUX_SCHED_OTHER:
bsd.policy = SCHED_OTHER;
break;
case LINUX_SCHED_FIFO:
bsd.policy = SCHED_FIFO;
break;
case LINUX_SCHED_RR:
bsd.policy = SCHED_RR;
break;
default:
return (EINVAL);
}
return (sys_sched_get_priority_min(td, &bsd));
}
#define REBOOT_CAD_ON 0x89abcdef
#define REBOOT_CAD_OFF 0
#define REBOOT_HALT 0xcdef0123
#define REBOOT_RESTART 0x01234567
#define REBOOT_RESTART2 0xA1B2C3D4
#define REBOOT_POWEROFF 0x4321FEDC
#define REBOOT_MAGIC1 0xfee1dead
#define REBOOT_MAGIC2 0x28121969
#define REBOOT_MAGIC2A 0x05121996
#define REBOOT_MAGIC2B 0x16041998
int
linux_reboot(struct thread *td, struct linux_reboot_args *args)
{
struct reboot_args bsd_args;
if (args->magic1 != REBOOT_MAGIC1)
return (EINVAL);
switch (args->magic2) {
case REBOOT_MAGIC2:
case REBOOT_MAGIC2A:
case REBOOT_MAGIC2B:
break;
default:
return (EINVAL);
}
switch (args->cmd) {
case REBOOT_CAD_ON:
case REBOOT_CAD_OFF:
return (priv_check(td, PRIV_REBOOT));
case REBOOT_HALT:
bsd_args.opt = RB_HALT;
break;
case REBOOT_RESTART:
case REBOOT_RESTART2:
bsd_args.opt = 0;
break;
case REBOOT_POWEROFF:
bsd_args.opt = RB_POWEROFF;
break;
default:
return (EINVAL);
}
return (sys_reboot(td, &bsd_args));
}
int
linux_getpid(struct thread *td, struct linux_getpid_args *args)
{
td->td_retval[0] = td->td_proc->p_pid;
return (0);
}
int
linux_gettid(struct thread *td, struct linux_gettid_args *args)
{
struct linux_emuldata *em;
em = em_find(td);
KASSERT(em != NULL, ("gettid: emuldata not found.\n"));
td->td_retval[0] = em->em_tid;
return (0);
}
int
linux_getppid(struct thread *td, struct linux_getppid_args *args)
{
td->td_retval[0] = kern_getppid(td);
return (0);
}
int
linux_getgid(struct thread *td, struct linux_getgid_args *args)
{
td->td_retval[0] = td->td_ucred->cr_rgid;
return (0);
}
int
linux_getuid(struct thread *td, struct linux_getuid_args *args)
{
td->td_retval[0] = td->td_ucred->cr_ruid;
return (0);
}
int
linux_getsid(struct thread *td, struct linux_getsid_args *args)
{
return (kern_getsid(td, args->pid));
}
int
linux_nosys(struct thread *td, struct nosys_args *ignore)
{
return (ENOSYS);
}
int
linux_getpriority(struct thread *td, struct linux_getpriority_args *args)
{
int error;
error = kern_getpriority(td, args->which, args->who);
td->td_retval[0] = 20 - td->td_retval[0];
return (error);
}
int
linux_sethostname(struct thread *td, struct linux_sethostname_args *args)
{
int name[2];
name[0] = CTL_KERN;
name[1] = KERN_HOSTNAME;
return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname,
args->len, 0, 0));
}
int
linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args)
{
int name[2];
name[0] = CTL_KERN;
name[1] = KERN_NISDOMAINNAME;
return (userland_sysctl(td, name, 2, 0, 0, 0, args->name,
args->len, 0, 0));
}
int
linux_exit_group(struct thread *td, struct linux_exit_group_args *args)
{
LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid,
args->error_code);
/*
* XXX: we should send a signal to the parent if
* SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?)
* as it doesnt occur often.
*/
exit1(td, args->error_code, 0);
/* NOTREACHED */
}
#define _LINUX_CAPABILITY_VERSION_1 0x19980330
#define _LINUX_CAPABILITY_VERSION_2 0x20071026
#define _LINUX_CAPABILITY_VERSION_3 0x20080522
struct l_user_cap_header {
l_int version;
l_int pid;
};
struct l_user_cap_data {
l_int effective;
l_int permitted;
l_int inheritable;
};
int
linux_capget(struct thread *td, struct linux_capget_args *uap)
{
struct l_user_cap_header luch;
struct l_user_cap_data lucd[2];
int error, u32s;
if (uap->hdrp == NULL)
return (EFAULT);
error = copyin(uap->hdrp, &luch, sizeof(luch));
if (error != 0)
return (error);
switch (luch.version) {
case _LINUX_CAPABILITY_VERSION_1:
u32s = 1;
break;
case _LINUX_CAPABILITY_VERSION_2:
case _LINUX_CAPABILITY_VERSION_3:
u32s = 2;
break;
default:
luch.version = _LINUX_CAPABILITY_VERSION_1;
error = copyout(&luch, uap->hdrp, sizeof(luch));
if (error)
return (error);
return (EINVAL);
}
if (luch.pid)
return (EPERM);
if (uap->datap) {
/*
* The current implementation doesn't support setting
* a capability (it's essentially a stub) so indicate
* that no capabilities are currently set or available
* to request.
*/
memset(&lucd, 0, u32s * sizeof(lucd[0]));
error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0]));
}
return (error);
}
int
linux_capset(struct thread *td, struct linux_capset_args *uap)
{
struct l_user_cap_header luch;
struct l_user_cap_data lucd[2];
int error, i, u32s;
if (uap->hdrp == NULL || uap->datap == NULL)
return (EFAULT);
error = copyin(uap->hdrp, &luch, sizeof(luch));
if (error != 0)
return (error);
switch (luch.version) {
case _LINUX_CAPABILITY_VERSION_1:
u32s = 1;
break;
case _LINUX_CAPABILITY_VERSION_2:
case _LINUX_CAPABILITY_VERSION_3:
u32s = 2;
break;
default:
luch.version = _LINUX_CAPABILITY_VERSION_1;
error = copyout(&luch, uap->hdrp, sizeof(luch));
if (error)
return (error);
return (EINVAL);
}
if (luch.pid)
return (EPERM);
error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0]));
if (error != 0)
return (error);
/* We currently don't support setting any capabilities. */
for (i = 0; i < u32s; i++) {
if (lucd[i].effective || lucd[i].permitted ||
lucd[i].inheritable) {
linux_msg(td,
"capset[%d] effective=0x%x, permitted=0x%x, "
"inheritable=0x%x is not implemented", i,
(int)lucd[i].effective, (int)lucd[i].permitted,
(int)lucd[i].inheritable);
return (EPERM);
}
}
return (0);
}
int
linux_prctl(struct thread *td, struct linux_prctl_args *args)
{
int error = 0, max_size, arg;
struct proc *p = td->td_proc;
char comm[LINUX_MAX_COMM_LEN];
int pdeath_signal, trace_state;
switch (args->option) {
case LINUX_PR_SET_PDEATHSIG:
if (!LINUX_SIG_VALID(args->arg2))
return (EINVAL);
pdeath_signal = linux_to_bsd_signal(args->arg2);
return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL,
&pdeath_signal));
case LINUX_PR_GET_PDEATHSIG:
error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS,
&pdeath_signal);
if (error != 0)
return (error);
pdeath_signal = bsd_to_linux_signal(pdeath_signal);
return (copyout(&pdeath_signal,
(void *)(register_t)args->arg2,
sizeof(pdeath_signal)));
/*
* In Linux, this flag controls if set[gu]id processes can coredump.
* There are additional semantics imposed on processes that cannot
* coredump:
* - Such processes can not be ptraced.
* - There are some semantics around ownership of process-related files
* in the /proc namespace.
*
* In FreeBSD, we can (and by default, do) disable setuid coredump
* system-wide with 'sugid_coredump.' We control tracability on a
* per-process basis with the procctl PROC_TRACE (=> P2_NOTRACE flag).
* By happy coincidence, P2_NOTRACE also prevents coredumping. So the
* procctl is roughly analogous to Linux's DUMPABLE.
*
* So, proxy these knobs to the corresponding PROC_TRACE setting.
*/
case LINUX_PR_GET_DUMPABLE:
error = kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_STATUS,
&trace_state);
if (error != 0)
return (error);
td->td_retval[0] = (trace_state != -1);
return (0);
case LINUX_PR_SET_DUMPABLE:
/*
* It is only valid for userspace to set one of these two
* flags, and only one at a time.
*/
switch (args->arg2) {
case LINUX_SUID_DUMP_DISABLE:
trace_state = PROC_TRACE_CTL_DISABLE_EXEC;
break;
case LINUX_SUID_DUMP_USER:
trace_state = PROC_TRACE_CTL_ENABLE;
break;
default:
return (EINVAL);
}
return (kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_CTL,
&trace_state));
case LINUX_PR_GET_KEEPCAPS:
/*
* Indicate that we always clear the effective and
* permitted capability sets when the user id becomes
* non-zero (actually the capability sets are simply
* always zero in the current implementation).
*/
td->td_retval[0] = 0;
break;
case LINUX_PR_SET_KEEPCAPS:
/*
* Ignore requests to keep the effective and permitted
* capability sets when the user id becomes non-zero.
*/
break;
case LINUX_PR_SET_NAME:
/*
* To be on the safe side we need to make sure to not
* overflow the size a Linux program expects. We already
* do this here in the copyin, so that we don't need to
* check on copyout.
*/
max_size = MIN(sizeof(comm), sizeof(p->p_comm));
error = copyinstr((void *)(register_t)args->arg2, comm,
max_size, NULL);
/* Linux silently truncates the name if it is too long. */
if (error == ENAMETOOLONG) {
/*
* XXX: copyinstr() isn't documented to populate the
* array completely, so do a copyin() to be on the
* safe side. This should be changed in case
* copyinstr() is changed to guarantee this.
*/
error = copyin((void *)(register_t)args->arg2, comm,
max_size - 1);
comm[max_size - 1] = '\0';
}
if (error)
return (error);
PROC_LOCK(p);
strlcpy(p->p_comm, comm, sizeof(p->p_comm));
PROC_UNLOCK(p);
break;
case LINUX_PR_GET_NAME:
PROC_LOCK(p);
strlcpy(comm, p->p_comm, sizeof(comm));
PROC_UNLOCK(p);
error = copyout(comm, (void *)(register_t)args->arg2,
strlen(comm) + 1);
break;
case LINUX_PR_GET_SECCOMP:
case LINUX_PR_SET_SECCOMP:
/*
* Same as returned by Linux without CONFIG_SECCOMP enabled.
*/
error = EINVAL;
break;
case LINUX_PR_CAPBSET_READ:
#if 0
/*
* This makes too much noise with Ubuntu Focal.
*/
linux_msg(td, "unsupported prctl PR_CAPBSET_READ %d",
(int)args->arg2);
#endif
error = EINVAL;
break;
case LINUX_PR_SET_NO_NEW_PRIVS:
arg = args->arg2 == 1 ?
PROC_NO_NEW_PRIVS_ENABLE : PROC_NO_NEW_PRIVS_DISABLE;
error = kern_procctl(td, P_PID, p->p_pid,
PROC_NO_NEW_PRIVS_CTL, &arg);
break;
case LINUX_PR_SET_PTRACER:
linux_msg(td, "unsupported prctl PR_SET_PTRACER");
error = EINVAL;
break;
default:
linux_msg(td, "unsupported prctl option %d", args->option);
error = EINVAL;
break;
}
return (error);
}
int
linux_sched_setparam(struct thread *td,
struct linux_sched_setparam_args *uap)
{
struct sched_param sched_param;
struct thread *tdt;
int error, policy;
error = copyin(uap->param, &sched_param, sizeof(sched_param));
if (error)
return (error);
tdt = linux_tdfind(td, uap->pid, -1);
if (tdt == NULL)
return (ESRCH);
if (linux_map_sched_prio) {
error = kern_sched_getscheduler(td, tdt, &policy);
if (error)
goto out;
switch (policy) {
case SCHED_OTHER:
if (sched_param.sched_priority != 0) {
error = EINVAL;
goto out;
}
sched_param.sched_priority =
PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
break;
case SCHED_FIFO:
case SCHED_RR:
if (sched_param.sched_priority < 1 ||
sched_param.sched_priority >= LINUX_MAX_RT_PRIO) {
error = EINVAL;
goto out;
}
/*
* Map [1, LINUX_MAX_RT_PRIO - 1] to
* [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
*/
sched_param.sched_priority =
(sched_param.sched_priority - 1) *
(RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
(LINUX_MAX_RT_PRIO - 1);
break;
}
}
error = kern_sched_setparam(td, tdt, &sched_param);
out: PROC_UNLOCK(tdt->td_proc);
return (error);
}
int
linux_sched_getparam(struct thread *td,
struct linux_sched_getparam_args *uap)
{
struct sched_param sched_param;
struct thread *tdt;
int error, policy;
tdt = linux_tdfind(td, uap->pid, -1);
if (tdt == NULL)
return (ESRCH);
error = kern_sched_getparam(td, tdt, &sched_param);
if (error) {
PROC_UNLOCK(tdt->td_proc);
return (error);
}
if (linux_map_sched_prio) {
error = kern_sched_getscheduler(td, tdt, &policy);
PROC_UNLOCK(tdt->td_proc);
if (error)
return (error);
switch (policy) {
case SCHED_OTHER:
sched_param.sched_priority = 0;
break;
case SCHED_FIFO:
case SCHED_RR:
/*
* Map [0, RTP_PRIO_MAX - RTP_PRIO_MIN] to
* [1, LINUX_MAX_RT_PRIO - 1] (rounding up).
*/
sched_param.sched_priority =
(sched_param.sched_priority *
(LINUX_MAX_RT_PRIO - 1) +
(RTP_PRIO_MAX - RTP_PRIO_MIN - 1)) /
(RTP_PRIO_MAX - RTP_PRIO_MIN) + 1;
break;
}
} else
PROC_UNLOCK(tdt->td_proc);
error = copyout(&sched_param, uap->param, sizeof(sched_param));
return (error);
}
/*
* Get affinity of a process.
*/
int
linux_sched_getaffinity(struct thread *td,
struct linux_sched_getaffinity_args *args)
{
int error;
struct thread *tdt;
if (args->len < sizeof(cpuset_t))
return (EINVAL);
tdt = linux_tdfind(td, args->pid, -1);
if (tdt == NULL)
return (ESRCH);
PROC_UNLOCK(tdt->td_proc);
error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
tdt->td_tid, sizeof(cpuset_t), (cpuset_t *)args->user_mask_ptr);
if (error == 0)
td->td_retval[0] = sizeof(cpuset_t);
return (error);
}
/*
* Set affinity of a process.
*/
int
linux_sched_setaffinity(struct thread *td,
struct linux_sched_setaffinity_args *args)
{
struct thread *tdt;
if (args->len < sizeof(cpuset_t))
return (EINVAL);
tdt = linux_tdfind(td, args->pid, -1);
if (tdt == NULL)
return (ESRCH);
PROC_UNLOCK(tdt->td_proc);
return (kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
tdt->td_tid, sizeof(cpuset_t), (cpuset_t *) args->user_mask_ptr));
}
struct linux_rlimit64 {
uint64_t rlim_cur;
uint64_t rlim_max;
};
int
linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args)
{
struct rlimit rlim, nrlim;
struct linux_rlimit64 lrlim;
struct proc *p;
u_int which;
int flags;
int error;
if (args->new == NULL && args->old != NULL) {
if (linux_get_dummy_limit(args->resource, &rlim)) {
lrlim.rlim_cur = rlim.rlim_cur;
lrlim.rlim_max = rlim.rlim_max;
return (copyout(&lrlim, args->old, sizeof(lrlim)));
}
}
if (args->resource >= LINUX_RLIM_NLIMITS)
return (EINVAL);
which = linux_to_bsd_resource[args->resource];
if (which == -1)
return (EINVAL);
if (args->new != NULL) {
/*
* Note. Unlike FreeBSD where rlim is signed 64-bit Linux
* rlim is unsigned 64-bit. FreeBSD treats negative limits
* as INFINITY so we do not need a conversion even.
*/
error = copyin(args->new, &nrlim, sizeof(nrlim));
if (error != 0)
return (error);
}
flags = PGET_HOLD | PGET_NOTWEXIT;
if (args->new != NULL)
flags |= PGET_CANDEBUG;
else
flags |= PGET_CANSEE;
if (args->pid == 0) {
p = td->td_proc;
PHOLD(p);
} else {
error = pget(args->pid, flags, &p);
if (error != 0)
return (error);
}
if (args->old != NULL) {
PROC_LOCK(p);
lim_rlimit_proc(p, which, &rlim);
PROC_UNLOCK(p);
if (rlim.rlim_cur == RLIM_INFINITY)
lrlim.rlim_cur = LINUX_RLIM_INFINITY;
else
lrlim.rlim_cur = rlim.rlim_cur;
if (rlim.rlim_max == RLIM_INFINITY)
lrlim.rlim_max = LINUX_RLIM_INFINITY;
else
lrlim.rlim_max = rlim.rlim_max;
error = copyout(&lrlim, args->old, sizeof(lrlim));
if (error != 0)
goto out;
}
if (args->new != NULL)
error = kern_proc_setrlimit(td, p, which, &nrlim);
out:
PRELE(p);
return (error);
}
int
linux_pselect6(struct thread *td, struct linux_pselect6_args *args)
{
struct l_timespec lts;
struct timespec ts, *tsp;
int error;
if (args->tsp != NULL) {
error = copyin(args->tsp, &lts, sizeof(lts));
if (error != 0)
return (error);
error = linux_to_native_timespec(&ts, &lts);
if (error != 0)
return (error);
tsp = &ts;
} else
tsp = NULL;
error = linux_common_pselect6(td, args->nfds, args->readfds,
args->writefds, args->exceptfds, tsp, args->sig);
if (error != 0)
return (error);
if (args->tsp != NULL) {
error = native_to_linux_timespec(&lts, tsp);
if (error == 0)
error = copyout(&lts, args->tsp, sizeof(lts));
}
return (error);
}
static int
linux_common_pselect6(struct thread *td, l_int nfds, l_fd_set *readfds,
l_fd_set *writefds, l_fd_set *exceptfds, struct timespec *tsp,
l_uintptr_t *sig)
{
struct timeval utv, tv0, tv1, *tvp;
struct l_pselect6arg lpse6;
l_sigset_t l_ss;
sigset_t *ssp;
sigset_t ss;
int error;
ssp = NULL;
if (sig != NULL) {
error = copyin(sig, &lpse6, sizeof(lpse6));
if (error != 0)
return (error);
if (lpse6.ss_len != sizeof(l_ss))
return (EINVAL);
if (lpse6.ss != 0) {
error = copyin(PTRIN(lpse6.ss), &l_ss,
sizeof(l_ss));
if (error != 0)
return (error);
linux_to_bsd_sigset(&l_ss, &ss);
ssp = &ss;
}
} else
ssp = NULL;
/*
* Currently glibc changes nanosecond number to microsecond.
* This mean losing precision but for now it is hardly seen.
*/
if (tsp != NULL) {
TIMESPEC_TO_TIMEVAL(&utv, tsp);
if (itimerfix(&utv))
return (EINVAL);
microtime(&tv0);
tvp = &utv;
} else
tvp = NULL;
error = kern_pselect(td, nfds, readfds, writefds,
exceptfds, tvp, ssp, LINUX_NFDBITS);
if (error == 0 && tsp != NULL) {
if (td->td_retval[0] != 0) {
/*
* Compute how much time was left of the timeout,
* by subtracting the current time and the time
* before we started the call, and subtracting
* that result from the user-supplied value.
*/
microtime(&tv1);
timevalsub(&tv1, &tv0);
timevalsub(&utv, &tv1);
if (utv.tv_sec < 0)
timevalclear(&utv);
} else
timevalclear(&utv);
TIMEVAL_TO_TIMESPEC(&utv, tsp);
}
return (error);
}
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
int
linux_pselect6_time64(struct thread *td,
struct linux_pselect6_time64_args *args)
{
struct l_timespec64 lts;
struct timespec ts, *tsp;
int error;
if (args->tsp != NULL) {
error = copyin(args->tsp, &lts, sizeof(lts));
if (error != 0)
return (error);
error = linux_to_native_timespec64(&ts, &lts);
if (error != 0)
return (error);
tsp = &ts;
} else
tsp = NULL;
error = linux_common_pselect6(td, args->nfds, args->readfds,
args->writefds, args->exceptfds, tsp, args->sig);
if (error != 0)
return (error);
if (args->tsp != NULL) {
error = native_to_linux_timespec64(&lts, tsp);
if (error == 0)
error = copyout(&lts, args->tsp, sizeof(lts));
}
return (error);
}
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
int
linux_ppoll(struct thread *td, struct linux_ppoll_args *args)
{
struct timespec uts, *tsp;
struct l_timespec lts;
int error;
if (args->tsp != NULL) {
error = copyin(args->tsp, &lts, sizeof(lts));
if (error)
return (error);
error = linux_to_native_timespec(&uts, &lts);
if (error != 0)
return (error);
tsp = &uts;
} else
tsp = NULL;
error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
args->sset, args->ssize);
if (error != 0)
return (error);
if (tsp != NULL) {
error = native_to_linux_timespec(&lts, tsp);
if (error == 0)
error = copyout(&lts, args->tsp, sizeof(lts));
}
return (error);
}
static int
linux_common_ppoll(struct thread *td, struct pollfd *fds, uint32_t nfds,
struct timespec *tsp, l_sigset_t *sset, l_size_t ssize)
{
struct timespec ts0, ts1;
struct pollfd stackfds[32];
struct pollfd *kfds;
l_sigset_t l_ss;
sigset_t *ssp;
sigset_t ss;
int error;
if (kern_poll_maxfds(nfds))
return (EINVAL);
if (sset != NULL) {
if (ssize != sizeof(l_ss))
return (EINVAL);
error = copyin(sset, &l_ss, sizeof(l_ss));
if (error)
return (error);
linux_to_bsd_sigset(&l_ss, &ss);
ssp = &ss;
} else
ssp = NULL;
if (tsp != NULL)
nanotime(&ts0);
if (nfds > nitems(stackfds))
kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK);
else
kfds = stackfds;
error = linux_pollin(td, kfds, fds, nfds);
if (error != 0)
goto out;
error = kern_poll_kfds(td, kfds, nfds, tsp, ssp);
if (error == 0)
error = linux_pollout(td, kfds, fds, nfds);
if (error == 0 && tsp != NULL) {
if (td->td_retval[0]) {
nanotime(&ts1);
timespecsub(&ts1, &ts0, &ts1);
timespecsub(tsp, &ts1, tsp);
if (tsp->tv_sec < 0)
timespecclear(tsp);
} else
timespecclear(tsp);
}
out:
if (nfds > nitems(stackfds))
free(kfds, M_TEMP);
return (error);
}
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
int
linux_ppoll_time64(struct thread *td, struct linux_ppoll_time64_args *args)
{
struct timespec uts, *tsp;
struct l_timespec64 lts;
int error;
if (args->tsp != NULL) {
error = copyin(args->tsp, &lts, sizeof(lts));
if (error != 0)
return (error);
error = linux_to_native_timespec64(&uts, &lts);
if (error != 0)
return (error);
tsp = &uts;
} else
tsp = NULL;
error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
args->sset, args->ssize);
if (error != 0)
return (error);
if (tsp != NULL) {
error = native_to_linux_timespec64(&lts, tsp);
if (error == 0)
error = copyout(&lts, args->tsp, sizeof(lts));
}
return (error);
}
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
static int
linux_pollin(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
{
int error;
u_int i;
error = copyin(ufds, fds, nfd * sizeof(*fds));
if (error != 0)
return (error);
for (i = 0; i < nfd; i++) {
if (fds->events != 0)
linux_to_bsd_poll_events(td, fds->fd,
fds->events, &fds->events);
fds++;
}
return (0);
}
static int
linux_pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
{
int error = 0;
u_int i, n = 0;
for (i = 0; i < nfd; i++) {
if (fds->revents != 0) {
bsd_to_linux_poll_events(fds->revents,
&fds->revents);
n++;
}
error = copyout(&fds->revents, &ufds->revents,
sizeof(ufds->revents));
if (error)
return (error);
fds++;
ufds++;
}
td->td_retval[0] = n;
return (0);
}
int
linux_sched_rr_get_interval(struct thread *td,
struct linux_sched_rr_get_interval_args *uap)
{
struct timespec ts;
struct l_timespec lts;
struct thread *tdt;
int error;
/*
* According to man in case the invalid pid specified
* EINVAL should be returned.
*/
if (uap->pid < 0)
return (EINVAL);
tdt = linux_tdfind(td, uap->pid, -1);
if (tdt == NULL)
return (ESRCH);
error = kern_sched_rr_get_interval_td(td, tdt, &ts);
PROC_UNLOCK(tdt->td_proc);
if (error != 0)
return (error);
error = native_to_linux_timespec(&lts, &ts);
if (error != 0)
return (error);
return (copyout(&lts, uap->interval, sizeof(lts)));
}
/*
* In case when the Linux thread is the initial thread in
* the thread group thread id is equal to the process id.
* Glibc depends on this magic (assert in pthread_getattr_np.c).
*/
struct thread *
linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid)
{
struct linux_emuldata *em;
struct thread *tdt;
struct proc *p;
tdt = NULL;
if (tid == 0 || tid == td->td_tid) {
tdt = td;
PROC_LOCK(tdt->td_proc);
} else if (tid > PID_MAX)
tdt = tdfind(tid, pid);
else {
/*
* Initial thread where the tid equal to the pid.
*/
p = pfind(tid);
if (p != NULL) {
if (SV_PROC_ABI(p) != SV_ABI_LINUX) {
/*
* p is not a Linuxulator process.
*/
PROC_UNLOCK(p);
return (NULL);
}
FOREACH_THREAD_IN_PROC(p, tdt) {
em = em_find(tdt);
if (tid == em->em_tid)
return (tdt);
}
PROC_UNLOCK(p);
}
return (NULL);
}
return (tdt);
}
void
linux_to_bsd_waitopts(int options, int *bsdopts)
{
if (options & LINUX_WNOHANG)
*bsdopts |= WNOHANG;
if (options & LINUX_WUNTRACED)
*bsdopts |= WUNTRACED;
if (options & LINUX_WEXITED)
*bsdopts |= WEXITED;
if (options & LINUX_WCONTINUED)
*bsdopts |= WCONTINUED;
if (options & LINUX_WNOWAIT)
*bsdopts |= WNOWAIT;
if (options & __WCLONE)
*bsdopts |= WLINUXCLONE;
}
int
linux_getrandom(struct thread *td, struct linux_getrandom_args *args)
{
struct uio uio;
struct iovec iov;
int error;
if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM))
return (EINVAL);
if (args->count > INT_MAX)
args->count = INT_MAX;
iov.iov_base = args->buf;
iov.iov_len = args->count;
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
uio.uio_resid = iov.iov_len;
uio.uio_segflg = UIO_USERSPACE;
uio.uio_rw = UIO_READ;
uio.uio_td = td;
error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK);
if (error == 0)
td->td_retval[0] = args->count - uio.uio_resid;
return (error);
}
int
linux_mincore(struct thread *td, struct linux_mincore_args *args)
{
/* Needs to be page-aligned */
if (args->start & PAGE_MASK)
return (EINVAL);
return (kern_mincore(td, args->start, args->len, args->vec));
}
#define SYSLOG_TAG "<6>"
int
linux_syslog(struct thread *td, struct linux_syslog_args *args)
{
char buf[128], *src, *dst;
u_int seq;
int buflen, error;
if (args->type != LINUX_SYSLOG_ACTION_READ_ALL) {
linux_msg(td, "syslog unsupported type 0x%x", args->type);
return (EINVAL);
}
if (args->len < 6) {
td->td_retval[0] = 0;
return (0);
}
error = priv_check(td, PRIV_MSGBUF);
if (error)
return (error);
mtx_lock(&msgbuf_lock);
msgbuf_peekbytes(msgbufp, NULL, 0, &seq);
mtx_unlock(&msgbuf_lock);
dst = args->buf;
error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG));
/* The -1 is to skip the trailing '\0'. */
dst += sizeof(SYSLOG_TAG) - 1;
while (error == 0) {
mtx_lock(&msgbuf_lock);
buflen = msgbuf_peekbytes(msgbufp, buf, sizeof(buf), &seq);
mtx_unlock(&msgbuf_lock);
if (buflen == 0)
break;
for (src = buf; src < buf + buflen && error == 0; src++) {
if (*src == '\0')
continue;
if (dst >= args->buf + args->len)
goto out;
error = copyout(src, dst, 1);
dst++;
if (*src == '\n' && *(src + 1) != '<' &&
dst + sizeof(SYSLOG_TAG) < args->buf + args->len) {
error = copyout(&SYSLOG_TAG,
dst, sizeof(SYSLOG_TAG));
dst += sizeof(SYSLOG_TAG) - 1;
}
}
}
out:
td->td_retval[0] = dst - args->buf;
return (error);
}
int
linux_getcpu(struct thread *td, struct linux_getcpu_args *args)
{
int cpu, error, node;
cpu = td->td_oncpu; /* Make sure it doesn't change during copyout(9) */
error = 0;
node = cpuid_to_pcpu[cpu]->pc_domain;
if (args->cpu != NULL)
error = copyout(&cpu, args->cpu, sizeof(l_int));
if (args->node != NULL)
error = copyout(&node, args->node, sizeof(l_int));
return (error);
}
#if defined(__i386__) || defined(__amd64__)
int
linux_poll(struct thread *td, struct linux_poll_args *args)
{
struct timespec ts, *tsp;
if (args->timeout != INFTIM) {
if (args->timeout < 0)
return (EINVAL);
ts.tv_sec = args->timeout / 1000;
ts.tv_nsec = (args->timeout % 1000) * 1000000;
tsp = &ts;
} else
tsp = NULL;
return (linux_common_ppoll(td, args->fds, args->nfds,
tsp, NULL, 0));
}
#endif /* __i386__ || __amd64__ */
int
linux_seccomp(struct thread *td, struct linux_seccomp_args *args)
{
switch (args->op) {
case LINUX_SECCOMP_GET_ACTION_AVAIL:
return (EOPNOTSUPP);
default:
/*
* Ignore unknown operations, just like Linux kernel built
* without CONFIG_SECCOMP.
*/
return (EINVAL);
}
}