freebsd-dev/sys/dev/mly/mly.c
Alexander Motin 6f954fb36b Remove MAXBSIZE use from drivers where it has nothing to do.
In some cases limits are just not needed, in others -- DFLTPHYS is the
right constant to use instead.

MFC after:	1 month
2015-03-22 16:10:28 +00:00

3015 lines
94 KiB
C

/*-
* Copyright (c) 2000, 2001 Michael Smith
* Copyright (c) 2000 BSDi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/ctype.h>
#include <sys/ioccom.h>
#include <sys/stat.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_periph.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/mly/mlyreg.h>
#include <dev/mly/mlyio.h>
#include <dev/mly/mlyvar.h>
#include <dev/mly/mly_tables.h>
static int mly_probe(device_t dev);
static int mly_attach(device_t dev);
static int mly_pci_attach(struct mly_softc *sc);
static int mly_detach(device_t dev);
static int mly_shutdown(device_t dev);
static void mly_intr(void *arg);
static int mly_sg_map(struct mly_softc *sc);
static void mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
static int mly_mmbox_map(struct mly_softc *sc);
static void mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
static void mly_free(struct mly_softc *sc);
static int mly_get_controllerinfo(struct mly_softc *sc);
static void mly_scan_devices(struct mly_softc *sc);
static void mly_rescan_btl(struct mly_softc *sc, int bus, int target);
static void mly_complete_rescan(struct mly_command *mc);
static int mly_get_eventstatus(struct mly_softc *sc);
static int mly_enable_mmbox(struct mly_softc *sc);
static int mly_flush(struct mly_softc *sc);
static int mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data,
size_t datasize, u_int8_t *status, void *sense_buffer, size_t *sense_length);
static void mly_check_event(struct mly_softc *sc);
static void mly_fetch_event(struct mly_softc *sc);
static void mly_complete_event(struct mly_command *mc);
static void mly_process_event(struct mly_softc *sc, struct mly_event *me);
static void mly_periodic(void *data);
static int mly_immediate_command(struct mly_command *mc);
static int mly_start(struct mly_command *mc);
static void mly_done(struct mly_softc *sc);
static void mly_complete(struct mly_softc *sc);
static void mly_complete_handler(void *context, int pending);
static int mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp);
static void mly_release_command(struct mly_command *mc);
static void mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error);
static int mly_alloc_commands(struct mly_softc *sc);
static void mly_release_commands(struct mly_softc *sc);
static void mly_map_command(struct mly_command *mc);
static void mly_unmap_command(struct mly_command *mc);
static int mly_cam_attach(struct mly_softc *sc);
static void mly_cam_detach(struct mly_softc *sc);
static void mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target);
static void mly_cam_action(struct cam_sim *sim, union ccb *ccb);
static int mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio);
static void mly_cam_poll(struct cam_sim *sim);
static void mly_cam_complete(struct mly_command *mc);
static struct cam_periph *mly_find_periph(struct mly_softc *sc, int bus, int target);
static int mly_name_device(struct mly_softc *sc, int bus, int target);
static int mly_fwhandshake(struct mly_softc *sc);
static void mly_describe_controller(struct mly_softc *sc);
#ifdef MLY_DEBUG
static void mly_printstate(struct mly_softc *sc);
static void mly_print_command(struct mly_command *mc);
static void mly_print_packet(struct mly_command *mc);
static void mly_panic(struct mly_softc *sc, char *reason);
static void mly_timeout(void *arg);
#endif
void mly_print_controller(int controller);
static d_open_t mly_user_open;
static d_close_t mly_user_close;
static d_ioctl_t mly_user_ioctl;
static int mly_user_command(struct mly_softc *sc, struct mly_user_command *uc);
static int mly_user_health(struct mly_softc *sc, struct mly_user_health *uh);
#define MLY_CMD_TIMEOUT 20
static device_method_t mly_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, mly_probe),
DEVMETHOD(device_attach, mly_attach),
DEVMETHOD(device_detach, mly_detach),
DEVMETHOD(device_shutdown, mly_shutdown),
{ 0, 0 }
};
static driver_t mly_pci_driver = {
"mly",
mly_methods,
sizeof(struct mly_softc)
};
static devclass_t mly_devclass;
DRIVER_MODULE(mly, pci, mly_pci_driver, mly_devclass, 0, 0);
MODULE_DEPEND(mly, pci, 1, 1, 1);
MODULE_DEPEND(mly, cam, 1, 1, 1);
static struct cdevsw mly_cdevsw = {
.d_version = D_VERSION,
.d_open = mly_user_open,
.d_close = mly_user_close,
.d_ioctl = mly_user_ioctl,
.d_name = "mly",
};
/********************************************************************************
********************************************************************************
Device Interface
********************************************************************************
********************************************************************************/
static struct mly_ident
{
u_int16_t vendor;
u_int16_t device;
u_int16_t subvendor;
u_int16_t subdevice;
int hwif;
char *desc;
} mly_identifiers[] = {
{0x1069, 0xba56, 0x1069, 0x0040, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 2000"},
{0x1069, 0xba56, 0x1069, 0x0030, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 3000"},
{0x1069, 0x0050, 0x1069, 0x0050, MLY_HWIF_I960RX, "Mylex AcceleRAID 352"},
{0x1069, 0x0050, 0x1069, 0x0052, MLY_HWIF_I960RX, "Mylex AcceleRAID 170"},
{0x1069, 0x0050, 0x1069, 0x0054, MLY_HWIF_I960RX, "Mylex AcceleRAID 160"},
{0, 0, 0, 0, 0, 0}
};
/********************************************************************************
* Compare the provided PCI device with the list we support.
*/
static int
mly_probe(device_t dev)
{
struct mly_ident *m;
debug_called(1);
for (m = mly_identifiers; m->vendor != 0; m++) {
if ((m->vendor == pci_get_vendor(dev)) &&
(m->device == pci_get_device(dev)) &&
((m->subvendor == 0) || ((m->subvendor == pci_get_subvendor(dev)) &&
(m->subdevice == pci_get_subdevice(dev))))) {
device_set_desc(dev, m->desc);
return(BUS_PROBE_DEFAULT); /* allow room to be overridden */
}
}
return(ENXIO);
}
/********************************************************************************
* Initialise the controller and softc
*/
static int
mly_attach(device_t dev)
{
struct mly_softc *sc = device_get_softc(dev);
int error;
debug_called(1);
sc->mly_dev = dev;
mtx_init(&sc->mly_lock, "mly", NULL, MTX_DEF);
callout_init_mtx(&sc->mly_periodic, &sc->mly_lock, 0);
#ifdef MLY_DEBUG
callout_init_mtx(&sc->mly_timeout, &sc->mly_lock, 0);
if (device_get_unit(sc->mly_dev) == 0)
mly_softc0 = sc;
#endif
/*
* Do PCI-specific initialisation.
*/
if ((error = mly_pci_attach(sc)) != 0)
goto out;
/*
* Initialise per-controller queues.
*/
mly_initq_free(sc);
mly_initq_busy(sc);
mly_initq_complete(sc);
/*
* Initialise command-completion task.
*/
TASK_INIT(&sc->mly_task_complete, 0, mly_complete_handler, sc);
/* disable interrupts before we start talking to the controller */
MLY_MASK_INTERRUPTS(sc);
/*
* Wait for the controller to come ready, handshake with the firmware if required.
* This is typically only necessary on platforms where the controller BIOS does not
* run.
*/
if ((error = mly_fwhandshake(sc)))
goto out;
/*
* Allocate initial command buffers.
*/
if ((error = mly_alloc_commands(sc)))
goto out;
/*
* Obtain controller feature information
*/
MLY_LOCK(sc);
error = mly_get_controllerinfo(sc);
MLY_UNLOCK(sc);
if (error)
goto out;
/*
* Reallocate command buffers now we know how many we want.
*/
mly_release_commands(sc);
if ((error = mly_alloc_commands(sc)))
goto out;
/*
* Get the current event counter for health purposes, populate the initial
* health status buffer.
*/
MLY_LOCK(sc);
error = mly_get_eventstatus(sc);
/*
* Enable memory-mailbox mode.
*/
if (error == 0)
error = mly_enable_mmbox(sc);
MLY_UNLOCK(sc);
if (error)
goto out;
/*
* Attach to CAM.
*/
if ((error = mly_cam_attach(sc)))
goto out;
/*
* Print a little information about the controller
*/
mly_describe_controller(sc);
/*
* Mark all attached devices for rescan.
*/
MLY_LOCK(sc);
mly_scan_devices(sc);
/*
* Instigate the first status poll immediately. Rescan completions won't
* happen until interrupts are enabled, which should still be before
* the SCSI subsystem gets to us, courtesy of the "SCSI settling delay".
*/
mly_periodic((void *)sc);
MLY_UNLOCK(sc);
/*
* Create the control device.
*/
sc->mly_dev_t = make_dev(&mly_cdevsw, 0, UID_ROOT, GID_OPERATOR,
S_IRUSR | S_IWUSR, "mly%d", device_get_unit(sc->mly_dev));
sc->mly_dev_t->si_drv1 = sc;
/* enable interrupts now */
MLY_UNMASK_INTERRUPTS(sc);
#ifdef MLY_DEBUG
callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz, mly_timeout, sc);
#endif
out:
if (error != 0)
mly_free(sc);
return(error);
}
/********************************************************************************
* Perform PCI-specific initialisation.
*/
static int
mly_pci_attach(struct mly_softc *sc)
{
int i, error;
debug_called(1);
/* assume failure is 'not configured' */
error = ENXIO;
/*
* Verify that the adapter is correctly set up in PCI space.
*/
pci_enable_busmaster(sc->mly_dev);
/*
* Allocate the PCI register window.
*/
sc->mly_regs_rid = PCIR_BAR(0); /* first base address register */
if ((sc->mly_regs_resource = bus_alloc_resource_any(sc->mly_dev,
SYS_RES_MEMORY, &sc->mly_regs_rid, RF_ACTIVE)) == NULL) {
mly_printf(sc, "can't allocate register window\n");
goto fail;
}
/*
* Allocate and connect our interrupt.
*/
sc->mly_irq_rid = 0;
if ((sc->mly_irq = bus_alloc_resource_any(sc->mly_dev, SYS_RES_IRQ,
&sc->mly_irq_rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
mly_printf(sc, "can't allocate interrupt\n");
goto fail;
}
if (bus_setup_intr(sc->mly_dev, sc->mly_irq, INTR_TYPE_CAM | INTR_ENTROPY | INTR_MPSAFE, NULL, mly_intr, sc, &sc->mly_intr)) {
mly_printf(sc, "can't set up interrupt\n");
goto fail;
}
/* assume failure is 'out of memory' */
error = ENOMEM;
/*
* Allocate the parent bus DMA tag appropriate for our PCI interface.
*
* Note that all of these controllers are 64-bit capable.
*/
if (bus_dma_tag_create(bus_get_dma_tag(sc->mly_dev),/* PCI parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
BUS_SPACE_UNRESTRICTED, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&sc->mly_parent_dmat)) {
mly_printf(sc, "can't allocate parent DMA tag\n");
goto fail;
}
/*
* Create DMA tag for mapping buffers into controller-addressable space.
*/
if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
DFLTPHYS, /* maxsize */
MLY_MAX_SGENTRIES, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
busdma_lock_mutex, /* lockfunc */
&sc->mly_lock, /* lockarg */
&sc->mly_buffer_dmat)) {
mly_printf(sc, "can't allocate buffer DMA tag\n");
goto fail;
}
/*
* Initialise the DMA tag for command packets.
*/
if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sizeof(union mly_command_packet) * MLY_MAX_COMMANDS, 1, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mly_packet_dmat)) {
mly_printf(sc, "can't allocate command packet DMA tag\n");
goto fail;
}
/*
* Detect the hardware interface version
*/
for (i = 0; mly_identifiers[i].vendor != 0; i++) {
if ((mly_identifiers[i].vendor == pci_get_vendor(sc->mly_dev)) &&
(mly_identifiers[i].device == pci_get_device(sc->mly_dev))) {
sc->mly_hwif = mly_identifiers[i].hwif;
switch(sc->mly_hwif) {
case MLY_HWIF_I960RX:
debug(1, "set hardware up for i960RX");
sc->mly_doorbell_true = 0x00;
sc->mly_command_mailbox = MLY_I960RX_COMMAND_MAILBOX;
sc->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX;
sc->mly_idbr = MLY_I960RX_IDBR;
sc->mly_odbr = MLY_I960RX_ODBR;
sc->mly_error_status = MLY_I960RX_ERROR_STATUS;
sc->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
sc->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK;
break;
case MLY_HWIF_STRONGARM:
debug(1, "set hardware up for StrongARM");
sc->mly_doorbell_true = 0xff; /* doorbell 'true' is 0 */
sc->mly_command_mailbox = MLY_STRONGARM_COMMAND_MAILBOX;
sc->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX;
sc->mly_idbr = MLY_STRONGARM_IDBR;
sc->mly_odbr = MLY_STRONGARM_ODBR;
sc->mly_error_status = MLY_STRONGARM_ERROR_STATUS;
sc->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
sc->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK;
break;
}
break;
}
}
/*
* Create the scatter/gather mappings.
*/
if ((error = mly_sg_map(sc)))
goto fail;
/*
* Allocate and map the memory mailbox
*/
if ((error = mly_mmbox_map(sc)))
goto fail;
error = 0;
fail:
return(error);
}
/********************************************************************************
* Shut the controller down and detach all our resources.
*/
static int
mly_detach(device_t dev)
{
int error;
if ((error = mly_shutdown(dev)) != 0)
return(error);
mly_free(device_get_softc(dev));
return(0);
}
/********************************************************************************
* Bring the controller to a state where it can be safely left alone.
*
* Note that it should not be necessary to wait for any outstanding commands,
* as they should be completed prior to calling here.
*
* XXX this applies for I/O, but not status polls; we should beware of
* the case where a status command is running while we detach.
*/
static int
mly_shutdown(device_t dev)
{
struct mly_softc *sc = device_get_softc(dev);
debug_called(1);
MLY_LOCK(sc);
if (sc->mly_state & MLY_STATE_OPEN) {
MLY_UNLOCK(sc);
return(EBUSY);
}
/* kill the periodic event */
callout_stop(&sc->mly_periodic);
#ifdef MLY_DEBUG
callout_stop(&sc->mly_timeout);
#endif
/* flush controller */
mly_printf(sc, "flushing cache...");
printf("%s\n", mly_flush(sc) ? "failed" : "done");
MLY_MASK_INTERRUPTS(sc);
MLY_UNLOCK(sc);
return(0);
}
/*******************************************************************************
* Take an interrupt, or be poked by other code to look for interrupt-worthy
* status.
*/
static void
mly_intr(void *arg)
{
struct mly_softc *sc = (struct mly_softc *)arg;
debug_called(2);
MLY_LOCK(sc);
mly_done(sc);
MLY_UNLOCK(sc);
};
/********************************************************************************
********************************************************************************
Bus-dependant Resource Management
********************************************************************************
********************************************************************************/
/********************************************************************************
* Allocate memory for the scatter/gather tables
*/
static int
mly_sg_map(struct mly_softc *sc)
{
size_t segsize;
debug_called(1);
/*
* Create a single tag describing a region large enough to hold all of
* the s/g lists we will need.
*/
segsize = sizeof(struct mly_sg_entry) * MLY_MAX_COMMANDS *MLY_MAX_SGENTRIES;
if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
1, 0, /* alignment,boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
segsize, 1, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mly_sg_dmat)) {
mly_printf(sc, "can't allocate scatter/gather DMA tag\n");
return(ENOMEM);
}
/*
* Allocate enough s/g maps for all commands and permanently map them into
* controller-visible space.
*
* XXX this assumes we can get enough space for all the s/g maps in one
* contiguous slab.
*/
if (bus_dmamem_alloc(sc->mly_sg_dmat, (void **)&sc->mly_sg_table,
BUS_DMA_NOWAIT, &sc->mly_sg_dmamap)) {
mly_printf(sc, "can't allocate s/g table\n");
return(ENOMEM);
}
if (bus_dmamap_load(sc->mly_sg_dmat, sc->mly_sg_dmamap, sc->mly_sg_table,
segsize, mly_sg_map_helper, sc, BUS_DMA_NOWAIT) != 0)
return (ENOMEM);
return(0);
}
/********************************************************************************
* Save the physical address of the base of the s/g table.
*/
static void
mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct mly_softc *sc = (struct mly_softc *)arg;
debug_called(1);
/* save base of s/g table's address in bus space */
sc->mly_sg_busaddr = segs->ds_addr;
}
/********************************************************************************
* Allocate memory for the memory-mailbox interface
*/
static int
mly_mmbox_map(struct mly_softc *sc)
{
/*
* Create a DMA tag for a single contiguous region large enough for the
* memory mailbox structure.
*/
if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
1, 0, /* alignment,boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sizeof(struct mly_mmbox), 1, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mly_mmbox_dmat)) {
mly_printf(sc, "can't allocate memory mailbox DMA tag\n");
return(ENOMEM);
}
/*
* Allocate the buffer
*/
if (bus_dmamem_alloc(sc->mly_mmbox_dmat, (void **)&sc->mly_mmbox, BUS_DMA_NOWAIT, &sc->mly_mmbox_dmamap)) {
mly_printf(sc, "can't allocate memory mailbox\n");
return(ENOMEM);
}
if (bus_dmamap_load(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap, sc->mly_mmbox,
sizeof(struct mly_mmbox), mly_mmbox_map_helper, sc,
BUS_DMA_NOWAIT) != 0)
return (ENOMEM);
bzero(sc->mly_mmbox, sizeof(*sc->mly_mmbox));
return(0);
}
/********************************************************************************
* Save the physical address of the memory mailbox
*/
static void
mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct mly_softc *sc = (struct mly_softc *)arg;
debug_called(1);
sc->mly_mmbox_busaddr = segs->ds_addr;
}
/********************************************************************************
* Free all of the resources associated with (sc)
*
* Should not be called if the controller is active.
*/
static void
mly_free(struct mly_softc *sc)
{
debug_called(1);
/* Remove the management device */
destroy_dev(sc->mly_dev_t);
if (sc->mly_intr)
bus_teardown_intr(sc->mly_dev, sc->mly_irq, sc->mly_intr);
callout_drain(&sc->mly_periodic);
#ifdef MLY_DEBUG
callout_drain(&sc->mly_timeout);
#endif
/* detach from CAM */
mly_cam_detach(sc);
/* release command memory */
mly_release_commands(sc);
/* throw away the controllerinfo structure */
if (sc->mly_controllerinfo != NULL)
free(sc->mly_controllerinfo, M_DEVBUF);
/* throw away the controllerparam structure */
if (sc->mly_controllerparam != NULL)
free(sc->mly_controllerparam, M_DEVBUF);
/* destroy data-transfer DMA tag */
if (sc->mly_buffer_dmat)
bus_dma_tag_destroy(sc->mly_buffer_dmat);
/* free and destroy DMA memory and tag for s/g lists */
if (sc->mly_sg_table) {
bus_dmamap_unload(sc->mly_sg_dmat, sc->mly_sg_dmamap);
bus_dmamem_free(sc->mly_sg_dmat, sc->mly_sg_table, sc->mly_sg_dmamap);
}
if (sc->mly_sg_dmat)
bus_dma_tag_destroy(sc->mly_sg_dmat);
/* free and destroy DMA memory and tag for memory mailbox */
if (sc->mly_mmbox) {
bus_dmamap_unload(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap);
bus_dmamem_free(sc->mly_mmbox_dmat, sc->mly_mmbox, sc->mly_mmbox_dmamap);
}
if (sc->mly_mmbox_dmat)
bus_dma_tag_destroy(sc->mly_mmbox_dmat);
/* disconnect the interrupt handler */
if (sc->mly_irq != NULL)
bus_release_resource(sc->mly_dev, SYS_RES_IRQ, sc->mly_irq_rid, sc->mly_irq);
/* destroy the parent DMA tag */
if (sc->mly_parent_dmat)
bus_dma_tag_destroy(sc->mly_parent_dmat);
/* release the register window mapping */
if (sc->mly_regs_resource != NULL)
bus_release_resource(sc->mly_dev, SYS_RES_MEMORY, sc->mly_regs_rid, sc->mly_regs_resource);
mtx_destroy(&sc->mly_lock);
}
/********************************************************************************
********************************************************************************
Command Wrappers
********************************************************************************
********************************************************************************/
/********************************************************************************
* Fill in the mly_controllerinfo and mly_controllerparam fields in the softc.
*/
static int
mly_get_controllerinfo(struct mly_softc *sc)
{
struct mly_command_ioctl mci;
u_int8_t status;
int error;
debug_called(1);
if (sc->mly_controllerinfo != NULL)
free(sc->mly_controllerinfo, M_DEVBUF);
/* build the getcontrollerinfo ioctl and send it */
bzero(&mci, sizeof(mci));
sc->mly_controllerinfo = NULL;
mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerinfo, sizeof(*sc->mly_controllerinfo),
&status, NULL, NULL)))
return(error);
if (status != 0)
return(EIO);
if (sc->mly_controllerparam != NULL)
free(sc->mly_controllerparam, M_DEVBUF);
/* build the getcontrollerparameter ioctl and send it */
bzero(&mci, sizeof(mci));
sc->mly_controllerparam = NULL;
mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerparam, sizeof(*sc->mly_controllerparam),
&status, NULL, NULL)))
return(error);
if (status != 0)
return(EIO);
return(0);
}
/********************************************************************************
* Schedule all possible devices for a rescan.
*
*/
static void
mly_scan_devices(struct mly_softc *sc)
{
int bus, target;
debug_called(1);
/*
* Clear any previous BTL information.
*/
bzero(&sc->mly_btl, sizeof(sc->mly_btl));
/*
* Mark all devices as requiring a rescan, and let the next
* periodic scan collect them.
*/
for (bus = 0; bus < sc->mly_cam_channels; bus++)
if (MLY_BUS_IS_VALID(sc, bus))
for (target = 0; target < MLY_MAX_TARGETS; target++)
sc->mly_btl[bus][target].mb_flags = MLY_BTL_RESCAN;
}
/********************************************************************************
* Rescan a device, possibly as a consequence of getting an event which suggests
* that it may have changed.
*
* If we suffer resource starvation, we can abandon the rescan as we'll be
* retried.
*/
static void
mly_rescan_btl(struct mly_softc *sc, int bus, int target)
{
struct mly_command *mc;
struct mly_command_ioctl *mci;
debug_called(1);
/* check that this bus is valid */
if (!MLY_BUS_IS_VALID(sc, bus))
return;
/* get a command */
if (mly_alloc_command(sc, &mc))
return;
/* set up the data buffer */
if ((mc->mc_data = malloc(sizeof(union mly_devinfo), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) {
mly_release_command(mc);
return;
}
mc->mc_flags |= MLY_CMD_DATAIN;
mc->mc_complete = mly_complete_rescan;
/*
* Build the ioctl.
*/
mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
mci->opcode = MDACMD_IOCTL;
mci->addr.phys.controller = 0;
mci->timeout.value = 30;
mci->timeout.scale = MLY_TIMEOUT_SECONDS;
if (MLY_BUS_IS_VIRTUAL(sc, bus)) {
mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getlogdevinfovalid);
mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
mci->addr.log.logdev = MLY_LOGDEV_ID(sc, bus, target);
debug(1, "logical device %d", mci->addr.log.logdev);
} else {
mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getphysdevinfovalid);
mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
mci->addr.phys.lun = 0;
mci->addr.phys.target = target;
mci->addr.phys.channel = bus;
debug(1, "physical device %d:%d", mci->addr.phys.channel, mci->addr.phys.target);
}
/*
* Dispatch the command. If we successfully send the command, clear the rescan
* bit.
*/
if (mly_start(mc) != 0) {
mly_release_command(mc);
} else {
sc->mly_btl[bus][target].mb_flags &= ~MLY_BTL_RESCAN; /* success */
}
}
/********************************************************************************
* Handle the completion of a rescan operation
*/
static void
mly_complete_rescan(struct mly_command *mc)
{
struct mly_softc *sc = mc->mc_sc;
struct mly_ioctl_getlogdevinfovalid *ldi;
struct mly_ioctl_getphysdevinfovalid *pdi;
struct mly_command_ioctl *mci;
struct mly_btl btl, *btlp;
int bus, target, rescan;
debug_called(1);
/*
* Recover the bus and target from the command. We need these even in
* the case where we don't have a useful response.
*/
mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
bus = MLY_LOGDEV_BUS(sc, mci->addr.log.logdev);
target = MLY_LOGDEV_TARGET(sc, mci->addr.log.logdev);
} else {
bus = mci->addr.phys.channel;
target = mci->addr.phys.target;
}
/* XXX validate bus/target? */
/* the default result is 'no device' */
bzero(&btl, sizeof(btl));
/* if the rescan completed OK, we have possibly-new BTL data */
if (mc->mc_status == 0) {
if (mc->mc_length == sizeof(*ldi)) {
ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
if ((MLY_LOGDEV_BUS(sc, ldi->logical_device_number) != bus) ||
(MLY_LOGDEV_TARGET(sc, ldi->logical_device_number) != target)) {
mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
bus, target, MLY_LOGDEV_BUS(sc, ldi->logical_device_number),
MLY_LOGDEV_TARGET(sc, ldi->logical_device_number));
/* XXX what can we do about this? */
}
btl.mb_flags = MLY_BTL_LOGICAL;
btl.mb_type = ldi->raid_level;
btl.mb_state = ldi->state;
debug(1, "BTL rescan for %d returns %s, %s", ldi->logical_device_number,
mly_describe_code(mly_table_device_type, ldi->raid_level),
mly_describe_code(mly_table_device_state, ldi->state));
} else if (mc->mc_length == sizeof(*pdi)) {
pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
if ((pdi->channel != bus) || (pdi->target != target)) {
mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
bus, target, pdi->channel, pdi->target);
/* XXX what can we do about this? */
}
btl.mb_flags = MLY_BTL_PHYSICAL;
btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
btl.mb_state = pdi->state;
btl.mb_speed = pdi->speed;
btl.mb_width = pdi->width;
if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
sc->mly_btl[bus][target].mb_flags |= MLY_BTL_PROTECTED;
debug(1, "BTL rescan for %d:%d returns %s", bus, target,
mly_describe_code(mly_table_device_state, pdi->state));
} else {
mly_printf(sc, "BTL rescan result invalid\n");
}
}
free(mc->mc_data, M_DEVBUF);
mly_release_command(mc);
/*
* Decide whether we need to rescan the device.
*/
rescan = 0;
/* device type changes (usually between 'nothing' and 'something') */
btlp = &sc->mly_btl[bus][target];
if (btl.mb_flags != btlp->mb_flags) {
debug(1, "flags changed, rescanning");
rescan = 1;
}
/* XXX other reasons? */
/*
* Update BTL information.
*/
*btlp = btl;
/*
* Perform CAM rescan if required.
*/
if (rescan)
mly_cam_rescan_btl(sc, bus, target);
}
/********************************************************************************
* Get the current health status and set the 'next event' counter to suit.
*/
static int
mly_get_eventstatus(struct mly_softc *sc)
{
struct mly_command_ioctl mci;
struct mly_health_status *mh;
u_int8_t status;
int error;
/* build the gethealthstatus ioctl and send it */
bzero(&mci, sizeof(mci));
mh = NULL;
mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
if ((error = mly_ioctl(sc, &mci, (void **)&mh, sizeof(*mh), &status, NULL, NULL)))
return(error);
if (status != 0)
return(EIO);
/* get the event counter */
sc->mly_event_change = mh->change_counter;
sc->mly_event_waiting = mh->next_event;
sc->mly_event_counter = mh->next_event;
/* save the health status into the memory mailbox */
bcopy(mh, &sc->mly_mmbox->mmm_health.status, sizeof(*mh));
debug(1, "initial change counter %d, event counter %d", mh->change_counter, mh->next_event);
free(mh, M_DEVBUF);
return(0);
}
/********************************************************************************
* Enable the memory mailbox mode.
*/
static int
mly_enable_mmbox(struct mly_softc *sc)
{
struct mly_command_ioctl mci;
u_int8_t *sp, status;
int error;
debug_called(1);
/* build the ioctl and send it */
bzero(&mci, sizeof(mci));
mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
/* set buffer addresses */
mci.param.setmemorymailbox.command_mailbox_physaddr =
sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
mci.param.setmemorymailbox.status_mailbox_physaddr =
sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
mci.param.setmemorymailbox.health_buffer_physaddr =
sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
/* set buffer sizes - abuse of data_size field is revolting */
sp = (u_int8_t *)&mci.data_size;
sp[0] = ((sizeof(union mly_command_packet) * MLY_MMBOX_COMMANDS) / 1024);
sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) / 1024;
mci.param.setmemorymailbox.health_buffer_size = sizeof(union mly_health_region) / 1024;
debug(1, "memory mailbox at %p (0x%llx/%d 0x%llx/%d 0x%llx/%d", sc->mly_mmbox,
mci.param.setmemorymailbox.command_mailbox_physaddr, sp[0],
mci.param.setmemorymailbox.status_mailbox_physaddr, sp[1],
mci.param.setmemorymailbox.health_buffer_physaddr,
mci.param.setmemorymailbox.health_buffer_size);
if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
return(error);
if (status != 0)
return(EIO);
sc->mly_state |= MLY_STATE_MMBOX_ACTIVE;
debug(1, "memory mailbox active");
return(0);
}
/********************************************************************************
* Flush all pending I/O from the controller.
*/
static int
mly_flush(struct mly_softc *sc)
{
struct mly_command_ioctl mci;
u_int8_t status;
int error;
debug_called(1);
/* build the ioctl */
bzero(&mci, sizeof(mci));
mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
mci.param.deviceoperation.operation_device = MLY_OPDEVICE_PHYSICAL_CONTROLLER;
/* pass it off to the controller */
if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
return(error);
return((status == 0) ? 0 : EIO);
}
/********************************************************************************
* Perform an ioctl command.
*
* If (data) is not NULL, the command requires data transfer. If (*data) is NULL
* the command requires data transfer from the controller, and we will allocate
* a buffer for it. If (*data) is not NULL, the command requires data transfer
* to the controller.
*
* XXX passing in the whole ioctl structure is ugly. Better ideas?
*
* XXX we don't even try to handle the case where datasize > 4k. We should.
*/
static int
mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data, size_t datasize,
u_int8_t *status, void *sense_buffer, size_t *sense_length)
{
struct mly_command *mc;
struct mly_command_ioctl *mci;
int error;
debug_called(1);
MLY_ASSERT_LOCKED(sc);
mc = NULL;
if (mly_alloc_command(sc, &mc)) {
error = ENOMEM;
goto out;
}
/* copy the ioctl structure, but save some important fields and then fixup */
mci = &mc->mc_packet->ioctl;
ioctl->sense_buffer_address = mci->sense_buffer_address;
ioctl->maximum_sense_size = mci->maximum_sense_size;
*mci = *ioctl;
mci->opcode = MDACMD_IOCTL;
mci->timeout.value = 30;
mci->timeout.scale = MLY_TIMEOUT_SECONDS;
/* handle the data buffer */
if (data != NULL) {
if (*data == NULL) {
/* allocate data buffer */
if ((mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT)) == NULL) {
error = ENOMEM;
goto out;
}
mc->mc_flags |= MLY_CMD_DATAIN;
} else {
mc->mc_data = *data;
mc->mc_flags |= MLY_CMD_DATAOUT;
}
mc->mc_length = datasize;
mc->mc_packet->generic.data_size = datasize;
}
/* run the command */
if ((error = mly_immediate_command(mc)))
goto out;
/* clean up and return any data */
*status = mc->mc_status;
if ((mc->mc_sense > 0) && (sense_buffer != NULL)) {
bcopy(mc->mc_packet, sense_buffer, mc->mc_sense);
*sense_length = mc->mc_sense;
goto out;
}
/* should we return a data pointer? */
if ((data != NULL) && (*data == NULL))
*data = mc->mc_data;
/* command completed OK */
error = 0;
out:
if (mc != NULL) {
/* do we need to free a data buffer we allocated? */
if (error && (mc->mc_data != NULL) && (*data == NULL))
free(mc->mc_data, M_DEVBUF);
mly_release_command(mc);
}
return(error);
}
/********************************************************************************
* Check for event(s) outstanding in the controller.
*/
static void
mly_check_event(struct mly_softc *sc)
{
/*
* The controller may have updated the health status information,
* so check for it here. Note that the counters are all in host memory,
* so this check is very cheap. Also note that we depend on checking on
* completion
*/
if (sc->mly_mmbox->mmm_health.status.change_counter != sc->mly_event_change) {
sc->mly_event_change = sc->mly_mmbox->mmm_health.status.change_counter;
debug(1, "event change %d, event status update, %d -> %d", sc->mly_event_change,
sc->mly_event_waiting, sc->mly_mmbox->mmm_health.status.next_event);
sc->mly_event_waiting = sc->mly_mmbox->mmm_health.status.next_event;
/* wake up anyone that might be interested in this */
wakeup(&sc->mly_event_change);
}
if (sc->mly_event_counter != sc->mly_event_waiting)
mly_fetch_event(sc);
}
/********************************************************************************
* Fetch one event from the controller.
*
* If we fail due to resource starvation, we'll be retried the next time a
* command completes.
*/
static void
mly_fetch_event(struct mly_softc *sc)
{
struct mly_command *mc;
struct mly_command_ioctl *mci;
int s;
u_int32_t event;
debug_called(1);
/* get a command */
if (mly_alloc_command(sc, &mc))
return;
/* set up the data buffer */
if ((mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) {
mly_release_command(mc);
return;
}
mc->mc_length = sizeof(struct mly_event);
mc->mc_flags |= MLY_CMD_DATAIN;
mc->mc_complete = mly_complete_event;
/*
* Get an event number to fetch. It's possible that we've raced with another
* context for the last event, in which case there will be no more events.
*/
s = splcam();
if (sc->mly_event_counter == sc->mly_event_waiting) {
mly_release_command(mc);
splx(s);
return;
}
event = sc->mly_event_counter++;
splx(s);
/*
* Build the ioctl.
*
* At this point we are committed to sending this request, as it
* will be the only one constructed for this particular event number.
*/
mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
mci->opcode = MDACMD_IOCTL;
mci->data_size = sizeof(struct mly_event);
mci->addr.phys.lun = (event >> 16) & 0xff;
mci->addr.phys.target = (event >> 24) & 0xff;
mci->addr.phys.channel = 0;
mci->addr.phys.controller = 0;
mci->timeout.value = 30;
mci->timeout.scale = MLY_TIMEOUT_SECONDS;
mci->sub_ioctl = MDACIOCTL_GETEVENT;
mci->param.getevent.sequence_number_low = event & 0xffff;
debug(1, "fetch event %u", event);
/*
* Submit the command.
*
* Note that failure of mly_start() will result in this event never being
* fetched.
*/
if (mly_start(mc) != 0) {
mly_printf(sc, "couldn't fetch event %u\n", event);
mly_release_command(mc);
}
}
/********************************************************************************
* Handle the completion of an event poll.
*/
static void
mly_complete_event(struct mly_command *mc)
{
struct mly_softc *sc = mc->mc_sc;
struct mly_event *me = (struct mly_event *)mc->mc_data;
debug_called(1);
/*
* If the event was successfully fetched, process it.
*/
if (mc->mc_status == SCSI_STATUS_OK) {
mly_process_event(sc, me);
free(me, M_DEVBUF);
}
mly_release_command(mc);
/*
* Check for another event.
*/
mly_check_event(sc);
}
/********************************************************************************
* Process a controller event.
*/
static void
mly_process_event(struct mly_softc *sc, struct mly_event *me)
{
struct scsi_sense_data_fixed *ssd;
char *fp, *tp;
int bus, target, event, class, action;
ssd = (struct scsi_sense_data_fixed *)&me->sense[0];
/*
* Errors can be reported using vendor-unique sense data. In this case, the
* event code will be 0x1c (Request sense data present), the sense key will
* be 0x09 (vendor specific), the MSB of the ASC will be set, and the
* actual event code will be a 16-bit value comprised of the ASCQ (low byte)
* and low seven bits of the ASC (low seven bits of the high byte).
*/
if ((me->code == 0x1c) &&
((ssd->flags & SSD_KEY) == SSD_KEY_Vendor_Specific) &&
(ssd->add_sense_code & 0x80)) {
event = ((int)(ssd->add_sense_code & ~0x80) << 8) + ssd->add_sense_code_qual;
} else {
event = me->code;
}
/* look up event, get codes */
fp = mly_describe_code(mly_table_event, event);
debug(1, "Event %d code 0x%x", me->sequence_number, me->code);
/* quiet event? */
class = fp[0];
if (isupper(class) && bootverbose)
class = tolower(class);
/* get action code, text string */
action = fp[1];
tp = &fp[2];
/*
* Print some information about the event.
*
* This code uses a table derived from the corresponding portion of the Linux
* driver, and thus the parser is very similar.
*/
switch(class) {
case 'p': /* error on physical device */
mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
if (action == 'r')
sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
break;
case 'l': /* error on logical unit */
case 'm': /* message about logical unit */
bus = MLY_LOGDEV_BUS(sc, me->lun);
target = MLY_LOGDEV_TARGET(sc, me->lun);
mly_name_device(sc, bus, target);
mly_printf(sc, "logical device %d (%s) %s\n", me->lun, sc->mly_btl[bus][target].mb_name, tp);
if (action == 'r')
sc->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
break;
case 's': /* report of sense data */
if (((ssd->flags & SSD_KEY) == SSD_KEY_NO_SENSE) ||
(((ssd->flags & SSD_KEY) == SSD_KEY_NOT_READY) &&
(ssd->add_sense_code == 0x04) &&
((ssd->add_sense_code_qual == 0x01) || (ssd->add_sense_code_qual == 0x02))))
break; /* ignore NO_SENSE or NOT_READY in one case */
mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
mly_printf(sc, " sense key %d asc %02x ascq %02x\n",
ssd->flags & SSD_KEY, ssd->add_sense_code, ssd->add_sense_code_qual);
mly_printf(sc, " info %4D csi %4D\n", ssd->info, "", ssd->cmd_spec_info, "");
if (action == 'r')
sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
break;
case 'e':
mly_printf(sc, tp, me->target, me->lun);
printf("\n");
break;
case 'c':
mly_printf(sc, "controller %s\n", tp);
break;
case '?':
mly_printf(sc, "%s - %d\n", tp, me->code);
break;
default: /* probably a 'noisy' event being ignored */
break;
}
}
/********************************************************************************
* Perform periodic activities.
*/
static void
mly_periodic(void *data)
{
struct mly_softc *sc = (struct mly_softc *)data;
int bus, target;
debug_called(2);
MLY_ASSERT_LOCKED(sc);
/*
* Scan devices.
*/
for (bus = 0; bus < sc->mly_cam_channels; bus++) {
if (MLY_BUS_IS_VALID(sc, bus)) {
for (target = 0; target < MLY_MAX_TARGETS; target++) {
/* ignore the controller in this scan */
if (target == sc->mly_controllerparam->initiator_id)
continue;
/* perform device rescan? */
if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_RESCAN)
mly_rescan_btl(sc, bus, target);
}
}
}
/* check for controller events */
mly_check_event(sc);
/* reschedule ourselves */
callout_schedule(&sc->mly_periodic, MLY_PERIODIC_INTERVAL * hz);
}
/********************************************************************************
********************************************************************************
Command Processing
********************************************************************************
********************************************************************************/
/********************************************************************************
* Run a command and wait for it to complete.
*
*/
static int
mly_immediate_command(struct mly_command *mc)
{
struct mly_softc *sc = mc->mc_sc;
int error;
debug_called(1);
MLY_ASSERT_LOCKED(sc);
if ((error = mly_start(mc))) {
return(error);
}
if (sc->mly_state & MLY_STATE_INTERRUPTS_ON) {
/* sleep on the command */
while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
mtx_sleep(mc, &sc->mly_lock, PRIBIO, "mlywait", 0);
}
} else {
/* spin and collect status while we do */
while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
mly_done(mc->mc_sc);
}
}
return(0);
}
/********************************************************************************
* Deliver a command to the controller.
*
* XXX it would be good to just queue commands that we can't submit immediately
* and send them later, but we probably want a wrapper for that so that
* we don't hang on a failed submission for an immediate command.
*/
static int
mly_start(struct mly_command *mc)
{
struct mly_softc *sc = mc->mc_sc;
union mly_command_packet *pkt;
debug_called(2);
MLY_ASSERT_LOCKED(sc);
/*
* Set the command up for delivery to the controller.
*/
mly_map_command(mc);
mc->mc_packet->generic.command_id = mc->mc_slot;
#ifdef MLY_DEBUG
mc->mc_timestamp = time_second;
#endif
/*
* Do we have to use the hardware mailbox?
*/
if (!(sc->mly_state & MLY_STATE_MMBOX_ACTIVE)) {
/*
* Check to see if the controller is ready for us.
*/
if (MLY_IDBR_TRUE(sc, MLY_HM_CMDSENT)) {
return(EBUSY);
}
mc->mc_flags |= MLY_CMD_BUSY;
/*
* It's ready, send the command.
*/
MLY_SET_MBOX(sc, sc->mly_command_mailbox, &mc->mc_packetphys);
MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_CMDSENT);
} else { /* use memory-mailbox mode */
pkt = &sc->mly_mmbox->mmm_command[sc->mly_mmbox_command_index];
/* check to see if the next index is free yet */
if (pkt->mmbox.flag != 0) {
return(EBUSY);
}
mc->mc_flags |= MLY_CMD_BUSY;
/* copy in new command */
bcopy(mc->mc_packet->mmbox.data, pkt->mmbox.data, sizeof(pkt->mmbox.data));
/* barrier to ensure completion of previous write before we write the flag */
bus_barrier(sc->mly_regs_resource, 0, 0, BUS_SPACE_BARRIER_WRITE);
/* copy flag last */
pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
/* barrier to ensure completion of previous write before we notify the controller */
bus_barrier(sc->mly_regs_resource, 0, 0, BUS_SPACE_BARRIER_WRITE);
/* signal controller, update index */
MLY_SET_REG(sc, sc->mly_idbr, MLY_AM_CMDSENT);
sc->mly_mmbox_command_index = (sc->mly_mmbox_command_index + 1) % MLY_MMBOX_COMMANDS;
}
mly_enqueue_busy(mc);
return(0);
}
/********************************************************************************
* Pick up command status from the controller, schedule a completion event
*/
static void
mly_done(struct mly_softc *sc)
{
struct mly_command *mc;
union mly_status_packet *sp;
u_int16_t slot;
int worked;
MLY_ASSERT_LOCKED(sc);
worked = 0;
/* pick up hardware-mailbox commands */
if (MLY_ODBR_TRUE(sc, MLY_HM_STSREADY)) {
slot = MLY_GET_REG2(sc, sc->mly_status_mailbox);
if (slot < MLY_SLOT_MAX) {
mc = &sc->mly_command[slot - MLY_SLOT_START];
mc->mc_status = MLY_GET_REG(sc, sc->mly_status_mailbox + 2);
mc->mc_sense = MLY_GET_REG(sc, sc->mly_status_mailbox + 3);
mc->mc_resid = MLY_GET_REG4(sc, sc->mly_status_mailbox + 4);
mly_remove_busy(mc);
mc->mc_flags &= ~MLY_CMD_BUSY;
mly_enqueue_complete(mc);
worked = 1;
} else {
/* slot 0xffff may mean "extremely bogus command" */
mly_printf(sc, "got HM completion for illegal slot %u\n", slot);
}
/* unconditionally acknowledge status */
MLY_SET_REG(sc, sc->mly_odbr, MLY_HM_STSREADY);
MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
}
/* pick up memory-mailbox commands */
if (MLY_ODBR_TRUE(sc, MLY_AM_STSREADY)) {
for (;;) {
sp = &sc->mly_mmbox->mmm_status[sc->mly_mmbox_status_index];
/* check for more status */
if (sp->mmbox.flag == 0)
break;
/* get slot number */
slot = sp->status.command_id;
if (slot < MLY_SLOT_MAX) {
mc = &sc->mly_command[slot - MLY_SLOT_START];
mc->mc_status = sp->status.status;
mc->mc_sense = sp->status.sense_length;
mc->mc_resid = sp->status.residue;
mly_remove_busy(mc);
mc->mc_flags &= ~MLY_CMD_BUSY;
mly_enqueue_complete(mc);
worked = 1;
} else {
/* slot 0xffff may mean "extremely bogus command" */
mly_printf(sc, "got AM completion for illegal slot %u at %d\n",
slot, sc->mly_mmbox_status_index);
}
/* clear and move to next index */
sp->mmbox.flag = 0;
sc->mly_mmbox_status_index = (sc->mly_mmbox_status_index + 1) % MLY_MMBOX_STATUS;
}
/* acknowledge that we have collected status value(s) */
MLY_SET_REG(sc, sc->mly_odbr, MLY_AM_STSREADY);
}
if (worked) {
if (sc->mly_state & MLY_STATE_INTERRUPTS_ON)
taskqueue_enqueue(taskqueue_thread, &sc->mly_task_complete);
else
mly_complete(sc);
}
}
/********************************************************************************
* Process completed commands
*/
static void
mly_complete_handler(void *context, int pending)
{
struct mly_softc *sc = (struct mly_softc *)context;
MLY_LOCK(sc);
mly_complete(sc);
MLY_UNLOCK(sc);
}
static void
mly_complete(struct mly_softc *sc)
{
struct mly_command *mc;
void (* mc_complete)(struct mly_command *mc);
debug_called(2);
/*
* Spin pulling commands off the completed queue and processing them.
*/
while ((mc = mly_dequeue_complete(sc)) != NULL) {
/*
* Free controller resources, mark command complete.
*
* Note that as soon as we mark the command complete, it may be freed
* out from under us, so we need to save the mc_complete field in
* order to later avoid dereferencing mc. (We would not expect to
* have a polling/sleeping consumer with mc_complete != NULL).
*/
mly_unmap_command(mc);
mc_complete = mc->mc_complete;
mc->mc_flags |= MLY_CMD_COMPLETE;
/*
* Call completion handler or wake up sleeping consumer.
*/
if (mc_complete != NULL) {
mc_complete(mc);
} else {
wakeup(mc);
}
}
/*
* XXX if we are deferring commands due to controller-busy status, we should
* retry submitting them here.
*/
}
/********************************************************************************
********************************************************************************
Command Buffer Management
********************************************************************************
********************************************************************************/
/********************************************************************************
* Allocate a command.
*/
static int
mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp)
{
struct mly_command *mc;
debug_called(3);
if ((mc = mly_dequeue_free(sc)) == NULL)
return(ENOMEM);
*mcp = mc;
return(0);
}
/********************************************************************************
* Release a command back to the freelist.
*/
static void
mly_release_command(struct mly_command *mc)
{
debug_called(3);
/*
* Fill in parts of the command that may cause confusion if
* a consumer doesn't when we are later allocated.
*/
mc->mc_data = NULL;
mc->mc_flags = 0;
mc->mc_complete = NULL;
mc->mc_private = NULL;
/*
* By default, we set up to overwrite the command packet with
* sense information.
*/
mc->mc_packet->generic.sense_buffer_address = mc->mc_packetphys;
mc->mc_packet->generic.maximum_sense_size = sizeof(union mly_command_packet);
mly_enqueue_free(mc);
}
/********************************************************************************
* Map helper for command allocation.
*/
static void
mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct mly_softc *sc = (struct mly_softc *)arg;
debug_called(1);
sc->mly_packetphys = segs[0].ds_addr;
}
/********************************************************************************
* Allocate and initialise command and packet structures.
*
* If the controller supports fewer than MLY_MAX_COMMANDS commands, limit our
* allocation to that number. If we don't yet know how many commands the
* controller supports, allocate a very small set (suitable for initialisation
* purposes only).
*/
static int
mly_alloc_commands(struct mly_softc *sc)
{
struct mly_command *mc;
int i, ncmd;
if (sc->mly_controllerinfo == NULL) {
ncmd = 4;
} else {
ncmd = min(MLY_MAX_COMMANDS, sc->mly_controllerinfo->maximum_parallel_commands);
}
/*
* Allocate enough space for all the command packets in one chunk and
* map them permanently into controller-visible space.
*/
if (bus_dmamem_alloc(sc->mly_packet_dmat, (void **)&sc->mly_packet,
BUS_DMA_NOWAIT, &sc->mly_packetmap)) {
return(ENOMEM);
}
if (bus_dmamap_load(sc->mly_packet_dmat, sc->mly_packetmap, sc->mly_packet,
ncmd * sizeof(union mly_command_packet),
mly_alloc_commands_map, sc, BUS_DMA_NOWAIT) != 0)
return (ENOMEM);
for (i = 0; i < ncmd; i++) {
mc = &sc->mly_command[i];
bzero(mc, sizeof(*mc));
mc->mc_sc = sc;
mc->mc_slot = MLY_SLOT_START + i;
mc->mc_packet = sc->mly_packet + i;
mc->mc_packetphys = sc->mly_packetphys + (i * sizeof(union mly_command_packet));
if (!bus_dmamap_create(sc->mly_buffer_dmat, 0, &mc->mc_datamap))
mly_release_command(mc);
}
return(0);
}
/********************************************************************************
* Free all the storage held by commands.
*
* Must be called with all commands on the free list.
*/
static void
mly_release_commands(struct mly_softc *sc)
{
struct mly_command *mc;
/* throw away command buffer DMA maps */
while (mly_alloc_command(sc, &mc) == 0)
bus_dmamap_destroy(sc->mly_buffer_dmat, mc->mc_datamap);
/* release the packet storage */
if (sc->mly_packet != NULL) {
bus_dmamap_unload(sc->mly_packet_dmat, sc->mly_packetmap);
bus_dmamem_free(sc->mly_packet_dmat, sc->mly_packet, sc->mly_packetmap);
sc->mly_packet = NULL;
}
}
/********************************************************************************
* Command-mapping helper function - populate this command's s/g table
* with the s/g entries for its data.
*/
static void
mly_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct mly_command *mc = (struct mly_command *)arg;
struct mly_softc *sc = mc->mc_sc;
struct mly_command_generic *gen = &(mc->mc_packet->generic);
struct mly_sg_entry *sg;
int i, tabofs;
debug_called(2);
/* can we use the transfer structure directly? */
if (nseg <= 2) {
sg = &gen->transfer.direct.sg[0];
gen->command_control.extended_sg_table = 0;
} else {
tabofs = ((mc->mc_slot - MLY_SLOT_START) * MLY_MAX_SGENTRIES);
sg = sc->mly_sg_table + tabofs;
gen->transfer.indirect.entries[0] = nseg;
gen->transfer.indirect.table_physaddr[0] = sc->mly_sg_busaddr + (tabofs * sizeof(struct mly_sg_entry));
gen->command_control.extended_sg_table = 1;
}
/* copy the s/g table */
for (i = 0; i < nseg; i++) {
sg[i].physaddr = segs[i].ds_addr;
sg[i].length = segs[i].ds_len;
}
}
#if 0
/********************************************************************************
* Command-mapping helper function - save the cdb's physical address.
*
* We don't support 'large' SCSI commands at this time, so this is unused.
*/
static void
mly_map_command_cdb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct mly_command *mc = (struct mly_command *)arg;
debug_called(2);
/* XXX can we safely assume that a CDB will never cross a page boundary? */
if ((segs[0].ds_addr % PAGE_SIZE) >
((segs[0].ds_addr + mc->mc_packet->scsi_large.cdb_length) % PAGE_SIZE))
panic("cdb crosses page boundary");
/* fix up fields in the command packet */
mc->mc_packet->scsi_large.cdb_physaddr = segs[0].ds_addr;
}
#endif
/********************************************************************************
* Map a command into controller-visible space
*/
static void
mly_map_command(struct mly_command *mc)
{
struct mly_softc *sc = mc->mc_sc;
debug_called(2);
/* don't map more than once */
if (mc->mc_flags & MLY_CMD_MAPPED)
return;
/* does the command have a data buffer? */
if (mc->mc_data != NULL) {
if (mc->mc_flags & MLY_CMD_CCB)
bus_dmamap_load_ccb(sc->mly_buffer_dmat, mc->mc_datamap,
mc->mc_data, mly_map_command_sg, mc, 0);
else
bus_dmamap_load(sc->mly_buffer_dmat, mc->mc_datamap,
mc->mc_data, mc->mc_length,
mly_map_command_sg, mc, 0);
if (mc->mc_flags & MLY_CMD_DATAIN)
bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREREAD);
if (mc->mc_flags & MLY_CMD_DATAOUT)
bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREWRITE);
}
mc->mc_flags |= MLY_CMD_MAPPED;
}
/********************************************************************************
* Unmap a command from controller-visible space
*/
static void
mly_unmap_command(struct mly_command *mc)
{
struct mly_softc *sc = mc->mc_sc;
debug_called(2);
if (!(mc->mc_flags & MLY_CMD_MAPPED))
return;
/* does the command have a data buffer? */
if (mc->mc_data != NULL) {
if (mc->mc_flags & MLY_CMD_DATAIN)
bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTREAD);
if (mc->mc_flags & MLY_CMD_DATAOUT)
bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->mly_buffer_dmat, mc->mc_datamap);
}
mc->mc_flags &= ~MLY_CMD_MAPPED;
}
/********************************************************************************
********************************************************************************
CAM interface
********************************************************************************
********************************************************************************/
/********************************************************************************
* Attach the physical and virtual SCSI busses to CAM.
*
* Physical bus numbering starts from 0, virtual bus numbering from one greater
* than the highest physical bus. Physical busses are only registered if
* the kernel environment variable "hw.mly.register_physical_channels" is set.
*
* When we refer to a "bus", we are referring to the bus number registered with
* the SIM, wheras a "channel" is a channel number given to the adapter. In order
* to keep things simple, we map these 1:1, so "bus" and "channel" may be used
* interchangeably.
*/
static int
mly_cam_attach(struct mly_softc *sc)
{
struct cam_devq *devq;
int chn, i;
debug_called(1);
/*
* Allocate a devq for all our channels combined.
*/
if ((devq = cam_simq_alloc(sc->mly_controllerinfo->maximum_parallel_commands)) == NULL) {
mly_printf(sc, "can't allocate CAM SIM queue\n");
return(ENOMEM);
}
/*
* If physical channel registration has been requested, register these first.
* Note that we enable tagged command queueing for physical channels.
*/
if (testenv("hw.mly.register_physical_channels")) {
chn = 0;
for (i = 0; i < sc->mly_controllerinfo->physical_channels_present; i++, chn++) {
if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
device_get_unit(sc->mly_dev),
&sc->mly_lock,
sc->mly_controllerinfo->maximum_parallel_commands,
1, devq)) == NULL) {
return(ENOMEM);
}
MLY_LOCK(sc);
if (xpt_bus_register(sc->mly_cam_sim[chn], sc->mly_dev, chn)) {
MLY_UNLOCK(sc);
mly_printf(sc, "CAM XPT phsyical channel registration failed\n");
return(ENXIO);
}
MLY_UNLOCK(sc);
debug(1, "registered physical channel %d", chn);
}
}
/*
* Register our virtual channels, with bus numbers matching channel numbers.
*/
chn = sc->mly_controllerinfo->physical_channels_present;
for (i = 0; i < sc->mly_controllerinfo->virtual_channels_present; i++, chn++) {
if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
device_get_unit(sc->mly_dev),
&sc->mly_lock,
sc->mly_controllerinfo->maximum_parallel_commands,
0, devq)) == NULL) {
return(ENOMEM);
}
MLY_LOCK(sc);
if (xpt_bus_register(sc->mly_cam_sim[chn], sc->mly_dev, chn)) {
MLY_UNLOCK(sc);
mly_printf(sc, "CAM XPT virtual channel registration failed\n");
return(ENXIO);
}
MLY_UNLOCK(sc);
debug(1, "registered virtual channel %d", chn);
}
/*
* This is the total number of channels that (might have been) registered with
* CAM. Some may not have been; check the mly_cam_sim array to be certain.
*/
sc->mly_cam_channels = sc->mly_controllerinfo->physical_channels_present +
sc->mly_controllerinfo->virtual_channels_present;
return(0);
}
/********************************************************************************
* Detach from CAM
*/
static void
mly_cam_detach(struct mly_softc *sc)
{
int i;
debug_called(1);
MLY_LOCK(sc);
for (i = 0; i < sc->mly_cam_channels; i++) {
if (sc->mly_cam_sim[i] != NULL) {
xpt_bus_deregister(cam_sim_path(sc->mly_cam_sim[i]));
cam_sim_free(sc->mly_cam_sim[i], 0);
}
}
MLY_UNLOCK(sc);
if (sc->mly_cam_devq != NULL)
cam_simq_free(sc->mly_cam_devq);
}
/************************************************************************
* Rescan a device.
*/
static void
mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target)
{
union ccb *ccb;
debug_called(1);
if ((ccb = xpt_alloc_ccb()) == NULL) {
mly_printf(sc, "rescan failed (can't allocate CCB)\n");
return;
}
if (xpt_create_path(&ccb->ccb_h.path, NULL,
cam_sim_path(sc->mly_cam_sim[bus]), target, 0) != CAM_REQ_CMP) {
mly_printf(sc, "rescan failed (can't create path)\n");
xpt_free_ccb(ccb);
return;
}
debug(1, "rescan target %d:%d", bus, target);
xpt_rescan(ccb);
}
/********************************************************************************
* Handle an action requested by CAM
*/
static void
mly_cam_action(struct cam_sim *sim, union ccb *ccb)
{
struct mly_softc *sc = cam_sim_softc(sim);
debug_called(2);
MLY_ASSERT_LOCKED(sc);
switch (ccb->ccb_h.func_code) {
/* perform SCSI I/O */
case XPT_SCSI_IO:
if (!mly_cam_action_io(sim, (struct ccb_scsiio *)&ccb->csio))
return;
break;
/* perform geometry calculations */
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg = &ccb->ccg;
u_int32_t secs_per_cylinder;
debug(2, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
if (sc->mly_controllerparam->bios_geometry == MLY_BIOSGEOM_8G) {
ccg->heads = 255;
ccg->secs_per_track = 63;
} else { /* MLY_BIOSGEOM_2G */
ccg->heads = 128;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
/* handle path attribute inquiry */
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi = &ccb->cpi;
debug(2, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
cpi->version_num = 1;
cpi->hba_inquiry = PI_TAG_ABLE; /* XXX extra flags for physical channels? */
cpi->target_sprt = 0;
cpi->hba_misc = 0;
cpi->max_target = MLY_MAX_TARGETS - 1;
cpi->max_lun = MLY_MAX_LUNS - 1;
cpi->initiator_id = sc->mly_controllerparam->initiator_id;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "FreeBSD", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 132 * 1024; /* XXX what to set this to? */
cpi->transport = XPORT_SPI;
cpi->transport_version = 2;
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_2;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts = &ccb->cts;
int bus, target;
struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
cts->protocol = PROTO_SCSI;
cts->protocol_version = SCSI_REV_2;
cts->transport = XPORT_SPI;
cts->transport_version = 2;
scsi->flags = 0;
scsi->valid = 0;
spi->flags = 0;
spi->valid = 0;
bus = cam_sim_bus(sim);
target = cts->ccb_h.target_id;
debug(2, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target);
/* logical device? */
if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
/* nothing special for these */
/* physical device? */
} else if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PHYSICAL) {
/* allow CAM to try tagged transactions */
scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
scsi->valid |= CTS_SCSI_VALID_TQ;
/* convert speed (MHz) to usec */
if (sc->mly_btl[bus][target].mb_speed == 0) {
spi->sync_period = 1000000 / 5;
} else {
spi->sync_period = 1000000 / sc->mly_btl[bus][target].mb_speed;
}
/* convert bus width to CAM internal encoding */
switch (sc->mly_btl[bus][target].mb_width) {
case 32:
spi->bus_width = MSG_EXT_WDTR_BUS_32_BIT;
break;
case 16:
spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
break;
case 8:
default:
spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
break;
}
spi->valid |= CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_BUS_WIDTH;
/* not a device, bail out */
} else {
cts->ccb_h.status = CAM_REQ_CMP_ERR;
break;
}
/* disconnect always OK */
spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
spi->valid |= CTS_SPI_VALID_DISC;
cts->ccb_h.status = CAM_REQ_CMP;
break;
}
default: /* we can't do this */
debug(2, "unspported func_code = 0x%x", ccb->ccb_h.func_code);
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
}
/********************************************************************************
* Handle an I/O operation requested by CAM
*/
static int
mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio)
{
struct mly_softc *sc = cam_sim_softc(sim);
struct mly_command *mc;
struct mly_command_scsi_small *ss;
int bus, target;
int error;
bus = cam_sim_bus(sim);
target = csio->ccb_h.target_id;
debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun);
/* validate bus number */
if (!MLY_BUS_IS_VALID(sc, bus)) {
debug(0, " invalid bus %d", bus);
csio->ccb_h.status = CAM_REQ_CMP_ERR;
}
/* check for I/O attempt to a protected device */
if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PROTECTED) {
debug(2, " device protected");
csio->ccb_h.status = CAM_REQ_CMP_ERR;
}
/* check for I/O attempt to nonexistent device */
if (!(sc->mly_btl[bus][target].mb_flags & (MLY_BTL_LOGICAL | MLY_BTL_PHYSICAL))) {
debug(2, " device %d:%d does not exist", bus, target);
csio->ccb_h.status = CAM_REQ_CMP_ERR;
}
/* XXX increase if/when we support large SCSI commands */
if (csio->cdb_len > MLY_CMD_SCSI_SMALL_CDB) {
debug(0, " command too large (%d > %d)", csio->cdb_len, MLY_CMD_SCSI_SMALL_CDB);
csio->ccb_h.status = CAM_REQ_CMP_ERR;
}
/* check that the CDB pointer is not to a physical address */
if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
debug(0, " CDB pointer is to physical address");
csio->ccb_h.status = CAM_REQ_CMP_ERR;
}
/* abandon aborted ccbs or those that have failed validation */
if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
debug(2, "abandoning CCB due to abort/validation failure");
return(EINVAL);
}
/*
* Get a command, or push the ccb back to CAM and freeze the queue.
*/
if ((error = mly_alloc_command(sc, &mc))) {
xpt_freeze_simq(sim, 1);
csio->ccb_h.status |= CAM_REQUEUE_REQ;
sc->mly_qfrzn_cnt++;
return(error);
}
/* build the command */
mc->mc_data = csio;
mc->mc_length = csio->dxfer_len;
mc->mc_complete = mly_cam_complete;
mc->mc_private = csio;
mc->mc_flags |= MLY_CMD_CCB;
/* XXX This code doesn't set the data direction in mc_flags. */
/* save the bus number in the ccb for later recovery XXX should be a better way */
csio->ccb_h.sim_priv.entries[0].field = bus;
/* build the packet for the controller */
ss = &mc->mc_packet->scsi_small;
ss->opcode = MDACMD_SCSI;
if (csio->ccb_h.flags & CAM_DIS_DISCONNECT)
ss->command_control.disable_disconnect = 1;
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
ss->command_control.data_direction = MLY_CCB_WRITE;
ss->data_size = csio->dxfer_len;
ss->addr.phys.lun = csio->ccb_h.target_lun;
ss->addr.phys.target = csio->ccb_h.target_id;
ss->addr.phys.channel = bus;
if (csio->ccb_h.timeout < (60 * 1000)) {
ss->timeout.value = csio->ccb_h.timeout / 1000;
ss->timeout.scale = MLY_TIMEOUT_SECONDS;
} else if (csio->ccb_h.timeout < (60 * 60 * 1000)) {
ss->timeout.value = csio->ccb_h.timeout / (60 * 1000);
ss->timeout.scale = MLY_TIMEOUT_MINUTES;
} else {
ss->timeout.value = csio->ccb_h.timeout / (60 * 60 * 1000); /* overflow? */
ss->timeout.scale = MLY_TIMEOUT_HOURS;
}
ss->maximum_sense_size = csio->sense_len;
ss->cdb_length = csio->cdb_len;
if (csio->ccb_h.flags & CAM_CDB_POINTER) {
bcopy(csio->cdb_io.cdb_ptr, ss->cdb, csio->cdb_len);
} else {
bcopy(csio->cdb_io.cdb_bytes, ss->cdb, csio->cdb_len);
}
/* give the command to the controller */
if ((error = mly_start(mc))) {
xpt_freeze_simq(sim, 1);
csio->ccb_h.status |= CAM_REQUEUE_REQ;
sc->mly_qfrzn_cnt++;
return(error);
}
return(0);
}
/********************************************************************************
* Check for possibly-completed commands.
*/
static void
mly_cam_poll(struct cam_sim *sim)
{
struct mly_softc *sc = cam_sim_softc(sim);
debug_called(2);
mly_done(sc);
}
/********************************************************************************
* Handle completion of a command - pass results back through the CCB
*/
static void
mly_cam_complete(struct mly_command *mc)
{
struct mly_softc *sc = mc->mc_sc;
struct ccb_scsiio *csio = (struct ccb_scsiio *)mc->mc_private;
struct scsi_inquiry_data *inq = (struct scsi_inquiry_data *)csio->data_ptr;
struct mly_btl *btl;
u_int8_t cmd;
int bus, target;
debug_called(2);
csio->scsi_status = mc->mc_status;
switch(mc->mc_status) {
case SCSI_STATUS_OK:
/*
* In order to report logical device type and status, we overwrite
* the result of the INQUIRY command to logical devices.
*/
bus = csio->ccb_h.sim_priv.entries[0].field;
target = csio->ccb_h.target_id;
/* XXX validate bus/target? */
if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
if (csio->ccb_h.flags & CAM_CDB_POINTER) {
cmd = *csio->cdb_io.cdb_ptr;
} else {
cmd = csio->cdb_io.cdb_bytes[0];
}
if (cmd == INQUIRY) {
btl = &sc->mly_btl[bus][target];
padstr(inq->vendor, mly_describe_code(mly_table_device_type, btl->mb_type), 8);
padstr(inq->product, mly_describe_code(mly_table_device_state, btl->mb_state), 16);
padstr(inq->revision, "", 4);
}
}
debug(2, "SCSI_STATUS_OK");
csio->ccb_h.status = CAM_REQ_CMP;
break;
case SCSI_STATUS_CHECK_COND:
debug(1, "SCSI_STATUS_CHECK_COND sense %d resid %d", mc->mc_sense, mc->mc_resid);
csio->ccb_h.status = CAM_SCSI_STATUS_ERROR;
bzero(&csio->sense_data, SSD_FULL_SIZE);
bcopy(mc->mc_packet, &csio->sense_data, mc->mc_sense);
csio->sense_len = mc->mc_sense;
csio->ccb_h.status |= CAM_AUTOSNS_VALID;
csio->resid = mc->mc_resid; /* XXX this is a signed value... */
break;
case SCSI_STATUS_BUSY:
debug(1, "SCSI_STATUS_BUSY");
csio->ccb_h.status = CAM_SCSI_BUSY;
break;
default:
debug(1, "unknown status 0x%x", csio->scsi_status);
csio->ccb_h.status = CAM_REQ_CMP_ERR;
break;
}
if (sc->mly_qfrzn_cnt) {
csio->ccb_h.status |= CAM_RELEASE_SIMQ;
sc->mly_qfrzn_cnt--;
}
xpt_done((union ccb *)csio);
mly_release_command(mc);
}
/********************************************************************************
* Find a peripheral attahed at (bus),(target)
*/
static struct cam_periph *
mly_find_periph(struct mly_softc *sc, int bus, int target)
{
struct cam_periph *periph;
struct cam_path *path;
int status;
status = xpt_create_path(&path, NULL, cam_sim_path(sc->mly_cam_sim[bus]), target, 0);
if (status == CAM_REQ_CMP) {
periph = cam_periph_find(path, NULL);
xpt_free_path(path);
} else {
periph = NULL;
}
return(periph);
}
/********************************************************************************
* Name the device at (bus)(target)
*/
static int
mly_name_device(struct mly_softc *sc, int bus, int target)
{
struct cam_periph *periph;
if ((periph = mly_find_periph(sc, bus, target)) != NULL) {
sprintf(sc->mly_btl[bus][target].mb_name, "%s%d", periph->periph_name, periph->unit_number);
return(0);
}
sc->mly_btl[bus][target].mb_name[0] = 0;
return(ENOENT);
}
/********************************************************************************
********************************************************************************
Hardware Control
********************************************************************************
********************************************************************************/
/********************************************************************************
* Handshake with the firmware while the card is being initialised.
*/
static int
mly_fwhandshake(struct mly_softc *sc)
{
u_int8_t error, param0, param1;
int spinup = 0;
debug_called(1);
/* set HM_STSACK and let the firmware initialise */
MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
DELAY(1000); /* too short? */
/* if HM_STSACK is still true, the controller is initialising */
if (!MLY_IDBR_TRUE(sc, MLY_HM_STSACK))
return(0);
mly_printf(sc, "controller initialisation started\n");
/* spin waiting for initialisation to finish, or for a message to be delivered */
while (MLY_IDBR_TRUE(sc, MLY_HM_STSACK)) {
/* check for a message */
if (MLY_ERROR_VALID(sc)) {
error = MLY_GET_REG(sc, sc->mly_error_status) & ~MLY_MSG_EMPTY;
param0 = MLY_GET_REG(sc, sc->mly_command_mailbox);
param1 = MLY_GET_REG(sc, sc->mly_command_mailbox + 1);
switch(error) {
case MLY_MSG_SPINUP:
if (!spinup) {
mly_printf(sc, "drive spinup in progress\n");
spinup = 1; /* only print this once (should print drive being spun?) */
}
break;
case MLY_MSG_RACE_RECOVERY_FAIL:
mly_printf(sc, "mirror race recovery failed, one or more drives offline\n");
break;
case MLY_MSG_RACE_IN_PROGRESS:
mly_printf(sc, "mirror race recovery in progress\n");
break;
case MLY_MSG_RACE_ON_CRITICAL:
mly_printf(sc, "mirror race recovery on a critical drive\n");
break;
case MLY_MSG_PARITY_ERROR:
mly_printf(sc, "FATAL MEMORY PARITY ERROR\n");
return(ENXIO);
default:
mly_printf(sc, "unknown initialisation code 0x%x\n", error);
}
}
}
return(0);
}
/********************************************************************************
********************************************************************************
Debugging and Diagnostics
********************************************************************************
********************************************************************************/
/********************************************************************************
* Print some information about the controller.
*/
static void
mly_describe_controller(struct mly_softc *sc)
{
struct mly_ioctl_getcontrollerinfo *mi = sc->mly_controllerinfo;
mly_printf(sc, "%16s, %d channel%s, firmware %d.%02d-%d-%02d (%02d%02d%02d%02d), %dMB RAM\n",
mi->controller_name, mi->physical_channels_present, (mi->physical_channels_present) > 1 ? "s" : "",
mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build, /* XXX turn encoding? */
mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
mi->memory_size);
if (bootverbose) {
mly_printf(sc, "%s %s (%x), %dMHz %d-bit %.16s\n",
mly_describe_code(mly_table_oemname, mi->oem_information),
mly_describe_code(mly_table_controllertype, mi->controller_type), mi->controller_type,
mi->interface_speed, mi->interface_width, mi->interface_name);
mly_printf(sc, "%dMB %dMHz %d-bit %s%s%s, cache %dMB\n",
mi->memory_size, mi->memory_speed, mi->memory_width,
mly_describe_code(mly_table_memorytype, mi->memory_type),
mi->memory_parity ? "+parity": "",mi->memory_ecc ? "+ECC": "",
mi->cache_size);
mly_printf(sc, "CPU: %s @ %dMHz\n",
mly_describe_code(mly_table_cputype, mi->cpu[0].type), mi->cpu[0].speed);
if (mi->l2cache_size != 0)
mly_printf(sc, "%dKB L2 cache\n", mi->l2cache_size);
if (mi->exmemory_size != 0)
mly_printf(sc, "%dMB %dMHz %d-bit private %s%s%s\n",
mi->exmemory_size, mi->exmemory_speed, mi->exmemory_width,
mly_describe_code(mly_table_memorytype, mi->exmemory_type),
mi->exmemory_parity ? "+parity": "",mi->exmemory_ecc ? "+ECC": "");
mly_printf(sc, "battery backup %s\n", mi->bbu_present ? "present" : "not installed");
mly_printf(sc, "maximum data transfer %d blocks, maximum sg entries/command %d\n",
mi->maximum_block_count, mi->maximum_sg_entries);
mly_printf(sc, "logical devices present/critical/offline %d/%d/%d\n",
mi->logical_devices_present, mi->logical_devices_critical, mi->logical_devices_offline);
mly_printf(sc, "physical devices present %d\n",
mi->physical_devices_present);
mly_printf(sc, "physical disks present/offline %d/%d\n",
mi->physical_disks_present, mi->physical_disks_offline);
mly_printf(sc, "%d physical channel%s, %d virtual channel%s of %d possible\n",
mi->physical_channels_present, mi->physical_channels_present == 1 ? "" : "s",
mi->virtual_channels_present, mi->virtual_channels_present == 1 ? "" : "s",
mi->virtual_channels_possible);
mly_printf(sc, "%d parallel commands supported\n", mi->maximum_parallel_commands);
mly_printf(sc, "%dMB flash ROM, %d of %d maximum cycles\n",
mi->flash_size, mi->flash_age, mi->flash_maximum_age);
}
}
#ifdef MLY_DEBUG
/********************************************************************************
* Print some controller state
*/
static void
mly_printstate(struct mly_softc *sc)
{
mly_printf(sc, "IDBR %02x ODBR %02x ERROR %02x (%x %x %x)\n",
MLY_GET_REG(sc, sc->mly_idbr),
MLY_GET_REG(sc, sc->mly_odbr),
MLY_GET_REG(sc, sc->mly_error_status),
sc->mly_idbr,
sc->mly_odbr,
sc->mly_error_status);
mly_printf(sc, "IMASK %02x ISTATUS %02x\n",
MLY_GET_REG(sc, sc->mly_interrupt_mask),
MLY_GET_REG(sc, sc->mly_interrupt_status));
mly_printf(sc, "COMMAND %02x %02x %02x %02x %02x %02x %02x %02x\n",
MLY_GET_REG(sc, sc->mly_command_mailbox),
MLY_GET_REG(sc, sc->mly_command_mailbox + 1),
MLY_GET_REG(sc, sc->mly_command_mailbox + 2),
MLY_GET_REG(sc, sc->mly_command_mailbox + 3),
MLY_GET_REG(sc, sc->mly_command_mailbox + 4),
MLY_GET_REG(sc, sc->mly_command_mailbox + 5),
MLY_GET_REG(sc, sc->mly_command_mailbox + 6),
MLY_GET_REG(sc, sc->mly_command_mailbox + 7));
mly_printf(sc, "STATUS %02x %02x %02x %02x %02x %02x %02x %02x\n",
MLY_GET_REG(sc, sc->mly_status_mailbox),
MLY_GET_REG(sc, sc->mly_status_mailbox + 1),
MLY_GET_REG(sc, sc->mly_status_mailbox + 2),
MLY_GET_REG(sc, sc->mly_status_mailbox + 3),
MLY_GET_REG(sc, sc->mly_status_mailbox + 4),
MLY_GET_REG(sc, sc->mly_status_mailbox + 5),
MLY_GET_REG(sc, sc->mly_status_mailbox + 6),
MLY_GET_REG(sc, sc->mly_status_mailbox + 7));
mly_printf(sc, " %04x %08x\n",
MLY_GET_REG2(sc, sc->mly_status_mailbox),
MLY_GET_REG4(sc, sc->mly_status_mailbox + 4));
}
struct mly_softc *mly_softc0 = NULL;
void
mly_printstate0(void)
{
if (mly_softc0 != NULL)
mly_printstate(mly_softc0);
}
/********************************************************************************
* Print a command
*/
static void
mly_print_command(struct mly_command *mc)
{
struct mly_softc *sc = mc->mc_sc;
mly_printf(sc, "COMMAND @ %p\n", mc);
mly_printf(sc, " slot %d\n", mc->mc_slot);
mly_printf(sc, " status 0x%x\n", mc->mc_status);
mly_printf(sc, " sense len %d\n", mc->mc_sense);
mly_printf(sc, " resid %d\n", mc->mc_resid);
mly_printf(sc, " packet %p/0x%llx\n", mc->mc_packet, mc->mc_packetphys);
if (mc->mc_packet != NULL)
mly_print_packet(mc);
mly_printf(sc, " data %p/%d\n", mc->mc_data, mc->mc_length);
mly_printf(sc, " flags %b\n", mc->mc_flags, "\20\1busy\2complete\3slotted\4mapped\5datain\6dataout\n");
mly_printf(sc, " complete %p\n", mc->mc_complete);
mly_printf(sc, " private %p\n", mc->mc_private);
}
/********************************************************************************
* Print a command packet
*/
static void
mly_print_packet(struct mly_command *mc)
{
struct mly_softc *sc = mc->mc_sc;
struct mly_command_generic *ge = (struct mly_command_generic *)mc->mc_packet;
struct mly_command_scsi_small *ss = (struct mly_command_scsi_small *)mc->mc_packet;
struct mly_command_scsi_large *sl = (struct mly_command_scsi_large *)mc->mc_packet;
struct mly_command_ioctl *io = (struct mly_command_ioctl *)mc->mc_packet;
int transfer;
mly_printf(sc, " command_id %d\n", ge->command_id);
mly_printf(sc, " opcode %d\n", ge->opcode);
mly_printf(sc, " command_control fua %d dpo %d est %d dd %s nas %d ddis %d\n",
ge->command_control.force_unit_access,
ge->command_control.disable_page_out,
ge->command_control.extended_sg_table,
(ge->command_control.data_direction == MLY_CCB_WRITE) ? "WRITE" : "READ",
ge->command_control.no_auto_sense,
ge->command_control.disable_disconnect);
mly_printf(sc, " data_size %d\n", ge->data_size);
mly_printf(sc, " sense_buffer_address 0x%llx\n", ge->sense_buffer_address);
mly_printf(sc, " lun %d\n", ge->addr.phys.lun);
mly_printf(sc, " target %d\n", ge->addr.phys.target);
mly_printf(sc, " channel %d\n", ge->addr.phys.channel);
mly_printf(sc, " logical device %d\n", ge->addr.log.logdev);
mly_printf(sc, " controller %d\n", ge->addr.phys.controller);
mly_printf(sc, " timeout %d %s\n",
ge->timeout.value,
(ge->timeout.scale == MLY_TIMEOUT_SECONDS) ? "seconds" :
((ge->timeout.scale == MLY_TIMEOUT_MINUTES) ? "minutes" : "hours"));
mly_printf(sc, " maximum_sense_size %d\n", ge->maximum_sense_size);
switch(ge->opcode) {
case MDACMD_SCSIPT:
case MDACMD_SCSI:
mly_printf(sc, " cdb length %d\n", ss->cdb_length);
mly_printf(sc, " cdb %*D\n", ss->cdb_length, ss->cdb, " ");
transfer = 1;
break;
case MDACMD_SCSILC:
case MDACMD_SCSILCPT:
mly_printf(sc, " cdb length %d\n", sl->cdb_length);
mly_printf(sc, " cdb 0x%llx\n", sl->cdb_physaddr);
transfer = 1;
break;
case MDACMD_IOCTL:
mly_printf(sc, " sub_ioctl 0x%x\n", io->sub_ioctl);
switch(io->sub_ioctl) {
case MDACIOCTL_SETMEMORYMAILBOX:
mly_printf(sc, " health_buffer_size %d\n",
io->param.setmemorymailbox.health_buffer_size);
mly_printf(sc, " health_buffer_phys 0x%llx\n",
io->param.setmemorymailbox.health_buffer_physaddr);
mly_printf(sc, " command_mailbox 0x%llx\n",
io->param.setmemorymailbox.command_mailbox_physaddr);
mly_printf(sc, " status_mailbox 0x%llx\n",
io->param.setmemorymailbox.status_mailbox_physaddr);
transfer = 0;
break;
case MDACIOCTL_SETREALTIMECLOCK:
case MDACIOCTL_GETHEALTHSTATUS:
case MDACIOCTL_GETCONTROLLERINFO:
case MDACIOCTL_GETLOGDEVINFOVALID:
case MDACIOCTL_GETPHYSDEVINFOVALID:
case MDACIOCTL_GETPHYSDEVSTATISTICS:
case MDACIOCTL_GETLOGDEVSTATISTICS:
case MDACIOCTL_GETCONTROLLERSTATISTICS:
case MDACIOCTL_GETBDT_FOR_SYSDRIVE:
case MDACIOCTL_CREATENEWCONF:
case MDACIOCTL_ADDNEWCONF:
case MDACIOCTL_GETDEVCONFINFO:
case MDACIOCTL_GETFREESPACELIST:
case MDACIOCTL_MORE:
case MDACIOCTL_SETPHYSDEVPARAMETER:
case MDACIOCTL_GETPHYSDEVPARAMETER:
case MDACIOCTL_GETLOGDEVPARAMETER:
case MDACIOCTL_SETLOGDEVPARAMETER:
mly_printf(sc, " param %10D\n", io->param.data.param, " ");
transfer = 1;
break;
case MDACIOCTL_GETEVENT:
mly_printf(sc, " event %d\n",
io->param.getevent.sequence_number_low + ((u_int32_t)io->addr.log.logdev << 16));
transfer = 1;
break;
case MDACIOCTL_SETRAIDDEVSTATE:
mly_printf(sc, " state %d\n", io->param.setraiddevstate.state);
transfer = 0;
break;
case MDACIOCTL_XLATEPHYSDEVTORAIDDEV:
mly_printf(sc, " raid_device %d\n", io->param.xlatephysdevtoraiddev.raid_device);
mly_printf(sc, " controller %d\n", io->param.xlatephysdevtoraiddev.controller);
mly_printf(sc, " channel %d\n", io->param.xlatephysdevtoraiddev.channel);
mly_printf(sc, " target %d\n", io->param.xlatephysdevtoraiddev.target);
mly_printf(sc, " lun %d\n", io->param.xlatephysdevtoraiddev.lun);
transfer = 0;
break;
case MDACIOCTL_GETGROUPCONFINFO:
mly_printf(sc, " group %d\n", io->param.getgroupconfinfo.group);
transfer = 1;
break;
case MDACIOCTL_GET_SUBSYSTEM_DATA:
case MDACIOCTL_SET_SUBSYSTEM_DATA:
case MDACIOCTL_STARTDISOCVERY:
case MDACIOCTL_INITPHYSDEVSTART:
case MDACIOCTL_INITPHYSDEVSTOP:
case MDACIOCTL_INITRAIDDEVSTART:
case MDACIOCTL_INITRAIDDEVSTOP:
case MDACIOCTL_REBUILDRAIDDEVSTART:
case MDACIOCTL_REBUILDRAIDDEVSTOP:
case MDACIOCTL_MAKECONSISTENTDATASTART:
case MDACIOCTL_MAKECONSISTENTDATASTOP:
case MDACIOCTL_CONSISTENCYCHECKSTART:
case MDACIOCTL_CONSISTENCYCHECKSTOP:
case MDACIOCTL_RESETDEVICE:
case MDACIOCTL_FLUSHDEVICEDATA:
case MDACIOCTL_PAUSEDEVICE:
case MDACIOCTL_UNPAUSEDEVICE:
case MDACIOCTL_LOCATEDEVICE:
case MDACIOCTL_SETMASTERSLAVEMODE:
case MDACIOCTL_DELETERAIDDEV:
case MDACIOCTL_REPLACEINTERNALDEV:
case MDACIOCTL_CLEARCONF:
case MDACIOCTL_GETCONTROLLERPARAMETER:
case MDACIOCTL_SETCONTRLLERPARAMETER:
case MDACIOCTL_CLEARCONFSUSPMODE:
case MDACIOCTL_STOREIMAGE:
case MDACIOCTL_READIMAGE:
case MDACIOCTL_FLASHIMAGES:
case MDACIOCTL_RENAMERAIDDEV:
default: /* no idea what to print */
transfer = 0;
break;
}
break;
case MDACMD_IOCTLCHECK:
case MDACMD_MEMCOPY:
default:
transfer = 0;
break; /* print nothing */
}
if (transfer) {
if (ge->command_control.extended_sg_table) {
mly_printf(sc, " sg table 0x%llx/%d\n",
ge->transfer.indirect.table_physaddr[0], ge->transfer.indirect.entries[0]);
} else {
mly_printf(sc, " 0000 0x%llx/%lld\n",
ge->transfer.direct.sg[0].physaddr, ge->transfer.direct.sg[0].length);
mly_printf(sc, " 0001 0x%llx/%lld\n",
ge->transfer.direct.sg[1].physaddr, ge->transfer.direct.sg[1].length);
}
}
}
/********************************************************************************
* Panic in a slightly informative fashion
*/
static void
mly_panic(struct mly_softc *sc, char *reason)
{
mly_printstate(sc);
panic(reason);
}
/********************************************************************************
* Print queue statistics, callable from DDB.
*/
void
mly_print_controller(int controller)
{
struct mly_softc *sc;
if ((sc = devclass_get_softc(devclass_find("mly"), controller)) == NULL) {
printf("mly: controller %d invalid\n", controller);
} else {
device_printf(sc->mly_dev, "queue curr max\n");
device_printf(sc->mly_dev, "free %04d/%04d\n",
sc->mly_qstat[MLYQ_FREE].q_length, sc->mly_qstat[MLYQ_FREE].q_max);
device_printf(sc->mly_dev, "busy %04d/%04d\n",
sc->mly_qstat[MLYQ_BUSY].q_length, sc->mly_qstat[MLYQ_BUSY].q_max);
device_printf(sc->mly_dev, "complete %04d/%04d\n",
sc->mly_qstat[MLYQ_COMPLETE].q_length, sc->mly_qstat[MLYQ_COMPLETE].q_max);
}
}
#endif
/********************************************************************************
********************************************************************************
Control device interface
********************************************************************************
********************************************************************************/
/********************************************************************************
* Accept an open operation on the control device.
*/
static int
mly_user_open(struct cdev *dev, int flags, int fmt, struct thread *td)
{
struct mly_softc *sc = dev->si_drv1;
MLY_LOCK(sc);
sc->mly_state |= MLY_STATE_OPEN;
MLY_UNLOCK(sc);
return(0);
}
/********************************************************************************
* Accept the last close on the control device.
*/
static int
mly_user_close(struct cdev *dev, int flags, int fmt, struct thread *td)
{
struct mly_softc *sc = dev->si_drv1;
MLY_LOCK(sc);
sc->mly_state &= ~MLY_STATE_OPEN;
MLY_UNLOCK(sc);
return (0);
}
/********************************************************************************
* Handle controller-specific control operations.
*/
static int
mly_user_ioctl(struct cdev *dev, u_long cmd, caddr_t addr,
int32_t flag, struct thread *td)
{
struct mly_softc *sc = (struct mly_softc *)dev->si_drv1;
struct mly_user_command *uc = (struct mly_user_command *)addr;
struct mly_user_health *uh = (struct mly_user_health *)addr;
switch(cmd) {
case MLYIO_COMMAND:
return(mly_user_command(sc, uc));
case MLYIO_HEALTH:
return(mly_user_health(sc, uh));
default:
return(ENOIOCTL);
}
}
/********************************************************************************
* Execute a command passed in from userspace.
*
* The control structure contains the actual command for the controller, as well
* as the user-space data pointer and data size, and an optional sense buffer
* size/pointer. On completion, the data size is adjusted to the command
* residual, and the sense buffer size to the size of the returned sense data.
*
*/
static int
mly_user_command(struct mly_softc *sc, struct mly_user_command *uc)
{
struct mly_command *mc;
int error;
/* allocate a command */
MLY_LOCK(sc);
if (mly_alloc_command(sc, &mc)) {
MLY_UNLOCK(sc);
error = ENOMEM;
goto out; /* XXX Linux version will wait for a command */
}
MLY_UNLOCK(sc);
/* handle data size/direction */
mc->mc_length = (uc->DataTransferLength >= 0) ? uc->DataTransferLength : -uc->DataTransferLength;
if (mc->mc_length > 0) {
if ((mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_NOWAIT)) == NULL) {
error = ENOMEM;
goto out;
}
}
if (uc->DataTransferLength > 0) {
mc->mc_flags |= MLY_CMD_DATAIN;
bzero(mc->mc_data, mc->mc_length);
}
if (uc->DataTransferLength < 0) {
mc->mc_flags |= MLY_CMD_DATAOUT;
if ((error = copyin(uc->DataTransferBuffer, mc->mc_data, mc->mc_length)) != 0)
goto out;
}
/* copy the controller command */
bcopy(&uc->CommandMailbox, mc->mc_packet, sizeof(uc->CommandMailbox));
/* clear command completion handler so that we get woken up */
mc->mc_complete = NULL;
/* execute the command */
MLY_LOCK(sc);
if ((error = mly_start(mc)) != 0) {
MLY_UNLOCK(sc);
goto out;
}
while (!(mc->mc_flags & MLY_CMD_COMPLETE))
mtx_sleep(mc, &sc->mly_lock, PRIBIO, "mlyioctl", 0);
MLY_UNLOCK(sc);
/* return the data to userspace */
if (uc->DataTransferLength > 0)
if ((error = copyout(mc->mc_data, uc->DataTransferBuffer, mc->mc_length)) != 0)
goto out;
/* return the sense buffer to userspace */
if ((uc->RequestSenseLength > 0) && (mc->mc_sense > 0)) {
if ((error = copyout(mc->mc_packet, uc->RequestSenseBuffer,
min(uc->RequestSenseLength, mc->mc_sense))) != 0)
goto out;
}
/* return command results to userspace (caller will copy out) */
uc->DataTransferLength = mc->mc_resid;
uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
uc->CommandStatus = mc->mc_status;
error = 0;
out:
if (mc->mc_data != NULL)
free(mc->mc_data, M_DEVBUF);
if (mc != NULL) {
MLY_LOCK(sc);
mly_release_command(mc);
MLY_UNLOCK(sc);
}
return(error);
}
/********************************************************************************
* Return health status to userspace. If the health change index in the user
* structure does not match that currently exported by the controller, we
* return the current status immediately. Otherwise, we block until either
* interrupted or new status is delivered.
*/
static int
mly_user_health(struct mly_softc *sc, struct mly_user_health *uh)
{
struct mly_health_status mh;
int error;
/* fetch the current health status from userspace */
if ((error = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh))) != 0)
return(error);
/* spin waiting for a status update */
MLY_LOCK(sc);
error = EWOULDBLOCK;
while ((error != 0) && (sc->mly_event_change == mh.change_counter))
error = mtx_sleep(&sc->mly_event_change, &sc->mly_lock, PRIBIO | PCATCH,
"mlyhealth", 0);
mh = sc->mly_mmbox->mmm_health.status;
MLY_UNLOCK(sc);
/* copy the controller's health status buffer out */
error = copyout(&mh, uh->HealthStatusBuffer, sizeof(mh));
return(error);
}
#ifdef MLY_DEBUG
static void
mly_timeout(void *arg)
{
struct mly_softc *sc;
struct mly_command *mc;
int deadline;
sc = arg;
MLY_ASSERT_LOCKED(sc);
deadline = time_second - MLY_CMD_TIMEOUT;
TAILQ_FOREACH(mc, &sc->mly_busy, mc_link) {
if ((mc->mc_timestamp < deadline)) {
device_printf(sc->mly_dev,
"COMMAND %p TIMEOUT AFTER %d SECONDS\n", mc,
(int)(time_second - mc->mc_timestamp));
}
}
callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz, mly_timeout, sc);
}
#endif