freebsd-dev/sys/dev/en/midway.c
Robert Watson ed6a66ca6c To ease changes to underlying mbuf structure and the mbuf allocator, reduce
the knowledge of mbuf layout, and in particular constants such as M_EXT,
MLEN, MHLEN, and so on, in mbuf consumers by unifying various alignment
utility functions (M_ALIGN(), MH_ALIGN(), MEXT_ALIGN() in a single
M_ALIGN() macro, implemented by a now-inlined m_align() function:

- Move m_align() from uipc_mbuf.c to mbuf.h; mark as __inline.
- Reimplement M_ALIGN(), MH_ALIGN(), and MEXT_ALIGN() using m_align().
- Update consumers around the tree to simply use M_ALIGN().

This change eliminates a number of cases where mbuf consumers must be aware
of whether or not mbufs returned by the allocator use external storage, but
also assumptions about the size of the returned mbuf. This will make it
easier to introduce changes in how we use external storage, as well as
features such as variable-size mbufs.

Differential Revision:	https://reviews.freebsd.org/D1436
Reviewed by:	glebius, trasz, gnn, bz
Sponsored by:	EMC / Isilon Storage Division
2015-01-05 09:58:32 +00:00

3368 lines
84 KiB
C

/* $NetBSD: midway.c,v 1.30 1997/09/29 17:40:38 chuck Exp $ */
/* (sync'd to midway.c 1.68) */
/*-
* Copyright (c) 1996 Charles D. Cranor and Washington University.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Charles D. Cranor and
* Washington University.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
*
* m i d w a y . c e n i 1 5 5 d r i v e r
*
* author: Chuck Cranor <chuck@ccrc.wustl.edu>
* started: spring, 1996 (written from scratch).
*
* notes from the author:
* Extra special thanks go to Werner Almesberger, EPFL LRC. Werner's
* ENI driver was especially useful in figuring out how this card works.
* I would also like to thank Werner for promptly answering email and being
* generally helpful.
*/
#define EN_DIAG
#define EN_DDBHOOK 1 /* compile in ddb functions */
/*
* Note on EN_ENIDMAFIX: the byte aligner on the ENI version of the card
* appears to be broken. it works just fine if there is no load... however
* when the card is loaded the data get corrupted. to see this, one only
* has to use "telnet" over ATM. do the following command in "telnet":
* cat /usr/share/misc/termcap
* "telnet" seems to generate lots of 1023 byte mbufs (which make great
* use of the byte aligner). watch "netstat -s" for checksum errors.
*
* I further tested this by adding a function that compared the transmit
* data on the card's SRAM with the data in the mbuf chain _after_ the
* "transmit DMA complete" interrupt. using the "telnet" test I got data
* mismatches where the byte-aligned data should have been. using ddb
* and en_dumpmem() I verified that the DTQs fed into the card were
* absolutely correct. thus, we are forced to concluded that the ENI
* hardware is buggy. note that the Adaptec version of the card works
* just fine with byte DMA.
*
* bottom line: we set EN_ENIDMAFIX to 1 to avoid byte DMAs on the ENI
* card.
*/
#if defined(DIAGNOSTIC) && !defined(EN_DIAG)
#define EN_DIAG /* link in with master DIAG option */
#endif
#define EN_COUNT(X) (X)++
#ifdef EN_DEBUG
#undef EN_DDBHOOK
#define EN_DDBHOOK 1
/*
* This macro removes almost all the EN_DEBUG conditionals in the code that make
* to code a good deal less readable.
*/
#define DBG(SC, FL, PRINT) do { \
if ((SC)->debug & DBG_##FL) { \
device_printf((SC)->dev, "%s: "#FL": ", __func__); \
printf PRINT; \
printf("\n"); \
} \
} while (0)
enum {
DBG_INIT = 0x0001, /* debug attach/detach */
DBG_TX = 0x0002, /* debug transmitting */
DBG_SERV = 0x0004, /* debug service interrupts */
DBG_IOCTL = 0x0008, /* debug ioctls */
DBG_VC = 0x0010, /* debug VC handling */
DBG_INTR = 0x0020, /* debug interrupts */
DBG_DMA = 0x0040, /* debug DMA probing */
DBG_IPACKETS = 0x0080, /* print input packets */
DBG_REG = 0x0100, /* print all register access */
DBG_LOCK = 0x0200, /* debug locking */
};
#else /* EN_DEBUG */
#define DBG(SC, FL, PRINT) do { } while (0)
#endif /* EN_DEBUG */
#include "opt_inet.h"
#include "opt_natm.h"
#include "opt_ddb.h"
#ifdef DDB
#undef EN_DDBHOOK
#define EN_DDBHOOK 1
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/queue.h>
#include <sys/sockio.h>
#include <sys/socket.h>
#include <sys/mbuf.h>
#include <sys/endian.h>
#include <sys/stdint.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <vm/uma.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_media.h>
#include <net/if_atm.h>
#if defined(NATM) || defined(INET) || defined(INET6)
#include <netinet/in.h>
#if defined(INET) || defined(INET6)
#include <netinet/if_atm.h>
#endif
#endif
#ifdef NATM
#include <netnatm/natm.h>
#endif
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <sys/module.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <machine/resource.h>
#include <dev/utopia/utopia.h>
#include <dev/en/midwayreg.h>
#include <dev/en/midwayvar.h>
#include <net/bpf.h>
/*
* params
*/
#ifndef EN_TXHIWAT
#define EN_TXHIWAT (64 * 1024) /* max 64 KB waiting to be DMAd out */
#endif
SYSCTL_DECL(_hw_atm);
/*
* dma tables
*
* The plan is indexed by the number of words to transfer.
* The maximum index is 15 for 60 words.
*/
struct en_dmatab {
uint8_t bcode; /* code */
uint8_t divshift; /* byte divisor */
};
static const struct en_dmatab en_dmaplan[] = {
{ 0, 0 }, /* 0 */ { MIDDMA_WORD, 2}, /* 1 */
{ MIDDMA_2WORD, 3}, /* 2 */ { MIDDMA_WORD, 2}, /* 3 */
{ MIDDMA_4WORD, 4}, /* 4 */ { MIDDMA_WORD, 2}, /* 5 */
{ MIDDMA_2WORD, 3}, /* 6 */ { MIDDMA_WORD, 2}, /* 7 */
{ MIDDMA_8WORD, 5}, /* 8 */ { MIDDMA_WORD, 2}, /* 9 */
{ MIDDMA_2WORD, 3}, /* 10 */ { MIDDMA_WORD, 2}, /* 11 */
{ MIDDMA_4WORD, 4}, /* 12 */ { MIDDMA_WORD, 2}, /* 13 */
{ MIDDMA_2WORD, 3}, /* 14 */ { MIDDMA_WORD, 2}, /* 15 */
{ MIDDMA_16WORD,6}, /* 16 */
};
/*
* prototypes
*/
#ifdef EN_DDBHOOK
int en_dump(int unit, int level);
int en_dumpmem(int,int,int);
#endif
static void en_close_finish(struct en_softc *sc, struct en_vcc *vc);
#define EN_LOCK(SC) do { \
DBG(SC, LOCK, ("ENLOCK %d\n", __LINE__)); \
mtx_lock(&sc->en_mtx); \
} while (0)
#define EN_UNLOCK(SC) do { \
DBG(SC, LOCK, ("ENUNLOCK %d\n", __LINE__)); \
mtx_unlock(&sc->en_mtx); \
} while (0)
#define EN_CHECKLOCK(sc) mtx_assert(&sc->en_mtx, MA_OWNED)
/*
* While a transmit mbuf is waiting to get transmit DMA resources we
* need to keep some information with it. We don't want to allocate
* additional memory for this so we stuff it into free fields in the
* mbuf packet header. Neither the checksum fields nor the rcvif field are used
* so use these.
*/
#define TX_AAL5 0x1 /* transmit AAL5 PDU */
#define TX_HAS_TBD 0x2 /* TBD did fit into mbuf */
#define TX_HAS_PAD 0x4 /* padding did fit into mbuf */
#define TX_HAS_PDU 0x8 /* PDU trailer did fit into mbuf */
#define MBUF_SET_TX(M, VCI, FLAGS, DATALEN, PAD, MAP) do { \
(M)->m_pkthdr.csum_data = (VCI) | ((FLAGS) << MID_VCI_BITS); \
(M)->m_pkthdr.csum_flags = ((DATALEN) & 0xffff) | \
((PAD & 0x3f) << 16); \
(M)->m_pkthdr.rcvif = (void *)(MAP); \
} while (0)
#define MBUF_GET_TX(M, VCI, FLAGS, DATALEN, PAD, MAP) do { \
(VCI) = (M)->m_pkthdr.csum_data & ((1 << MID_VCI_BITS) - 1); \
(FLAGS) = ((M)->m_pkthdr.csum_data >> MID_VCI_BITS) & 0xf; \
(DATALEN) = (M)->m_pkthdr.csum_flags & 0xffff; \
(PAD) = ((M)->m_pkthdr.csum_flags >> 16) & 0x3f; \
(MAP) = (void *)((M)->m_pkthdr.rcvif); \
} while (0)
#define EN_WRAPADD(START, STOP, CUR, VAL) do { \
(CUR) = (CUR) + (VAL); \
if ((CUR) >= (STOP)) \
(CUR) = (START) + ((CUR) - (STOP)); \
} while (0)
#define WORD_IDX(START, X) (((X) - (START)) / sizeof(uint32_t))
#define SETQ_END(SC, VAL) ((SC)->is_adaptec ? \
((VAL) | (MID_DMA_END >> 4)) : \
((VAL) | (MID_DMA_END)))
/*
* The dtq and drq members are set for each END entry in the corresponding
* card queue entry. It is used to find out, when a buffer has been
* finished DMAing and can be freed.
*
* We store sc->dtq and sc->drq data in the following format...
* the 0x80000 ensures we != 0
*/
#define EN_DQ_MK(SLOT, LEN) (((SLOT) << 20) | (LEN) | (0x80000))
#define EN_DQ_SLOT(X) ((X) >> 20)
#define EN_DQ_LEN(X) ((X) & 0x3ffff)
/*
* Variables
*/
static uma_zone_t en_vcc_zone;
/***********************************************************************/
/*
* en_read{x}: read a word from the card. These are the only functions
* that read from the card.
*/
static __inline uint32_t
en_readx(struct en_softc *sc, uint32_t r)
{
uint32_t v;
#ifdef EN_DIAG
if (r > MID_MAXOFF || (r % 4))
panic("en_read out of range, r=0x%x", r);
#endif
v = bus_space_read_4(sc->en_memt, sc->en_base, r);
return (v);
}
static __inline uint32_t
en_read(struct en_softc *sc, uint32_t r)
{
uint32_t v;
#ifdef EN_DIAG
if (r > MID_MAXOFF || (r % 4))
panic("en_read out of range, r=0x%x", r);
#endif
v = bus_space_read_4(sc->en_memt, sc->en_base, r);
DBG(sc, REG, ("en_read(%#x) -> %08x", r, v));
return (v);
}
/*
* en_write: write a word to the card. This is the only function that
* writes to the card.
*/
static __inline void
en_write(struct en_softc *sc, uint32_t r, uint32_t v)
{
#ifdef EN_DIAG
if (r > MID_MAXOFF || (r % 4))
panic("en_write out of range, r=0x%x", r);
#endif
DBG(sc, REG, ("en_write(%#x) <- %08x", r, v));
bus_space_write_4(sc->en_memt, sc->en_base, r, v);
}
/*
* en_k2sz: convert KBytes to a size parameter (a log2)
*/
static __inline int
en_k2sz(int k)
{
switch(k) {
case 1: return (0);
case 2: return (1);
case 4: return (2);
case 8: return (3);
case 16: return (4);
case 32: return (5);
case 64: return (6);
case 128: return (7);
default:
panic("en_k2sz");
}
return (0);
}
#define en_log2(X) en_k2sz(X)
#if 0
/*
* en_b2sz: convert a DMA burst code to its byte size
*/
static __inline int
en_b2sz(int b)
{
switch (b) {
case MIDDMA_WORD: return (1*4);
case MIDDMA_2WMAYBE:
case MIDDMA_2WORD: return (2*4);
case MIDDMA_4WMAYBE:
case MIDDMA_4WORD: return (4*4);
case MIDDMA_8WMAYBE:
case MIDDMA_8WORD: return (8*4);
case MIDDMA_16WMAYBE:
case MIDDMA_16WORD: return (16*4);
default:
panic("en_b2sz");
}
return (0);
}
#endif
/*
* en_sz2b: convert a burst size (bytes) to DMA burst code
*/
static __inline int
en_sz2b(int sz)
{
switch (sz) {
case 1*4: return (MIDDMA_WORD);
case 2*4: return (MIDDMA_2WORD);
case 4*4: return (MIDDMA_4WORD);
case 8*4: return (MIDDMA_8WORD);
case 16*4: return (MIDDMA_16WORD);
default:
panic("en_sz2b");
}
return(0);
}
#ifdef EN_DEBUG
/*
* Dump a packet
*/
static void
en_dump_packet(struct en_softc *sc, struct mbuf *m)
{
int plen = m->m_pkthdr.len;
u_int pos = 0;
u_int totlen = 0;
int len;
u_char *ptr;
device_printf(sc->dev, "packet len=%d", plen);
while (m != NULL) {
totlen += m->m_len;
ptr = mtod(m, u_char *);
for (len = 0; len < m->m_len; len++, pos++, ptr++) {
if (pos % 16 == 8)
printf(" ");
if (pos % 16 == 0)
printf("\n");
printf(" %02x", *ptr);
}
m = m->m_next;
}
printf("\n");
if (totlen != plen)
printf("sum of m_len=%u\n", totlen);
}
#endif
/*********************************************************************/
/*
* DMA maps
*/
/*
* Map constructor for a MAP.
*
* This is called each time when a map is allocated
* from the pool and about to be returned to the user. Here we actually
* allocate the map if there isn't one. The problem is that we may fail
* to allocate the DMA map yet have no means to signal this error. Therefor
* when allocating a map, the call must check that there is a map. An
* additional problem is, that i386 maps will be NULL, yet are ok and must
* be freed so let's use a flag to signal allocation.
*
* Caveat: we have no way to know that we are called from an interrupt context
* here. We rely on the fact, that bus_dmamap_create uses M_NOWAIT in all
* its allocations.
*
* LOCK: any, not needed
*/
static int
en_map_ctor(void *mem, int size, void *arg, int flags)
{
struct en_softc *sc = arg;
struct en_map *map = mem;
int err;
err = bus_dmamap_create(sc->txtag, 0, &map->map);
if (err != 0) {
device_printf(sc->dev, "cannot create DMA map %d\n", err);
return (err);
}
map->flags = ENMAP_ALLOC;
map->sc = sc;
return (0);
}
/*
* Map destructor.
*
* Called when a map is disposed into the zone. If the map is loaded, unload
* it.
*
* LOCK: any, not needed
*/
static void
en_map_dtor(void *mem, int size, void *arg)
{
struct en_map *map = mem;
if (map->flags & ENMAP_LOADED) {
bus_dmamap_unload(map->sc->txtag, map->map);
map->flags &= ~ENMAP_LOADED;
}
}
/*
* Map finializer.
*
* This is called each time a map is returned from the zone to the system.
* Get rid of the dmamap here.
*
* LOCK: any, not needed
*/
static void
en_map_fini(void *mem, int size)
{
struct en_map *map = mem;
bus_dmamap_destroy(map->sc->txtag, map->map);
}
/*********************************************************************/
/*
* Transmission
*/
/*
* Argument structure to load a transmit DMA map
*/
struct txarg {
struct en_softc *sc;
struct mbuf *m;
u_int vci;
u_int chan; /* transmit channel */
u_int datalen; /* length of user data */
u_int flags;
u_int wait; /* return: out of resources */
};
/*
* TX DMA map loader helper. This function is the callback when the map
* is loaded. It should fill the DMA segment descriptors into the hardware.
*
* LOCK: locked, needed
*/
static void
en_txdma_load(void *uarg, bus_dma_segment_t *segs, int nseg, bus_size_t mapsize,
int error)
{
struct txarg *tx = uarg;
struct en_softc *sc = tx->sc;
struct en_txslot *slot = &sc->txslot[tx->chan];
uint32_t cur; /* on-card buffer position (bytes offset) */
uint32_t dtq; /* on-card queue position (byte offset) */
uint32_t last_dtq; /* last DTQ we have written */
uint32_t tmp;
u_int free; /* free queue entries on card */
u_int needalign, cnt;
bus_size_t rest; /* remaining bytes in current segment */
bus_addr_t addr;
bus_dma_segment_t *s;
uint32_t count, bcode;
int i;
if (error != 0)
return;
cur = slot->cur;
dtq = sc->dtq_us;
free = sc->dtq_free;
last_dtq = 0; /* make gcc happy */
/*
* Local macro to add an entry to the transmit DMA area. If there
* are no entries left, return. Save the byte offset of the entry
* in last_dtq for later use.
*/
#define PUT_DTQ_ENTRY(ENI, BCODE, COUNT, ADDR) \
if (free == 0) { \
EN_COUNT(sc->stats.txdtqout); \
tx->wait = 1; \
return; \
} \
last_dtq = dtq; \
en_write(sc, dtq + 0, (ENI || !sc->is_adaptec) ? \
MID_MK_TXQ_ENI(COUNT, tx->chan, 0, BCODE) : \
MID_MK_TXQ_ADP(COUNT, tx->chan, 0, BCODE)); \
en_write(sc, dtq + 4, ADDR); \
\
EN_WRAPADD(MID_DTQOFF, MID_DTQEND, dtq, 8); \
free--;
/*
* Local macro to generate a DMA entry to DMA cnt bytes. Updates
* the current buffer byte offset accordingly.
*/
#define DO_DTQ(TYPE) do { \
rest -= cnt; \
EN_WRAPADD(slot->start, slot->stop, cur, cnt); \
DBG(sc, TX, ("tx%d: "TYPE" %u bytes, %ju left, cur %#x", \
tx->chan, cnt, (uintmax_t)rest, cur)); \
\
PUT_DTQ_ENTRY(1, bcode, count, addr); \
\
addr += cnt; \
} while (0)
if (!(tx->flags & TX_HAS_TBD)) {
/*
* Prepend the TBD - it did not fit into the first mbuf
*/
tmp = MID_TBD_MK1((tx->flags & TX_AAL5) ?
MID_TBD_AAL5 : MID_TBD_NOAAL5,
sc->vccs[tx->vci]->txspeed,
tx->m->m_pkthdr.len / MID_ATMDATASZ);
en_write(sc, cur, tmp);
EN_WRAPADD(slot->start, slot->stop, cur, 4);
tmp = MID_TBD_MK2(tx->vci, 0, 0);
en_write(sc, cur, tmp);
EN_WRAPADD(slot->start, slot->stop, cur, 4);
/* update DMA address */
PUT_DTQ_ENTRY(0, MIDDMA_JK, WORD_IDX(slot->start, cur), 0);
}
for (i = 0, s = segs; i < nseg; i++, s++) {
rest = s->ds_len;
addr = s->ds_addr;
if (sc->is_adaptec) {
/* adaptec card - simple */
/* advance the on-card buffer pointer */
EN_WRAPADD(slot->start, slot->stop, cur, rest);
DBG(sc, TX, ("tx%d: adp %ju bytes %#jx (cur now 0x%x)",
tx->chan, (uintmax_t)rest, (uintmax_t)addr, cur));
PUT_DTQ_ENTRY(0, 0, rest, addr);
continue;
}
/*
* do we need to do a DMA op to align to the maximum
* burst? Note, that we are alway 32-bit aligned.
*/
if (sc->alburst &&
(needalign = (addr & sc->bestburstmask)) != 0) {
/* compute number of bytes, words and code */
cnt = sc->bestburstlen - needalign;
if (cnt > rest)
cnt = rest;
count = cnt / sizeof(uint32_t);
if (sc->noalbursts) {
bcode = MIDDMA_WORD;
} else {
bcode = en_dmaplan[count].bcode;
count = cnt >> en_dmaplan[count].divshift;
}
DO_DTQ("al_dma");
}
/* do we need to do a max-sized burst? */
if (rest >= sc->bestburstlen) {
count = rest >> sc->bestburstshift;
cnt = count << sc->bestburstshift;
bcode = sc->bestburstcode;
DO_DTQ("best_dma");
}
/* do we need to do a cleanup burst? */
if (rest != 0) {
cnt = rest;
count = rest / sizeof(uint32_t);
if (sc->noalbursts) {
bcode = MIDDMA_WORD;
} else {
bcode = en_dmaplan[count].bcode;
count = cnt >> en_dmaplan[count].divshift;
}
DO_DTQ("clean_dma");
}
}
KASSERT (tx->flags & TX_HAS_PAD, ("PDU not padded"));
if ((tx->flags & TX_AAL5) && !(tx->flags & TX_HAS_PDU)) {
/*
* Append the AAL5 PDU trailer
*/
tmp = MID_PDU_MK1(0, 0, tx->datalen);
en_write(sc, cur, tmp);
EN_WRAPADD(slot->start, slot->stop, cur, 4);
en_write(sc, cur, 0);
EN_WRAPADD(slot->start, slot->stop, cur, 4);
/* update DMA address */
PUT_DTQ_ENTRY(0, MIDDMA_JK, WORD_IDX(slot->start, cur), 0);
}
/* record the end for the interrupt routine */
sc->dtq[MID_DTQ_A2REG(last_dtq)] =
EN_DQ_MK(tx->chan, tx->m->m_pkthdr.len);
/* set the end flag in the last descriptor */
en_write(sc, last_dtq + 0, SETQ_END(sc, en_read(sc, last_dtq + 0)));
#undef PUT_DTQ_ENTRY
#undef DO_DTQ
/* commit */
slot->cur = cur;
sc->dtq_free = free;
sc->dtq_us = dtq;
/* tell card */
en_write(sc, MID_DMA_WRTX, MID_DTQ_A2REG(sc->dtq_us));
}
/*
* en_txdma: start transmit DMA on the given channel, if possible
*
* This is called from two places: when we got new packets from the upper
* layer or when we found that buffer space has freed up during interrupt
* processing.
*
* LOCK: locked, needed
*/
static void
en_txdma(struct en_softc *sc, struct en_txslot *slot)
{
struct en_map *map;
struct mbuf *lastm;
struct txarg tx;
u_int pad;
int error;
DBG(sc, TX, ("tx%td: starting ...", slot - sc->txslot));
again:
bzero(&tx, sizeof(tx));
tx.chan = slot - sc->txslot;
tx.sc = sc;
/*
* get an mbuf waiting for DMA
*/
_IF_DEQUEUE(&slot->q, tx.m);
if (tx.m == NULL) {
DBG(sc, TX, ("tx%td: ...done!", slot - sc->txslot));
return;
}
MBUF_GET_TX(tx.m, tx.vci, tx.flags, tx.datalen, pad, map);
/*
* note: don't use the entire buffer space. if WRTX becomes equal
* to RDTX, the transmitter stops assuming the buffer is empty! --kjc
*/
if (tx.m->m_pkthdr.len >= slot->bfree) {
EN_COUNT(sc->stats.txoutspace);
DBG(sc, TX, ("tx%td: out of transmit space", slot - sc->txslot));
goto waitres;
}
lastm = NULL;
if (!(tx.flags & TX_HAS_PAD)) {
if (pad != 0) {
/* Append the padding buffer */
(void)m_length(tx.m, &lastm);
lastm->m_next = sc->padbuf;
sc->padbuf->m_len = pad;
}
tx.flags |= TX_HAS_PAD;
}
/*
* Try to load that map
*/
error = bus_dmamap_load_mbuf(sc->txtag, map->map, tx.m,
en_txdma_load, &tx, BUS_DMA_NOWAIT);
if (lastm != NULL)
lastm->m_next = NULL;
if (error != 0) {
device_printf(sc->dev, "loading TX map failed %d\n",
error);
goto dequeue_drop;
}
map->flags |= ENMAP_LOADED;
if (tx.wait) {
/* probably not enough space */
bus_dmamap_unload(map->sc->txtag, map->map);
map->flags &= ~ENMAP_LOADED;
sc->need_dtqs = 1;
DBG(sc, TX, ("tx%td: out of transmit DTQs", slot - sc->txslot));
goto waitres;
}
EN_COUNT(sc->stats.launch);
if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, 1);
sc->vccs[tx.vci]->opackets++;
sc->vccs[tx.vci]->obytes += tx.datalen;
#ifdef ENABLE_BPF
if (bpf_peers_present(sc->ifp->if_bpf)) {
/*
* adjust the top of the mbuf to skip the TBD if present
* before passing the packet to bpf.
* Also remove padding and the PDU trailer. Assume both of
* them to be in the same mbuf. pktlen, m_len and m_data
* are not needed anymore so we can change them.
*/
if (tx.flags & TX_HAS_TBD) {
tx.m->m_data += MID_TBD_SIZE;
tx.m->m_len -= MID_TBD_SIZE;
}
tx.m->m_pkthdr.len = m_length(tx.m, &lastm);
if (tx.m->m_pkthdr.len > tx.datalen) {
lastm->m_len -= tx.m->m_pkthdr.len - tx.datalen;
tx.m->m_pkthdr.len = tx.datalen;
}
bpf_mtap(sc->ifp->if_bpf, tx.m);
}
#endif
/*
* do some housekeeping and get the next packet
*/
slot->bfree -= tx.m->m_pkthdr.len;
_IF_ENQUEUE(&slot->indma, tx.m);
goto again;
/*
* error handling. This is jumped to when we just want to drop
* the packet. Must be unlocked here.
*/
dequeue_drop:
if (map != NULL)
uma_zfree(sc->map_zone, map);
slot->mbsize -= tx.m->m_pkthdr.len;
m_freem(tx.m);
goto again;
waitres:
_IF_PREPEND(&slot->q, tx.m);
}
/*
* Create a copy of a single mbuf. It can have either internal or
* external data, it may have a packet header. External data is really
* copied, so the new buffer is writeable.
*
* LOCK: any, not needed
*/
static struct mbuf *
copy_mbuf(struct mbuf *m)
{
struct mbuf *new;
MGET(new, M_WAITOK, MT_DATA);
if (m->m_flags & M_PKTHDR) {
M_MOVE_PKTHDR(new, m);
if (m->m_len > MHLEN)
MCLGET(new, M_WAITOK);
} else {
if (m->m_len > MLEN)
MCLGET(new, M_WAITOK);
}
bcopy(m->m_data, new->m_data, m->m_len);
new->m_len = m->m_len;
new->m_flags &= ~M_RDONLY;
return (new);
}
/*
* This function is called when we have an ENI adapter. It fixes the
* mbuf chain, so that all addresses and lengths are 4 byte aligned.
* The overall length is already padded to multiple of cells plus the
* TBD so this must always succeed. The routine can fail, when it
* needs to copy an mbuf (this may happen if an mbuf is readonly).
*
* We assume here, that aligning the virtual addresses to 4 bytes also
* aligns the physical addresses.
*
* LOCK: locked, needed
*/
static struct mbuf *
en_fix_mchain(struct en_softc *sc, struct mbuf *m0, u_int *pad)
{
struct mbuf **prev = &m0;
struct mbuf *m = m0;
struct mbuf *new;
u_char *d;
int off;
while (m != NULL) {
d = mtod(m, u_char *);
if ((off = (uintptr_t)d % sizeof(uint32_t)) != 0) {
EN_COUNT(sc->stats.mfixaddr);
if (M_WRITABLE(m)) {
bcopy(d, d - off, m->m_len);
m->m_data -= off;
} else {
if ((new = copy_mbuf(m)) == NULL) {
EN_COUNT(sc->stats.mfixfail);
m_freem(m0);
return (NULL);
}
new->m_next = m_free(m);
*prev = m = new;
}
}
if ((off = m->m_len % sizeof(uint32_t)) != 0) {
EN_COUNT(sc->stats.mfixlen);
if (!M_WRITABLE(m)) {
if ((new = copy_mbuf(m)) == NULL) {
EN_COUNT(sc->stats.mfixfail);
m_freem(m0);
return (NULL);
}
new->m_next = m_free(m);
*prev = m = new;
}
d = mtod(m, u_char *) + m->m_len;
off = 4 - off;
while (off) {
while (m->m_next && m->m_next->m_len == 0)
m->m_next = m_free(m->m_next);
if (m->m_next == NULL) {
*d++ = 0;
KASSERT(*pad > 0, ("no padding space"));
(*pad)--;
} else {
*d++ = *mtod(m->m_next, u_char *);
m->m_next->m_len--;
m->m_next->m_data++;
}
m->m_len++;
off--;
}
}
prev = &m->m_next;
m = m->m_next;
}
return (m0);
}
/*
* en_start: start transmitting the next packet that needs to go out
* if there is one. We take off all packets from the interface's queue and
* put them into the channels queue.
*
* Here we also prepend the transmit packet descriptor and append the padding
* and (for aal5) the PDU trailer. This is different from the original driver:
* we assume, that allocating one or two additional mbufs is actually cheaper
* than all this algorithmic fiddling we would need otherwise.
*
* While the packet is on the channels wait queue we use the csum_* fields
* in the packet header to hold the original datalen, the AAL5 flag and the
* VCI. The packet length field in the header holds the needed buffer space.
* This may actually be more than the length of the current mbuf chain (when
* one or more of TBD, padding and PDU do not fit).
*
* LOCK: unlocked, needed
*/
static void
en_start(struct ifnet *ifp)
{
struct en_softc *sc = (struct en_softc *)ifp->if_softc;
struct mbuf *m, *lastm;
struct atm_pseudohdr *ap;
u_int pad; /* 0-bytes to pad at PDU end */
u_int datalen; /* length of user data */
u_int vci; /* the VCI we are transmitting on */
u_int flags;
uint32_t tbd[2];
uint32_t pdu[2];
struct en_vcc *vc;
struct en_map *map;
struct en_txslot *tx;
while (1) {
IF_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
return;
flags = 0;
ap = mtod(m, struct atm_pseudohdr *);
vci = ATM_PH_VCI(ap);
if (ATM_PH_VPI(ap) != 0 || vci >= MID_N_VC ||
(vc = sc->vccs[vci]) == NULL ||
(vc->vflags & VCC_CLOSE_RX)) {
DBG(sc, TX, ("output vpi=%u, vci=%u -- drop",
ATM_PH_VPI(ap), vci));
m_freem(m);
continue;
}
if (vc->vcc.aal == ATMIO_AAL_5)
flags |= TX_AAL5;
m_adj(m, sizeof(struct atm_pseudohdr));
/*
* (re-)calculate size of packet (in bytes)
*/
m->m_pkthdr.len = datalen = m_length(m, &lastm);
/*
* computing how much padding we need on the end of the mbuf,
* then see if we can put the TBD at the front of the mbuf
* where the link header goes (well behaved protocols will
* reserve room for us). Last, check if room for PDU tail.
*/
if (flags & TX_AAL5)
m->m_pkthdr.len += MID_PDU_SIZE;
m->m_pkthdr.len = roundup(m->m_pkthdr.len, MID_ATMDATASZ);
pad = m->m_pkthdr.len - datalen;
if (flags & TX_AAL5)
pad -= MID_PDU_SIZE;
m->m_pkthdr.len += MID_TBD_SIZE;
DBG(sc, TX, ("txvci%d: buflen=%u datalen=%u lead=%d trail=%d",
vci, m->m_pkthdr.len, datalen, (int)M_LEADINGSPACE(m),
(int)M_TRAILINGSPACE(lastm)));
/*
* From here on we need access to sc
*/
EN_LOCK(sc);
/*
* Allocate a map. We do this here rather then in en_txdma,
* because en_txdma is also called from the interrupt handler
* and we are going to have a locking problem then. We must
* use NOWAIT here, because the ip_output path holds various
* locks.
*/
map = uma_zalloc_arg(sc->map_zone, sc, M_NOWAIT);
if (map == NULL) {
/* drop that packet */
EN_COUNT(sc->stats.txnomap);
EN_UNLOCK(sc);
m_freem(m);
continue;
}
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
EN_UNLOCK(sc);
uma_zfree(sc->map_zone, map);
m_freem(m);
continue;
}
/*
* Look, whether we can prepend the TBD (8 byte)
*/
if (M_WRITABLE(m) && M_LEADINGSPACE(m) >= MID_TBD_SIZE) {
tbd[0] = htobe32(MID_TBD_MK1((flags & TX_AAL5) ?
MID_TBD_AAL5 : MID_TBD_NOAAL5,
vc->txspeed, m->m_pkthdr.len / MID_ATMDATASZ));
tbd[1] = htobe32(MID_TBD_MK2(vci, 0, 0));
m->m_data -= MID_TBD_SIZE;
bcopy(tbd, m->m_data, MID_TBD_SIZE);
m->m_len += MID_TBD_SIZE;
flags |= TX_HAS_TBD;
}
/*
* Check whether the padding fits (must be writeable -
* we pad with zero).
*/
if (M_WRITABLE(lastm) && M_TRAILINGSPACE(lastm) >= pad) {
bzero(lastm->m_data + lastm->m_len, pad);
lastm->m_len += pad;
flags |= TX_HAS_PAD;
if ((flags & TX_AAL5) &&
M_TRAILINGSPACE(lastm) > MID_PDU_SIZE) {
pdu[0] = htobe32(MID_PDU_MK1(0, 0, datalen));
pdu[1] = 0;
bcopy(pdu, lastm->m_data + lastm->m_len,
MID_PDU_SIZE);
lastm->m_len += MID_PDU_SIZE;
flags |= TX_HAS_PDU;
}
}
if (!sc->is_adaptec &&
(m = en_fix_mchain(sc, m, &pad)) == NULL) {
EN_UNLOCK(sc);
uma_zfree(sc->map_zone, map);
continue;
}
/*
* get assigned channel (will be zero unless txspeed is set)
*/
tx = vc->txslot;
if (m->m_pkthdr.len > EN_TXSZ * 1024) {
DBG(sc, TX, ("tx%td: packet larger than xmit buffer "
"(%d > %d)\n", tx - sc->txslot, m->m_pkthdr.len,
EN_TXSZ * 1024));
EN_UNLOCK(sc);
m_freem(m);
uma_zfree(sc->map_zone, map);
continue;
}
if (tx->mbsize > EN_TXHIWAT) {
EN_COUNT(sc->stats.txmbovr);
DBG(sc, TX, ("tx%td: buffer space shortage",
tx - sc->txslot));
EN_UNLOCK(sc);
m_freem(m);
uma_zfree(sc->map_zone, map);
continue;
}
/* commit */
tx->mbsize += m->m_pkthdr.len;
DBG(sc, TX, ("tx%td: VCI=%d, speed=0x%x, buflen=%d, mbsize=%d",
tx - sc->txslot, vci, sc->vccs[vci]->txspeed,
m->m_pkthdr.len, tx->mbsize));
MBUF_SET_TX(m, vci, flags, datalen, pad, map);
_IF_ENQUEUE(&tx->q, m);
en_txdma(sc, tx);
EN_UNLOCK(sc);
}
}
/*********************************************************************/
/*
* VCs
*/
/*
* en_loadvc: load a vc tab entry from a slot
*
* LOCK: locked, needed
*/
static void
en_loadvc(struct en_softc *sc, struct en_vcc *vc)
{
uint32_t reg = en_read(sc, MID_VC(vc->vcc.vci));
reg = MIDV_SETMODE(reg, MIDV_TRASH);
en_write(sc, MID_VC(vc->vcc.vci), reg);
DELAY(27);
/* no need to set CRC */
/* read pointer = 0, desc. start = 0 */
en_write(sc, MID_DST_RP(vc->vcc.vci), 0);
/* write pointer = 0 */
en_write(sc, MID_WP_ST_CNT(vc->vcc.vci), 0);
/* set mode, size, loc */
en_write(sc, MID_VC(vc->vcc.vci), vc->rxslot->mode);
vc->rxslot->cur = vc->rxslot->start;
DBG(sc, VC, ("rx%td: assigned to VCI %d", vc->rxslot - sc->rxslot,
vc->vcc.vci));
}
/*
* Open the given vcc.
*
* LOCK: unlocked, needed
*/
static int
en_open_vcc(struct en_softc *sc, struct atmio_openvcc *op)
{
uint32_t oldmode, newmode;
struct en_rxslot *slot;
struct en_vcc *vc;
int error = 0;
DBG(sc, IOCTL, ("enable vpi=%d, vci=%d, flags=%#x",
op->param.vpi, op->param.vci, op->param.flags));
if (op->param.vpi != 0 || op->param.vci >= MID_N_VC)
return (EINVAL);
vc = uma_zalloc(en_vcc_zone, M_NOWAIT | M_ZERO);
if (vc == NULL)
return (ENOMEM);
EN_LOCK(sc);
if (sc->vccs[op->param.vci] != NULL) {
error = EBUSY;
goto done;
}
/* find a free receive slot */
for (slot = sc->rxslot; slot < &sc->rxslot[sc->en_nrx]; slot++)
if (slot->vcc == NULL)
break;
if (slot == &sc->rxslot[sc->en_nrx]) {
error = ENOSPC;
goto done;
}
vc->rxslot = slot;
vc->rxhand = op->rxhand;
vc->vcc = op->param;
oldmode = slot->mode;
newmode = (op->param.aal == ATMIO_AAL_5) ? MIDV_AAL5 : MIDV_NOAAL;
slot->mode = MIDV_SETMODE(oldmode, newmode);
slot->vcc = vc;
KASSERT (_IF_QLEN(&slot->indma) == 0 && _IF_QLEN(&slot->q) == 0,
("en_rxctl: left over mbufs on enable slot=%td",
vc->rxslot - sc->rxslot));
vc->txspeed = 0;
vc->txslot = sc->txslot;
vc->txslot->nref++; /* bump reference count */
en_loadvc(sc, vc); /* does debug printf for us */
/* don't free below */
sc->vccs[vc->vcc.vci] = vc;
vc = NULL;
sc->vccs_open++;
done:
if (vc != NULL)
uma_zfree(en_vcc_zone, vc);
EN_UNLOCK(sc);
return (error);
}
/*
* Close finished
*/
static void
en_close_finish(struct en_softc *sc, struct en_vcc *vc)
{
if (vc->rxslot != NULL)
vc->rxslot->vcc = NULL;
DBG(sc, VC, ("vci: %u free (%p)", vc->vcc.vci, vc));
sc->vccs[vc->vcc.vci] = NULL;
uma_zfree(en_vcc_zone, vc);
sc->vccs_open--;
}
/*
* LOCK: unlocked, needed
*/
static int
en_close_vcc(struct en_softc *sc, struct atmio_closevcc *cl)
{
uint32_t oldmode, newmode;
struct en_vcc *vc;
int error = 0;
DBG(sc, IOCTL, ("disable vpi=%d, vci=%d", cl->vpi, cl->vci));
if (cl->vpi != 0 || cl->vci >= MID_N_VC)
return (EINVAL);
EN_LOCK(sc);
if ((vc = sc->vccs[cl->vci]) == NULL) {
error = ENOTCONN;
goto done;
}
/*
* turn off VCI
*/
if (vc->rxslot == NULL) {
error = ENOTCONN;
goto done;
}
if (vc->vflags & VCC_DRAIN) {
error = EINVAL;
goto done;
}
oldmode = en_read(sc, MID_VC(cl->vci));
newmode = MIDV_SETMODE(oldmode, MIDV_TRASH) & ~MIDV_INSERVICE;
en_write(sc, MID_VC(cl->vci), (newmode | (oldmode & MIDV_INSERVICE)));
/* halt in tracks, be careful to preserve inservice bit */
DELAY(27);
vc->rxslot->mode = newmode;
vc->txslot->nref--;
/* if stuff is still going on we are going to have to drain it out */
if (_IF_QLEN(&vc->rxslot->indma) == 0 &&
_IF_QLEN(&vc->rxslot->q) == 0 &&
(vc->vflags & VCC_SWSL) == 0) {
en_close_finish(sc, vc);
goto done;
}
vc->vflags |= VCC_DRAIN;
DBG(sc, IOCTL, ("VCI %u now draining", cl->vci));
if (vc->vcc.flags & ATMIO_FLAG_ASYNC)
goto done;
vc->vflags |= VCC_CLOSE_RX;
while ((sc->ifp->if_drv_flags & IFF_DRV_RUNNING) &&
(vc->vflags & VCC_DRAIN))
cv_wait(&sc->cv_close, &sc->en_mtx);
en_close_finish(sc, vc);
if (!(sc->ifp->if_drv_flags & IFF_DRV_RUNNING)) {
error = EIO;
goto done;
}
done:
EN_UNLOCK(sc);
return (error);
}
/*********************************************************************/
/*
* starting/stopping the card
*/
/*
* en_reset_ul: reset the board, throw away work in progress.
* must en_init to recover.
*
* LOCK: locked, needed
*/
static void
en_reset_ul(struct en_softc *sc)
{
struct en_map *map;
struct mbuf *m;
struct en_rxslot *rx;
int lcv;
device_printf(sc->dev, "reset\n");
sc->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
if (sc->en_busreset)
sc->en_busreset(sc);
en_write(sc, MID_RESID, 0x0); /* reset hardware */
/*
* recv: dump any mbufs we are dma'ing into, if DRAINing, then a reset
* will free us! Don't release the rxslot from the channel.
*/
for (lcv = 0 ; lcv < MID_N_VC ; lcv++) {
if (sc->vccs[lcv] == NULL)
continue;
rx = sc->vccs[lcv]->rxslot;
for (;;) {
_IF_DEQUEUE(&rx->indma, m);
if (m == NULL)
break;
map = (void *)m->m_pkthdr.rcvif;
uma_zfree(sc->map_zone, map);
m_freem(m);
}
for (;;) {
_IF_DEQUEUE(&rx->q, m);
if (m == NULL)
break;
m_freem(m);
}
sc->vccs[lcv]->vflags = 0;
}
/*
* xmit: dump everything
*/
for (lcv = 0 ; lcv < EN_NTX ; lcv++) {
for (;;) {
_IF_DEQUEUE(&sc->txslot[lcv].indma, m);
if (m == NULL)
break;
map = (void *)m->m_pkthdr.rcvif;
uma_zfree(sc->map_zone, map);
m_freem(m);
}
for (;;) {
_IF_DEQUEUE(&sc->txslot[lcv].q, m);
if (m == NULL)
break;
map = (void *)m->m_pkthdr.rcvif;
uma_zfree(sc->map_zone, map);
m_freem(m);
}
sc->txslot[lcv].mbsize = 0;
}
/*
* Unstop all waiters
*/
cv_broadcast(&sc->cv_close);
}
/*
* en_reset: reset the board, throw away work in progress.
* must en_init to recover.
*
* LOCK: unlocked, needed
*
* Use en_reset_ul if you alreay have the lock
*/
void
en_reset(struct en_softc *sc)
{
EN_LOCK(sc);
en_reset_ul(sc);
EN_UNLOCK(sc);
}
/*
* en_init: init board and sync the card with the data in the softc.
*
* LOCK: locked, needed
*/
static void
en_init(struct en_softc *sc)
{
int vc, slot;
uint32_t loc;
if ((sc->ifp->if_flags & IFF_UP) == 0) {
DBG(sc, INIT, ("going down"));
en_reset(sc); /* to be safe */
return;
}
DBG(sc, INIT, ("going up"));
sc->ifp->if_drv_flags |= IFF_DRV_RUNNING; /* enable */
if (sc->en_busreset)
sc->en_busreset(sc);
en_write(sc, MID_RESID, 0x0); /* reset */
/* zero memory */
bus_space_set_region_4(sc->en_memt, sc->en_base,
MID_RAMOFF, 0, sc->en_obmemsz / 4);
/*
* init obmem data structures: vc tab, dma q's, slist.
*
* note that we set drq_free/dtq_free to one less than the total number
* of DTQ/DRQs present. we do this because the card uses the condition
* (drq_chip == drq_us) to mean "list is empty"... but if you allow the
* circular list to be completely full then (drq_chip == drq_us) [i.e.
* the drq_us pointer will wrap all the way around]. by restricting
* the number of active requests to (N - 1) we prevent the list from
* becoming completely full. note that the card will sometimes give
* us an interrupt for a DTQ/DRQ we have already processes... this helps
* keep that interrupt from messing us up.
*/
bzero(&sc->drq, sizeof(sc->drq));
sc->drq_free = MID_DRQ_N - 1;
sc->drq_chip = MID_DRQ_REG2A(en_read(sc, MID_DMA_RDRX));
en_write(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_chip));
sc->drq_us = sc->drq_chip;
bzero(&sc->dtq, sizeof(sc->dtq));
sc->dtq_free = MID_DTQ_N - 1;
sc->dtq_chip = MID_DTQ_REG2A(en_read(sc, MID_DMA_RDTX));
en_write(sc, MID_DMA_WRTX, MID_DRQ_A2REG(sc->dtq_chip));
sc->dtq_us = sc->dtq_chip;
sc->hwslistp = MID_SL_REG2A(en_read(sc, MID_SERV_WRITE));
sc->swsl_size = sc->swsl_head = sc->swsl_tail = 0;
DBG(sc, INIT, ("drq free/chip: %d/0x%x, dtq free/chip: %d/0x%x, "
"hwslist: 0x%x", sc->drq_free, sc->drq_chip, sc->dtq_free,
sc->dtq_chip, sc->hwslistp));
for (slot = 0 ; slot < EN_NTX ; slot++) {
sc->txslot[slot].bfree = EN_TXSZ * 1024;
en_write(sc, MIDX_READPTR(slot), 0);
en_write(sc, MIDX_DESCSTART(slot), 0);
loc = sc->txslot[slot].cur = sc->txslot[slot].start;
loc = loc - MID_RAMOFF;
/* mask, cvt to words */
loc = (loc & ~((EN_TXSZ * 1024) - 1)) >> 2;
/* top 11 bits */
loc = loc >> MIDV_LOCTOPSHFT;
en_write(sc, MIDX_PLACE(slot), MIDX_MKPLACE(en_k2sz(EN_TXSZ),
loc));
DBG(sc, INIT, ("tx%d: place 0x%x", slot,
(u_int)en_read(sc, MIDX_PLACE(slot))));
}
for (vc = 0; vc < MID_N_VC; vc++)
if (sc->vccs[vc] != NULL)
en_loadvc(sc, sc->vccs[vc]);
/*
* enable!
*/
en_write(sc, MID_INTENA, MID_INT_TX | MID_INT_DMA_OVR | MID_INT_IDENT |
MID_INT_LERR | MID_INT_DMA_ERR | MID_INT_DMA_RX | MID_INT_DMA_TX |
MID_INT_SERVICE | MID_INT_SUNI | MID_INT_STATS);
en_write(sc, MID_MAST_CSR, MID_SETIPL(sc->ipl) | MID_MCSR_ENDMA |
MID_MCSR_ENTX | MID_MCSR_ENRX);
}
/*********************************************************************/
/*
* Ioctls
*/
/*
* en_ioctl: handle ioctl requests
*
* NOTE: if you add an ioctl to set txspeed, you should choose a new
* TX channel/slot. Choose the one with the lowest sc->txslot[slot].nref
* value, subtract one from sc->txslot[0].nref, add one to the
* sc->txslot[slot].nref, set sc->txvc2slot[vci] = slot, and then set
* txspeed[vci].
*
* LOCK: unlocked, needed
*/
static int
en_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct en_softc *sc = (struct en_softc *)ifp->if_softc;
#if defined(INET) || defined(INET6)
struct ifaddr *ifa = (struct ifaddr *)data;
#endif
struct ifreq *ifr = (struct ifreq *)data;
struct atmio_vcctable *vtab;
int error = 0;
switch (cmd) {
case SIOCSIFADDR:
EN_LOCK(sc);
ifp->if_flags |= IFF_UP;
#if defined(INET) || defined(INET6)
if (ifa->ifa_addr->sa_family == AF_INET
|| ifa->ifa_addr->sa_family == AF_INET6) {
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
en_reset_ul(sc);
en_init(sc);
}
ifa->ifa_rtrequest = atm_rtrequest; /* ??? */
EN_UNLOCK(sc);
break;
}
#endif /* INET */
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
en_reset_ul(sc);
en_init(sc);
}
EN_UNLOCK(sc);
break;
case SIOCSIFFLAGS:
EN_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
en_init(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
en_reset_ul(sc);
}
EN_UNLOCK(sc);
break;
case SIOCSIFMTU:
/*
* Set the interface MTU.
*/
if (ifr->ifr_mtu > ATMMTU) {
error = EINVAL;
break;
}
ifp->if_mtu = ifr->ifr_mtu;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->media, cmd);
break;
case SIOCATMOPENVCC: /* kernel internal use */
error = en_open_vcc(sc, (struct atmio_openvcc *)data);
break;
case SIOCATMCLOSEVCC: /* kernel internal use */
error = en_close_vcc(sc, (struct atmio_closevcc *)data);
break;
case SIOCATMGETVCCS: /* internal netgraph use */
vtab = atm_getvccs((struct atmio_vcc **)sc->vccs,
MID_N_VC, sc->vccs_open, &sc->en_mtx, 0);
if (vtab == NULL) {
error = ENOMEM;
break;
}
*(void **)data = vtab;
break;
case SIOCATMGVCCS: /* return vcc table */
vtab = atm_getvccs((struct atmio_vcc **)sc->vccs,
MID_N_VC, sc->vccs_open, &sc->en_mtx, 1);
error = copyout(vtab, ifr->ifr_data, sizeof(*vtab) +
vtab->count * sizeof(vtab->vccs[0]));
free(vtab, M_DEVBUF);
break;
default:
error = EINVAL;
break;
}
return (error);
}
/*********************************************************************/
/*
* Sysctl's
*/
/*
* Sysctl handler for internal statistics
*
* LOCK: unlocked, needed
*/
static int
en_sysctl_istats(SYSCTL_HANDLER_ARGS)
{
struct en_softc *sc = arg1;
uint32_t *ret;
int error;
ret = malloc(sizeof(sc->stats), M_TEMP, M_WAITOK);
EN_LOCK(sc);
bcopy(&sc->stats, ret, sizeof(sc->stats));
EN_UNLOCK(sc);
error = SYSCTL_OUT(req, ret, sizeof(sc->stats));
free(ret, M_TEMP);
return (error);
}
/*********************************************************************/
/*
* Interrupts
*/
/*
* Transmit interrupt handler
*
* check for tx complete, if detected then this means that some space
* has come free on the card. we must account for it and arrange to
* kick the channel to life (in case it is stalled waiting on the card).
*
* LOCK: locked, needed
*/
static uint32_t
en_intr_tx(struct en_softc *sc, uint32_t reg)
{
uint32_t kick;
uint32_t mask;
uint32_t val;
int chan;
kick = 0; /* bitmask of channels to kick */
for (mask = 1, chan = 0; chan < EN_NTX; chan++, mask *= 2) {
if (!(reg & MID_TXCHAN(chan)))
continue;
kick = kick | mask;
/* current read pointer */
val = en_read(sc, MIDX_READPTR(chan));
/* as offset */
val = (val * sizeof(uint32_t)) + sc->txslot[chan].start;
if (val > sc->txslot[chan].cur)
sc->txslot[chan].bfree = val - sc->txslot[chan].cur;
else
sc->txslot[chan].bfree = (val + (EN_TXSZ * 1024)) -
sc->txslot[chan].cur;
DBG(sc, INTR, ("tx%d: transmit done. %d bytes now free in "
"buffer", chan, sc->txslot[chan].bfree));
}
return (kick);
}
/*
* TX DMA interrupt
*
* check for TX DMA complete, if detected then this means
* that some DTQs are now free. it also means some indma
* mbufs can be freed. if we needed DTQs, kick all channels.
*
* LOCK: locked, needed
*/
static uint32_t
en_intr_tx_dma(struct en_softc *sc)
{
uint32_t kick = 0;
uint32_t val;
uint32_t idx;
uint32_t slot;
uint32_t dtq;
struct en_map *map;
struct mbuf *m;
val = en_read(sc, MID_DMA_RDTX); /* chip's current location */
idx = MID_DTQ_A2REG(sc->dtq_chip); /* where we last saw chip */
if (sc->need_dtqs) {
kick = MID_NTX_CH - 1; /* assume power of 2, kick all! */
sc->need_dtqs = 0; /* recalculated in "kick" loop below */
DBG(sc, INTR, ("cleared need DTQ condition"));
}
while (idx != val) {
sc->dtq_free++;
if ((dtq = sc->dtq[idx]) != 0) {
/* don't forget to zero it out when done */
sc->dtq[idx] = 0;
slot = EN_DQ_SLOT(dtq);
_IF_DEQUEUE(&sc->txslot[slot].indma, m);
if (m == NULL)
panic("enintr: dtqsync");
map = (void *)m->m_pkthdr.rcvif;
uma_zfree(sc->map_zone, map);
m_freem(m);
sc->txslot[slot].mbsize -= EN_DQ_LEN(dtq);
DBG(sc, INTR, ("tx%d: free %d dma bytes, mbsize now "
"%d", slot, EN_DQ_LEN(dtq),
sc->txslot[slot].mbsize));
}
EN_WRAPADD(0, MID_DTQ_N, idx, 1);
}
sc->dtq_chip = MID_DTQ_REG2A(val); /* sync softc */
return (kick);
}
/*
* Service interrupt
*
* LOCK: locked, needed
*/
static int
en_intr_service(struct en_softc *sc)
{
uint32_t chip;
uint32_t vci;
int need_softserv = 0;
struct en_vcc *vc;
chip = MID_SL_REG2A(en_read(sc, MID_SERV_WRITE));
while (sc->hwslistp != chip) {
/* fetch and remove it from hardware service list */
vci = en_read(sc, sc->hwslistp);
EN_WRAPADD(MID_SLOFF, MID_SLEND, sc->hwslistp, 4);
if ((vc = sc->vccs[vci]) == NULL ||
(vc->vcc.flags & ATMIO_FLAG_NORX)) {
DBG(sc, INTR, ("unexpected rx interrupt VCI %d", vci));
en_write(sc, MID_VC(vci), MIDV_TRASH); /* rx off */
continue;
}
/* remove from hwsl */
en_write(sc, MID_VC(vci), vc->rxslot->mode);
EN_COUNT(sc->stats.hwpull);
DBG(sc, INTR, ("pulled VCI %d off hwslist", vci));
/* add it to the software service list (if needed) */
if ((vc->vflags & VCC_SWSL) == 0) {
EN_COUNT(sc->stats.swadd);
need_softserv = 1;
vc->vflags |= VCC_SWSL;
sc->swslist[sc->swsl_tail] = vci;
EN_WRAPADD(0, MID_SL_N, sc->swsl_tail, 1);
sc->swsl_size++;
DBG(sc, INTR, ("added VCI %d to swslist", vci));
}
}
return (need_softserv);
}
/*
* Handle a receive DMA completion
*/
static void
en_rx_drain(struct en_softc *sc, u_int drq)
{
struct en_rxslot *slot;
struct en_vcc *vc;
struct mbuf *m;
struct atm_pseudohdr ah;
slot = &sc->rxslot[EN_DQ_SLOT(drq)];
m = NULL; /* assume "JK" trash DMA */
if (EN_DQ_LEN(drq) != 0) {
_IF_DEQUEUE(&slot->indma, m);
KASSERT(m != NULL, ("drqsync: %s: lost mbuf in slot %td!",
sc->ifp->if_xname, slot - sc->rxslot));
uma_zfree(sc->map_zone, (struct en_map *)m->m_pkthdr.rcvif);
}
if ((vc = slot->vcc) == NULL) {
/* ups */
if (m != NULL)
m_freem(m);
return;
}
/* do something with this mbuf */
if (vc->vflags & VCC_DRAIN) {
/* drain? */
if (m != NULL)
m_freem(m);
if (_IF_QLEN(&slot->indma) == 0 && _IF_QLEN(&slot->q) == 0 &&
(en_read(sc, MID_VC(vc->vcc.vci)) & MIDV_INSERVICE) == 0 &&
(vc->vflags & VCC_SWSL) == 0) {
vc->vflags &= ~VCC_CLOSE_RX;
if (vc->vcc.flags & ATMIO_FLAG_ASYNC)
en_close_finish(sc, vc);
else
cv_signal(&sc->cv_close);
}
return;
}
if (m != NULL) {
ATM_PH_FLAGS(&ah) = vc->vcc.flags;
ATM_PH_VPI(&ah) = 0;
ATM_PH_SETVCI(&ah, vc->vcc.vci);
DBG(sc, INTR, ("rx%td: rxvci%d: atm_input, mbuf %p, len %d, "
"hand %p", slot - sc->rxslot, vc->vcc.vci, m,
EN_DQ_LEN(drq), vc->rxhand));
m->m_pkthdr.rcvif = sc->ifp;
if_inc_counter(sc->ifp, IFCOUNTER_IPACKETS, 1);
vc->ipackets++;
vc->ibytes += m->m_pkthdr.len;
#ifdef EN_DEBUG
if (sc->debug & DBG_IPACKETS)
en_dump_packet(sc, m);
#endif
#ifdef ENABLE_BPF
BPF_MTAP(sc->ifp, m);
#endif
EN_UNLOCK(sc);
atm_input(sc->ifp, &ah, m, vc->rxhand);
EN_LOCK(sc);
}
}
/*
* check for RX DMA complete, and pass the data "upstairs"
*
* LOCK: locked, needed
*/
static int
en_intr_rx_dma(struct en_softc *sc)
{
uint32_t val;
uint32_t idx;
uint32_t drq;
val = en_read(sc, MID_DMA_RDRX); /* chip's current location */
idx = MID_DRQ_A2REG(sc->drq_chip); /* where we last saw chip */
while (idx != val) {
sc->drq_free++;
if ((drq = sc->drq[idx]) != 0) {
/* don't forget to zero it out when done */
sc->drq[idx] = 0;
en_rx_drain(sc, drq);
}
EN_WRAPADD(0, MID_DRQ_N, idx, 1);
}
sc->drq_chip = MID_DRQ_REG2A(val); /* sync softc */
if (sc->need_drqs) {
/* true if we had a DRQ shortage */
sc->need_drqs = 0;
DBG(sc, INTR, ("cleared need DRQ condition"));
return (1);
} else
return (0);
}
/*
* en_mget: get an mbuf chain that can hold totlen bytes and return it
* (for recv). For the actual allocation totlen is rounded up to a multiple
* of 4. We also ensure, that each mbuf has a multiple of 4 bytes.
*
* After this call the sum of all the m_len's in the chain will be totlen.
* This is called at interrupt time, so we can't wait here.
*
* LOCK: any, not needed
*/
static struct mbuf *
en_mget(struct en_softc *sc, u_int pktlen)
{
struct mbuf *m, *tmp;
u_int totlen, pad;
totlen = roundup(pktlen, sizeof(uint32_t));
pad = totlen - pktlen;
/*
* First get an mbuf with header. Keep space for a couple of
* words at the begin.
*/
/* called from interrupt context */
MGETHDR(m, M_NOWAIT, MT_DATA);
if (m == NULL)
return (NULL);
m->m_pkthdr.rcvif = NULL;
m->m_pkthdr.len = pktlen;
m->m_len = EN_RX1BUF;
M_ALIGN(m, EN_RX1BUF);
if (m->m_len >= totlen) {
m->m_len = totlen;
} else {
totlen -= m->m_len;
/* called from interrupt context */
tmp = m_getm(m, totlen, M_NOWAIT, MT_DATA);
if (tmp == NULL) {
m_free(m);
return (NULL);
}
tmp = m->m_next;
/* m_getm could do this for us */
while (tmp != NULL) {
tmp->m_len = min(MCLBYTES, totlen);
totlen -= tmp->m_len;
tmp = tmp->m_next;
}
}
return (m);
}
/*
* Argument for RX DMAMAP loader.
*/
struct rxarg {
struct en_softc *sc;
struct mbuf *m;
u_int pre_skip; /* number of bytes to skip at begin */
u_int post_skip; /* number of bytes to skip at end */
struct en_vcc *vc; /* vc we are receiving on */
int wait; /* wait for DRQ entries */
};
/*
* Copy the segment table to the buffer for later use. And compute the
* number of dma queue entries we need.
*
* LOCK: locked, needed
*/
static void
en_rxdma_load(void *uarg, bus_dma_segment_t *segs, int nseg,
bus_size_t mapsize, int error)
{
struct rxarg *rx = uarg;
struct en_softc *sc = rx->sc;
struct en_rxslot *slot = rx->vc->rxslot;
u_int free; /* number of free DRQ entries */
uint32_t cur; /* current buffer offset */
uint32_t drq; /* DRQ entry pointer */
uint32_t last_drq; /* where we have written last */
u_int needalign, cnt, count, bcode;
bus_addr_t addr;
bus_size_t rest;
int i;
if (error != 0)
return;
if (nseg > EN_MAX_DMASEG)
panic("too many DMA segments");
rx->wait = 0;
free = sc->drq_free;
drq = sc->drq_us;
cur = slot->cur;
last_drq = 0;
/*
* Local macro to add an entry to the receive DMA area. If there
* are no entries left, return. Save the byte offset of the entry
* in last_drq for later use.
*/
#define PUT_DRQ_ENTRY(ENI, BCODE, COUNT, ADDR) \
if (free == 0) { \
EN_COUNT(sc->stats.rxdrqout); \
rx->wait = 1; \
return; \
} \
last_drq = drq; \
en_write(sc, drq + 0, (ENI || !sc->is_adaptec) ? \
MID_MK_RXQ_ENI(COUNT, rx->vc->vcc.vci, 0, BCODE) : \
MID_MK_RXQ_ADP(COUNT, rx->vc->vcc.vci, 0, BCODE)); \
en_write(sc, drq + 4, ADDR); \
\
EN_WRAPADD(MID_DRQOFF, MID_DRQEND, drq, 8); \
free--;
/*
* Local macro to generate a DMA entry to DMA cnt bytes. Updates
* the current buffer byte offset accordingly.
*/
#define DO_DRQ(TYPE) do { \
rest -= cnt; \
EN_WRAPADD(slot->start, slot->stop, cur, cnt); \
DBG(sc, SERV, ("rx%td: "TYPE" %u bytes, %ju left, cur %#x", \
slot - sc->rxslot, cnt, (uintmax_t)rest, cur)); \
\
PUT_DRQ_ENTRY(1, bcode, count, addr); \
\
addr += cnt; \
} while (0)
/*
* Skip the RBD at the beginning
*/
if (rx->pre_skip > 0) {
/* update DMA address */
EN_WRAPADD(slot->start, slot->stop, cur, rx->pre_skip);
PUT_DRQ_ENTRY(0, MIDDMA_JK, WORD_IDX(slot->start, cur), 0);
}
for (i = 0; i < nseg; i++, segs++) {
addr = segs->ds_addr;
rest = segs->ds_len;
if (sc->is_adaptec) {
/* adaptec card - simple */
/* advance the on-card buffer pointer */
EN_WRAPADD(slot->start, slot->stop, cur, rest);
DBG(sc, SERV, ("rx%td: adp %ju bytes %#jx "
"(cur now 0x%x)", slot - sc->rxslot,
(uintmax_t)rest, (uintmax_t)addr, cur));
PUT_DRQ_ENTRY(0, 0, rest, addr);
continue;
}
/*
* do we need to do a DMA op to align to the maximum
* burst? Note, that we are alway 32-bit aligned.
*/
if (sc->alburst &&
(needalign = (addr & sc->bestburstmask)) != 0) {
/* compute number of bytes, words and code */
cnt = sc->bestburstlen - needalign;
if (cnt > rest)
cnt = rest;
count = cnt / sizeof(uint32_t);
if (sc->noalbursts) {
bcode = MIDDMA_WORD;
} else {
bcode = en_dmaplan[count].bcode;
count = cnt >> en_dmaplan[count].divshift;
}
DO_DRQ("al_dma");
}
/* do we need to do a max-sized burst? */
if (rest >= sc->bestburstlen) {
count = rest >> sc->bestburstshift;
cnt = count << sc->bestburstshift;
bcode = sc->bestburstcode;
DO_DRQ("best_dma");
}
/* do we need to do a cleanup burst? */
if (rest != 0) {
cnt = rest;
count = rest / sizeof(uint32_t);
if (sc->noalbursts) {
bcode = MIDDMA_WORD;
} else {
bcode = en_dmaplan[count].bcode;
count = cnt >> en_dmaplan[count].divshift;
}
DO_DRQ("clean_dma");
}
}
/*
* Skip stuff at the end
*/
if (rx->post_skip > 0) {
/* update DMA address */
EN_WRAPADD(slot->start, slot->stop, cur, rx->post_skip);
PUT_DRQ_ENTRY(0, MIDDMA_JK, WORD_IDX(slot->start, cur), 0);
}
/* record the end for the interrupt routine */
sc->drq[MID_DRQ_A2REG(last_drq)] =
EN_DQ_MK(slot - sc->rxslot, rx->m->m_pkthdr.len);
/* set the end flag in the last descriptor */
en_write(sc, last_drq + 0, SETQ_END(sc, en_read(sc, last_drq + 0)));
#undef PUT_DRQ_ENTRY
#undef DO_DRQ
/* commit */
slot->cur = cur;
sc->drq_free = free;
sc->drq_us = drq;
/* signal to card */
en_write(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_us));
}
/*
* en_service: handle a service interrupt
*
* Q: why do we need a software service list?
*
* A: if we remove a VCI from the hardware list and we find that we are
* out of DRQs we must defer processing until some DRQs become free.
* so we must remember to look at this RX VCI/slot later, but we can't
* put it back on the hardware service list (since that isn't allowed).
* so we instead save it on the software service list. it would be nice
* if we could peek at the VCI on top of the hwservice list without removing
* it, however this leads to a race condition: if we peek at it and
* decide we are done with it new data could come in before we have a
* chance to remove it from the hwslist. by the time we get it out of
* the list the interrupt for the new data will be lost. oops!
*
* LOCK: locked, needed
*/
static void
en_service(struct en_softc *sc)
{
struct mbuf *m, *lastm;
struct en_map *map;
struct rxarg rx;
uint32_t cur;
uint32_t dstart; /* data start (as reported by card) */
uint32_t rbd; /* receive buffer descriptor */
uint32_t pdu; /* AAL5 trailer */
int mlen;
int error;
struct en_rxslot *slot;
struct en_vcc *vc;
rx.sc = sc;
next_vci:
if (sc->swsl_size == 0) {
DBG(sc, SERV, ("en_service done"));
return;
}
/*
* get vcc to service
*/
rx.vc = vc = sc->vccs[sc->swslist[sc->swsl_head]];
slot = vc->rxslot;
KASSERT (slot->vcc->rxslot == slot, ("en_service: rx slot/vci sync"));
/*
* determine our mode and if we've got any work to do
*/
DBG(sc, SERV, ("rx%td: service vci=%d start/stop/cur=0x%x 0x%x "
"0x%x", slot - sc->rxslot, vc->vcc.vci, slot->start,
slot->stop, slot->cur));
same_vci:
cur = slot->cur;
dstart = MIDV_DSTART(en_read(sc, MID_DST_RP(vc->vcc.vci)));
dstart = (dstart * sizeof(uint32_t)) + slot->start;
/* check to see if there is any data at all */
if (dstart == cur) {
EN_WRAPADD(0, MID_SL_N, sc->swsl_head, 1);
/* remove from swslist */
vc->vflags &= ~VCC_SWSL;
sc->swsl_size--;
DBG(sc, SERV, ("rx%td: remove vci %d from swslist",
slot - sc->rxslot, vc->vcc.vci));
goto next_vci;
}
/*
* figure out how many bytes we need
* [mlen = # bytes to go in mbufs]
*/
rbd = en_read(sc, cur);
if (MID_RBD_ID(rbd) != MID_RBD_STDID)
panic("en_service: id mismatch");
if (rbd & MID_RBD_T) {
mlen = 0; /* we've got trash */
rx.pre_skip = MID_RBD_SIZE;
rx.post_skip = 0;
EN_COUNT(sc->stats.ttrash);
DBG(sc, SERV, ("RX overflow lost %d cells!", MID_RBD_CNT(rbd)));
} else if (vc->vcc.aal != ATMIO_AAL_5) {
/* 1 cell (ick!) */
mlen = MID_CHDR_SIZE + MID_ATMDATASZ;
rx.pre_skip = MID_RBD_SIZE;
rx.post_skip = 0;
} else {
rx.pre_skip = MID_RBD_SIZE;
/* get PDU trailer in correct byte order */
pdu = cur + MID_RBD_CNT(rbd) * MID_ATMDATASZ +
MID_RBD_SIZE - MID_PDU_SIZE;
if (pdu >= slot->stop)
pdu -= EN_RXSZ * 1024;
pdu = en_read(sc, pdu);
if (MID_RBD_CNT(rbd) * MID_ATMDATASZ <
MID_PDU_LEN(pdu)) {
device_printf(sc->dev, "invalid AAL5 length\n");
rx.post_skip = MID_RBD_CNT(rbd) * MID_ATMDATASZ;
mlen = 0;
if_inc_counter(sc->ifp, IFCOUNTER_IERRORS, 1);
} else if (rbd & MID_RBD_CRCERR) {
device_printf(sc->dev, "CRC error\n");
rx.post_skip = MID_RBD_CNT(rbd) * MID_ATMDATASZ;
mlen = 0;
if_inc_counter(sc->ifp, IFCOUNTER_IERRORS, 1);
} else {
mlen = MID_PDU_LEN(pdu);
rx.post_skip = MID_RBD_CNT(rbd) * MID_ATMDATASZ - mlen;
}
}
/*
* now allocate mbufs for mlen bytes of data, if out of mbufs, trash all
*
* notes:
* 1. it is possible that we've already allocated an mbuf for this pkt
* but ran out of DRQs, in which case we saved the allocated mbuf
* on "q".
* 2. if we save an buf in "q" we store the "cur" (pointer) in the
* buf as an identity (that we can check later).
* 3. after this block of code, if m is still NULL then we ran out of
* mbufs
*/
_IF_DEQUEUE(&slot->q, m);
if (m != NULL) {
if (m->m_pkthdr.csum_data != cur) {
/* wasn't ours */
DBG(sc, SERV, ("rx%td: q'ed buf %p not ours",
slot - sc->rxslot, m));
_IF_PREPEND(&slot->q, m);
m = NULL;
EN_COUNT(sc->stats.rxqnotus);
} else {
EN_COUNT(sc->stats.rxqus);
DBG(sc, SERV, ("rx%td: recovered q'ed buf %p",
slot - sc->rxslot, m));
}
}
if (mlen == 0 && m != NULL) {
/* should not happen */
m_freem(m);
m = NULL;
}
if (mlen != 0 && m == NULL) {
m = en_mget(sc, mlen);
if (m == NULL) {
rx.post_skip += mlen;
mlen = 0;
EN_COUNT(sc->stats.rxmbufout);
DBG(sc, SERV, ("rx%td: out of mbufs",
slot - sc->rxslot));
} else
rx.post_skip -= roundup(mlen, sizeof(uint32_t)) - mlen;
DBG(sc, SERV, ("rx%td: allocate buf %p, mlen=%d",
slot - sc->rxslot, m, mlen));
}
DBG(sc, SERV, ("rx%td: VCI %d, rbuf %p, mlen %d, skip %u/%u",
slot - sc->rxslot, vc->vcc.vci, m, mlen, rx.pre_skip,
rx.post_skip));
if (m != NULL) {
/* M_NOWAIT - called from interrupt context */
map = uma_zalloc_arg(sc->map_zone, sc, M_NOWAIT);
if (map == NULL) {
rx.post_skip += mlen;
m_freem(m);
DBG(sc, SERV, ("rx%td: out of maps",
slot - sc->rxslot));
goto skip;
}
rx.m = m;
error = bus_dmamap_load_mbuf(sc->txtag, map->map, m,
en_rxdma_load, &rx, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->dev, "loading RX map failed "
"%d\n", error);
uma_zfree(sc->map_zone, map);
m_freem(m);
rx.post_skip += mlen;
goto skip;
}
map->flags |= ENMAP_LOADED;
if (rx.wait) {
/* out of DRQs - wait */
uma_zfree(sc->map_zone, map);
m->m_pkthdr.csum_data = cur;
_IF_ENQUEUE(&slot->q, m);
EN_COUNT(sc->stats.rxdrqout);
sc->need_drqs = 1; /* flag condition */
return;
}
(void)m_length(m, &lastm);
lastm->m_len -= roundup(mlen, sizeof(uint32_t)) - mlen;
m->m_pkthdr.rcvif = (void *)map;
_IF_ENQUEUE(&slot->indma, m);
/* get next packet in this slot */
goto same_vci;
}
skip:
/*
* Here we end if we should drop the packet from the receive buffer.
* The number of bytes to drop is in fill. We can do this with on
* JK entry. If we don't even have that one - wait.
*/
if (sc->drq_free == 0) {
sc->need_drqs = 1; /* flag condition */
return;
}
rx.post_skip += rx.pre_skip;
DBG(sc, SERV, ("rx%td: skipping %u", slot - sc->rxslot, rx.post_skip));
/* advance buffer address */
EN_WRAPADD(slot->start, slot->stop, cur, rx.post_skip);
/* write DRQ entry */
if (sc->is_adaptec)
en_write(sc, sc->drq_us,
MID_MK_RXQ_ADP(WORD_IDX(slot->start, cur),
vc->vcc.vci, MID_DMA_END, MIDDMA_JK));
else
en_write(sc, sc->drq_us,
MID_MK_RXQ_ENI(WORD_IDX(slot->start, cur),
vc->vcc.vci, MID_DMA_END, MIDDMA_JK));
en_write(sc, sc->drq_us + 4, 0);
EN_WRAPADD(MID_DRQOFF, MID_DRQEND, sc->drq_us, 8);
sc->drq_free--;
/* signal to RX interrupt */
sc->drq[MID_DRQ_A2REG(sc->drq_us)] = EN_DQ_MK(slot - sc->rxslot, 0);
slot->cur = cur;
/* signal to card */
en_write(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_us));
goto same_vci;
}
/*
* interrupt handler
*
* LOCK: unlocked, needed
*/
void
en_intr(void *arg)
{
struct en_softc *sc = arg;
uint32_t reg, kick, mask;
int lcv, need_softserv;
EN_LOCK(sc);
reg = en_read(sc, MID_INTACK);
DBG(sc, INTR, ("interrupt=0x%b", reg, MID_INTBITS));
if ((reg & MID_INT_ANY) == 0) {
EN_UNLOCK(sc);
return;
}
/*
* unexpected errors that need a reset
*/
if ((reg & (MID_INT_IDENT | MID_INT_LERR | MID_INT_DMA_ERR)) != 0) {
device_printf(sc->dev, "unexpected interrupt=0x%b, "
"resetting\n", reg, MID_INTBITS);
#ifdef EN_DEBUG
panic("en: unexpected error");
#else
en_reset_ul(sc);
en_init(sc);
#endif
EN_UNLOCK(sc);
return;
}
if (reg & MID_INT_SUNI)
utopia_intr(&sc->utopia);
kick = 0;
if (reg & MID_INT_TX)
kick |= en_intr_tx(sc, reg);
if (reg & MID_INT_DMA_TX)
kick |= en_intr_tx_dma(sc);
/*
* kick xmit channels as needed.
*/
if (kick) {
DBG(sc, INTR, ("tx kick mask = 0x%x", kick));
for (mask = 1, lcv = 0 ; lcv < EN_NTX ; lcv++, mask = mask * 2)
if ((kick & mask) && _IF_QLEN(&sc->txslot[lcv].q) != 0)
en_txdma(sc, &sc->txslot[lcv]);
}
need_softserv = 0;
if (reg & MID_INT_DMA_RX)
need_softserv |= en_intr_rx_dma(sc);
if (reg & MID_INT_SERVICE)
need_softserv |= en_intr_service(sc);
if (need_softserv)
en_service(sc);
/*
* keep our stats
*/
if (reg & MID_INT_DMA_OVR) {
EN_COUNT(sc->stats.dmaovr);
DBG(sc, INTR, ("MID_INT_DMA_OVR"));
}
reg = en_read(sc, MID_STAT);
sc->stats.otrash += MID_OTRASH(reg);
sc->stats.vtrash += MID_VTRASH(reg);
EN_UNLOCK(sc);
}
/*
* Read at most n SUNI regs starting at reg into val
*/
static int
en_utopia_readregs(struct ifatm *ifatm, u_int reg, uint8_t *val, u_int *n)
{
struct en_softc *sc = ifatm->ifp->if_softc;
u_int i;
EN_CHECKLOCK(sc);
if (reg >= MID_NSUNI)
return (EINVAL);
if (reg + *n > MID_NSUNI)
*n = MID_NSUNI - reg;
for (i = 0; i < *n; i++)
val[i] = en_read(sc, MID_SUNIOFF + 4 * (reg + i));
return (0);
}
/*
* change the bits given by mask to them in val in register reg
*/
static int
en_utopia_writereg(struct ifatm *ifatm, u_int reg, u_int mask, u_int val)
{
struct en_softc *sc = ifatm->ifp->if_softc;
uint32_t regval;
EN_CHECKLOCK(sc);
if (reg >= MID_NSUNI)
return (EINVAL);
regval = en_read(sc, MID_SUNIOFF + 4 * reg);
regval = (regval & ~mask) | (val & mask);
en_write(sc, MID_SUNIOFF + 4 * reg, regval);
return (0);
}
static const struct utopia_methods en_utopia_methods = {
en_utopia_readregs,
en_utopia_writereg
};
/*********************************************************************/
/*
* Probing the DMA brokeness of the card
*/
/*
* Physical address load helper function for DMA probe
*
* LOCK: unlocked, not needed
*/
static void
en_dmaprobe_load(void *uarg, bus_dma_segment_t *segs, int nseg, int error)
{
if (error == 0)
*(bus_addr_t *)uarg = segs[0].ds_addr;
}
/*
* en_dmaprobe: helper function for en_attach.
*
* see how the card handles DMA by running a few DMA tests. we need
* to figure out the largest number of bytes we can DMA in one burst
* ("bestburstlen"), and if the starting address for a burst needs to
* be aligned on any sort of boundary or not ("alburst").
*
* Things turn out more complex than that, because on my (harti) brand
* new motherboard (2.4GHz) we can do 64byte aligned DMAs, but everything
* we more than 4 bytes fails (with an RX DMA timeout) for physical
* addresses that end with 0xc. Therefor we search not only the largest
* burst that is supported (hopefully 64) but also check what is the largerst
* unaligned supported size. If that appears to be lesser than 4 words,
* set the noalbursts flag. That will be set only if also alburst is set.
*/
/*
* en_dmaprobe_doit: do actual testing for the DMA test.
* Cycle through all bursts sizes from 8 up to 64 and try whether it works.
* Return the largest one that works.
*
* LOCK: unlocked, not needed
*/
static int
en_dmaprobe_doit(struct en_softc *sc, uint8_t *sp, bus_addr_t psp)
{
uint8_t *dp = sp + MIDDMA_MAXBURST;
bus_addr_t pdp = psp + MIDDMA_MAXBURST;
int lcv, retval = 4, cnt;
uint32_t reg, bcode, midvloc;
if (sc->en_busreset)
sc->en_busreset(sc);
en_write(sc, MID_RESID, 0x0); /* reset card before touching RAM */
/*
* set up a 1k buffer at MID_BUFOFF
*/
midvloc = ((MID_BUFOFF - MID_RAMOFF) / sizeof(uint32_t))
>> MIDV_LOCTOPSHFT;
en_write(sc, MIDX_PLACE(0), MIDX_MKPLACE(en_k2sz(1), midvloc));
en_write(sc, MID_VC(0), (midvloc << MIDV_LOCSHIFT)
| (en_k2sz(1) << MIDV_SZSHIFT) | MIDV_TRASH);
en_write(sc, MID_DST_RP(0), 0);
en_write(sc, MID_WP_ST_CNT(0), 0);
/* set up sample data */
for (lcv = 0 ; lcv < MIDDMA_MAXBURST; lcv++)
sp[lcv] = lcv + 1;
/* enable DMA (only) */
en_write(sc, MID_MAST_CSR, MID_MCSR_ENDMA);
sc->drq_chip = MID_DRQ_REG2A(en_read(sc, MID_DMA_RDRX));
sc->dtq_chip = MID_DTQ_REG2A(en_read(sc, MID_DMA_RDTX));
/*
* try it now . . . DMA it out, then DMA it back in and compare
*
* note: in order to get the dma stuff to reverse directions it wants
* the "end" flag set! since we are not dma'ing valid data we may
* get an ident mismatch interrupt (which we will ignore).
*/
DBG(sc, DMA, ("test sp=%p/%#lx, dp=%p/%#lx",
sp, (u_long)psp, dp, (u_long)pdp));
for (lcv = 8 ; lcv <= MIDDMA_MAXBURST ; lcv = lcv * 2) {
DBG(sc, DMA, ("test lcv=%d", lcv));
/* zero SRAM and dest buffer */
bus_space_set_region_4(sc->en_memt, sc->en_base,
MID_BUFOFF, 0, 1024 / 4);
bzero(dp, MIDDMA_MAXBURST);
bcode = en_sz2b(lcv);
/* build lcv-byte-DMA x NBURSTS */
if (sc->is_adaptec)
en_write(sc, sc->dtq_chip,
MID_MK_TXQ_ADP(lcv, 0, MID_DMA_END, 0));
else
en_write(sc, sc->dtq_chip,
MID_MK_TXQ_ENI(1, 0, MID_DMA_END, bcode));
en_write(sc, sc->dtq_chip + 4, psp);
EN_WRAPADD(MID_DTQOFF, MID_DTQEND, sc->dtq_chip, 8);
en_write(sc, MID_DMA_WRTX, MID_DTQ_A2REG(sc->dtq_chip));
cnt = 1000;
while ((reg = en_readx(sc, MID_DMA_RDTX)) !=
MID_DTQ_A2REG(sc->dtq_chip)) {
DELAY(1);
if (--cnt == 0) {
DBG(sc, DMA, ("unexpected timeout in tx "
"DMA test\n alignment=0x%lx, burst size=%d"
", dma addr reg=%#x, rdtx=%#x, stat=%#x\n",
(u_long)sp & 63, lcv,
en_read(sc, MID_DMA_ADDR), reg,
en_read(sc, MID_INTSTAT)));
return (retval);
}
}
reg = en_read(sc, MID_INTACK);
if ((reg & MID_INT_DMA_TX) != MID_INT_DMA_TX) {
DBG(sc, DMA, ("unexpected status in tx DMA test: %#x\n",
reg));
return (retval);
}
/* re-enable DMA (only) */
en_write(sc, MID_MAST_CSR, MID_MCSR_ENDMA);
/* "return to sender..." address is known ... */
/* build lcv-byte-DMA x NBURSTS */
if (sc->is_adaptec)
en_write(sc, sc->drq_chip,
MID_MK_RXQ_ADP(lcv, 0, MID_DMA_END, 0));
else
en_write(sc, sc->drq_chip,
MID_MK_RXQ_ENI(1, 0, MID_DMA_END, bcode));
en_write(sc, sc->drq_chip + 4, pdp);
EN_WRAPADD(MID_DRQOFF, MID_DRQEND, sc->drq_chip, 8);
en_write(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_chip));
cnt = 1000;
while ((reg = en_readx(sc, MID_DMA_RDRX)) !=
MID_DRQ_A2REG(sc->drq_chip)) {
DELAY(1);
cnt--;
if (--cnt == 0) {
DBG(sc, DMA, ("unexpected timeout in rx "
"DMA test, rdrx=%#x\n", reg));
return (retval);
}
}
reg = en_read(sc, MID_INTACK);
if ((reg & MID_INT_DMA_RX) != MID_INT_DMA_RX) {
DBG(sc, DMA, ("unexpected status in rx DMA "
"test: 0x%x\n", reg));
return (retval);
}
if (bcmp(sp, dp, lcv)) {
DBG(sc, DMA, ("DMA test failed! lcv=%d, sp=%p, "
"dp=%p", lcv, sp, dp));
return (retval);
}
retval = lcv;
}
return (retval); /* studly 64 byte DMA present! oh baby!! */
}
/*
* Find the best DMA parameters
*
* LOCK: unlocked, not needed
*/
static void
en_dmaprobe(struct en_softc *sc)
{
bus_dma_tag_t tag;
bus_dmamap_t map;
int err;
void *buffer;
int bestalgn, lcv, try, bestnoalgn;
bus_addr_t phys;
uint8_t *addr;
sc->alburst = 0;
sc->noalbursts = 0;
/*
* Allocate some DMA-able memory.
* We need 3 times the max burst size aligned to the max burst size.
*/
err = bus_dma_tag_create(bus_get_dma_tag(sc->dev), MIDDMA_MAXBURST, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
3 * MIDDMA_MAXBURST, 1, 3 * MIDDMA_MAXBURST, 0,
NULL, NULL, &tag);
if (err)
panic("%s: cannot create test DMA tag %d", __func__, err);
err = bus_dmamem_alloc(tag, &buffer, 0, &map);
if (err)
panic("%s: cannot allocate test DMA memory %d", __func__, err);
err = bus_dmamap_load(tag, map, buffer, 3 * MIDDMA_MAXBURST,
en_dmaprobe_load, &phys, BUS_DMA_NOWAIT);
if (err)
panic("%s: cannot load test DMA map %d", __func__, err);
addr = buffer;
DBG(sc, DMA, ("phys=%#lx addr=%p", (u_long)phys, addr));
/*
* Now get the best burst size of the aligned case.
*/
bestalgn = bestnoalgn = en_dmaprobe_doit(sc, addr, phys);
/*
* Now try unaligned.
*/
for (lcv = 4; lcv < MIDDMA_MAXBURST; lcv += 4) {
try = en_dmaprobe_doit(sc, addr + lcv, phys + lcv);
if (try < bestnoalgn)
bestnoalgn = try;
}
if (bestnoalgn < bestalgn) {
sc->alburst = 1;
if (bestnoalgn < 32)
sc->noalbursts = 1;
}
sc->bestburstlen = bestalgn;
sc->bestburstshift = en_log2(bestalgn);
sc->bestburstmask = sc->bestburstlen - 1; /* must be power of 2 */
sc->bestburstcode = en_sz2b(bestalgn);
/*
* Reset the chip before freeing the buffer. It may still be trying
* to DMA.
*/
if (sc->en_busreset)
sc->en_busreset(sc);
en_write(sc, MID_RESID, 0x0); /* reset card before touching RAM */
DELAY(10000); /* may still do DMA */
/*
* Free the DMA stuff
*/
bus_dmamap_unload(tag, map);
bus_dmamem_free(tag, buffer, map);
bus_dma_tag_destroy(tag);
}
/*********************************************************************/
/*
* Attach/detach.
*/
/*
* Attach to the card.
*
* LOCK: unlocked, not needed (but initialized)
*/
int
en_attach(struct en_softc *sc)
{
struct ifnet *ifp = sc->ifp;
int sz;
uint32_t reg, lcv, check, ptr, sav, midvloc;
#ifdef EN_DEBUG
sc->debug = EN_DEBUG;
#endif
/*
* Probe card to determine memory size.
*
* The stupid ENI card always reports to PCI that it needs 4MB of
* space (2MB regs and 2MB RAM). If it has less than 2MB RAM the
* addresses wrap in the RAM address space (i.e. on a 512KB card
* addresses 0x3ffffc, 0x37fffc, and 0x2ffffc are aliases for
* 0x27fffc [note that RAM starts at offset 0x200000]).
*/
/* reset card before touching RAM */
if (sc->en_busreset)
sc->en_busreset(sc);
en_write(sc, MID_RESID, 0x0);
for (lcv = MID_PROBEOFF; lcv <= MID_MAXOFF ; lcv += MID_PROBSIZE) {
en_write(sc, lcv, lcv); /* data[address] = address */
for (check = MID_PROBEOFF; check < lcv ;check += MID_PROBSIZE) {
reg = en_read(sc, check);
if (reg != check)
/* found an alias! - quit */
goto done_probe;
}
}
done_probe:
lcv -= MID_PROBSIZE; /* take one step back */
sc->en_obmemsz = (lcv + 4) - MID_RAMOFF;
/*
* determine the largest DMA burst supported
*/
en_dmaprobe(sc);
/*
* "hello world"
*/
/* reset */
if (sc->en_busreset)
sc->en_busreset(sc);
en_write(sc, MID_RESID, 0x0); /* reset */
/* zero memory */
bus_space_set_region_4(sc->en_memt, sc->en_base,
MID_RAMOFF, 0, sc->en_obmemsz / 4);
reg = en_read(sc, MID_RESID);
device_printf(sc->dev, "ATM midway v%d, board IDs %d.%d, %s%s%s, "
"%ldKB on-board RAM\n", MID_VER(reg), MID_MID(reg), MID_DID(reg),
(MID_IS_SABRE(reg)) ? "sabre controller, " : "",
(MID_IS_SUNI(reg)) ? "SUNI" : "Utopia",
(!MID_IS_SUNI(reg) && MID_IS_UPIPE(reg)) ? " (pipelined)" : "",
(long)sc->en_obmemsz / 1024);
/*
* fill in common ATM interface stuff
*/
IFP2IFATM(sc->ifp)->mib.hw_version = (MID_VER(reg) << 16) |
(MID_MID(reg) << 8) | MID_DID(reg);
if (MID_DID(reg) & 0x4)
IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_UTP_155;
else
IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_MM_155;
IFP2IFATM(sc->ifp)->mib.pcr = ATM_RATE_155M;
IFP2IFATM(sc->ifp)->mib.vpi_bits = 0;
IFP2IFATM(sc->ifp)->mib.vci_bits = MID_VCI_BITS;
IFP2IFATM(sc->ifp)->mib.max_vccs = MID_N_VC;
IFP2IFATM(sc->ifp)->mib.max_vpcs = 0;
if (sc->is_adaptec) {
IFP2IFATM(sc->ifp)->mib.device = ATM_DEVICE_ADP155P;
if (sc->bestburstlen == 64 && sc->alburst == 0)
device_printf(sc->dev,
"passed 64 byte DMA test\n");
else
device_printf(sc->dev, "FAILED DMA TEST: "
"burst=%d, alburst=%d\n", sc->bestburstlen,
sc->alburst);
} else {
IFP2IFATM(sc->ifp)->mib.device = ATM_DEVICE_ENI155P;
device_printf(sc->dev, "maximum DMA burst length = %d "
"bytes%s\n", sc->bestburstlen, sc->alburst ?
sc->noalbursts ? " (no large bursts)" : " (must align)" :
"");
}
/*
* link into network subsystem and prepare card
*/
sc->ifp->if_softc = sc;
ifp->if_flags = IFF_SIMPLEX;
ifp->if_ioctl = en_ioctl;
ifp->if_start = en_start;
mtx_init(&sc->en_mtx, device_get_nameunit(sc->dev),
MTX_NETWORK_LOCK, MTX_DEF);
cv_init(&sc->cv_close, "VC close");
/*
* Make the sysctl tree
*/
sysctl_ctx_init(&sc->sysctl_ctx);
if ((sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
SYSCTL_STATIC_CHILDREN(_hw_atm), OID_AUTO,
device_get_nameunit(sc->dev), CTLFLAG_RD, 0, "")) == NULL)
goto fail;
if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
OID_AUTO, "istats", CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0,
en_sysctl_istats, "S", "internal statistics") == NULL)
goto fail;
#ifdef EN_DEBUG
if (SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
OID_AUTO, "debug", CTLFLAG_RW , &sc->debug, 0, "") == NULL)
goto fail;
#endif
IFP2IFATM(sc->ifp)->phy = &sc->utopia;
utopia_attach(&sc->utopia, IFP2IFATM(sc->ifp), &sc->media, &sc->en_mtx,
&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
&en_utopia_methods);
utopia_init_media(&sc->utopia);
MGET(sc->padbuf, M_WAITOK, MT_DATA);
bzero(sc->padbuf->m_data, MLEN);
if (bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
EN_TXSZ * 1024, EN_MAX_DMASEG, EN_TXSZ * 1024, 0,
NULL, NULL, &sc->txtag))
goto fail;
sc->map_zone = uma_zcreate("en dma maps", sizeof(struct en_map),
en_map_ctor, en_map_dtor, NULL, en_map_fini, UMA_ALIGN_PTR,
UMA_ZONE_ZINIT);
if (sc->map_zone == NULL)
goto fail;
uma_zone_set_max(sc->map_zone, EN_MAX_MAPS);
/*
* init softc
*/
sc->vccs = malloc(MID_N_VC * sizeof(sc->vccs[0]),
M_DEVBUF, M_ZERO | M_WAITOK);
sz = sc->en_obmemsz - (MID_BUFOFF - MID_RAMOFF);
ptr = sav = MID_BUFOFF;
ptr = roundup(ptr, EN_TXSZ * 1024); /* align */
sz = sz - (ptr - sav);
if (EN_TXSZ*1024 * EN_NTX > sz) {
device_printf(sc->dev, "EN_NTX/EN_TXSZ too big\n");
goto fail;
}
for (lcv = 0 ;lcv < EN_NTX ;lcv++) {
sc->txslot[lcv].mbsize = 0;
sc->txslot[lcv].start = ptr;
ptr += (EN_TXSZ * 1024);
sz -= (EN_TXSZ * 1024);
sc->txslot[lcv].stop = ptr;
sc->txslot[lcv].nref = 0;
DBG(sc, INIT, ("tx%d: start 0x%x, stop 0x%x", lcv,
sc->txslot[lcv].start, sc->txslot[lcv].stop));
}
sav = ptr;
ptr = roundup(ptr, EN_RXSZ * 1024); /* align */
sz = sz - (ptr - sav);
sc->en_nrx = sz / (EN_RXSZ * 1024);
if (sc->en_nrx <= 0) {
device_printf(sc->dev, "EN_NTX/EN_TXSZ/EN_RXSZ too big\n");
goto fail;
}
/*
* ensure that there is always one VC slot on the service list free
* so that we can tell the difference between a full and empty list.
*/
if (sc->en_nrx >= MID_N_VC)
sc->en_nrx = MID_N_VC - 1;
for (lcv = 0 ; lcv < sc->en_nrx ; lcv++) {
sc->rxslot[lcv].vcc = NULL;
midvloc = sc->rxslot[lcv].start = ptr;
ptr += (EN_RXSZ * 1024);
sz -= (EN_RXSZ * 1024);
sc->rxslot[lcv].stop = ptr;
midvloc = midvloc - MID_RAMOFF;
/* mask, cvt to words */
midvloc = (midvloc & ~((EN_RXSZ*1024) - 1)) >> 2;
/* we only want the top 11 bits */
midvloc = midvloc >> MIDV_LOCTOPSHFT;
midvloc = (midvloc & MIDV_LOCMASK) << MIDV_LOCSHIFT;
sc->rxslot[lcv].mode = midvloc |
(en_k2sz(EN_RXSZ) << MIDV_SZSHIFT) | MIDV_TRASH;
DBG(sc, INIT, ("rx%d: start 0x%x, stop 0x%x, mode 0x%x", lcv,
sc->rxslot[lcv].start, sc->rxslot[lcv].stop,
sc->rxslot[lcv].mode));
}
device_printf(sc->dev, "%d %dKB receive buffers, %d %dKB transmit "
"buffers\n", sc->en_nrx, EN_RXSZ, EN_NTX, EN_TXSZ);
device_printf(sc->dev, "end station identifier (mac address) "
"%6D\n", IFP2IFATM(sc->ifp)->mib.esi, ":");
/*
* Start SUNI stuff. This will call our readregs/writeregs
* functions and these assume the lock to be held so we must get it
* here.
*/
EN_LOCK(sc);
utopia_start(&sc->utopia);
utopia_reset(&sc->utopia);
EN_UNLOCK(sc);
/*
* final commit
*/
atm_ifattach(ifp);
#ifdef ENABLE_BPF
bpfattach(ifp, DLT_ATM_RFC1483, sizeof(struct atmllc));
#endif
return (0);
fail:
en_destroy(sc);
return (-1);
}
/*
* Free all internal resources. No access to bus resources here.
* No locking required here (interrupt is already disabled).
*
* LOCK: unlocked, needed (but destroyed)
*/
void
en_destroy(struct en_softc *sc)
{
u_int i;
if (sc->utopia.state & UTP_ST_ATTACHED) {
/* these assume the lock to be held */
EN_LOCK(sc);
utopia_stop(&sc->utopia);
utopia_detach(&sc->utopia);
EN_UNLOCK(sc);
}
if (sc->vccs != NULL) {
/* get rid of sticky VCCs */
for (i = 0; i < MID_N_VC; i++)
if (sc->vccs[i] != NULL)
uma_zfree(en_vcc_zone, sc->vccs[i]);
free(sc->vccs, M_DEVBUF);
}
if (sc->padbuf != NULL)
m_free(sc->padbuf);
/*
* Destroy the map zone before the tag (the fini function will
* destroy the DMA maps using the tag)
*/
if (sc->map_zone != NULL)
uma_zdestroy(sc->map_zone);
if (sc->txtag != NULL)
bus_dma_tag_destroy(sc->txtag);
(void)sysctl_ctx_free(&sc->sysctl_ctx);
cv_destroy(&sc->cv_close);
mtx_destroy(&sc->en_mtx);
}
/*
* Module loaded/unloaded
*/
int
en_modevent(module_t mod __unused, int event, void *arg __unused)
{
switch (event) {
case MOD_LOAD:
en_vcc_zone = uma_zcreate("EN vccs", sizeof(struct en_vcc),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
if (en_vcc_zone == NULL)
return (ENOMEM);
break;
case MOD_UNLOAD:
uma_zdestroy(en_vcc_zone);
break;
}
return (0);
}
/*********************************************************************/
/*
* Debugging support
*/
#ifdef EN_DDBHOOK
/*
* functions we can call from ddb
*/
/*
* en_dump: dump the state
*/
#define END_SWSL 0x00000040 /* swsl state */
#define END_DRQ 0x00000020 /* drq state */
#define END_DTQ 0x00000010 /* dtq state */
#define END_RX 0x00000008 /* rx state */
#define END_TX 0x00000004 /* tx state */
#define END_MREGS 0x00000002 /* registers */
#define END_STATS 0x00000001 /* dump stats */
#define END_BITS "\20\7SWSL\6DRQ\5DTQ\4RX\3TX\2MREGS\1STATS"
static void
en_dump_stats(const struct en_stats *s)
{
printf("en_stats:\n");
printf("\t%d/%d mfix (%d failed)\n", s->mfixaddr, s->mfixlen,
s->mfixfail);
printf("\t%d rx dma overflow interrupts\n", s->dmaovr);
printf("\t%d times out of TX space and stalled\n", s->txoutspace);
printf("\t%d times out of DTQs\n", s->txdtqout);
printf("\t%d times launched a packet\n", s->launch);
printf("\t%d times pulled the hw service list\n", s->hwpull);
printf("\t%d times pushed a vci on the sw service list\n", s->swadd);
printf("\t%d times RX pulled an mbuf from Q that wasn't ours\n",
s->rxqnotus);
printf("\t%d times RX pulled a good mbuf from Q\n", s->rxqus);
printf("\t%d times ran out of DRQs\n", s->rxdrqout);
printf("\t%d transmit packets dropped due to mbsize\n", s->txmbovr);
printf("\t%d cells trashed due to turned off rxvc\n", s->vtrash);
printf("\t%d cells trashed due to totally full buffer\n", s->otrash);
printf("\t%d cells trashed due almost full buffer\n", s->ttrash);
printf("\t%d rx mbuf allocation failures\n", s->rxmbufout);
printf("\t%d times out of tx maps\n", s->txnomap);
#ifdef NATM
#ifdef NATM_STAT
printf("\tnatmintr so_rcv: ok/drop cnt: %d/%d, ok/drop bytes: %d/%d\n",
natm_sookcnt, natm_sodropcnt, natm_sookbytes, natm_sodropbytes);
#endif
#endif
}
static void
en_dump_mregs(struct en_softc *sc)
{
u_int cnt;
printf("mregs:\n");
printf("resid = 0x%x\n", en_read(sc, MID_RESID));
printf("interrupt status = 0x%b\n",
(int)en_read(sc, MID_INTSTAT), MID_INTBITS);
printf("interrupt enable = 0x%b\n",
(int)en_read(sc, MID_INTENA), MID_INTBITS);
printf("mcsr = 0x%b\n", (int)en_read(sc, MID_MAST_CSR), MID_MCSRBITS);
printf("serv_write = [chip=%u] [us=%u]\n", en_read(sc, MID_SERV_WRITE),
MID_SL_A2REG(sc->hwslistp));
printf("dma addr = 0x%x\n", en_read(sc, MID_DMA_ADDR));
printf("DRQ: chip[rd=0x%x,wr=0x%x], sc[chip=0x%x,us=0x%x]\n",
MID_DRQ_REG2A(en_read(sc, MID_DMA_RDRX)),
MID_DRQ_REG2A(en_read(sc, MID_DMA_WRRX)), sc->drq_chip, sc->drq_us);
printf("DTQ: chip[rd=0x%x,wr=0x%x], sc[chip=0x%x,us=0x%x]\n",
MID_DTQ_REG2A(en_read(sc, MID_DMA_RDTX)),
MID_DTQ_REG2A(en_read(sc, MID_DMA_WRTX)), sc->dtq_chip, sc->dtq_us);
printf(" unusal txspeeds:");
for (cnt = 0 ; cnt < MID_N_VC ; cnt++)
if (sc->vccs[cnt]->txspeed)
printf(" vci%d=0x%x", cnt, sc->vccs[cnt]->txspeed);
printf("\n");
printf(" rxvc slot mappings:");
for (cnt = 0 ; cnt < MID_N_VC ; cnt++)
if (sc->vccs[cnt]->rxslot != NULL)
printf(" %d->%td", cnt,
sc->vccs[cnt]->rxslot - sc->rxslot);
printf("\n");
}
static void
en_dump_tx(struct en_softc *sc)
{
u_int slot;
printf("tx:\n");
for (slot = 0 ; slot < EN_NTX; slot++) {
printf("tx%d: start/stop/cur=0x%x/0x%x/0x%x [%d] ", slot,
sc->txslot[slot].start, sc->txslot[slot].stop,
sc->txslot[slot].cur,
(sc->txslot[slot].cur - sc->txslot[slot].start) / 4);
printf("mbsize=%d, bfree=%d\n", sc->txslot[slot].mbsize,
sc->txslot[slot].bfree);
printf("txhw: base_address=0x%x, size=%u, read=%u, "
"descstart=%u\n",
(u_int)MIDX_BASE(en_read(sc, MIDX_PLACE(slot))),
MIDX_SZ(en_read(sc, MIDX_PLACE(slot))),
en_read(sc, MIDX_READPTR(slot)),
en_read(sc, MIDX_DESCSTART(slot)));
}
}
static void
en_dump_rx(struct en_softc *sc)
{
struct en_rxslot *slot;
printf(" recv slots:\n");
for (slot = sc->rxslot ; slot < &sc->rxslot[sc->en_nrx]; slot++) {
printf("rx%td: start/stop/cur=0x%x/0x%x/0x%x mode=0x%x ",
slot - sc->rxslot, slot->start, slot->stop, slot->cur,
slot->mode);
if (slot->vcc != NULL) {
printf("vci=%u\n", slot->vcc->vcc.vci);
printf("RXHW: mode=0x%x, DST_RP=0x%x, WP_ST_CNT=0x%x\n",
en_read(sc, MID_VC(slot->vcc->vcc.vci)),
en_read(sc, MID_DST_RP(slot->vcc->vcc.vci)),
en_read(sc, MID_WP_ST_CNT(slot->vcc->vcc.vci)));
}
}
}
/*
* This is only correct for non-adaptec adapters
*/
static void
en_dump_dtqs(struct en_softc *sc)
{
uint32_t ptr, reg;
printf(" dtq [need_dtqs=%d,dtq_free=%d]:\n", sc->need_dtqs,
sc->dtq_free);
ptr = sc->dtq_chip;
while (ptr != sc->dtq_us) {
reg = en_read(sc, ptr);
printf("\t0x%x=[%#x cnt=%d, chan=%d, end=%d, type=%d @ 0x%x]\n",
sc->dtq[MID_DTQ_A2REG(ptr)], reg, MID_DMA_CNT(reg),
MID_DMA_TXCHAN(reg), (reg & MID_DMA_END) != 0,
MID_DMA_TYPE(reg), en_read(sc, ptr + 4));
EN_WRAPADD(MID_DTQOFF, MID_DTQEND, ptr, 8);
}
}
static void
en_dump_drqs(struct en_softc *sc)
{
uint32_t ptr, reg;
printf(" drq [need_drqs=%d,drq_free=%d]:\n", sc->need_drqs,
sc->drq_free);
ptr = sc->drq_chip;
while (ptr != sc->drq_us) {
reg = en_read(sc, ptr);
printf("\t0x%x=[cnt=%d, chan=%d, end=%d, type=%d @ 0x%x]\n",
sc->drq[MID_DRQ_A2REG(ptr)], MID_DMA_CNT(reg),
MID_DMA_RXVCI(reg), (reg & MID_DMA_END) != 0,
MID_DMA_TYPE(reg), en_read(sc, ptr + 4));
EN_WRAPADD(MID_DRQOFF, MID_DRQEND, ptr, 8);
}
}
/* Do not staticize - meant for calling from DDB! */
int
en_dump(int unit, int level)
{
struct en_softc *sc;
int lcv, cnt;
devclass_t dc;
int maxunit;
dc = devclass_find("en");
if (dc == NULL) {
printf("%s: can't find devclass!\n", __func__);
return (0);
}
maxunit = devclass_get_maxunit(dc);
for (lcv = 0 ; lcv < maxunit ; lcv++) {
sc = devclass_get_softc(dc, lcv);
if (sc == NULL)
continue;
if (unit != -1 && unit != lcv)
continue;
device_printf(sc->dev, "dumping device at level 0x%b\n",
level, END_BITS);
if (sc->dtq_us == 0) {
printf("<hasn't been en_init'd yet>\n");
continue;
}
if (level & END_STATS)
en_dump_stats(&sc->stats);
if (level & END_MREGS)
en_dump_mregs(sc);
if (level & END_TX)
en_dump_tx(sc);
if (level & END_RX)
en_dump_rx(sc);
if (level & END_DTQ)
en_dump_dtqs(sc);
if (level & END_DRQ)
en_dump_drqs(sc);
if (level & END_SWSL) {
printf(" swslist [size=%d]: ", sc->swsl_size);
for (cnt = sc->swsl_head ; cnt != sc->swsl_tail ;
cnt = (cnt + 1) % MID_SL_N)
printf("0x%x ", sc->swslist[cnt]);
printf("\n");
}
}
return (0);
}
/*
* en_dumpmem: dump the memory
*
* Do not staticize - meant for calling from DDB!
*/
int
en_dumpmem(int unit, int addr, int len)
{
struct en_softc *sc;
uint32_t reg;
devclass_t dc;
dc = devclass_find("en");
if (dc == NULL) {
printf("%s: can't find devclass\n", __func__);
return (0);
}
sc = devclass_get_softc(dc, unit);
if (sc == NULL) {
printf("%s: invalid unit number: %d\n", __func__, unit);
return (0);
}
addr = addr & ~3;
if (addr < MID_RAMOFF || addr + len * 4 > MID_MAXOFF || len <= 0) {
printf("invalid addr/len number: %d, %d\n", addr, len);
return (0);
}
printf("dumping %d words starting at offset 0x%x\n", len, addr);
while (len--) {
reg = en_read(sc, addr);
printf("mem[0x%x] = 0x%x\n", addr, reg);
addr += 4;
}
return (0);
}
#endif