freebsd-dev/sys/netinet/sctputil.c
2020-10-06 11:08:52 +00:00

7641 lines
212 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
* Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* a) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* b) Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the distribution.
*
* c) Neither the name of Cisco Systems, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <netinet/sctp_os.h>
#include <netinet/sctp_pcb.h>
#include <netinet/sctputil.h>
#include <netinet/sctp_var.h>
#include <netinet/sctp_sysctl.h>
#ifdef INET6
#include <netinet6/sctp6_var.h>
#endif
#include <netinet/sctp_header.h>
#include <netinet/sctp_output.h>
#include <netinet/sctp_uio.h>
#include <netinet/sctp_timer.h>
#include <netinet/sctp_indata.h>
#include <netinet/sctp_auth.h>
#include <netinet/sctp_asconf.h>
#include <netinet/sctp_bsd_addr.h>
#include <netinet/sctp_kdtrace.h>
#if defined(INET6) || defined(INET)
#include <netinet/tcp_var.h>
#endif
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#include <sys/proc.h>
#ifdef INET6
#include <netinet/icmp6.h>
#endif
#ifndef KTR_SCTP
#define KTR_SCTP KTR_SUBSYS
#endif
extern const struct sctp_cc_functions sctp_cc_functions[];
extern const struct sctp_ss_functions sctp_ss_functions[];
void
sctp_sblog(struct sockbuf *sb, struct sctp_tcb *stcb, int from, int incr)
{
#if defined(SCTP_LOCAL_TRACE_BUF)
struct sctp_cwnd_log sctp_clog;
sctp_clog.x.sb.stcb = stcb;
sctp_clog.x.sb.so_sbcc = sb->sb_cc;
if (stcb)
sctp_clog.x.sb.stcb_sbcc = stcb->asoc.sb_cc;
else
sctp_clog.x.sb.stcb_sbcc = 0;
sctp_clog.x.sb.incr = incr;
SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x",
SCTP_LOG_EVENT_SB,
from,
sctp_clog.x.misc.log1,
sctp_clog.x.misc.log2,
sctp_clog.x.misc.log3,
sctp_clog.x.misc.log4);
#endif
}
void
sctp_log_closing(struct sctp_inpcb *inp, struct sctp_tcb *stcb, int16_t loc)
{
#if defined(SCTP_LOCAL_TRACE_BUF)
struct sctp_cwnd_log sctp_clog;
sctp_clog.x.close.inp = (void *)inp;
sctp_clog.x.close.sctp_flags = inp->sctp_flags;
if (stcb) {
sctp_clog.x.close.stcb = (void *)stcb;
sctp_clog.x.close.state = (uint16_t)stcb->asoc.state;
} else {
sctp_clog.x.close.stcb = 0;
sctp_clog.x.close.state = 0;
}
sctp_clog.x.close.loc = loc;
SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x",
SCTP_LOG_EVENT_CLOSE,
0,
sctp_clog.x.misc.log1,
sctp_clog.x.misc.log2,
sctp_clog.x.misc.log3,
sctp_clog.x.misc.log4);
#endif
}
void
rto_logging(struct sctp_nets *net, int from)
{
#if defined(SCTP_LOCAL_TRACE_BUF)
struct sctp_cwnd_log sctp_clog;
memset(&sctp_clog, 0, sizeof(sctp_clog));
sctp_clog.x.rto.net = (void *)net;
sctp_clog.x.rto.rtt = net->rtt / 1000;
SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x",
SCTP_LOG_EVENT_RTT,
from,
sctp_clog.x.misc.log1,
sctp_clog.x.misc.log2,
sctp_clog.x.misc.log3,
sctp_clog.x.misc.log4);
#endif
}
void
sctp_log_strm_del_alt(struct sctp_tcb *stcb, uint32_t tsn, uint16_t sseq, uint16_t stream, int from)
{
#if defined(SCTP_LOCAL_TRACE_BUF)
struct sctp_cwnd_log sctp_clog;
sctp_clog.x.strlog.stcb = stcb;
sctp_clog.x.strlog.n_tsn = tsn;
sctp_clog.x.strlog.n_sseq = sseq;
sctp_clog.x.strlog.e_tsn = 0;
sctp_clog.x.strlog.e_sseq = 0;
sctp_clog.x.strlog.strm = stream;
SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x",
SCTP_LOG_EVENT_STRM,
from,
sctp_clog.x.misc.log1,
sctp_clog.x.misc.log2,
sctp_clog.x.misc.log3,
sctp_clog.x.misc.log4);
#endif
}
void
sctp_log_nagle_event(struct sctp_tcb *stcb, int action)
{
#if defined(SCTP_LOCAL_TRACE_BUF)
struct sctp_cwnd_log sctp_clog;
sctp_clog.x.nagle.stcb = (void *)stcb;
sctp_clog.x.nagle.total_flight = stcb->asoc.total_flight;
sctp_clog.x.nagle.total_in_queue = stcb->asoc.total_output_queue_size;
sctp_clog.x.nagle.count_in_queue = stcb->asoc.chunks_on_out_queue;
sctp_clog.x.nagle.count_in_flight = stcb->asoc.total_flight_count;
SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x",
SCTP_LOG_EVENT_NAGLE,
action,
sctp_clog.x.misc.log1,
sctp_clog.x.misc.log2,
sctp_clog.x.misc.log3,
sctp_clog.x.misc.log4);
#endif
}
void
sctp_log_sack(uint32_t old_cumack, uint32_t cumack, uint32_t tsn, uint16_t gaps, uint16_t dups, int from)
{
#if defined(SCTP_LOCAL_TRACE_BUF)
struct sctp_cwnd_log sctp_clog;
sctp_clog.x.sack.cumack = cumack;
sctp_clog.x.sack.oldcumack = old_cumack;
sctp_clog.x.sack.tsn = tsn;
sctp_clog.x.sack.numGaps = gaps;
sctp_clog.x.sack.numDups = dups;
SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x",
SCTP_LOG_EVENT_SACK,
from,
sctp_clog.x.misc.log1,
sctp_clog.x.misc.log2,
sctp_clog.x.misc.log3,
sctp_clog.x.misc.log4);
#endif
}
void
sctp_log_map(uint32_t map, uint32_t cum, uint32_t high, int from)
{
#if defined(SCTP_LOCAL_TRACE_BUF)
struct sctp_cwnd_log sctp_clog;
memset(&sctp_clog, 0, sizeof(sctp_clog));
sctp_clog.x.map.base = map;
sctp_clog.x.map.cum = cum;
sctp_clog.x.map.high = high;
SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x",
SCTP_LOG_EVENT_MAP,
from,
sctp_clog.x.misc.log1,
sctp_clog.x.misc.log2,
sctp_clog.x.misc.log3,
sctp_clog.x.misc.log4);
#endif
}
void
sctp_log_fr(uint32_t biggest_tsn, uint32_t biggest_new_tsn, uint32_t tsn, int from)
{
#if defined(SCTP_LOCAL_TRACE_BUF)
struct sctp_cwnd_log sctp_clog;
memset(&sctp_clog, 0, sizeof(sctp_clog));
sctp_clog.x.fr.largest_tsn = biggest_tsn;
sctp_clog.x.fr.largest_new_tsn = biggest_new_tsn;
sctp_clog.x.fr.tsn = tsn;
SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x",
SCTP_LOG_EVENT_FR,
from,
sctp_clog.x.misc.log1,
sctp_clog.x.misc.log2,
sctp_clog.x.misc.log3,
sctp_clog.x.misc.log4);
#endif
}
#ifdef SCTP_MBUF_LOGGING
void
sctp_log_mb(struct mbuf *m, int from)
{
#if defined(SCTP_LOCAL_TRACE_BUF)
struct sctp_cwnd_log sctp_clog;
sctp_clog.x.mb.mp = m;
sctp_clog.x.mb.mbuf_flags = (uint8_t)(SCTP_BUF_GET_FLAGS(m));
sctp_clog.x.mb.size = (uint16_t)(SCTP_BUF_LEN(m));
sctp_clog.x.mb.data = SCTP_BUF_AT(m, 0);
if (SCTP_BUF_IS_EXTENDED(m)) {
sctp_clog.x.mb.ext = SCTP_BUF_EXTEND_BASE(m);
sctp_clog.x.mb.refcnt = (uint8_t)(SCTP_BUF_EXTEND_REFCNT(m));
} else {
sctp_clog.x.mb.ext = 0;
sctp_clog.x.mb.refcnt = 0;
}
SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x",
SCTP_LOG_EVENT_MBUF,
from,
sctp_clog.x.misc.log1,
sctp_clog.x.misc.log2,
sctp_clog.x.misc.log3,
sctp_clog.x.misc.log4);
#endif
}
void
sctp_log_mbc(struct mbuf *m, int from)
{
struct mbuf *mat;
for (mat = m; mat; mat = SCTP_BUF_NEXT(mat)) {
sctp_log_mb(mat, from);
}
}
#endif
void
sctp_log_strm_del(struct sctp_queued_to_read *control, struct sctp_queued_to_read *poschk, int from)
{
#if defined(SCTP_LOCAL_TRACE_BUF)
struct sctp_cwnd_log sctp_clog;
if (control == NULL) {
SCTP_PRINTF("Gak log of NULL?\n");
return;
}
sctp_clog.x.strlog.stcb = control->stcb;
sctp_clog.x.strlog.n_tsn = control->sinfo_tsn;
sctp_clog.x.strlog.n_sseq = (uint16_t)control->mid;
sctp_clog.x.strlog.strm = control->sinfo_stream;
if (poschk != NULL) {
sctp_clog.x.strlog.e_tsn = poschk->sinfo_tsn;
sctp_clog.x.strlog.e_sseq = (uint16_t)poschk->mid;
} else {
sctp_clog.x.strlog.e_tsn = 0;
sctp_clog.x.strlog.e_sseq = 0;
}
SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x",
SCTP_LOG_EVENT_STRM,
from,
sctp_clog.x.misc.log1,
sctp_clog.x.misc.log2,
sctp_clog.x.misc.log3,
sctp_clog.x.misc.log4);
#endif
}
void
sctp_log_cwnd(struct sctp_tcb *stcb, struct sctp_nets *net, int augment, uint8_t from)
{
#if defined(SCTP_LOCAL_TRACE_BUF)
struct sctp_cwnd_log sctp_clog;
sctp_clog.x.cwnd.net = net;
if (stcb->asoc.send_queue_cnt > 255)
sctp_clog.x.cwnd.cnt_in_send = 255;
else
sctp_clog.x.cwnd.cnt_in_send = stcb->asoc.send_queue_cnt;
if (stcb->asoc.stream_queue_cnt > 255)
sctp_clog.x.cwnd.cnt_in_str = 255;
else
sctp_clog.x.cwnd.cnt_in_str = stcb->asoc.stream_queue_cnt;
if (net) {
sctp_clog.x.cwnd.cwnd_new_value = net->cwnd;
sctp_clog.x.cwnd.inflight = net->flight_size;
sctp_clog.x.cwnd.pseudo_cumack = net->pseudo_cumack;
sctp_clog.x.cwnd.meets_pseudo_cumack = net->new_pseudo_cumack;
sctp_clog.x.cwnd.need_new_pseudo_cumack = net->find_pseudo_cumack;
}
if (SCTP_CWNDLOG_PRESEND == from) {
sctp_clog.x.cwnd.meets_pseudo_cumack = stcb->asoc.peers_rwnd;
}
sctp_clog.x.cwnd.cwnd_augment = augment;
SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x",
SCTP_LOG_EVENT_CWND,
from,
sctp_clog.x.misc.log1,
sctp_clog.x.misc.log2,
sctp_clog.x.misc.log3,
sctp_clog.x.misc.log4);
#endif
}
void
sctp_log_lock(struct sctp_inpcb *inp, struct sctp_tcb *stcb, uint8_t from)
{
#if defined(SCTP_LOCAL_TRACE_BUF)
struct sctp_cwnd_log sctp_clog;
memset(&sctp_clog, 0, sizeof(sctp_clog));
if (inp) {
sctp_clog.x.lock.sock = (void *)inp->sctp_socket;
} else {
sctp_clog.x.lock.sock = (void *)NULL;
}
sctp_clog.x.lock.inp = (void *)inp;
if (stcb) {
sctp_clog.x.lock.tcb_lock = mtx_owned(&stcb->tcb_mtx);
} else {
sctp_clog.x.lock.tcb_lock = SCTP_LOCK_UNKNOWN;
}
if (inp) {
sctp_clog.x.lock.inp_lock = mtx_owned(&inp->inp_mtx);
sctp_clog.x.lock.create_lock = mtx_owned(&inp->inp_create_mtx);
} else {
sctp_clog.x.lock.inp_lock = SCTP_LOCK_UNKNOWN;
sctp_clog.x.lock.create_lock = SCTP_LOCK_UNKNOWN;
}
sctp_clog.x.lock.info_lock = rw_wowned(&SCTP_BASE_INFO(ipi_ep_mtx));
if (inp && (inp->sctp_socket)) {
sctp_clog.x.lock.sock_lock = mtx_owned(&(inp->sctp_socket->so_rcv.sb_mtx));
sctp_clog.x.lock.sockrcvbuf_lock = mtx_owned(&(inp->sctp_socket->so_rcv.sb_mtx));
sctp_clog.x.lock.socksndbuf_lock = mtx_owned(&(inp->sctp_socket->so_snd.sb_mtx));
} else {
sctp_clog.x.lock.sock_lock = SCTP_LOCK_UNKNOWN;
sctp_clog.x.lock.sockrcvbuf_lock = SCTP_LOCK_UNKNOWN;
sctp_clog.x.lock.socksndbuf_lock = SCTP_LOCK_UNKNOWN;
}
SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x",
SCTP_LOG_LOCK_EVENT,
from,
sctp_clog.x.misc.log1,
sctp_clog.x.misc.log2,
sctp_clog.x.misc.log3,
sctp_clog.x.misc.log4);
#endif
}
void
sctp_log_maxburst(struct sctp_tcb *stcb, struct sctp_nets *net, int error, int burst, uint8_t from)
{
#if defined(SCTP_LOCAL_TRACE_BUF)
struct sctp_cwnd_log sctp_clog;
memset(&sctp_clog, 0, sizeof(sctp_clog));
sctp_clog.x.cwnd.net = net;
sctp_clog.x.cwnd.cwnd_new_value = error;
sctp_clog.x.cwnd.inflight = net->flight_size;
sctp_clog.x.cwnd.cwnd_augment = burst;
if (stcb->asoc.send_queue_cnt > 255)
sctp_clog.x.cwnd.cnt_in_send = 255;
else
sctp_clog.x.cwnd.cnt_in_send = stcb->asoc.send_queue_cnt;
if (stcb->asoc.stream_queue_cnt > 255)
sctp_clog.x.cwnd.cnt_in_str = 255;
else
sctp_clog.x.cwnd.cnt_in_str = stcb->asoc.stream_queue_cnt;
SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x",
SCTP_LOG_EVENT_MAXBURST,
from,
sctp_clog.x.misc.log1,
sctp_clog.x.misc.log2,
sctp_clog.x.misc.log3,
sctp_clog.x.misc.log4);
#endif
}
void
sctp_log_rwnd(uint8_t from, uint32_t peers_rwnd, uint32_t snd_size, uint32_t overhead)
{
#if defined(SCTP_LOCAL_TRACE_BUF)
struct sctp_cwnd_log sctp_clog;
sctp_clog.x.rwnd.rwnd = peers_rwnd;
sctp_clog.x.rwnd.send_size = snd_size;
sctp_clog.x.rwnd.overhead = overhead;
sctp_clog.x.rwnd.new_rwnd = 0;
SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x",
SCTP_LOG_EVENT_RWND,
from,
sctp_clog.x.misc.log1,
sctp_clog.x.misc.log2,
sctp_clog.x.misc.log3,
sctp_clog.x.misc.log4);
#endif
}
void
sctp_log_rwnd_set(uint8_t from, uint32_t peers_rwnd, uint32_t flight_size, uint32_t overhead, uint32_t a_rwndval)
{
#if defined(SCTP_LOCAL_TRACE_BUF)
struct sctp_cwnd_log sctp_clog;
sctp_clog.x.rwnd.rwnd = peers_rwnd;
sctp_clog.x.rwnd.send_size = flight_size;
sctp_clog.x.rwnd.overhead = overhead;
sctp_clog.x.rwnd.new_rwnd = a_rwndval;
SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x",
SCTP_LOG_EVENT_RWND,
from,
sctp_clog.x.misc.log1,
sctp_clog.x.misc.log2,
sctp_clog.x.misc.log3,
sctp_clog.x.misc.log4);
#endif
}
#ifdef SCTP_MBCNT_LOGGING
static void
sctp_log_mbcnt(uint8_t from, uint32_t total_oq, uint32_t book, uint32_t total_mbcnt_q, uint32_t mbcnt)
{
#if defined(SCTP_LOCAL_TRACE_BUF)
struct sctp_cwnd_log sctp_clog;
sctp_clog.x.mbcnt.total_queue_size = total_oq;
sctp_clog.x.mbcnt.size_change = book;
sctp_clog.x.mbcnt.total_queue_mb_size = total_mbcnt_q;
sctp_clog.x.mbcnt.mbcnt_change = mbcnt;
SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x",
SCTP_LOG_EVENT_MBCNT,
from,
sctp_clog.x.misc.log1,
sctp_clog.x.misc.log2,
sctp_clog.x.misc.log3,
sctp_clog.x.misc.log4);
#endif
}
#endif
void
sctp_misc_ints(uint8_t from, uint32_t a, uint32_t b, uint32_t c, uint32_t d)
{
#if defined(SCTP_LOCAL_TRACE_BUF)
SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x",
SCTP_LOG_MISC_EVENT,
from,
a, b, c, d);
#endif
}
void
sctp_wakeup_log(struct sctp_tcb *stcb, uint32_t wake_cnt, int from)
{
#if defined(SCTP_LOCAL_TRACE_BUF)
struct sctp_cwnd_log sctp_clog;
sctp_clog.x.wake.stcb = (void *)stcb;
sctp_clog.x.wake.wake_cnt = wake_cnt;
sctp_clog.x.wake.flight = stcb->asoc.total_flight_count;
sctp_clog.x.wake.send_q = stcb->asoc.send_queue_cnt;
sctp_clog.x.wake.sent_q = stcb->asoc.sent_queue_cnt;
if (stcb->asoc.stream_queue_cnt < 0xff)
sctp_clog.x.wake.stream_qcnt = (uint8_t)stcb->asoc.stream_queue_cnt;
else
sctp_clog.x.wake.stream_qcnt = 0xff;
if (stcb->asoc.chunks_on_out_queue < 0xff)
sctp_clog.x.wake.chunks_on_oque = (uint8_t)stcb->asoc.chunks_on_out_queue;
else
sctp_clog.x.wake.chunks_on_oque = 0xff;
sctp_clog.x.wake.sctpflags = 0;
/* set in the defered mode stuff */
if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_DONT_WAKE)
sctp_clog.x.wake.sctpflags |= 1;
if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_WAKEOUTPUT)
sctp_clog.x.wake.sctpflags |= 2;
if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_WAKEINPUT)
sctp_clog.x.wake.sctpflags |= 4;
/* what about the sb */
if (stcb->sctp_socket) {
struct socket *so = stcb->sctp_socket;
sctp_clog.x.wake.sbflags = (uint8_t)((so->so_snd.sb_flags & 0x00ff));
} else {
sctp_clog.x.wake.sbflags = 0xff;
}
SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x",
SCTP_LOG_EVENT_WAKE,
from,
sctp_clog.x.misc.log1,
sctp_clog.x.misc.log2,
sctp_clog.x.misc.log3,
sctp_clog.x.misc.log4);
#endif
}
void
sctp_log_block(uint8_t from, struct sctp_association *asoc, ssize_t sendlen)
{
#if defined(SCTP_LOCAL_TRACE_BUF)
struct sctp_cwnd_log sctp_clog;
sctp_clog.x.blk.onsb = asoc->total_output_queue_size;
sctp_clog.x.blk.send_sent_qcnt = (uint16_t)(asoc->send_queue_cnt + asoc->sent_queue_cnt);
sctp_clog.x.blk.peer_rwnd = asoc->peers_rwnd;
sctp_clog.x.blk.stream_qcnt = (uint16_t)asoc->stream_queue_cnt;
sctp_clog.x.blk.chunks_on_oque = (uint16_t)asoc->chunks_on_out_queue;
sctp_clog.x.blk.flight_size = (uint16_t)(asoc->total_flight / 1024);
sctp_clog.x.blk.sndlen = (uint32_t)sendlen;
SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x",
SCTP_LOG_EVENT_BLOCK,
from,
sctp_clog.x.misc.log1,
sctp_clog.x.misc.log2,
sctp_clog.x.misc.log3,
sctp_clog.x.misc.log4);
#endif
}
int
sctp_fill_stat_log(void *optval SCTP_UNUSED, size_t *optsize SCTP_UNUSED)
{
/* May need to fix this if ktrdump does not work */
return (0);
}
#ifdef SCTP_AUDITING_ENABLED
uint8_t sctp_audit_data[SCTP_AUDIT_SIZE][2];
static int sctp_audit_indx = 0;
static
void
sctp_print_audit_report(void)
{
int i;
int cnt;
cnt = 0;
for (i = sctp_audit_indx; i < SCTP_AUDIT_SIZE; i++) {
if ((sctp_audit_data[i][0] == 0xe0) &&
(sctp_audit_data[i][1] == 0x01)) {
cnt = 0;
SCTP_PRINTF("\n");
} else if (sctp_audit_data[i][0] == 0xf0) {
cnt = 0;
SCTP_PRINTF("\n");
} else if ((sctp_audit_data[i][0] == 0xc0) &&
(sctp_audit_data[i][1] == 0x01)) {
SCTP_PRINTF("\n");
cnt = 0;
}
SCTP_PRINTF("%2.2x%2.2x ", (uint32_t)sctp_audit_data[i][0],
(uint32_t)sctp_audit_data[i][1]);
cnt++;
if ((cnt % 14) == 0)
SCTP_PRINTF("\n");
}
for (i = 0; i < sctp_audit_indx; i++) {
if ((sctp_audit_data[i][0] == 0xe0) &&
(sctp_audit_data[i][1] == 0x01)) {
cnt = 0;
SCTP_PRINTF("\n");
} else if (sctp_audit_data[i][0] == 0xf0) {
cnt = 0;
SCTP_PRINTF("\n");
} else if ((sctp_audit_data[i][0] == 0xc0) &&
(sctp_audit_data[i][1] == 0x01)) {
SCTP_PRINTF("\n");
cnt = 0;
}
SCTP_PRINTF("%2.2x%2.2x ", (uint32_t)sctp_audit_data[i][0],
(uint32_t)sctp_audit_data[i][1]);
cnt++;
if ((cnt % 14) == 0)
SCTP_PRINTF("\n");
}
SCTP_PRINTF("\n");
}
void
sctp_auditing(int from, struct sctp_inpcb *inp, struct sctp_tcb *stcb,
struct sctp_nets *net)
{
int resend_cnt, tot_out, rep, tot_book_cnt;
struct sctp_nets *lnet;
struct sctp_tmit_chunk *chk;
sctp_audit_data[sctp_audit_indx][0] = 0xAA;
sctp_audit_data[sctp_audit_indx][1] = 0x000000ff & from;
sctp_audit_indx++;
if (sctp_audit_indx >= SCTP_AUDIT_SIZE) {
sctp_audit_indx = 0;
}
if (inp == NULL) {
sctp_audit_data[sctp_audit_indx][0] = 0xAF;
sctp_audit_data[sctp_audit_indx][1] = 0x01;
sctp_audit_indx++;
if (sctp_audit_indx >= SCTP_AUDIT_SIZE) {
sctp_audit_indx = 0;
}
return;
}
if (stcb == NULL) {
sctp_audit_data[sctp_audit_indx][0] = 0xAF;
sctp_audit_data[sctp_audit_indx][1] = 0x02;
sctp_audit_indx++;
if (sctp_audit_indx >= SCTP_AUDIT_SIZE) {
sctp_audit_indx = 0;
}
return;
}
sctp_audit_data[sctp_audit_indx][0] = 0xA1;
sctp_audit_data[sctp_audit_indx][1] =
(0x000000ff & stcb->asoc.sent_queue_retran_cnt);
sctp_audit_indx++;
if (sctp_audit_indx >= SCTP_AUDIT_SIZE) {
sctp_audit_indx = 0;
}
rep = 0;
tot_book_cnt = 0;
resend_cnt = tot_out = 0;
TAILQ_FOREACH(chk, &stcb->asoc.sent_queue, sctp_next) {
if (chk->sent == SCTP_DATAGRAM_RESEND) {
resend_cnt++;
} else if (chk->sent < SCTP_DATAGRAM_RESEND) {
tot_out += chk->book_size;
tot_book_cnt++;
}
}
if (resend_cnt != stcb->asoc.sent_queue_retran_cnt) {
sctp_audit_data[sctp_audit_indx][0] = 0xAF;
sctp_audit_data[sctp_audit_indx][1] = 0xA1;
sctp_audit_indx++;
if (sctp_audit_indx >= SCTP_AUDIT_SIZE) {
sctp_audit_indx = 0;
}
SCTP_PRINTF("resend_cnt:%d asoc-tot:%d\n",
resend_cnt, stcb->asoc.sent_queue_retran_cnt);
rep = 1;
stcb->asoc.sent_queue_retran_cnt = resend_cnt;
sctp_audit_data[sctp_audit_indx][0] = 0xA2;
sctp_audit_data[sctp_audit_indx][1] =
(0x000000ff & stcb->asoc.sent_queue_retran_cnt);
sctp_audit_indx++;
if (sctp_audit_indx >= SCTP_AUDIT_SIZE) {
sctp_audit_indx = 0;
}
}
if (tot_out != stcb->asoc.total_flight) {
sctp_audit_data[sctp_audit_indx][0] = 0xAF;
sctp_audit_data[sctp_audit_indx][1] = 0xA2;
sctp_audit_indx++;
if (sctp_audit_indx >= SCTP_AUDIT_SIZE) {
sctp_audit_indx = 0;
}
rep = 1;
SCTP_PRINTF("tot_flt:%d asoc_tot:%d\n", tot_out,
(int)stcb->asoc.total_flight);
stcb->asoc.total_flight = tot_out;
}
if (tot_book_cnt != stcb->asoc.total_flight_count) {
sctp_audit_data[sctp_audit_indx][0] = 0xAF;
sctp_audit_data[sctp_audit_indx][1] = 0xA5;
sctp_audit_indx++;
if (sctp_audit_indx >= SCTP_AUDIT_SIZE) {
sctp_audit_indx = 0;
}
rep = 1;
SCTP_PRINTF("tot_flt_book:%d\n", tot_book_cnt);
stcb->asoc.total_flight_count = tot_book_cnt;
}
tot_out = 0;
TAILQ_FOREACH(lnet, &stcb->asoc.nets, sctp_next) {
tot_out += lnet->flight_size;
}
if (tot_out != stcb->asoc.total_flight) {
sctp_audit_data[sctp_audit_indx][0] = 0xAF;
sctp_audit_data[sctp_audit_indx][1] = 0xA3;
sctp_audit_indx++;
if (sctp_audit_indx >= SCTP_AUDIT_SIZE) {
sctp_audit_indx = 0;
}
rep = 1;
SCTP_PRINTF("real flight:%d net total was %d\n",
stcb->asoc.total_flight, tot_out);
/* now corrective action */
TAILQ_FOREACH(lnet, &stcb->asoc.nets, sctp_next) {
tot_out = 0;
TAILQ_FOREACH(chk, &stcb->asoc.sent_queue, sctp_next) {
if ((chk->whoTo == lnet) &&
(chk->sent < SCTP_DATAGRAM_RESEND)) {
tot_out += chk->book_size;
}
}
if (lnet->flight_size != tot_out) {
SCTP_PRINTF("net:%p flight was %d corrected to %d\n",
(void *)lnet, lnet->flight_size,
tot_out);
lnet->flight_size = tot_out;
}
}
}
if (rep) {
sctp_print_audit_report();
}
}
void
sctp_audit_log(uint8_t ev, uint8_t fd)
{
sctp_audit_data[sctp_audit_indx][0] = ev;
sctp_audit_data[sctp_audit_indx][1] = fd;
sctp_audit_indx++;
if (sctp_audit_indx >= SCTP_AUDIT_SIZE) {
sctp_audit_indx = 0;
}
}
#endif
/*
* The conversion from time to ticks and vice versa is done by rounding
* upwards. This way we can test in the code the time to be positive and
* know that this corresponds to a positive number of ticks.
*/
uint32_t
sctp_msecs_to_ticks(uint32_t msecs)
{
uint64_t temp;
uint32_t ticks;
if (hz == 1000) {
ticks = msecs;
} else {
temp = (((uint64_t)msecs * hz) + 999) / 1000;
if (temp > UINT32_MAX) {
ticks = UINT32_MAX;
} else {
ticks = (uint32_t)temp;
}
}
return (ticks);
}
uint32_t
sctp_ticks_to_msecs(uint32_t ticks)
{
uint64_t temp;
uint32_t msecs;
if (hz == 1000) {
msecs = ticks;
} else {
temp = (((uint64_t)ticks * 1000) + (hz - 1)) / hz;
if (temp > UINT32_MAX) {
msecs = UINT32_MAX;
} else {
msecs = (uint32_t)temp;
}
}
return (msecs);
}
uint32_t
sctp_secs_to_ticks(uint32_t secs)
{
uint64_t temp;
uint32_t ticks;
temp = (uint64_t)secs * hz;
if (temp > UINT32_MAX) {
ticks = UINT32_MAX;
} else {
ticks = (uint32_t)temp;
}
return (ticks);
}
uint32_t
sctp_ticks_to_secs(uint32_t ticks)
{
uint64_t temp;
uint32_t secs;
temp = ((uint64_t)ticks + (hz - 1)) / hz;
if (temp > UINT32_MAX) {
secs = UINT32_MAX;
} else {
secs = (uint32_t)temp;
}
return (secs);
}
/*
* sctp_stop_timers_for_shutdown() should be called
* when entering the SHUTDOWN_SENT or SHUTDOWN_ACK_SENT
* state to make sure that all timers are stopped.
*/
void
sctp_stop_timers_for_shutdown(struct sctp_tcb *stcb)
{
struct sctp_inpcb *inp;
struct sctp_nets *net;
inp = stcb->sctp_ep;
sctp_timer_stop(SCTP_TIMER_TYPE_RECV, inp, stcb, NULL,
SCTP_FROM_SCTPUTIL + SCTP_LOC_12);
sctp_timer_stop(SCTP_TIMER_TYPE_STRRESET, inp, stcb, NULL,
SCTP_FROM_SCTPUTIL + SCTP_LOC_13);
sctp_timer_stop(SCTP_TIMER_TYPE_ASCONF, inp, stcb, NULL,
SCTP_FROM_SCTPUTIL + SCTP_LOC_14);
sctp_timer_stop(SCTP_TIMER_TYPE_AUTOCLOSE, inp, stcb, NULL,
SCTP_FROM_SCTPUTIL + SCTP_LOC_15);
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
sctp_timer_stop(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net,
SCTP_FROM_SCTPUTIL + SCTP_LOC_16);
sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net,
SCTP_FROM_SCTPUTIL + SCTP_LOC_17);
}
}
void
sctp_stop_association_timers(struct sctp_tcb *stcb, bool stop_assoc_kill_timer)
{
struct sctp_inpcb *inp;
struct sctp_nets *net;
inp = stcb->sctp_ep;
sctp_timer_stop(SCTP_TIMER_TYPE_RECV, inp, stcb, NULL,
SCTP_FROM_SCTPUTIL + SCTP_LOC_18);
sctp_timer_stop(SCTP_TIMER_TYPE_STRRESET, inp, stcb, NULL,
SCTP_FROM_SCTPUTIL + SCTP_LOC_19);
if (stop_assoc_kill_timer) {
sctp_timer_stop(SCTP_TIMER_TYPE_ASOCKILL, inp, stcb, NULL,
SCTP_FROM_SCTPUTIL + SCTP_LOC_20);
}
sctp_timer_stop(SCTP_TIMER_TYPE_ASCONF, inp, stcb, NULL,
SCTP_FROM_SCTPUTIL + SCTP_LOC_21);
sctp_timer_stop(SCTP_TIMER_TYPE_AUTOCLOSE, inp, stcb, NULL,
SCTP_FROM_SCTPUTIL + SCTP_LOC_22);
sctp_timer_stop(SCTP_TIMER_TYPE_SHUTDOWNGUARD, inp, stcb, NULL,
SCTP_FROM_SCTPUTIL + SCTP_LOC_23);
/* Mobility adaptation */
sctp_timer_stop(SCTP_TIMER_TYPE_PRIM_DELETED, inp, stcb, NULL,
SCTP_FROM_SCTPUTIL + SCTP_LOC_24);
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
sctp_timer_stop(SCTP_TIMER_TYPE_SEND, inp, stcb, net,
SCTP_FROM_SCTPUTIL + SCTP_LOC_25);
sctp_timer_stop(SCTP_TIMER_TYPE_INIT, inp, stcb, net,
SCTP_FROM_SCTPUTIL + SCTP_LOC_26);
sctp_timer_stop(SCTP_TIMER_TYPE_SHUTDOWN, inp, stcb, net,
SCTP_FROM_SCTPUTIL + SCTP_LOC_27);
sctp_timer_stop(SCTP_TIMER_TYPE_COOKIE, inp, stcb, net,
SCTP_FROM_SCTPUTIL + SCTP_LOC_28);
sctp_timer_stop(SCTP_TIMER_TYPE_SHUTDOWNACK, inp, stcb, net,
SCTP_FROM_SCTPUTIL + SCTP_LOC_29);
sctp_timer_stop(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net,
SCTP_FROM_SCTPUTIL + SCTP_LOC_30);
sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net,
SCTP_FROM_SCTPUTIL + SCTP_LOC_31);
}
}
/*
* A list of sizes based on typical mtu's, used only if next hop size not
* returned. These values MUST be multiples of 4 and MUST be ordered.
*/
static uint32_t sctp_mtu_sizes[] = {
68,
296,
508,
512,
544,
576,
1004,
1492,
1500,
1536,
2000,
2048,
4352,
4464,
8168,
17912,
32000,
65532
};
/*
* Return the largest MTU in sctp_mtu_sizes smaller than val.
* If val is smaller than the minimum, just return the largest
* multiple of 4 smaller or equal to val.
* Ensure that the result is a multiple of 4.
*/
uint32_t
sctp_get_prev_mtu(uint32_t val)
{
uint32_t i;
val &= 0xfffffffc;
if (val <= sctp_mtu_sizes[0]) {
return (val);
}
for (i = 1; i < (sizeof(sctp_mtu_sizes) / sizeof(uint32_t)); i++) {
if (val <= sctp_mtu_sizes[i]) {
break;
}
}
KASSERT((sctp_mtu_sizes[i - 1] & 0x00000003) == 0,
("sctp_mtu_sizes[%u] not a multiple of 4", i - 1));
return (sctp_mtu_sizes[i - 1]);
}
/*
* Return the smallest MTU in sctp_mtu_sizes larger than val.
* If val is larger than the maximum, just return the largest multiple of 4 smaller
* or equal to val.
* Ensure that the result is a multiple of 4.
*/
uint32_t
sctp_get_next_mtu(uint32_t val)
{
/* select another MTU that is just bigger than this one */
uint32_t i;
val &= 0xfffffffc;
for (i = 0; i < (sizeof(sctp_mtu_sizes) / sizeof(uint32_t)); i++) {
if (val < sctp_mtu_sizes[i]) {
KASSERT((sctp_mtu_sizes[i] & 0x00000003) == 0,
("sctp_mtu_sizes[%u] not a multiple of 4", i));
return (sctp_mtu_sizes[i]);
}
}
return (val);
}
void
sctp_fill_random_store(struct sctp_pcb *m)
{
/*
* Here we use the MD5/SHA-1 to hash with our good randomNumbers and
* our counter. The result becomes our good random numbers and we
* then setup to give these out. Note that we do no locking to
* protect this. This is ok, since if competing folks call this we
* will get more gobbled gook in the random store which is what we
* want. There is a danger that two guys will use the same random
* numbers, but thats ok too since that is random as well :->
*/
m->store_at = 0;
(void)sctp_hmac(SCTP_HMAC, (uint8_t *)m->random_numbers,
sizeof(m->random_numbers), (uint8_t *)&m->random_counter,
sizeof(m->random_counter), (uint8_t *)m->random_store);
m->random_counter++;
}
uint32_t
sctp_select_initial_TSN(struct sctp_pcb *inp)
{
/*
* A true implementation should use random selection process to get
* the initial stream sequence number, using RFC1750 as a good
* guideline
*/
uint32_t x, *xp;
uint8_t *p;
int store_at, new_store;
if (inp->initial_sequence_debug != 0) {
uint32_t ret;
ret = inp->initial_sequence_debug;
inp->initial_sequence_debug++;
return (ret);
}
retry:
store_at = inp->store_at;
new_store = store_at + sizeof(uint32_t);
if (new_store >= (SCTP_SIGNATURE_SIZE - 3)) {
new_store = 0;
}
if (!atomic_cmpset_int(&inp->store_at, store_at, new_store)) {
goto retry;
}
if (new_store == 0) {
/* Refill the random store */
sctp_fill_random_store(inp);
}
p = &inp->random_store[store_at];
xp = (uint32_t *)p;
x = *xp;
return (x);
}
uint32_t
sctp_select_a_tag(struct sctp_inpcb *inp, uint16_t lport, uint16_t rport, int check)
{
uint32_t x;
struct timeval now;
if (check) {
(void)SCTP_GETTIME_TIMEVAL(&now);
}
for (;;) {
x = sctp_select_initial_TSN(&inp->sctp_ep);
if (x == 0) {
/* we never use 0 */
continue;
}
if (!check || sctp_is_vtag_good(x, lport, rport, &now)) {
break;
}
}
return (x);
}
int32_t
sctp_map_assoc_state(int kernel_state)
{
int32_t user_state;
if (kernel_state & SCTP_STATE_WAS_ABORTED) {
user_state = SCTP_CLOSED;
} else if (kernel_state & SCTP_STATE_SHUTDOWN_PENDING) {
user_state = SCTP_SHUTDOWN_PENDING;
} else {
switch (kernel_state & SCTP_STATE_MASK) {
case SCTP_STATE_EMPTY:
user_state = SCTP_CLOSED;
break;
case SCTP_STATE_INUSE:
user_state = SCTP_CLOSED;
break;
case SCTP_STATE_COOKIE_WAIT:
user_state = SCTP_COOKIE_WAIT;
break;
case SCTP_STATE_COOKIE_ECHOED:
user_state = SCTP_COOKIE_ECHOED;
break;
case SCTP_STATE_OPEN:
user_state = SCTP_ESTABLISHED;
break;
case SCTP_STATE_SHUTDOWN_SENT:
user_state = SCTP_SHUTDOWN_SENT;
break;
case SCTP_STATE_SHUTDOWN_RECEIVED:
user_state = SCTP_SHUTDOWN_RECEIVED;
break;
case SCTP_STATE_SHUTDOWN_ACK_SENT:
user_state = SCTP_SHUTDOWN_ACK_SENT;
break;
default:
user_state = SCTP_CLOSED;
break;
}
}
return (user_state);
}
int
sctp_init_asoc(struct sctp_inpcb *inp, struct sctp_tcb *stcb,
uint32_t override_tag, uint32_t vrf_id, uint16_t o_strms)
{
struct sctp_association *asoc;
/*
* Anything set to zero is taken care of by the allocation routine's
* bzero
*/
/*
* Up front select what scoping to apply on addresses I tell my peer
* Not sure what to do with these right now, we will need to come up
* with a way to set them. We may need to pass them through from the
* caller in the sctp_aloc_assoc() function.
*/
int i;
#if defined(SCTP_DETAILED_STR_STATS)
int j;
#endif
asoc = &stcb->asoc;
/* init all variables to a known value. */
SCTP_SET_STATE(stcb, SCTP_STATE_INUSE);
asoc->max_burst = inp->sctp_ep.max_burst;
asoc->fr_max_burst = inp->sctp_ep.fr_max_burst;
asoc->heart_beat_delay = sctp_ticks_to_msecs(inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_HEARTBEAT]);
asoc->cookie_life = inp->sctp_ep.def_cookie_life;
asoc->sctp_cmt_on_off = inp->sctp_cmt_on_off;
asoc->ecn_supported = inp->ecn_supported;
asoc->prsctp_supported = inp->prsctp_supported;
asoc->auth_supported = inp->auth_supported;
asoc->asconf_supported = inp->asconf_supported;
asoc->reconfig_supported = inp->reconfig_supported;
asoc->nrsack_supported = inp->nrsack_supported;
asoc->pktdrop_supported = inp->pktdrop_supported;
asoc->idata_supported = inp->idata_supported;
asoc->sctp_cmt_pf = (uint8_t)0;
asoc->sctp_frag_point = inp->sctp_frag_point;
asoc->sctp_features = inp->sctp_features;
asoc->default_dscp = inp->sctp_ep.default_dscp;
asoc->max_cwnd = inp->max_cwnd;
#ifdef INET6
if (inp->sctp_ep.default_flowlabel) {
asoc->default_flowlabel = inp->sctp_ep.default_flowlabel;
} else {
if (inp->ip_inp.inp.inp_flags & IN6P_AUTOFLOWLABEL) {
asoc->default_flowlabel = sctp_select_initial_TSN(&inp->sctp_ep);
asoc->default_flowlabel &= 0x000fffff;
asoc->default_flowlabel |= 0x80000000;
} else {
asoc->default_flowlabel = 0;
}
}
#endif
asoc->sb_send_resv = 0;
if (override_tag) {
asoc->my_vtag = override_tag;
} else {
asoc->my_vtag = sctp_select_a_tag(inp, stcb->sctp_ep->sctp_lport, stcb->rport, 1);
}
/* Get the nonce tags */
asoc->my_vtag_nonce = sctp_select_a_tag(inp, stcb->sctp_ep->sctp_lport, stcb->rport, 0);
asoc->peer_vtag_nonce = sctp_select_a_tag(inp, stcb->sctp_ep->sctp_lport, stcb->rport, 0);
asoc->vrf_id = vrf_id;
#ifdef SCTP_ASOCLOG_OF_TSNS
asoc->tsn_in_at = 0;
asoc->tsn_out_at = 0;
asoc->tsn_in_wrapped = 0;
asoc->tsn_out_wrapped = 0;
asoc->cumack_log_at = 0;
asoc->cumack_log_atsnt = 0;
#endif
#ifdef SCTP_FS_SPEC_LOG
asoc->fs_index = 0;
#endif
asoc->refcnt = 0;
asoc->assoc_up_sent = 0;
asoc->asconf_seq_out = asoc->str_reset_seq_out = asoc->init_seq_number = asoc->sending_seq =
sctp_select_initial_TSN(&inp->sctp_ep);
asoc->asconf_seq_out_acked = asoc->asconf_seq_out - 1;
/* we are optimisitic here */
asoc->peer_supports_nat = 0;
asoc->sent_queue_retran_cnt = 0;
/* for CMT */
asoc->last_net_cmt_send_started = NULL;
/* This will need to be adjusted */
asoc->last_acked_seq = asoc->init_seq_number - 1;
asoc->advanced_peer_ack_point = asoc->last_acked_seq;
asoc->asconf_seq_in = asoc->last_acked_seq;
/* here we are different, we hold the next one we expect */
asoc->str_reset_seq_in = asoc->last_acked_seq + 1;
asoc->initial_init_rto_max = inp->sctp_ep.initial_init_rto_max;
asoc->initial_rto = inp->sctp_ep.initial_rto;
asoc->default_mtu = inp->sctp_ep.default_mtu;
asoc->max_init_times = inp->sctp_ep.max_init_times;
asoc->max_send_times = inp->sctp_ep.max_send_times;
asoc->def_net_failure = inp->sctp_ep.def_net_failure;
asoc->def_net_pf_threshold = inp->sctp_ep.def_net_pf_threshold;
asoc->free_chunk_cnt = 0;
asoc->iam_blocking = 0;
asoc->context = inp->sctp_context;
asoc->local_strreset_support = inp->local_strreset_support;
asoc->def_send = inp->def_send;
asoc->delayed_ack = sctp_ticks_to_msecs(inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV]);
asoc->sack_freq = inp->sctp_ep.sctp_sack_freq;
asoc->pr_sctp_cnt = 0;
asoc->total_output_queue_size = 0;
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) {
asoc->scope.ipv6_addr_legal = 1;
if (SCTP_IPV6_V6ONLY(inp) == 0) {
asoc->scope.ipv4_addr_legal = 1;
} else {
asoc->scope.ipv4_addr_legal = 0;
}
} else {
asoc->scope.ipv6_addr_legal = 0;
asoc->scope.ipv4_addr_legal = 1;
}
asoc->my_rwnd = max(SCTP_SB_LIMIT_RCV(inp->sctp_socket), SCTP_MINIMAL_RWND);
asoc->peers_rwnd = SCTP_SB_LIMIT_RCV(inp->sctp_socket);
asoc->smallest_mtu = inp->sctp_frag_point;
asoc->minrto = inp->sctp_ep.sctp_minrto;
asoc->maxrto = inp->sctp_ep.sctp_maxrto;
asoc->stream_locked_on = 0;
asoc->ecn_echo_cnt_onq = 0;
asoc->stream_locked = 0;
asoc->send_sack = 1;
LIST_INIT(&asoc->sctp_restricted_addrs);
TAILQ_INIT(&asoc->nets);
TAILQ_INIT(&asoc->pending_reply_queue);
TAILQ_INIT(&asoc->asconf_ack_sent);
/* Setup to fill the hb random cache at first HB */
asoc->hb_random_idx = 4;
asoc->sctp_autoclose_ticks = inp->sctp_ep.auto_close_time;
stcb->asoc.congestion_control_module = inp->sctp_ep.sctp_default_cc_module;
stcb->asoc.cc_functions = sctp_cc_functions[inp->sctp_ep.sctp_default_cc_module];
stcb->asoc.stream_scheduling_module = inp->sctp_ep.sctp_default_ss_module;
stcb->asoc.ss_functions = sctp_ss_functions[inp->sctp_ep.sctp_default_ss_module];
/*
* Now the stream parameters, here we allocate space for all streams
* that we request by default.
*/
asoc->strm_realoutsize = asoc->streamoutcnt = asoc->pre_open_streams =
o_strms;
SCTP_MALLOC(asoc->strmout, struct sctp_stream_out *,
asoc->streamoutcnt * sizeof(struct sctp_stream_out),
SCTP_M_STRMO);
if (asoc->strmout == NULL) {
/* big trouble no memory */
SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ENOMEM);
return (ENOMEM);
}
for (i = 0; i < asoc->streamoutcnt; i++) {
/*
* inbound side must be set to 0xffff, also NOTE when we get
* the INIT-ACK back (for INIT sender) we MUST reduce the
* count (streamoutcnt) but first check if we sent to any of
* the upper streams that were dropped (if some were). Those
* that were dropped must be notified to the upper layer as
* failed to send.
*/
asoc->strmout[i].next_mid_ordered = 0;
asoc->strmout[i].next_mid_unordered = 0;
TAILQ_INIT(&asoc->strmout[i].outqueue);
asoc->strmout[i].chunks_on_queues = 0;
#if defined(SCTP_DETAILED_STR_STATS)
for (j = 0; j < SCTP_PR_SCTP_MAX + 1; j++) {
asoc->strmout[i].abandoned_sent[j] = 0;
asoc->strmout[i].abandoned_unsent[j] = 0;
}
#else
asoc->strmout[i].abandoned_sent[0] = 0;
asoc->strmout[i].abandoned_unsent[0] = 0;
#endif
asoc->strmout[i].sid = i;
asoc->strmout[i].last_msg_incomplete = 0;
asoc->strmout[i].state = SCTP_STREAM_OPENING;
asoc->ss_functions.sctp_ss_init_stream(stcb, &asoc->strmout[i], NULL);
}
asoc->ss_functions.sctp_ss_init(stcb, asoc, 0);
/* Now the mapping array */
asoc->mapping_array_size = SCTP_INITIAL_MAPPING_ARRAY;
SCTP_MALLOC(asoc->mapping_array, uint8_t *, asoc->mapping_array_size,
SCTP_M_MAP);
if (asoc->mapping_array == NULL) {
SCTP_FREE(asoc->strmout, SCTP_M_STRMO);
SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ENOMEM);
return (ENOMEM);
}
memset(asoc->mapping_array, 0, asoc->mapping_array_size);
SCTP_MALLOC(asoc->nr_mapping_array, uint8_t *, asoc->mapping_array_size,
SCTP_M_MAP);
if (asoc->nr_mapping_array == NULL) {
SCTP_FREE(asoc->strmout, SCTP_M_STRMO);
SCTP_FREE(asoc->mapping_array, SCTP_M_MAP);
SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ENOMEM);
return (ENOMEM);
}
memset(asoc->nr_mapping_array, 0, asoc->mapping_array_size);
/* Now the init of the other outqueues */
TAILQ_INIT(&asoc->free_chunks);
TAILQ_INIT(&asoc->control_send_queue);
TAILQ_INIT(&asoc->asconf_send_queue);
TAILQ_INIT(&asoc->send_queue);
TAILQ_INIT(&asoc->sent_queue);
TAILQ_INIT(&asoc->resetHead);
asoc->max_inbound_streams = inp->sctp_ep.max_open_streams_intome;
TAILQ_INIT(&asoc->asconf_queue);
/* authentication fields */
asoc->authinfo.random = NULL;
asoc->authinfo.active_keyid = 0;
asoc->authinfo.assoc_key = NULL;
asoc->authinfo.assoc_keyid = 0;
asoc->authinfo.recv_key = NULL;
asoc->authinfo.recv_keyid = 0;
LIST_INIT(&asoc->shared_keys);
asoc->marked_retrans = 0;
asoc->port = inp->sctp_ep.port;
asoc->timoinit = 0;
asoc->timodata = 0;
asoc->timosack = 0;
asoc->timoshutdown = 0;
asoc->timoheartbeat = 0;
asoc->timocookie = 0;
asoc->timoshutdownack = 0;
(void)SCTP_GETTIME_TIMEVAL(&asoc->start_time);
asoc->discontinuity_time = asoc->start_time;
for (i = 0; i < SCTP_PR_SCTP_MAX + 1; i++) {
asoc->abandoned_unsent[i] = 0;
asoc->abandoned_sent[i] = 0;
}
/*
* sa_ignore MEMLEAK {memory is put in the assoc mapping array and
* freed later when the association is freed.
*/
return (0);
}
void
sctp_print_mapping_array(struct sctp_association *asoc)
{
unsigned int i, limit;
SCTP_PRINTF("Mapping array size: %d, baseTSN: %8.8x, cumAck: %8.8x, highestTSN: (%8.8x, %8.8x).\n",
asoc->mapping_array_size,
asoc->mapping_array_base_tsn,
asoc->cumulative_tsn,
asoc->highest_tsn_inside_map,
asoc->highest_tsn_inside_nr_map);
for (limit = asoc->mapping_array_size; limit > 1; limit--) {
if (asoc->mapping_array[limit - 1] != 0) {
break;
}
}
SCTP_PRINTF("Renegable mapping array (last %d entries are zero):\n", asoc->mapping_array_size - limit);
for (i = 0; i < limit; i++) {
SCTP_PRINTF("%2.2x%c", asoc->mapping_array[i], ((i + 1) % 16) ? ' ' : '\n');
}
if (limit % 16)
SCTP_PRINTF("\n");
for (limit = asoc->mapping_array_size; limit > 1; limit--) {
if (asoc->nr_mapping_array[limit - 1]) {
break;
}
}
SCTP_PRINTF("Non renegable mapping array (last %d entries are zero):\n", asoc->mapping_array_size - limit);
for (i = 0; i < limit; i++) {
SCTP_PRINTF("%2.2x%c", asoc->nr_mapping_array[i], ((i + 1) % 16) ? ' ' : '\n');
}
if (limit % 16)
SCTP_PRINTF("\n");
}
int
sctp_expand_mapping_array(struct sctp_association *asoc, uint32_t needed)
{
/* mapping array needs to grow */
uint8_t *new_array1, *new_array2;
uint32_t new_size;
new_size = asoc->mapping_array_size + ((needed + 7) / 8 + SCTP_MAPPING_ARRAY_INCR);
SCTP_MALLOC(new_array1, uint8_t *, new_size, SCTP_M_MAP);
SCTP_MALLOC(new_array2, uint8_t *, new_size, SCTP_M_MAP);
if ((new_array1 == NULL) || (new_array2 == NULL)) {
/* can't get more, forget it */
SCTP_PRINTF("No memory for expansion of SCTP mapping array %d\n", new_size);
if (new_array1) {
SCTP_FREE(new_array1, SCTP_M_MAP);
}
if (new_array2) {
SCTP_FREE(new_array2, SCTP_M_MAP);
}
return (-1);
}
memset(new_array1, 0, new_size);
memset(new_array2, 0, new_size);
memcpy(new_array1, asoc->mapping_array, asoc->mapping_array_size);
memcpy(new_array2, asoc->nr_mapping_array, asoc->mapping_array_size);
SCTP_FREE(asoc->mapping_array, SCTP_M_MAP);
SCTP_FREE(asoc->nr_mapping_array, SCTP_M_MAP);
asoc->mapping_array = new_array1;
asoc->nr_mapping_array = new_array2;
asoc->mapping_array_size = new_size;
return (0);
}
static void
sctp_iterator_work(struct sctp_iterator *it)
{
struct epoch_tracker et;
struct sctp_inpcb *tinp;
int iteration_count = 0;
int inp_skip = 0;
int first_in = 1;
NET_EPOCH_ENTER(et);
SCTP_INP_INFO_RLOCK();
SCTP_ITERATOR_LOCK();
sctp_it_ctl.cur_it = it;
if (it->inp) {
SCTP_INP_RLOCK(it->inp);
SCTP_INP_DECR_REF(it->inp);
}
if (it->inp == NULL) {
/* iterator is complete */
done_with_iterator:
sctp_it_ctl.cur_it = NULL;
SCTP_ITERATOR_UNLOCK();
SCTP_INP_INFO_RUNLOCK();
if (it->function_atend != NULL) {
(*it->function_atend) (it->pointer, it->val);
}
SCTP_FREE(it, SCTP_M_ITER);
NET_EPOCH_EXIT(et);
return;
}
select_a_new_ep:
if (first_in) {
first_in = 0;
} else {
SCTP_INP_RLOCK(it->inp);
}
while (((it->pcb_flags) &&
((it->inp->sctp_flags & it->pcb_flags) != it->pcb_flags)) ||
((it->pcb_features) &&
((it->inp->sctp_features & it->pcb_features) != it->pcb_features))) {
/* endpoint flags or features don't match, so keep looking */
if (it->iterator_flags & SCTP_ITERATOR_DO_SINGLE_INP) {
SCTP_INP_RUNLOCK(it->inp);
goto done_with_iterator;
}
tinp = it->inp;
it->inp = LIST_NEXT(it->inp, sctp_list);
it->stcb = NULL;
SCTP_INP_RUNLOCK(tinp);
if (it->inp == NULL) {
goto done_with_iterator;
}
SCTP_INP_RLOCK(it->inp);
}
/* now go through each assoc which is in the desired state */
if (it->done_current_ep == 0) {
if (it->function_inp != NULL)
inp_skip = (*it->function_inp) (it->inp, it->pointer, it->val);
it->done_current_ep = 1;
}
if (it->stcb == NULL) {
/* run the per instance function */
it->stcb = LIST_FIRST(&it->inp->sctp_asoc_list);
}
if ((inp_skip) || it->stcb == NULL) {
if (it->function_inp_end != NULL) {
inp_skip = (*it->function_inp_end) (it->inp,
it->pointer,
it->val);
}
SCTP_INP_RUNLOCK(it->inp);
goto no_stcb;
}
while (it->stcb) {
SCTP_TCB_LOCK(it->stcb);
if (it->asoc_state && ((it->stcb->asoc.state & it->asoc_state) != it->asoc_state)) {
/* not in the right state... keep looking */
SCTP_TCB_UNLOCK(it->stcb);
goto next_assoc;
}
/* see if we have limited out the iterator loop */
iteration_count++;
if (iteration_count > SCTP_ITERATOR_MAX_AT_ONCE) {
/* Pause to let others grab the lock */
atomic_add_int(&it->stcb->asoc.refcnt, 1);
SCTP_TCB_UNLOCK(it->stcb);
SCTP_INP_INCR_REF(it->inp);
SCTP_INP_RUNLOCK(it->inp);
SCTP_ITERATOR_UNLOCK();
SCTP_INP_INFO_RUNLOCK();
SCTP_INP_INFO_RLOCK();
SCTP_ITERATOR_LOCK();
if (sctp_it_ctl.iterator_flags) {
/* We won't be staying here */
SCTP_INP_DECR_REF(it->inp);
atomic_add_int(&it->stcb->asoc.refcnt, -1);
if (sctp_it_ctl.iterator_flags &
SCTP_ITERATOR_STOP_CUR_IT) {
sctp_it_ctl.iterator_flags &= ~SCTP_ITERATOR_STOP_CUR_IT;
goto done_with_iterator;
}
if (sctp_it_ctl.iterator_flags &
SCTP_ITERATOR_STOP_CUR_INP) {
sctp_it_ctl.iterator_flags &= ~SCTP_ITERATOR_STOP_CUR_INP;
goto no_stcb;
}
/* If we reach here huh? */
SCTP_PRINTF("Unknown it ctl flag %x\n",
sctp_it_ctl.iterator_flags);
sctp_it_ctl.iterator_flags = 0;
}
SCTP_INP_RLOCK(it->inp);
SCTP_INP_DECR_REF(it->inp);
SCTP_TCB_LOCK(it->stcb);
atomic_add_int(&it->stcb->asoc.refcnt, -1);
iteration_count = 0;
}
KASSERT(it->inp == it->stcb->sctp_ep,
("%s: stcb %p does not belong to inp %p, but inp %p",
__func__, it->stcb, it->inp, it->stcb->sctp_ep));
/* run function on this one */
(*it->function_assoc) (it->inp, it->stcb, it->pointer, it->val);
/*
* we lie here, it really needs to have its own type but
* first I must verify that this won't effect things :-0
*/
if (it->no_chunk_output == 0)
sctp_chunk_output(it->inp, it->stcb, SCTP_OUTPUT_FROM_T3, SCTP_SO_NOT_LOCKED);
SCTP_TCB_UNLOCK(it->stcb);
next_assoc:
it->stcb = LIST_NEXT(it->stcb, sctp_tcblist);
if (it->stcb == NULL) {
/* Run last function */
if (it->function_inp_end != NULL) {
inp_skip = (*it->function_inp_end) (it->inp,
it->pointer,
it->val);
}
}
}
SCTP_INP_RUNLOCK(it->inp);
no_stcb:
/* done with all assocs on this endpoint, move on to next endpoint */
it->done_current_ep = 0;
if (it->iterator_flags & SCTP_ITERATOR_DO_SINGLE_INP) {
it->inp = NULL;
} else {
it->inp = LIST_NEXT(it->inp, sctp_list);
}
it->stcb = NULL;
if (it->inp == NULL) {
goto done_with_iterator;
}
goto select_a_new_ep;
}
void
sctp_iterator_worker(void)
{
struct sctp_iterator *it;
/* This function is called with the WQ lock in place */
sctp_it_ctl.iterator_running = 1;
while ((it = TAILQ_FIRST(&sctp_it_ctl.iteratorhead)) != NULL) {
/* now lets work on this one */
TAILQ_REMOVE(&sctp_it_ctl.iteratorhead, it, sctp_nxt_itr);
SCTP_IPI_ITERATOR_WQ_UNLOCK();
CURVNET_SET(it->vn);
sctp_iterator_work(it);
CURVNET_RESTORE();
SCTP_IPI_ITERATOR_WQ_LOCK();
/* sa_ignore FREED_MEMORY */
}
sctp_it_ctl.iterator_running = 0;
return;
}
static void
sctp_handle_addr_wq(void)
{
/* deal with the ADDR wq from the rtsock calls */
struct sctp_laddr *wi, *nwi;
struct sctp_asconf_iterator *asc;
SCTP_MALLOC(asc, struct sctp_asconf_iterator *,
sizeof(struct sctp_asconf_iterator), SCTP_M_ASC_IT);
if (asc == NULL) {
/* Try later, no memory */
sctp_timer_start(SCTP_TIMER_TYPE_ADDR_WQ,
(struct sctp_inpcb *)NULL,
(struct sctp_tcb *)NULL,
(struct sctp_nets *)NULL);
return;
}
LIST_INIT(&asc->list_of_work);
asc->cnt = 0;
LIST_FOREACH_SAFE(wi, &SCTP_BASE_INFO(addr_wq), sctp_nxt_addr, nwi) {
LIST_REMOVE(wi, sctp_nxt_addr);
LIST_INSERT_HEAD(&asc->list_of_work, wi, sctp_nxt_addr);
asc->cnt++;
}
if (asc->cnt == 0) {
SCTP_FREE(asc, SCTP_M_ASC_IT);
} else {
int ret;
ret = sctp_initiate_iterator(sctp_asconf_iterator_ep,
sctp_asconf_iterator_stcb,
NULL, /* No ep end for boundall */
SCTP_PCB_FLAGS_BOUNDALL,
SCTP_PCB_ANY_FEATURES,
SCTP_ASOC_ANY_STATE,
(void *)asc, 0,
sctp_asconf_iterator_end, NULL, 0);
if (ret) {
SCTP_PRINTF("Failed to initiate iterator for handle_addr_wq\n");
/*
* Freeing if we are stopping or put back on the
* addr_wq.
*/
if (SCTP_BASE_VAR(sctp_pcb_initialized) == 0) {
sctp_asconf_iterator_end(asc, 0);
} else {
LIST_FOREACH(wi, &asc->list_of_work, sctp_nxt_addr) {
LIST_INSERT_HEAD(&SCTP_BASE_INFO(addr_wq), wi, sctp_nxt_addr);
}
SCTP_FREE(asc, SCTP_M_ASC_IT);
}
}
}
}
/*-
* The following table shows which pointers for the inp, stcb, or net are
* stored for each timer after it was started.
*
*|Name |Timer |inp |stcb|net |
*|-----------------------------|-----------------------------|----|----|----|
*|SCTP_TIMER_TYPE_SEND |net->rxt_timer |Yes |Yes |Yes |
*|SCTP_TIMER_TYPE_INIT |net->rxt_timer |Yes |Yes |Yes |
*|SCTP_TIMER_TYPE_RECV |stcb->asoc.dack_timer |Yes |Yes |No |
*|SCTP_TIMER_TYPE_SHUTDOWN |net->rxt_timer |Yes |Yes |Yes |
*|SCTP_TIMER_TYPE_HEARTBEAT |net->hb_timer |Yes |Yes |Yes |
*|SCTP_TIMER_TYPE_COOKIE |net->rxt_timer |Yes |Yes |Yes |
*|SCTP_TIMER_TYPE_NEWCOOKIE |inp->sctp_ep.signature_change|Yes |No |No |
*|SCTP_TIMER_TYPE_PATHMTURAISE |net->pmtu_timer |Yes |Yes |Yes |
*|SCTP_TIMER_TYPE_SHUTDOWNACK |net->rxt_timer |Yes |Yes |Yes |
*|SCTP_TIMER_TYPE_ASCONF |stcb->asoc.asconf_timer |Yes |Yes |Yes |
*|SCTP_TIMER_TYPE_SHUTDOWNGUARD|stcb->asoc.shut_guard_timer |Yes |Yes |No |
*|SCTP_TIMER_TYPE_AUTOCLOSE |stcb->asoc.autoclose_timer |Yes |Yes |No |
*|SCTP_TIMER_TYPE_STRRESET |stcb->asoc.strreset_timer |Yes |Yes |No |
*|SCTP_TIMER_TYPE_INPKILL |inp->sctp_ep.signature_change|Yes |No |No |
*|SCTP_TIMER_TYPE_ASOCKILL |stcb->asoc.strreset_timer |Yes |Yes |No |
*|SCTP_TIMER_TYPE_ADDR_WQ |SCTP_BASE_INFO(addr_wq_timer)|No |No |No |
*|SCTP_TIMER_TYPE_PRIM_DELETED |stcb->asoc.delete_prim_timer |Yes |Yes |No |
*/
void
sctp_timeout_handler(void *t)
{
struct epoch_tracker et;
struct timeval tv;
struct sctp_inpcb *inp;
struct sctp_tcb *stcb;
struct sctp_nets *net;
struct sctp_timer *tmr;
struct mbuf *op_err;
int type;
int i, secret;
bool did_output, released_asoc_reference;
/*
* If inp, stcb or net are not NULL, then references to these were
* added when the timer was started, and must be released before
* this function returns.
*/
tmr = (struct sctp_timer *)t;
inp = (struct sctp_inpcb *)tmr->ep;
stcb = (struct sctp_tcb *)tmr->tcb;
net = (struct sctp_nets *)tmr->net;
CURVNET_SET((struct vnet *)tmr->vnet);
NET_EPOCH_ENTER(et);
released_asoc_reference = false;
#ifdef SCTP_AUDITING_ENABLED
sctp_audit_log(0xF0, (uint8_t)tmr->type);
sctp_auditing(3, inp, stcb, net);
#endif
/* sanity checks... */
KASSERT(tmr->self == NULL || tmr->self == tmr,
("sctp_timeout_handler: tmr->self corrupted"));
KASSERT(SCTP_IS_TIMER_TYPE_VALID(tmr->type),
("sctp_timeout_handler: invalid timer type %d", tmr->type));
type = tmr->type;
KASSERT(stcb == NULL || stcb->sctp_ep == inp,
("sctp_timeout_handler of type %d: inp = %p, stcb->sctp_ep %p",
type, stcb, stcb->sctp_ep));
tmr->stopped_from = 0xa001;
if ((stcb != NULL) && (stcb->asoc.state == SCTP_STATE_EMPTY)) {
SCTPDBG(SCTP_DEBUG_TIMER2,
"Timer type %d handler exiting due to CLOSED association.\n",
type);
goto out_decr;
}
tmr->stopped_from = 0xa002;
SCTPDBG(SCTP_DEBUG_TIMER2, "Timer type %d goes off.\n", type);
if (!SCTP_OS_TIMER_ACTIVE(&tmr->timer)) {
SCTPDBG(SCTP_DEBUG_TIMER2,
"Timer type %d handler exiting due to not being active.\n",
type);
goto out_decr;
}
tmr->stopped_from = 0xa003;
if (stcb) {
SCTP_TCB_LOCK(stcb);
/*
* Release reference so that association can be freed if
* necessary below. This is safe now that we have acquired
* the lock.
*/
atomic_add_int(&stcb->asoc.refcnt, -1);
released_asoc_reference = true;
if ((type != SCTP_TIMER_TYPE_ASOCKILL) &&
((stcb->asoc.state == SCTP_STATE_EMPTY) ||
(stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED))) {
SCTPDBG(SCTP_DEBUG_TIMER2,
"Timer type %d handler exiting due to CLOSED association.\n",
type);
goto out;
}
} else if (inp != NULL) {
SCTP_INP_WLOCK(inp);
} else {
SCTP_WQ_ADDR_LOCK();
}
/* Record in stopped_from which timeout occurred. */
tmr->stopped_from = type;
/* mark as being serviced now */
if (SCTP_OS_TIMER_PENDING(&tmr->timer)) {
/*
* Callout has been rescheduled.
*/
goto out;
}
if (!SCTP_OS_TIMER_ACTIVE(&tmr->timer)) {
/*
* Not active, so no action.
*/
goto out;
}
SCTP_OS_TIMER_DEACTIVATE(&tmr->timer);
/* call the handler for the appropriate timer type */
switch (type) {
case SCTP_TIMER_TYPE_SEND:
KASSERT(inp != NULL && stcb != NULL && net != NULL,
("timeout of type %d: inp = %p, stcb = %p, net = %p",
type, inp, stcb, net));
SCTP_STAT_INCR(sctps_timodata);
stcb->asoc.timodata++;
stcb->asoc.num_send_timers_up--;
if (stcb->asoc.num_send_timers_up < 0) {
stcb->asoc.num_send_timers_up = 0;
}
SCTP_TCB_LOCK_ASSERT(stcb);
if (sctp_t3rxt_timer(inp, stcb, net)) {
/* no need to unlock on tcb its gone */
goto out_decr;
}
SCTP_TCB_LOCK_ASSERT(stcb);
#ifdef SCTP_AUDITING_ENABLED
sctp_auditing(4, inp, stcb, net);
#endif
sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_T3, SCTP_SO_NOT_LOCKED);
did_output = true;
if ((stcb->asoc.num_send_timers_up == 0) &&
(stcb->asoc.sent_queue_cnt > 0)) {
struct sctp_tmit_chunk *chk;
/*
* Safeguard. If there on some on the sent queue
* somewhere but no timers running something is
* wrong... so we start a timer on the first chunk
* on the send queue on whatever net it is sent to.
*/
TAILQ_FOREACH(chk, &stcb->asoc.sent_queue, sctp_next) {
if (chk->whoTo != NULL) {
break;
}
}
if (chk != NULL) {
sctp_timer_start(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, chk->whoTo);
}
}
break;
case SCTP_TIMER_TYPE_INIT:
KASSERT(inp != NULL && stcb != NULL && net != NULL,
("timeout of type %d: inp = %p, stcb = %p, net = %p",
type, inp, stcb, net));
SCTP_STAT_INCR(sctps_timoinit);
stcb->asoc.timoinit++;
if (sctp_t1init_timer(inp, stcb, net)) {
/* no need to unlock on tcb its gone */
goto out_decr;
}
did_output = false;
break;
case SCTP_TIMER_TYPE_RECV:
KASSERT(inp != NULL && stcb != NULL && net == NULL,
("timeout of type %d: inp = %p, stcb = %p, net = %p",
type, inp, stcb, net));
SCTP_STAT_INCR(sctps_timosack);
stcb->asoc.timosack++;
sctp_send_sack(stcb, SCTP_SO_NOT_LOCKED);
#ifdef SCTP_AUDITING_ENABLED
sctp_auditing(4, inp, stcb, NULL);
#endif
sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_SACK_TMR, SCTP_SO_NOT_LOCKED);
did_output = true;
break;
case SCTP_TIMER_TYPE_SHUTDOWN:
KASSERT(inp != NULL && stcb != NULL && net != NULL,
("timeout of type %d: inp = %p, stcb = %p, net = %p",
type, inp, stcb, net));
SCTP_STAT_INCR(sctps_timoshutdown);
stcb->asoc.timoshutdown++;
if (sctp_shutdown_timer(inp, stcb, net)) {
/* no need to unlock on tcb its gone */
goto out_decr;
}
#ifdef SCTP_AUDITING_ENABLED
sctp_auditing(4, inp, stcb, net);
#endif
sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_SHUT_TMR, SCTP_SO_NOT_LOCKED);
did_output = true;
break;
case SCTP_TIMER_TYPE_HEARTBEAT:
KASSERT(inp != NULL && stcb != NULL && net != NULL,
("timeout of type %d: inp = %p, stcb = %p, net = %p",
type, inp, stcb, net));
SCTP_STAT_INCR(sctps_timoheartbeat);
stcb->asoc.timoheartbeat++;
if (sctp_heartbeat_timer(inp, stcb, net)) {
/* no need to unlock on tcb its gone */
goto out_decr;
}
#ifdef SCTP_AUDITING_ENABLED
sctp_auditing(4, inp, stcb, net);
#endif
if (!(net->dest_state & SCTP_ADDR_NOHB)) {
sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net);
sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_HB_TMR, SCTP_SO_NOT_LOCKED);
did_output = true;
} else {
did_output = false;
}
break;
case SCTP_TIMER_TYPE_COOKIE:
KASSERT(inp != NULL && stcb != NULL && net != NULL,
("timeout of type %d: inp = %p, stcb = %p, net = %p",
type, inp, stcb, net));
SCTP_STAT_INCR(sctps_timocookie);
stcb->asoc.timocookie++;
if (sctp_cookie_timer(inp, stcb, net)) {
/* no need to unlock on tcb its gone */
goto out_decr;
}
#ifdef SCTP_AUDITING_ENABLED
sctp_auditing(4, inp, stcb, net);
#endif
/*
* We consider T3 and Cookie timer pretty much the same with
* respect to where from in chunk_output.
*/
sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_T3, SCTP_SO_NOT_LOCKED);
did_output = true;
break;
case SCTP_TIMER_TYPE_NEWCOOKIE:
KASSERT(inp != NULL && stcb == NULL && net == NULL,
("timeout of type %d: inp = %p, stcb = %p, net = %p",
type, inp, stcb, net));
SCTP_STAT_INCR(sctps_timosecret);
(void)SCTP_GETTIME_TIMEVAL(&tv);
inp->sctp_ep.time_of_secret_change = tv.tv_sec;
inp->sctp_ep.last_secret_number =
inp->sctp_ep.current_secret_number;
inp->sctp_ep.current_secret_number++;
if (inp->sctp_ep.current_secret_number >=
SCTP_HOW_MANY_SECRETS) {
inp->sctp_ep.current_secret_number = 0;
}
secret = (int)inp->sctp_ep.current_secret_number;
for (i = 0; i < SCTP_NUMBER_OF_SECRETS; i++) {
inp->sctp_ep.secret_key[secret][i] =
sctp_select_initial_TSN(&inp->sctp_ep);
}
sctp_timer_start(SCTP_TIMER_TYPE_NEWCOOKIE, inp, NULL, NULL);
did_output = false;
break;
case SCTP_TIMER_TYPE_PATHMTURAISE:
KASSERT(inp != NULL && stcb != NULL && net != NULL,
("timeout of type %d: inp = %p, stcb = %p, net = %p",
type, inp, stcb, net));
SCTP_STAT_INCR(sctps_timopathmtu);
sctp_pathmtu_timer(inp, stcb, net);
did_output = false;
break;
case SCTP_TIMER_TYPE_SHUTDOWNACK:
KASSERT(inp != NULL && stcb != NULL && net != NULL,
("timeout of type %d: inp = %p, stcb = %p, net = %p",
type, inp, stcb, net));
if (sctp_shutdownack_timer(inp, stcb, net)) {
/* no need to unlock on tcb its gone */
goto out_decr;
}
SCTP_STAT_INCR(sctps_timoshutdownack);
stcb->asoc.timoshutdownack++;
#ifdef SCTP_AUDITING_ENABLED
sctp_auditing(4, inp, stcb, net);
#endif
sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_SHUT_ACK_TMR, SCTP_SO_NOT_LOCKED);
did_output = true;
break;
case SCTP_TIMER_TYPE_ASCONF:
KASSERT(inp != NULL && stcb != NULL && net != NULL,
("timeout of type %d: inp = %p, stcb = %p, net = %p",
type, inp, stcb, net));
SCTP_STAT_INCR(sctps_timoasconf);
if (sctp_asconf_timer(inp, stcb, net)) {
/* no need to unlock on tcb its gone */
goto out_decr;
}
#ifdef SCTP_AUDITING_ENABLED
sctp_auditing(4, inp, stcb, net);
#endif
sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_ASCONF_TMR, SCTP_SO_NOT_LOCKED);
did_output = true;
break;
case SCTP_TIMER_TYPE_SHUTDOWNGUARD:
KASSERT(inp != NULL && stcb != NULL && net == NULL,
("timeout of type %d: inp = %p, stcb = %p, net = %p",
type, inp, stcb, net));
SCTP_STAT_INCR(sctps_timoshutdownguard);
op_err = sctp_generate_cause(SCTP_BASE_SYSCTL(sctp_diag_info_code),
"Shutdown guard timer expired");
sctp_abort_an_association(inp, stcb, op_err, SCTP_SO_NOT_LOCKED);
/* no need to unlock on tcb its gone */
goto out_decr;
case SCTP_TIMER_TYPE_AUTOCLOSE:
KASSERT(inp != NULL && stcb != NULL && net == NULL,
("timeout of type %d: inp = %p, stcb = %p, net = %p",
type, inp, stcb, net));
SCTP_STAT_INCR(sctps_timoautoclose);
sctp_autoclose_timer(inp, stcb);
sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_AUTOCLOSE_TMR, SCTP_SO_NOT_LOCKED);
did_output = true;
break;
case SCTP_TIMER_TYPE_STRRESET:
KASSERT(inp != NULL && stcb != NULL && net == NULL,
("timeout of type %d: inp = %p, stcb = %p, net = %p",
type, inp, stcb, net));
SCTP_STAT_INCR(sctps_timostrmrst);
if (sctp_strreset_timer(inp, stcb)) {
/* no need to unlock on tcb its gone */
goto out_decr;
}
sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_STRRST_TMR, SCTP_SO_NOT_LOCKED);
did_output = true;
break;
case SCTP_TIMER_TYPE_INPKILL:
KASSERT(inp != NULL && stcb == NULL && net == NULL,
("timeout of type %d: inp = %p, stcb = %p, net = %p",
type, inp, stcb, net));
SCTP_STAT_INCR(sctps_timoinpkill);
/*
* special case, take away our increment since WE are the
* killer
*/
sctp_timer_stop(SCTP_TIMER_TYPE_INPKILL, inp, NULL, NULL,
SCTP_FROM_SCTPUTIL + SCTP_LOC_3);
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
sctp_inpcb_free(inp, SCTP_FREE_SHOULD_USE_ABORT,
SCTP_CALLED_FROM_INPKILL_TIMER);
inp = NULL;
goto out_no_decr;
case SCTP_TIMER_TYPE_ASOCKILL:
KASSERT(inp != NULL && stcb != NULL && net == NULL,
("timeout of type %d: inp = %p, stcb = %p, net = %p",
type, inp, stcb, net));
SCTP_STAT_INCR(sctps_timoassockill);
/* Can we free it yet? */
SCTP_INP_DECR_REF(inp);
sctp_timer_stop(SCTP_TIMER_TYPE_ASOCKILL, inp, stcb, NULL,
SCTP_FROM_SCTPUTIL + SCTP_LOC_1);
(void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC,
SCTP_FROM_SCTPUTIL + SCTP_LOC_2);
/*
* free asoc, always unlocks (or destroy's) so prevent
* duplicate unlock or unlock of a free mtx :-0
*/
stcb = NULL;
goto out_no_decr;
case SCTP_TIMER_TYPE_ADDR_WQ:
KASSERT(inp == NULL && stcb == NULL && net == NULL,
("timeout of type %d: inp = %p, stcb = %p, net = %p",
type, inp, stcb, net));
sctp_handle_addr_wq();
did_output = true;
break;
case SCTP_TIMER_TYPE_PRIM_DELETED:
KASSERT(inp != NULL && stcb != NULL && net == NULL,
("timeout of type %d: inp = %p, stcb = %p, net = %p",
type, inp, stcb, net));
SCTP_STAT_INCR(sctps_timodelprim);
sctp_delete_prim_timer(inp, stcb);
did_output = false;
break;
default:
#ifdef INVARIANTS
panic("Unknown timer type %d", type);
#else
goto out;
#endif
}
#ifdef SCTP_AUDITING_ENABLED
sctp_audit_log(0xF1, (uint8_t)type);
if (inp != NULL)
sctp_auditing(5, inp, stcb, net);
#endif
if (did_output && (stcb != NULL)) {
/*
* Now we need to clean up the control chunk chain if an
* ECNE is on it. It must be marked as UNSENT again so next
* call will continue to send it until such time that we get
* a CWR, to remove it. It is, however, less likely that we
* will find a ecn echo on the chain though.
*/
sctp_fix_ecn_echo(&stcb->asoc);
}
out:
if (stcb != NULL) {
SCTP_TCB_UNLOCK(stcb);
} else if (inp != NULL) {
SCTP_INP_WUNLOCK(inp);
} else {
SCTP_WQ_ADDR_UNLOCK();
}
out_decr:
/* These reference counts were incremented in sctp_timer_start(). */
if (inp != NULL) {
SCTP_INP_DECR_REF(inp);
}
if ((stcb != NULL) && !released_asoc_reference) {
atomic_add_int(&stcb->asoc.refcnt, -1);
}
if (net != NULL) {
sctp_free_remote_addr(net);
}
out_no_decr:
SCTPDBG(SCTP_DEBUG_TIMER2, "Timer type %d handler finished.\n", type);
CURVNET_RESTORE();
NET_EPOCH_EXIT(et);
}
/*-
* The following table shows which parameters must be provided
* when calling sctp_timer_start(). For parameters not being
* provided, NULL must be used.
*
* |Name |inp |stcb|net |
* |-----------------------------|----|----|----|
* |SCTP_TIMER_TYPE_SEND |Yes |Yes |Yes |
* |SCTP_TIMER_TYPE_INIT |Yes |Yes |Yes |
* |SCTP_TIMER_TYPE_RECV |Yes |Yes |No |
* |SCTP_TIMER_TYPE_SHUTDOWN |Yes |Yes |Yes |
* |SCTP_TIMER_TYPE_HEARTBEAT |Yes |Yes |Yes |
* |SCTP_TIMER_TYPE_COOKIE |Yes |Yes |Yes |
* |SCTP_TIMER_TYPE_NEWCOOKIE |Yes |No |No |
* |SCTP_TIMER_TYPE_PATHMTURAISE |Yes |Yes |Yes |
* |SCTP_TIMER_TYPE_SHUTDOWNACK |Yes |Yes |Yes |
* |SCTP_TIMER_TYPE_ASCONF |Yes |Yes |Yes |
* |SCTP_TIMER_TYPE_SHUTDOWNGUARD|Yes |Yes |No |
* |SCTP_TIMER_TYPE_AUTOCLOSE |Yes |Yes |No |
* |SCTP_TIMER_TYPE_STRRESET |Yes |Yes |Yes |
* |SCTP_TIMER_TYPE_INPKILL |Yes |No |No |
* |SCTP_TIMER_TYPE_ASOCKILL |Yes |Yes |No |
* |SCTP_TIMER_TYPE_ADDR_WQ |No |No |No |
* |SCTP_TIMER_TYPE_PRIM_DELETED |Yes |Yes |No |
*
*/
void
sctp_timer_start(int t_type, struct sctp_inpcb *inp, struct sctp_tcb *stcb,
struct sctp_nets *net)
{
struct sctp_timer *tmr;
uint32_t to_ticks;
uint32_t rndval, jitter;
KASSERT(stcb == NULL || stcb->sctp_ep == inp,
("sctp_timer_start of type %d: inp = %p, stcb->sctp_ep %p",
t_type, stcb, stcb->sctp_ep));
tmr = NULL;
if (stcb != NULL) {
SCTP_TCB_LOCK_ASSERT(stcb);
} else if (inp != NULL) {
SCTP_INP_WLOCK_ASSERT(inp);
} else {
SCTP_WQ_ADDR_LOCK_ASSERT();
}
if (stcb != NULL) {
/*
* Don't restart timer on association that's about to be
* killed.
*/
if ((stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) &&
(t_type != SCTP_TIMER_TYPE_ASOCKILL)) {
SCTPDBG(SCTP_DEBUG_TIMER2,
"Timer type %d not started: inp=%p, stcb=%p, net=%p (stcb deleted).\n",
t_type, inp, stcb, net);
return;
}
/* Don't restart timer on net that's been removed. */
if (net != NULL && (net->dest_state & SCTP_ADDR_BEING_DELETED)) {
SCTPDBG(SCTP_DEBUG_TIMER2,
"Timer type %d not started: inp=%p, stcb=%p, net=%p (net deleted).\n",
t_type, inp, stcb, net);
return;
}
}
switch (t_type) {
case SCTP_TIMER_TYPE_SEND:
/* Here we use the RTO timer. */
if ((inp == NULL) || (stcb == NULL) || (net == NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &net->rxt_timer;
if (net->RTO == 0) {
to_ticks = sctp_msecs_to_ticks(stcb->asoc.initial_rto);
} else {
to_ticks = sctp_msecs_to_ticks(net->RTO);
}
break;
case SCTP_TIMER_TYPE_INIT:
/*
* Here we use the INIT timer default usually about 1
* second.
*/
if ((inp == NULL) || (stcb == NULL) || (net == NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &net->rxt_timer;
if (net->RTO == 0) {
to_ticks = sctp_msecs_to_ticks(stcb->asoc.initial_rto);
} else {
to_ticks = sctp_msecs_to_ticks(net->RTO);
}
break;
case SCTP_TIMER_TYPE_RECV:
/*
* Here we use the Delayed-Ack timer value from the inp,
* ususually about 200ms.
*/
if ((inp == NULL) || (stcb == NULL) || (net != NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &stcb->asoc.dack_timer;
to_ticks = sctp_msecs_to_ticks(stcb->asoc.delayed_ack);
break;
case SCTP_TIMER_TYPE_SHUTDOWN:
/* Here we use the RTO of the destination. */
if ((inp == NULL) || (stcb == NULL) || (net == NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &net->rxt_timer;
if (net->RTO == 0) {
to_ticks = sctp_msecs_to_ticks(stcb->asoc.initial_rto);
} else {
to_ticks = sctp_msecs_to_ticks(net->RTO);
}
break;
case SCTP_TIMER_TYPE_HEARTBEAT:
/*
* The net is used here so that we can add in the RTO. Even
* though we use a different timer. We also add the HB timer
* PLUS a random jitter.
*/
if ((inp == NULL) || (stcb == NULL) || (net == NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
if ((net->dest_state & SCTP_ADDR_NOHB) &&
!(net->dest_state & SCTP_ADDR_UNCONFIRMED)) {
SCTPDBG(SCTP_DEBUG_TIMER2,
"Timer type %d not started: inp=%p, stcb=%p, net=%p.\n",
t_type, inp, stcb, net);
return;
}
tmr = &net->hb_timer;
if (net->RTO == 0) {
to_ticks = stcb->asoc.initial_rto;
} else {
to_ticks = net->RTO;
}
rndval = sctp_select_initial_TSN(&inp->sctp_ep);
jitter = rndval % to_ticks;
if (jitter >= (to_ticks >> 1)) {
to_ticks = to_ticks + (jitter - (to_ticks >> 1));
} else {
to_ticks = to_ticks - jitter;
}
if (!(net->dest_state & SCTP_ADDR_UNCONFIRMED) &&
!(net->dest_state & SCTP_ADDR_PF)) {
to_ticks += net->heart_beat_delay;
}
/*
* Now we must convert the to_ticks that are now in ms to
* ticks.
*/
to_ticks = sctp_msecs_to_ticks(to_ticks);
break;
case SCTP_TIMER_TYPE_COOKIE:
/*
* Here we can use the RTO timer from the network since one
* RTT was complete. If a retransmission happened then we
* will be using the RTO initial value.
*/
if ((inp == NULL) || (stcb == NULL) || (net == NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &net->rxt_timer;
if (net->RTO == 0) {
to_ticks = sctp_msecs_to_ticks(stcb->asoc.initial_rto);
} else {
to_ticks = sctp_msecs_to_ticks(net->RTO);
}
break;
case SCTP_TIMER_TYPE_NEWCOOKIE:
/*
* Nothing needed but the endpoint here ususually about 60
* minutes.
*/
if ((inp == NULL) || (stcb != NULL) || (net != NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &inp->sctp_ep.signature_change;
to_ticks = inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_SIGNATURE];
break;
case SCTP_TIMER_TYPE_PATHMTURAISE:
/*
* Here we use the value found in the EP for PMTUD,
* ususually about 10 minutes.
*/
if ((inp == NULL) || (stcb == NULL) || (net == NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
if (net->dest_state & SCTP_ADDR_NO_PMTUD) {
SCTPDBG(SCTP_DEBUG_TIMER2,
"Timer type %d not started: inp=%p, stcb=%p, net=%p.\n",
t_type, inp, stcb, net);
return;
}
tmr = &net->pmtu_timer;
to_ticks = inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_PMTU];
break;
case SCTP_TIMER_TYPE_SHUTDOWNACK:
/* Here we use the RTO of the destination. */
if ((inp == NULL) || (stcb == NULL) || (net == NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &net->rxt_timer;
if (net->RTO == 0) {
to_ticks = sctp_msecs_to_ticks(stcb->asoc.initial_rto);
} else {
to_ticks = sctp_msecs_to_ticks(net->RTO);
}
break;
case SCTP_TIMER_TYPE_ASCONF:
/*
* Here the timer comes from the stcb but its value is from
* the net's RTO.
*/
if ((inp == NULL) || (stcb == NULL) || (net == NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &stcb->asoc.asconf_timer;
if (net->RTO == 0) {
to_ticks = sctp_msecs_to_ticks(stcb->asoc.initial_rto);
} else {
to_ticks = sctp_msecs_to_ticks(net->RTO);
}
break;
case SCTP_TIMER_TYPE_SHUTDOWNGUARD:
/*
* Here we use the endpoints shutdown guard timer usually
* about 3 minutes.
*/
if ((inp == NULL) || (stcb == NULL) || (net != NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &stcb->asoc.shut_guard_timer;
if (inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_MAXSHUTDOWN] == 0) {
if (stcb->asoc.maxrto < UINT32_MAX / 5) {
to_ticks = sctp_msecs_to_ticks(5 * stcb->asoc.maxrto);
} else {
to_ticks = sctp_msecs_to_ticks(UINT32_MAX);
}
} else {
to_ticks = inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_MAXSHUTDOWN];
}
break;
case SCTP_TIMER_TYPE_AUTOCLOSE:
if ((inp == NULL) || (stcb == NULL) || (net != NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &stcb->asoc.autoclose_timer;
to_ticks = stcb->asoc.sctp_autoclose_ticks;
break;
case SCTP_TIMER_TYPE_STRRESET:
/*
* Here the timer comes from the stcb but its value is from
* the net's RTO.
*/
if ((inp == NULL) || (stcb == NULL) || (net == NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &stcb->asoc.strreset_timer;
if (net->RTO == 0) {
to_ticks = sctp_msecs_to_ticks(stcb->asoc.initial_rto);
} else {
to_ticks = sctp_msecs_to_ticks(net->RTO);
}
break;
case SCTP_TIMER_TYPE_INPKILL:
/*
* The inp is setup to die. We re-use the signature_chage
* timer since that has stopped and we are in the GONE
* state.
*/
if ((inp == NULL) || (stcb != NULL) || (net != NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &inp->sctp_ep.signature_change;
to_ticks = sctp_msecs_to_ticks(SCTP_INP_KILL_TIMEOUT);
break;
case SCTP_TIMER_TYPE_ASOCKILL:
if ((inp == NULL) || (stcb == NULL) || (net != NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &stcb->asoc.strreset_timer;
to_ticks = sctp_msecs_to_ticks(SCTP_ASOC_KILL_TIMEOUT);
break;
case SCTP_TIMER_TYPE_ADDR_WQ:
if ((inp != NULL) || (stcb != NULL) || (net != NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
/* Only 1 tick away :-) */
tmr = &SCTP_BASE_INFO(addr_wq_timer);
to_ticks = SCTP_ADDRESS_TICK_DELAY;
break;
case SCTP_TIMER_TYPE_PRIM_DELETED:
if ((inp == NULL) || (stcb == NULL) || (net != NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &stcb->asoc.delete_prim_timer;
to_ticks = sctp_msecs_to_ticks(stcb->asoc.initial_rto);
break;
default:
#ifdef INVARIANTS
panic("Unknown timer type %d", t_type);
#else
return;
#endif
}
KASSERT(tmr != NULL, ("tmr is NULL for timer type %d", t_type));
KASSERT(to_ticks > 0, ("to_ticks == 0 for timer type %d", t_type));
if (SCTP_OS_TIMER_PENDING(&tmr->timer)) {
/*
* We do NOT allow you to have it already running. If it is,
* we leave the current one up unchanged.
*/
SCTPDBG(SCTP_DEBUG_TIMER2,
"Timer type %d already running: inp=%p, stcb=%p, net=%p.\n",
t_type, inp, stcb, net);
return;
}
/* At this point we can proceed. */
if (t_type == SCTP_TIMER_TYPE_SEND) {
stcb->asoc.num_send_timers_up++;
}
tmr->stopped_from = 0;
tmr->type = t_type;
tmr->ep = (void *)inp;
tmr->tcb = (void *)stcb;
if (t_type == SCTP_TIMER_TYPE_STRRESET) {
tmr->net = NULL;
} else {
tmr->net = (void *)net;
}
tmr->self = (void *)tmr;
tmr->vnet = (void *)curvnet;
tmr->ticks = sctp_get_tick_count();
if (SCTP_OS_TIMER_START(&tmr->timer, to_ticks, sctp_timeout_handler, tmr) == 0) {
SCTPDBG(SCTP_DEBUG_TIMER2,
"Timer type %d started: ticks=%u, inp=%p, stcb=%p, net=%p.\n",
t_type, to_ticks, inp, stcb, net);
/*
* If this is a newly scheduled callout, as opposed to a
* rescheduled one, increment relevant reference counts.
*/
if (tmr->ep != NULL) {
SCTP_INP_INCR_REF(inp);
}
if (tmr->tcb != NULL) {
atomic_add_int(&stcb->asoc.refcnt, 1);
}
if (tmr->net != NULL) {
atomic_add_int(&net->ref_count, 1);
}
} else {
/*
* This should not happen, since we checked for pending
* above.
*/
SCTPDBG(SCTP_DEBUG_TIMER2,
"Timer type %d restarted: ticks=%u, inp=%p, stcb=%p, net=%p.\n",
t_type, to_ticks, inp, stcb, net);
}
return;
}
/*-
* The following table shows which parameters must be provided
* when calling sctp_timer_stop(). For parameters not being
* provided, NULL must be used.
*
* |Name |inp |stcb|net |
* |-----------------------------|----|----|----|
* |SCTP_TIMER_TYPE_SEND |Yes |Yes |Yes |
* |SCTP_TIMER_TYPE_INIT |Yes |Yes |Yes |
* |SCTP_TIMER_TYPE_RECV |Yes |Yes |No |
* |SCTP_TIMER_TYPE_SHUTDOWN |Yes |Yes |Yes |
* |SCTP_TIMER_TYPE_HEARTBEAT |Yes |Yes |Yes |
* |SCTP_TIMER_TYPE_COOKIE |Yes |Yes |Yes |
* |SCTP_TIMER_TYPE_NEWCOOKIE |Yes |No |No |
* |SCTP_TIMER_TYPE_PATHMTURAISE |Yes |Yes |Yes |
* |SCTP_TIMER_TYPE_SHUTDOWNACK |Yes |Yes |Yes |
* |SCTP_TIMER_TYPE_ASCONF |Yes |Yes |No |
* |SCTP_TIMER_TYPE_SHUTDOWNGUARD|Yes |Yes |No |
* |SCTP_TIMER_TYPE_AUTOCLOSE |Yes |Yes |No |
* |SCTP_TIMER_TYPE_STRRESET |Yes |Yes |No |
* |SCTP_TIMER_TYPE_INPKILL |Yes |No |No |
* |SCTP_TIMER_TYPE_ASOCKILL |Yes |Yes |No |
* |SCTP_TIMER_TYPE_ADDR_WQ |No |No |No |
* |SCTP_TIMER_TYPE_PRIM_DELETED |Yes |Yes |No |
*
*/
void
sctp_timer_stop(int t_type, struct sctp_inpcb *inp, struct sctp_tcb *stcb,
struct sctp_nets *net, uint32_t from)
{
struct sctp_timer *tmr;
KASSERT(stcb == NULL || stcb->sctp_ep == inp,
("sctp_timer_stop of type %d: inp = %p, stcb->sctp_ep %p",
t_type, stcb, stcb->sctp_ep));
if (stcb != NULL) {
SCTP_TCB_LOCK_ASSERT(stcb);
} else if (inp != NULL) {
SCTP_INP_WLOCK_ASSERT(inp);
} else {
SCTP_WQ_ADDR_LOCK_ASSERT();
}
tmr = NULL;
switch (t_type) {
case SCTP_TIMER_TYPE_SEND:
if ((inp == NULL) || (stcb == NULL) || (net == NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &net->rxt_timer;
break;
case SCTP_TIMER_TYPE_INIT:
if ((inp == NULL) || (stcb == NULL) || (net == NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &net->rxt_timer;
break;
case SCTP_TIMER_TYPE_RECV:
if ((inp == NULL) || (stcb == NULL) || (net != NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &stcb->asoc.dack_timer;
break;
case SCTP_TIMER_TYPE_SHUTDOWN:
if ((inp == NULL) || (stcb == NULL) || (net == NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &net->rxt_timer;
break;
case SCTP_TIMER_TYPE_HEARTBEAT:
if ((inp == NULL) || (stcb == NULL) || (net == NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &net->hb_timer;
break;
case SCTP_TIMER_TYPE_COOKIE:
if ((inp == NULL) || (stcb == NULL) || (net == NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &net->rxt_timer;
break;
case SCTP_TIMER_TYPE_NEWCOOKIE:
if ((inp == NULL) || (stcb != NULL) || (net != NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &inp->sctp_ep.signature_change;
break;
case SCTP_TIMER_TYPE_PATHMTURAISE:
if ((inp == NULL) || (stcb == NULL) || (net == NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &net->pmtu_timer;
break;
case SCTP_TIMER_TYPE_SHUTDOWNACK:
if ((inp == NULL) || (stcb == NULL) || (net == NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &net->rxt_timer;
break;
case SCTP_TIMER_TYPE_ASCONF:
if ((inp == NULL) || (stcb == NULL) || (net != NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &stcb->asoc.asconf_timer;
break;
case SCTP_TIMER_TYPE_SHUTDOWNGUARD:
if ((inp == NULL) || (stcb == NULL) || (net != NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &stcb->asoc.shut_guard_timer;
break;
case SCTP_TIMER_TYPE_AUTOCLOSE:
if ((inp == NULL) || (stcb == NULL) || (net != NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &stcb->asoc.autoclose_timer;
break;
case SCTP_TIMER_TYPE_STRRESET:
if ((inp == NULL) || (stcb == NULL) || (net != NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &stcb->asoc.strreset_timer;
break;
case SCTP_TIMER_TYPE_INPKILL:
/*
* The inp is setup to die. We re-use the signature_chage
* timer since that has stopped and we are in the GONE
* state.
*/
if ((inp == NULL) || (stcb != NULL) || (net != NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &inp->sctp_ep.signature_change;
break;
case SCTP_TIMER_TYPE_ASOCKILL:
if ((inp == NULL) || (stcb == NULL) || (net != NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &stcb->asoc.strreset_timer;
break;
case SCTP_TIMER_TYPE_ADDR_WQ:
if ((inp != NULL) || (stcb != NULL) || (net != NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &SCTP_BASE_INFO(addr_wq_timer);
break;
case SCTP_TIMER_TYPE_PRIM_DELETED:
if ((inp == NULL) || (stcb == NULL) || (net != NULL)) {
#ifdef INVARIANTS
panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p",
t_type, inp, stcb, net);
#else
return;
#endif
}
tmr = &stcb->asoc.delete_prim_timer;
break;
default:
#ifdef INVARIANTS
panic("Unknown timer type %d", t_type);
#else
return;
#endif
}
KASSERT(tmr != NULL, ("tmr is NULL for timer type %d", t_type));
if ((tmr->type != SCTP_TIMER_TYPE_NONE) &&
(tmr->type != t_type)) {
/*
* Ok we have a timer that is under joint use. Cookie timer
* per chance with the SEND timer. We therefore are NOT
* running the timer that the caller wants stopped. So just
* return.
*/
SCTPDBG(SCTP_DEBUG_TIMER2,
"Shared timer type %d not running: inp=%p, stcb=%p, net=%p.\n",
t_type, inp, stcb, net);
return;
}
if ((t_type == SCTP_TIMER_TYPE_SEND) && (stcb != NULL)) {
stcb->asoc.num_send_timers_up--;
if (stcb->asoc.num_send_timers_up < 0) {
stcb->asoc.num_send_timers_up = 0;
}
}
tmr->self = NULL;
tmr->stopped_from = from;
if (SCTP_OS_TIMER_STOP(&tmr->timer) == 1) {
KASSERT(tmr->ep == inp,
("sctp_timer_stop of type %d: inp = %p, tmr->inp = %p",
t_type, inp, tmr->ep));
KASSERT(tmr->tcb == stcb,
("sctp_timer_stop of type %d: stcb = %p, tmr->stcb = %p",
t_type, stcb, tmr->tcb));
KASSERT(((t_type == SCTP_TIMER_TYPE_ASCONF) && (tmr->net != NULL)) ||
((t_type != SCTP_TIMER_TYPE_ASCONF) && (tmr->net == net)),
("sctp_timer_stop of type %d: net = %p, tmr->net = %p",
t_type, net, tmr->net));
SCTPDBG(SCTP_DEBUG_TIMER2,
"Timer type %d stopped: inp=%p, stcb=%p, net=%p.\n",
t_type, inp, stcb, net);
/*
* If the timer was actually stopped, decrement reference
* counts that were incremented in sctp_timer_start().
*/
if (tmr->ep != NULL) {
SCTP_INP_DECR_REF(inp);
tmr->ep = NULL;
}
if (tmr->tcb != NULL) {
atomic_add_int(&stcb->asoc.refcnt, -1);
tmr->tcb = NULL;
}
if (tmr->net != NULL) {
/*
* Can't use net, since it doesn't work for
* SCTP_TIMER_TYPE_ASCONF.
*/
sctp_free_remote_addr((struct sctp_nets *)tmr->net);
tmr->net = NULL;
}
} else {
SCTPDBG(SCTP_DEBUG_TIMER2,
"Timer type %d not stopped: inp=%p, stcb=%p, net=%p.\n",
t_type, inp, stcb, net);
}
return;
}
uint32_t
sctp_calculate_len(struct mbuf *m)
{
uint32_t tlen = 0;
struct mbuf *at;
at = m;
while (at) {
tlen += SCTP_BUF_LEN(at);
at = SCTP_BUF_NEXT(at);
}
return (tlen);
}
void
sctp_mtu_size_reset(struct sctp_inpcb *inp,
struct sctp_association *asoc, uint32_t mtu)
{
/*
* Reset the P-MTU size on this association, this involves changing
* the asoc MTU, going through ANY chunk+overhead larger than mtu to
* allow the DF flag to be cleared.
*/
struct sctp_tmit_chunk *chk;
unsigned int eff_mtu, ovh;
asoc->smallest_mtu = mtu;
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) {
ovh = SCTP_MIN_OVERHEAD;
} else {
ovh = SCTP_MIN_V4_OVERHEAD;
}
eff_mtu = mtu - ovh;
TAILQ_FOREACH(chk, &asoc->send_queue, sctp_next) {
if (chk->send_size > eff_mtu) {
chk->flags |= CHUNK_FLAGS_FRAGMENT_OK;
}
}
TAILQ_FOREACH(chk, &asoc->sent_queue, sctp_next) {
if (chk->send_size > eff_mtu) {
chk->flags |= CHUNK_FLAGS_FRAGMENT_OK;
}
}
}
/*
* Given an association and starting time of the current RTT period, update
* RTO in number of msecs. net should point to the current network.
* Return 1, if an RTO update was performed, return 0 if no update was
* performed due to invalid starting point.
*/
int
sctp_calculate_rto(struct sctp_tcb *stcb,
struct sctp_association *asoc,
struct sctp_nets *net,
struct timeval *old,
int rtt_from_sack)
{
struct timeval now;
uint64_t rtt_us; /* RTT in us */
int32_t rtt; /* RTT in ms */
uint32_t new_rto;
int first_measure = 0;
/************************/
/* 1. calculate new RTT */
/************************/
/* get the current time */
if (stcb->asoc.use_precise_time) {
(void)SCTP_GETPTIME_TIMEVAL(&now);
} else {
(void)SCTP_GETTIME_TIMEVAL(&now);
}
if ((old->tv_sec > now.tv_sec) ||
((old->tv_sec == now.tv_sec) && (old->tv_usec > now.tv_usec))) {
/* The starting point is in the future. */
return (0);
}
timevalsub(&now, old);
rtt_us = (uint64_t)1000000 * (uint64_t)now.tv_sec + (uint64_t)now.tv_usec;
if (rtt_us > SCTP_RTO_UPPER_BOUND * 1000) {
/* The RTT is larger than a sane value. */
return (0);
}
/* store the current RTT in us */
net->rtt = rtt_us;
/* compute rtt in ms */
rtt = (int32_t)(net->rtt / 1000);
if ((asoc->cc_functions.sctp_rtt_calculated) && (rtt_from_sack == SCTP_RTT_FROM_DATA)) {
/*
* Tell the CC module that a new update has just occurred
* from a sack
*/
(*asoc->cc_functions.sctp_rtt_calculated) (stcb, net, &now);
}
/*
* Do we need to determine the lan? We do this only on sacks i.e.
* RTT being determined from data not non-data (HB/INIT->INITACK).
*/
if ((rtt_from_sack == SCTP_RTT_FROM_DATA) &&
(net->lan_type == SCTP_LAN_UNKNOWN)) {
if (net->rtt > SCTP_LOCAL_LAN_RTT) {
net->lan_type = SCTP_LAN_INTERNET;
} else {
net->lan_type = SCTP_LAN_LOCAL;
}
}
/***************************/
/* 2. update RTTVAR & SRTT */
/***************************/
/*-
* Compute the scaled average lastsa and the
* scaled variance lastsv as described in van Jacobson
* Paper "Congestion Avoidance and Control", Annex A.
*
* (net->lastsa >> SCTP_RTT_SHIFT) is the srtt
* (net->lastsv >> SCTP_RTT_VAR_SHIFT) is the rttvar
*/
if (net->RTO_measured) {
rtt -= (net->lastsa >> SCTP_RTT_SHIFT);
net->lastsa += rtt;
if (rtt < 0) {
rtt = -rtt;
}
rtt -= (net->lastsv >> SCTP_RTT_VAR_SHIFT);
net->lastsv += rtt;
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_RTTVAR_LOGGING_ENABLE) {
rto_logging(net, SCTP_LOG_RTTVAR);
}
} else {
/* First RTO measurment */
net->RTO_measured = 1;
first_measure = 1;
net->lastsa = rtt << SCTP_RTT_SHIFT;
net->lastsv = (rtt / 2) << SCTP_RTT_VAR_SHIFT;
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_RTTVAR_LOGGING_ENABLE) {
rto_logging(net, SCTP_LOG_INITIAL_RTT);
}
}
if (net->lastsv == 0) {
net->lastsv = SCTP_CLOCK_GRANULARITY;
}
new_rto = (net->lastsa >> SCTP_RTT_SHIFT) + net->lastsv;
if ((new_rto > SCTP_SAT_NETWORK_MIN) &&
(stcb->asoc.sat_network_lockout == 0)) {
stcb->asoc.sat_network = 1;
} else if ((!first_measure) && stcb->asoc.sat_network) {
stcb->asoc.sat_network = 0;
stcb->asoc.sat_network_lockout = 1;
}
/* bound it, per C6/C7 in Section 5.3.1 */
if (new_rto < stcb->asoc.minrto) {
new_rto = stcb->asoc.minrto;
}
if (new_rto > stcb->asoc.maxrto) {
new_rto = stcb->asoc.maxrto;
}
net->RTO = new_rto;
return (1);
}
/*
* return a pointer to a contiguous piece of data from the given mbuf chain
* starting at 'off' for 'len' bytes. If the desired piece spans more than
* one mbuf, a copy is made at 'ptr'. caller must ensure that the buffer size
* is >= 'len' returns NULL if there there isn't 'len' bytes in the chain.
*/
caddr_t
sctp_m_getptr(struct mbuf *m, int off, int len, uint8_t *in_ptr)
{
uint32_t count;
uint8_t *ptr;
ptr = in_ptr;
if ((off < 0) || (len <= 0))
return (NULL);
/* find the desired start location */
while ((m != NULL) && (off > 0)) {
if (off < SCTP_BUF_LEN(m))
break;
off -= SCTP_BUF_LEN(m);
m = SCTP_BUF_NEXT(m);
}
if (m == NULL)
return (NULL);
/* is the current mbuf large enough (eg. contiguous)? */
if ((SCTP_BUF_LEN(m) - off) >= len) {
return (mtod(m, caddr_t)+off);
} else {
/* else, it spans more than one mbuf, so save a temp copy... */
while ((m != NULL) && (len > 0)) {
count = min(SCTP_BUF_LEN(m) - off, len);
memcpy(ptr, mtod(m, caddr_t)+off, count);
len -= count;
ptr += count;
off = 0;
m = SCTP_BUF_NEXT(m);
}
if ((m == NULL) && (len > 0))
return (NULL);
else
return ((caddr_t)in_ptr);
}
}
struct sctp_paramhdr *
sctp_get_next_param(struct mbuf *m,
int offset,
struct sctp_paramhdr *pull,
int pull_limit)
{
/* This just provides a typed signature to Peter's Pull routine */
return ((struct sctp_paramhdr *)sctp_m_getptr(m, offset, pull_limit,
(uint8_t *)pull));
}
struct mbuf *
sctp_add_pad_tombuf(struct mbuf *m, int padlen)
{
struct mbuf *m_last;
caddr_t dp;
if (padlen > 3) {
return (NULL);
}
if (padlen <= M_TRAILINGSPACE(m)) {
/*
* The easy way. We hope the majority of the time we hit
* here :)
*/
m_last = m;
} else {
/* Hard way we must grow the mbuf chain */
m_last = sctp_get_mbuf_for_msg(padlen, 0, M_NOWAIT, 1, MT_DATA);
if (m_last == NULL) {
return (NULL);
}
SCTP_BUF_LEN(m_last) = 0;
SCTP_BUF_NEXT(m_last) = NULL;
SCTP_BUF_NEXT(m) = m_last;
}
dp = mtod(m_last, caddr_t)+SCTP_BUF_LEN(m_last);
SCTP_BUF_LEN(m_last) += padlen;
memset(dp, 0, padlen);
return (m_last);
}
struct mbuf *
sctp_pad_lastmbuf(struct mbuf *m, int padval, struct mbuf *last_mbuf)
{
/* find the last mbuf in chain and pad it */
struct mbuf *m_at;
if (last_mbuf != NULL) {
return (sctp_add_pad_tombuf(last_mbuf, padval));
} else {
for (m_at = m; m_at; m_at = SCTP_BUF_NEXT(m_at)) {
if (SCTP_BUF_NEXT(m_at) == NULL) {
return (sctp_add_pad_tombuf(m_at, padval));
}
}
}
return (NULL);
}
static void
sctp_notify_assoc_change(uint16_t state, struct sctp_tcb *stcb,
uint16_t error, struct sctp_abort_chunk *abort, uint8_t from_peer, int so_locked)
{
struct mbuf *m_notify;
struct sctp_assoc_change *sac;
struct sctp_queued_to_read *control;
unsigned int notif_len;
uint16_t abort_len;
unsigned int i;
if (stcb == NULL) {
return;
}
if (sctp_stcb_is_feature_on(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVASSOCEVNT)) {
notif_len = (unsigned int)sizeof(struct sctp_assoc_change);
if (abort != NULL) {
abort_len = ntohs(abort->ch.chunk_length);
/*
* Only SCTP_CHUNK_BUFFER_SIZE are guaranteed to be
* contiguous.
*/
if (abort_len > SCTP_CHUNK_BUFFER_SIZE) {
abort_len = SCTP_CHUNK_BUFFER_SIZE;
}
} else {
abort_len = 0;
}
if ((state == SCTP_COMM_UP) || (state == SCTP_RESTART)) {
notif_len += SCTP_ASSOC_SUPPORTS_MAX;
} else if ((state == SCTP_COMM_LOST) || (state == SCTP_CANT_STR_ASSOC)) {
notif_len += abort_len;
}
m_notify = sctp_get_mbuf_for_msg(notif_len, 0, M_NOWAIT, 1, MT_DATA);
if (m_notify == NULL) {
/* Retry with smaller value. */
notif_len = (unsigned int)sizeof(struct sctp_assoc_change);
m_notify = sctp_get_mbuf_for_msg(notif_len, 0, M_NOWAIT, 1, MT_DATA);
if (m_notify == NULL) {
goto set_error;
}
}
SCTP_BUF_NEXT(m_notify) = NULL;
sac = mtod(m_notify, struct sctp_assoc_change *);
memset(sac, 0, notif_len);
sac->sac_type = SCTP_ASSOC_CHANGE;
sac->sac_flags = 0;
sac->sac_length = sizeof(struct sctp_assoc_change);
sac->sac_state = state;
sac->sac_error = error;
/* XXX verify these stream counts */
sac->sac_outbound_streams = stcb->asoc.streamoutcnt;
sac->sac_inbound_streams = stcb->asoc.streamincnt;
sac->sac_assoc_id = sctp_get_associd(stcb);
if (notif_len > sizeof(struct sctp_assoc_change)) {
if ((state == SCTP_COMM_UP) || (state == SCTP_RESTART)) {
i = 0;
if (stcb->asoc.prsctp_supported == 1) {
sac->sac_info[i++] = SCTP_ASSOC_SUPPORTS_PR;
}
if (stcb->asoc.auth_supported == 1) {
sac->sac_info[i++] = SCTP_ASSOC_SUPPORTS_AUTH;
}
if (stcb->asoc.asconf_supported == 1) {
sac->sac_info[i++] = SCTP_ASSOC_SUPPORTS_ASCONF;
}
if (stcb->asoc.idata_supported == 1) {
sac->sac_info[i++] = SCTP_ASSOC_SUPPORTS_INTERLEAVING;
}
sac->sac_info[i++] = SCTP_ASSOC_SUPPORTS_MULTIBUF;
if (stcb->asoc.reconfig_supported == 1) {
sac->sac_info[i++] = SCTP_ASSOC_SUPPORTS_RE_CONFIG;
}
sac->sac_length += i;
} else if ((state == SCTP_COMM_LOST) || (state == SCTP_CANT_STR_ASSOC)) {
memcpy(sac->sac_info, abort, abort_len);
sac->sac_length += abort_len;
}
}
SCTP_BUF_LEN(m_notify) = sac->sac_length;
control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
0, 0, stcb->asoc.context, 0, 0, 0,
m_notify);
if (control != NULL) {
control->length = SCTP_BUF_LEN(m_notify);
control->spec_flags = M_NOTIFICATION;
/* not that we need this */
control->tail_mbuf = m_notify;
sctp_add_to_readq(stcb->sctp_ep, stcb,
control,
&stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD,
so_locked);
} else {
sctp_m_freem(m_notify);
}
}
/*
* For 1-to-1 style sockets, we send up and error when an ABORT
* comes in.
*/
set_error:
if (((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) ||
(stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) &&
((state == SCTP_COMM_LOST) || (state == SCTP_CANT_STR_ASSOC))) {
SOCK_LOCK(stcb->sctp_socket);
if (from_peer) {
if (SCTP_GET_STATE(stcb) == SCTP_STATE_COOKIE_WAIT) {
SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ECONNREFUSED);
stcb->sctp_socket->so_error = ECONNREFUSED;
} else {
SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ECONNRESET);
stcb->sctp_socket->so_error = ECONNRESET;
}
} else {
if ((SCTP_GET_STATE(stcb) == SCTP_STATE_COOKIE_WAIT) ||
(SCTP_GET_STATE(stcb) == SCTP_STATE_COOKIE_ECHOED)) {
SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ETIMEDOUT);
stcb->sctp_socket->so_error = ETIMEDOUT;
} else {
SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ECONNABORTED);
stcb->sctp_socket->so_error = ECONNABORTED;
}
}
SOCK_UNLOCK(stcb->sctp_socket);
}
/* Wake ANY sleepers */
if (((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) ||
(stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) &&
((state == SCTP_COMM_LOST) || (state == SCTP_CANT_STR_ASSOC))) {
socantrcvmore(stcb->sctp_socket);
}
sorwakeup(stcb->sctp_socket);
sowwakeup(stcb->sctp_socket);
}
static void
sctp_notify_peer_addr_change(struct sctp_tcb *stcb, uint32_t state,
struct sockaddr *sa, uint32_t error, int so_locked)
{
struct mbuf *m_notify;
struct sctp_paddr_change *spc;
struct sctp_queued_to_read *control;
if ((stcb == NULL) ||
sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVPADDREVNT)) {
/* event not enabled */
return;
}
m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_paddr_change), 0, M_NOWAIT, 1, MT_DATA);
if (m_notify == NULL)
return;
SCTP_BUF_LEN(m_notify) = 0;
spc = mtod(m_notify, struct sctp_paddr_change *);
memset(spc, 0, sizeof(struct sctp_paddr_change));
spc->spc_type = SCTP_PEER_ADDR_CHANGE;
spc->spc_flags = 0;
spc->spc_length = sizeof(struct sctp_paddr_change);
switch (sa->sa_family) {
#ifdef INET
case AF_INET:
#ifdef INET6
if (sctp_is_feature_on(stcb->sctp_ep, SCTP_PCB_FLAGS_NEEDS_MAPPED_V4)) {
in6_sin_2_v4mapsin6((struct sockaddr_in *)sa,
(struct sockaddr_in6 *)&spc->spc_aaddr);
} else {
memcpy(&spc->spc_aaddr, sa, sizeof(struct sockaddr_in));
}
#else
memcpy(&spc->spc_aaddr, sa, sizeof(struct sockaddr_in));
#endif
break;
#endif
#ifdef INET6
case AF_INET6:
{
struct sockaddr_in6 *sin6;
memcpy(&spc->spc_aaddr, sa, sizeof(struct sockaddr_in6));
sin6 = (struct sockaddr_in6 *)&spc->spc_aaddr;
if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) {
if (sin6->sin6_scope_id == 0) {
/* recover scope_id for user */
(void)sa6_recoverscope(sin6);
} else {
/* clear embedded scope_id for user */
in6_clearscope(&sin6->sin6_addr);
}
}
break;
}
#endif
default:
/* TSNH */
break;
}
spc->spc_state = state;
spc->spc_error = error;
spc->spc_assoc_id = sctp_get_associd(stcb);
SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_paddr_change);
SCTP_BUF_NEXT(m_notify) = NULL;
/* append to socket */
control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
0, 0, stcb->asoc.context, 0, 0, 0,
m_notify);
if (control == NULL) {
/* no memory */
sctp_m_freem(m_notify);
return;
}
control->length = SCTP_BUF_LEN(m_notify);
control->spec_flags = M_NOTIFICATION;
/* not that we need this */
control->tail_mbuf = m_notify;
sctp_add_to_readq(stcb->sctp_ep, stcb,
control,
&stcb->sctp_socket->so_rcv, 1,
SCTP_READ_LOCK_NOT_HELD,
so_locked);
}
static void
sctp_notify_send_failed(struct sctp_tcb *stcb, uint8_t sent, uint32_t error,
struct sctp_tmit_chunk *chk, int so_locked)
{
struct mbuf *m_notify;
struct sctp_send_failed *ssf;
struct sctp_send_failed_event *ssfe;
struct sctp_queued_to_read *control;
struct sctp_chunkhdr *chkhdr;
int notifhdr_len, chk_len, chkhdr_len, padding_len, payload_len;
if ((stcb == NULL) ||
(sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVSENDFAILEVNT) &&
sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVNSENDFAILEVNT))) {
/* event not enabled */
return;
}
if (sctp_stcb_is_feature_on(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVNSENDFAILEVNT)) {
notifhdr_len = sizeof(struct sctp_send_failed_event);
} else {
notifhdr_len = sizeof(struct sctp_send_failed);
}
m_notify = sctp_get_mbuf_for_msg(notifhdr_len, 0, M_NOWAIT, 1, MT_DATA);
if (m_notify == NULL)
/* no space left */
return;
SCTP_BUF_LEN(m_notify) = notifhdr_len;
if (stcb->asoc.idata_supported) {
chkhdr_len = sizeof(struct sctp_idata_chunk);
} else {
chkhdr_len = sizeof(struct sctp_data_chunk);
}
/* Use some defaults in case we can't access the chunk header */
if (chk->send_size >= chkhdr_len) {
payload_len = chk->send_size - chkhdr_len;
} else {
payload_len = 0;
}
padding_len = 0;
if (chk->data != NULL) {
chkhdr = mtod(chk->data, struct sctp_chunkhdr *);
if (chkhdr != NULL) {
chk_len = ntohs(chkhdr->chunk_length);
if ((chk_len >= chkhdr_len) &&
(chk->send_size >= chk_len) &&
(chk->send_size - chk_len < 4)) {
padding_len = chk->send_size - chk_len;
payload_len = chk->send_size - chkhdr_len - padding_len;
}
}
}
if (sctp_stcb_is_feature_on(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVNSENDFAILEVNT)) {
ssfe = mtod(m_notify, struct sctp_send_failed_event *);
memset(ssfe, 0, notifhdr_len);
ssfe->ssfe_type = SCTP_SEND_FAILED_EVENT;
if (sent) {
ssfe->ssfe_flags = SCTP_DATA_SENT;
} else {
ssfe->ssfe_flags = SCTP_DATA_UNSENT;
}
ssfe->ssfe_length = (uint32_t)(notifhdr_len + payload_len);
ssfe->ssfe_error = error;
/* not exactly what the user sent in, but should be close :) */
ssfe->ssfe_info.snd_sid = chk->rec.data.sid;
ssfe->ssfe_info.snd_flags = chk->rec.data.rcv_flags;
ssfe->ssfe_info.snd_ppid = chk->rec.data.ppid;
ssfe->ssfe_info.snd_context = chk->rec.data.context;
ssfe->ssfe_info.snd_assoc_id = sctp_get_associd(stcb);
ssfe->ssfe_assoc_id = sctp_get_associd(stcb);
} else {
ssf = mtod(m_notify, struct sctp_send_failed *);
memset(ssf, 0, notifhdr_len);
ssf->ssf_type = SCTP_SEND_FAILED;
if (sent) {
ssf->ssf_flags = SCTP_DATA_SENT;
} else {
ssf->ssf_flags = SCTP_DATA_UNSENT;
}
ssf->ssf_length = (uint32_t)(notifhdr_len + payload_len);
ssf->ssf_error = error;
/* not exactly what the user sent in, but should be close :) */
ssf->ssf_info.sinfo_stream = chk->rec.data.sid;
ssf->ssf_info.sinfo_ssn = (uint16_t)chk->rec.data.mid;
ssf->ssf_info.sinfo_flags = chk->rec.data.rcv_flags;
ssf->ssf_info.sinfo_ppid = chk->rec.data.ppid;
ssf->ssf_info.sinfo_context = chk->rec.data.context;
ssf->ssf_info.sinfo_assoc_id = sctp_get_associd(stcb);
ssf->ssf_assoc_id = sctp_get_associd(stcb);
}
if (chk->data != NULL) {
/* Trim off the sctp chunk header (it should be there) */
if (chk->send_size == chkhdr_len + payload_len + padding_len) {
m_adj(chk->data, chkhdr_len);
m_adj(chk->data, -padding_len);
sctp_mbuf_crush(chk->data);
chk->send_size -= (chkhdr_len + padding_len);
}
}
SCTP_BUF_NEXT(m_notify) = chk->data;
/* Steal off the mbuf */
chk->data = NULL;
/*
* For this case, we check the actual socket buffer, since the assoc
* is going away we don't want to overfill the socket buffer for a
* non-reader
*/
if (sctp_sbspace_failedmsgs(&stcb->sctp_socket->so_rcv) < SCTP_BUF_LEN(m_notify)) {
sctp_m_freem(m_notify);
return;
}
/* append to socket */
control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
0, 0, stcb->asoc.context, 0, 0, 0,
m_notify);
if (control == NULL) {
/* no memory */
sctp_m_freem(m_notify);
return;
}
control->length = SCTP_BUF_LEN(m_notify);
control->spec_flags = M_NOTIFICATION;
/* not that we need this */
control->tail_mbuf = m_notify;
sctp_add_to_readq(stcb->sctp_ep, stcb,
control,
&stcb->sctp_socket->so_rcv, 1,
SCTP_READ_LOCK_NOT_HELD,
so_locked);
}
static void
sctp_notify_send_failed2(struct sctp_tcb *stcb, uint32_t error,
struct sctp_stream_queue_pending *sp, int so_locked)
{
struct mbuf *m_notify;
struct sctp_send_failed *ssf;
struct sctp_send_failed_event *ssfe;
struct sctp_queued_to_read *control;
int notifhdr_len;
if ((stcb == NULL) ||
(sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVSENDFAILEVNT) &&
sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVNSENDFAILEVNT))) {
/* event not enabled */
return;
}
if (sctp_stcb_is_feature_on(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVNSENDFAILEVNT)) {
notifhdr_len = sizeof(struct sctp_send_failed_event);
} else {
notifhdr_len = sizeof(struct sctp_send_failed);
}
m_notify = sctp_get_mbuf_for_msg(notifhdr_len, 0, M_NOWAIT, 1, MT_DATA);
if (m_notify == NULL) {
/* no space left */
return;
}
SCTP_BUF_LEN(m_notify) = notifhdr_len;
if (sctp_stcb_is_feature_on(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVNSENDFAILEVNT)) {
ssfe = mtod(m_notify, struct sctp_send_failed_event *);
memset(ssfe, 0, notifhdr_len);
ssfe->ssfe_type = SCTP_SEND_FAILED_EVENT;
ssfe->ssfe_flags = SCTP_DATA_UNSENT;
ssfe->ssfe_length = (uint32_t)(notifhdr_len + sp->length);
ssfe->ssfe_error = error;
/* not exactly what the user sent in, but should be close :) */
ssfe->ssfe_info.snd_sid = sp->sid;
if (sp->some_taken) {
ssfe->ssfe_info.snd_flags = SCTP_DATA_LAST_FRAG;
} else {
ssfe->ssfe_info.snd_flags = SCTP_DATA_NOT_FRAG;
}
ssfe->ssfe_info.snd_ppid = sp->ppid;
ssfe->ssfe_info.snd_context = sp->context;
ssfe->ssfe_info.snd_assoc_id = sctp_get_associd(stcb);
ssfe->ssfe_assoc_id = sctp_get_associd(stcb);
} else {
ssf = mtod(m_notify, struct sctp_send_failed *);
memset(ssf, 0, notifhdr_len);
ssf->ssf_type = SCTP_SEND_FAILED;
ssf->ssf_flags = SCTP_DATA_UNSENT;
ssf->ssf_length = (uint32_t)(notifhdr_len + sp->length);
ssf->ssf_error = error;
/* not exactly what the user sent in, but should be close :) */
ssf->ssf_info.sinfo_stream = sp->sid;
ssf->ssf_info.sinfo_ssn = 0;
if (sp->some_taken) {
ssf->ssf_info.sinfo_flags = SCTP_DATA_LAST_FRAG;
} else {
ssf->ssf_info.sinfo_flags = SCTP_DATA_NOT_FRAG;
}
ssf->ssf_info.sinfo_ppid = sp->ppid;
ssf->ssf_info.sinfo_context = sp->context;
ssf->ssf_info.sinfo_assoc_id = sctp_get_associd(stcb);
ssf->ssf_assoc_id = sctp_get_associd(stcb);
}
SCTP_BUF_NEXT(m_notify) = sp->data;
/* Steal off the mbuf */
sp->data = NULL;
/*
* For this case, we check the actual socket buffer, since the assoc
* is going away we don't want to overfill the socket buffer for a
* non-reader
*/
if (sctp_sbspace_failedmsgs(&stcb->sctp_socket->so_rcv) < SCTP_BUF_LEN(m_notify)) {
sctp_m_freem(m_notify);
return;
}
/* append to socket */
control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
0, 0, stcb->asoc.context, 0, 0, 0,
m_notify);
if (control == NULL) {
/* no memory */
sctp_m_freem(m_notify);
return;
}
control->length = SCTP_BUF_LEN(m_notify);
control->spec_flags = M_NOTIFICATION;
/* not that we need this */
control->tail_mbuf = m_notify;
sctp_add_to_readq(stcb->sctp_ep, stcb,
control,
&stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked);
}
static void
sctp_notify_adaptation_layer(struct sctp_tcb *stcb)
{
struct mbuf *m_notify;
struct sctp_adaptation_event *sai;
struct sctp_queued_to_read *control;
if ((stcb == NULL) ||
sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_ADAPTATIONEVNT)) {
/* event not enabled */
return;
}
m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_adaption_event), 0, M_NOWAIT, 1, MT_DATA);
if (m_notify == NULL)
/* no space left */
return;
SCTP_BUF_LEN(m_notify) = 0;
sai = mtod(m_notify, struct sctp_adaptation_event *);
memset(sai, 0, sizeof(struct sctp_adaptation_event));
sai->sai_type = SCTP_ADAPTATION_INDICATION;
sai->sai_flags = 0;
sai->sai_length = sizeof(struct sctp_adaptation_event);
sai->sai_adaptation_ind = stcb->asoc.peers_adaptation;
sai->sai_assoc_id = sctp_get_associd(stcb);
SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_adaptation_event);
SCTP_BUF_NEXT(m_notify) = NULL;
/* append to socket */
control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
0, 0, stcb->asoc.context, 0, 0, 0,
m_notify);
if (control == NULL) {
/* no memory */
sctp_m_freem(m_notify);
return;
}
control->length = SCTP_BUF_LEN(m_notify);
control->spec_flags = M_NOTIFICATION;
/* not that we need this */
control->tail_mbuf = m_notify;
sctp_add_to_readq(stcb->sctp_ep, stcb,
control,
&stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, SCTP_SO_NOT_LOCKED);
}
/* This always must be called with the read-queue LOCKED in the INP */
static void
sctp_notify_partial_delivery_indication(struct sctp_tcb *stcb, uint32_t error,
uint32_t val, int so_locked)
{
struct mbuf *m_notify;
struct sctp_pdapi_event *pdapi;
struct sctp_queued_to_read *control;
struct sockbuf *sb;
if ((stcb == NULL) ||
sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_PDAPIEVNT)) {
/* event not enabled */
return;
}
if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_CANT_READ) {
return;
}
m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_pdapi_event), 0, M_NOWAIT, 1, MT_DATA);
if (m_notify == NULL)
/* no space left */
return;
SCTP_BUF_LEN(m_notify) = 0;
pdapi = mtod(m_notify, struct sctp_pdapi_event *);
memset(pdapi, 0, sizeof(struct sctp_pdapi_event));
pdapi->pdapi_type = SCTP_PARTIAL_DELIVERY_EVENT;
pdapi->pdapi_flags = 0;
pdapi->pdapi_length = sizeof(struct sctp_pdapi_event);
pdapi->pdapi_indication = error;
pdapi->pdapi_stream = (val >> 16);
pdapi->pdapi_seq = (val & 0x0000ffff);
pdapi->pdapi_assoc_id = sctp_get_associd(stcb);
SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_pdapi_event);
SCTP_BUF_NEXT(m_notify) = NULL;
control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
0, 0, stcb->asoc.context, 0, 0, 0,
m_notify);
if (control == NULL) {
/* no memory */
sctp_m_freem(m_notify);
return;
}
control->length = SCTP_BUF_LEN(m_notify);
control->spec_flags = M_NOTIFICATION;
/* not that we need this */
control->tail_mbuf = m_notify;
sb = &stcb->sctp_socket->so_rcv;
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) {
sctp_sblog(sb, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBALLOC, SCTP_BUF_LEN(m_notify));
}
sctp_sballoc(stcb, sb, m_notify);
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) {
sctp_sblog(sb, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0);
}
control->end_added = 1;
if (stcb->asoc.control_pdapi)
TAILQ_INSERT_AFTER(&stcb->sctp_ep->read_queue, stcb->asoc.control_pdapi, control, next);
else {
/* we really should not see this case */
TAILQ_INSERT_TAIL(&stcb->sctp_ep->read_queue, control, next);
}
if (stcb->sctp_ep && stcb->sctp_socket) {
/* This should always be the case */
sctp_sorwakeup(stcb->sctp_ep, stcb->sctp_socket);
}
}
static void
sctp_notify_shutdown_event(struct sctp_tcb *stcb)
{
struct mbuf *m_notify;
struct sctp_shutdown_event *sse;
struct sctp_queued_to_read *control;
/*
* For TCP model AND UDP connected sockets we will send an error up
* when an SHUTDOWN completes
*/
if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) ||
(stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) {
/* mark socket closed for read/write and wakeup! */
socantsendmore(stcb->sctp_socket);
}
if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT)) {
/* event not enabled */
return;
}
m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_shutdown_event), 0, M_NOWAIT, 1, MT_DATA);
if (m_notify == NULL)
/* no space left */
return;
sse = mtod(m_notify, struct sctp_shutdown_event *);
memset(sse, 0, sizeof(struct sctp_shutdown_event));
sse->sse_type = SCTP_SHUTDOWN_EVENT;
sse->sse_flags = 0;
sse->sse_length = sizeof(struct sctp_shutdown_event);
sse->sse_assoc_id = sctp_get_associd(stcb);
SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_shutdown_event);
SCTP_BUF_NEXT(m_notify) = NULL;
/* append to socket */
control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
0, 0, stcb->asoc.context, 0, 0, 0,
m_notify);
if (control == NULL) {
/* no memory */
sctp_m_freem(m_notify);
return;
}
control->length = SCTP_BUF_LEN(m_notify);
control->spec_flags = M_NOTIFICATION;
/* not that we need this */
control->tail_mbuf = m_notify;
sctp_add_to_readq(stcb->sctp_ep, stcb,
control,
&stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, SCTP_SO_NOT_LOCKED);
}
static void
sctp_notify_sender_dry_event(struct sctp_tcb *stcb,
int so_locked)
{
struct mbuf *m_notify;
struct sctp_sender_dry_event *event;
struct sctp_queued_to_read *control;
if ((stcb == NULL) ||
sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_DRYEVNT)) {
/* event not enabled */
return;
}
m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_sender_dry_event), 0, M_NOWAIT, 1, MT_DATA);
if (m_notify == NULL) {
/* no space left */
return;
}
SCTP_BUF_LEN(m_notify) = 0;
event = mtod(m_notify, struct sctp_sender_dry_event *);
memset(event, 0, sizeof(struct sctp_sender_dry_event));
event->sender_dry_type = SCTP_SENDER_DRY_EVENT;
event->sender_dry_flags = 0;
event->sender_dry_length = sizeof(struct sctp_sender_dry_event);
event->sender_dry_assoc_id = sctp_get_associd(stcb);
SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_sender_dry_event);
SCTP_BUF_NEXT(m_notify) = NULL;
/* append to socket */
control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
0, 0, stcb->asoc.context, 0, 0, 0,
m_notify);
if (control == NULL) {
/* no memory */
sctp_m_freem(m_notify);
return;
}
control->length = SCTP_BUF_LEN(m_notify);
control->spec_flags = M_NOTIFICATION;
/* not that we need this */
control->tail_mbuf = m_notify;
sctp_add_to_readq(stcb->sctp_ep, stcb, control,
&stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked);
}
void
sctp_notify_stream_reset_add(struct sctp_tcb *stcb, uint16_t numberin, uint16_t numberout, int flag)
{
struct mbuf *m_notify;
struct sctp_queued_to_read *control;
struct sctp_stream_change_event *stradd;
if ((stcb == NULL) ||
(sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_STREAM_CHANGEEVNT))) {
/* event not enabled */
return;
}
if ((stcb->asoc.peer_req_out) && flag) {
/* Peer made the request, don't tell the local user */
stcb->asoc.peer_req_out = 0;
return;
}
stcb->asoc.peer_req_out = 0;
m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_stream_change_event), 0, M_NOWAIT, 1, MT_DATA);
if (m_notify == NULL)
/* no space left */
return;
SCTP_BUF_LEN(m_notify) = 0;
stradd = mtod(m_notify, struct sctp_stream_change_event *);
memset(stradd, 0, sizeof(struct sctp_stream_change_event));
stradd->strchange_type = SCTP_STREAM_CHANGE_EVENT;
stradd->strchange_flags = flag;
stradd->strchange_length = sizeof(struct sctp_stream_change_event);
stradd->strchange_assoc_id = sctp_get_associd(stcb);
stradd->strchange_instrms = numberin;
stradd->strchange_outstrms = numberout;
SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_stream_change_event);
SCTP_BUF_NEXT(m_notify) = NULL;
if (sctp_sbspace(&stcb->asoc, &stcb->sctp_socket->so_rcv) < SCTP_BUF_LEN(m_notify)) {
/* no space */
sctp_m_freem(m_notify);
return;
}
/* append to socket */
control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
0, 0, stcb->asoc.context, 0, 0, 0,
m_notify);
if (control == NULL) {
/* no memory */
sctp_m_freem(m_notify);
return;
}
control->length = SCTP_BUF_LEN(m_notify);
control->spec_flags = M_NOTIFICATION;
/* not that we need this */
control->tail_mbuf = m_notify;
sctp_add_to_readq(stcb->sctp_ep, stcb,
control,
&stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, SCTP_SO_NOT_LOCKED);
}
void
sctp_notify_stream_reset_tsn(struct sctp_tcb *stcb, uint32_t sending_tsn, uint32_t recv_tsn, int flag)
{
struct mbuf *m_notify;
struct sctp_queued_to_read *control;
struct sctp_assoc_reset_event *strasoc;
if ((stcb == NULL) ||
(sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_ASSOC_RESETEVNT))) {
/* event not enabled */
return;
}
m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_assoc_reset_event), 0, M_NOWAIT, 1, MT_DATA);
if (m_notify == NULL)
/* no space left */
return;
SCTP_BUF_LEN(m_notify) = 0;
strasoc = mtod(m_notify, struct sctp_assoc_reset_event *);
memset(strasoc, 0, sizeof(struct sctp_assoc_reset_event));
strasoc->assocreset_type = SCTP_ASSOC_RESET_EVENT;
strasoc->assocreset_flags = flag;
strasoc->assocreset_length = sizeof(struct sctp_assoc_reset_event);
strasoc->assocreset_assoc_id = sctp_get_associd(stcb);
strasoc->assocreset_local_tsn = sending_tsn;
strasoc->assocreset_remote_tsn = recv_tsn;
SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_assoc_reset_event);
SCTP_BUF_NEXT(m_notify) = NULL;
if (sctp_sbspace(&stcb->asoc, &stcb->sctp_socket->so_rcv) < SCTP_BUF_LEN(m_notify)) {
/* no space */
sctp_m_freem(m_notify);
return;
}
/* append to socket */
control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
0, 0, stcb->asoc.context, 0, 0, 0,
m_notify);
if (control == NULL) {
/* no memory */
sctp_m_freem(m_notify);
return;
}
control->length = SCTP_BUF_LEN(m_notify);
control->spec_flags = M_NOTIFICATION;
/* not that we need this */
control->tail_mbuf = m_notify;
sctp_add_to_readq(stcb->sctp_ep, stcb,
control,
&stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, SCTP_SO_NOT_LOCKED);
}
static void
sctp_notify_stream_reset(struct sctp_tcb *stcb,
int number_entries, uint16_t *list, int flag)
{
struct mbuf *m_notify;
struct sctp_queued_to_read *control;
struct sctp_stream_reset_event *strreset;
int len;
if ((stcb == NULL) ||
(sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_STREAM_RESETEVNT))) {
/* event not enabled */
return;
}
m_notify = sctp_get_mbuf_for_msg(MCLBYTES, 0, M_NOWAIT, 1, MT_DATA);
if (m_notify == NULL)
/* no space left */
return;
SCTP_BUF_LEN(m_notify) = 0;
len = sizeof(struct sctp_stream_reset_event) + (number_entries * sizeof(uint16_t));
if (len > M_TRAILINGSPACE(m_notify)) {
/* never enough room */
sctp_m_freem(m_notify);
return;
}
strreset = mtod(m_notify, struct sctp_stream_reset_event *);
memset(strreset, 0, len);
strreset->strreset_type = SCTP_STREAM_RESET_EVENT;
strreset->strreset_flags = flag;
strreset->strreset_length = len;
strreset->strreset_assoc_id = sctp_get_associd(stcb);
if (number_entries) {
int i;
for (i = 0; i < number_entries; i++) {
strreset->strreset_stream_list[i] = ntohs(list[i]);
}
}
SCTP_BUF_LEN(m_notify) = len;
SCTP_BUF_NEXT(m_notify) = NULL;
if (sctp_sbspace(&stcb->asoc, &stcb->sctp_socket->so_rcv) < SCTP_BUF_LEN(m_notify)) {
/* no space */
sctp_m_freem(m_notify);
return;
}
/* append to socket */
control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
0, 0, stcb->asoc.context, 0, 0, 0,
m_notify);
if (control == NULL) {
/* no memory */
sctp_m_freem(m_notify);
return;
}
control->length = SCTP_BUF_LEN(m_notify);
control->spec_flags = M_NOTIFICATION;
/* not that we need this */
control->tail_mbuf = m_notify;
sctp_add_to_readq(stcb->sctp_ep, stcb,
control,
&stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, SCTP_SO_NOT_LOCKED);
}
static void
sctp_notify_remote_error(struct sctp_tcb *stcb, uint16_t error, struct sctp_error_chunk *chunk)
{
struct mbuf *m_notify;
struct sctp_remote_error *sre;
struct sctp_queued_to_read *control;
unsigned int notif_len;
uint16_t chunk_len;
if ((stcb == NULL) ||
sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVPEERERR)) {
return;
}
if (chunk != NULL) {
chunk_len = ntohs(chunk->ch.chunk_length);
/*
* Only SCTP_CHUNK_BUFFER_SIZE are guaranteed to be
* contiguous.
*/
if (chunk_len > SCTP_CHUNK_BUFFER_SIZE) {
chunk_len = SCTP_CHUNK_BUFFER_SIZE;
}
} else {
chunk_len = 0;
}
notif_len = (unsigned int)(sizeof(struct sctp_remote_error) + chunk_len);
m_notify = sctp_get_mbuf_for_msg(notif_len, 0, M_NOWAIT, 1, MT_DATA);
if (m_notify == NULL) {
/* Retry with smaller value. */
notif_len = (unsigned int)sizeof(struct sctp_remote_error);
m_notify = sctp_get_mbuf_for_msg(notif_len, 0, M_NOWAIT, 1, MT_DATA);
if (m_notify == NULL) {
return;
}
}
SCTP_BUF_NEXT(m_notify) = NULL;
sre = mtod(m_notify, struct sctp_remote_error *);
memset(sre, 0, notif_len);
sre->sre_type = SCTP_REMOTE_ERROR;
sre->sre_flags = 0;
sre->sre_length = sizeof(struct sctp_remote_error);
sre->sre_error = error;
sre->sre_assoc_id = sctp_get_associd(stcb);
if (notif_len > sizeof(struct sctp_remote_error)) {
memcpy(sre->sre_data, chunk, chunk_len);
sre->sre_length += chunk_len;
}
SCTP_BUF_LEN(m_notify) = sre->sre_length;
control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
0, 0, stcb->asoc.context, 0, 0, 0,
m_notify);
if (control != NULL) {
control->length = SCTP_BUF_LEN(m_notify);
control->spec_flags = M_NOTIFICATION;
/* not that we need this */
control->tail_mbuf = m_notify;
sctp_add_to_readq(stcb->sctp_ep, stcb,
control,
&stcb->sctp_socket->so_rcv, 1,
SCTP_READ_LOCK_NOT_HELD, SCTP_SO_NOT_LOCKED);
} else {
sctp_m_freem(m_notify);
}
}
void
sctp_ulp_notify(uint32_t notification, struct sctp_tcb *stcb,
uint32_t error, void *data, int so_locked)
{
if ((stcb == NULL) ||
(stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
(stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
(stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)) {
/* If the socket is gone we are out of here */
return;
}
if (stcb->sctp_socket->so_rcv.sb_state & SBS_CANTRCVMORE) {
return;
}
if ((SCTP_GET_STATE(stcb) == SCTP_STATE_COOKIE_WAIT) ||
(SCTP_GET_STATE(stcb) == SCTP_STATE_COOKIE_ECHOED)) {
if ((notification == SCTP_NOTIFY_INTERFACE_DOWN) ||
(notification == SCTP_NOTIFY_INTERFACE_UP) ||
(notification == SCTP_NOTIFY_INTERFACE_CONFIRMED)) {
/* Don't report these in front states */
return;
}
}
switch (notification) {
case SCTP_NOTIFY_ASSOC_UP:
if (stcb->asoc.assoc_up_sent == 0) {
sctp_notify_assoc_change(SCTP_COMM_UP, stcb, error, NULL, 0, so_locked);
stcb->asoc.assoc_up_sent = 1;
}
if (stcb->asoc.adaptation_needed && (stcb->asoc.adaptation_sent == 0)) {
sctp_notify_adaptation_layer(stcb);
}
if (stcb->asoc.auth_supported == 0) {
sctp_ulp_notify(SCTP_NOTIFY_NO_PEER_AUTH, stcb, 0,
NULL, so_locked);
}
break;
case SCTP_NOTIFY_ASSOC_DOWN:
sctp_notify_assoc_change(SCTP_SHUTDOWN_COMP, stcb, error, NULL, 0, so_locked);
break;
case SCTP_NOTIFY_INTERFACE_DOWN:
{
struct sctp_nets *net;
net = (struct sctp_nets *)data;
sctp_notify_peer_addr_change(stcb, SCTP_ADDR_UNREACHABLE,
(struct sockaddr *)&net->ro._l_addr, error, so_locked);
break;
}
case SCTP_NOTIFY_INTERFACE_UP:
{
struct sctp_nets *net;
net = (struct sctp_nets *)data;
sctp_notify_peer_addr_change(stcb, SCTP_ADDR_AVAILABLE,
(struct sockaddr *)&net->ro._l_addr, error, so_locked);
break;
}
case SCTP_NOTIFY_INTERFACE_CONFIRMED:
{
struct sctp_nets *net;
net = (struct sctp_nets *)data;
sctp_notify_peer_addr_change(stcb, SCTP_ADDR_CONFIRMED,
(struct sockaddr *)&net->ro._l_addr, error, so_locked);
break;
}
case SCTP_NOTIFY_SPECIAL_SP_FAIL:
sctp_notify_send_failed2(stcb, error,
(struct sctp_stream_queue_pending *)data, so_locked);
break;
case SCTP_NOTIFY_SENT_DG_FAIL:
sctp_notify_send_failed(stcb, 1, error,
(struct sctp_tmit_chunk *)data, so_locked);
break;
case SCTP_NOTIFY_UNSENT_DG_FAIL:
sctp_notify_send_failed(stcb, 0, error,
(struct sctp_tmit_chunk *)data, so_locked);
break;
case SCTP_NOTIFY_PARTIAL_DELVIERY_INDICATION:
{
uint32_t val;
val = *((uint32_t *)data);
sctp_notify_partial_delivery_indication(stcb, error, val, so_locked);
break;
}
case SCTP_NOTIFY_ASSOC_LOC_ABORTED:
if ((SCTP_GET_STATE(stcb) == SCTP_STATE_COOKIE_WAIT) ||
(SCTP_GET_STATE(stcb) == SCTP_STATE_COOKIE_ECHOED)) {
sctp_notify_assoc_change(SCTP_CANT_STR_ASSOC, stcb, error, data, 0, so_locked);
} else {
sctp_notify_assoc_change(SCTP_COMM_LOST, stcb, error, data, 0, so_locked);
}
break;
case SCTP_NOTIFY_ASSOC_REM_ABORTED:
if ((SCTP_GET_STATE(stcb) == SCTP_STATE_COOKIE_WAIT) ||
(SCTP_GET_STATE(stcb) == SCTP_STATE_COOKIE_ECHOED)) {
sctp_notify_assoc_change(SCTP_CANT_STR_ASSOC, stcb, error, data, 1, so_locked);
} else {
sctp_notify_assoc_change(SCTP_COMM_LOST, stcb, error, data, 1, so_locked);
}
break;
case SCTP_NOTIFY_ASSOC_RESTART:
sctp_notify_assoc_change(SCTP_RESTART, stcb, error, NULL, 0, so_locked);
if (stcb->asoc.auth_supported == 0) {
sctp_ulp_notify(SCTP_NOTIFY_NO_PEER_AUTH, stcb, 0,
NULL, so_locked);
}
break;
case SCTP_NOTIFY_STR_RESET_SEND:
sctp_notify_stream_reset(stcb, error, ((uint16_t *)data), SCTP_STREAM_RESET_OUTGOING_SSN);
break;
case SCTP_NOTIFY_STR_RESET_RECV:
sctp_notify_stream_reset(stcb, error, ((uint16_t *)data), SCTP_STREAM_RESET_INCOMING);
break;
case SCTP_NOTIFY_STR_RESET_FAILED_OUT:
sctp_notify_stream_reset(stcb, error, ((uint16_t *)data),
(SCTP_STREAM_RESET_OUTGOING_SSN | SCTP_STREAM_RESET_FAILED));
break;
case SCTP_NOTIFY_STR_RESET_DENIED_OUT:
sctp_notify_stream_reset(stcb, error, ((uint16_t *)data),
(SCTP_STREAM_RESET_OUTGOING_SSN | SCTP_STREAM_RESET_DENIED));
break;
case SCTP_NOTIFY_STR_RESET_FAILED_IN:
sctp_notify_stream_reset(stcb, error, ((uint16_t *)data),
(SCTP_STREAM_RESET_INCOMING | SCTP_STREAM_RESET_FAILED));
break;
case SCTP_NOTIFY_STR_RESET_DENIED_IN:
sctp_notify_stream_reset(stcb, error, ((uint16_t *)data),
(SCTP_STREAM_RESET_INCOMING | SCTP_STREAM_RESET_DENIED));
break;
case SCTP_NOTIFY_ASCONF_ADD_IP:
sctp_notify_peer_addr_change(stcb, SCTP_ADDR_ADDED, data,
error, so_locked);
break;
case SCTP_NOTIFY_ASCONF_DELETE_IP:
sctp_notify_peer_addr_change(stcb, SCTP_ADDR_REMOVED, data,
error, so_locked);
break;
case SCTP_NOTIFY_ASCONF_SET_PRIMARY:
sctp_notify_peer_addr_change(stcb, SCTP_ADDR_MADE_PRIM, data,
error, so_locked);
break;
case SCTP_NOTIFY_PEER_SHUTDOWN:
sctp_notify_shutdown_event(stcb);
break;
case SCTP_NOTIFY_AUTH_NEW_KEY:
sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY, error,
(uint16_t)(uintptr_t)data,
so_locked);
break;
case SCTP_NOTIFY_AUTH_FREE_KEY:
sctp_notify_authentication(stcb, SCTP_AUTH_FREE_KEY, error,
(uint16_t)(uintptr_t)data,
so_locked);
break;
case SCTP_NOTIFY_NO_PEER_AUTH:
sctp_notify_authentication(stcb, SCTP_AUTH_NO_AUTH, error,
(uint16_t)(uintptr_t)data,
so_locked);
break;
case SCTP_NOTIFY_SENDER_DRY:
sctp_notify_sender_dry_event(stcb, so_locked);
break;
case SCTP_NOTIFY_REMOTE_ERROR:
sctp_notify_remote_error(stcb, error, data);
break;
default:
SCTPDBG(SCTP_DEBUG_UTIL1, "%s: unknown notification %xh (%u)\n",
__func__, notification, notification);
break;
} /* end switch */
}
void
sctp_report_all_outbound(struct sctp_tcb *stcb, uint16_t error, int so_locked)
{
struct sctp_association *asoc;
struct sctp_stream_out *outs;
struct sctp_tmit_chunk *chk, *nchk;
struct sctp_stream_queue_pending *sp, *nsp;
int i;
if (stcb == NULL) {
return;
}
asoc = &stcb->asoc;
if (asoc->state & SCTP_STATE_ABOUT_TO_BE_FREED) {
/* already being freed */
return;
}
if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
(stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
(asoc->state & SCTP_STATE_CLOSED_SOCKET)) {
return;
}
/* now through all the gunk freeing chunks */
/* sent queue SHOULD be empty */
TAILQ_FOREACH_SAFE(chk, &asoc->sent_queue, sctp_next, nchk) {
TAILQ_REMOVE(&asoc->sent_queue, chk, sctp_next);
asoc->sent_queue_cnt--;
if (chk->sent != SCTP_DATAGRAM_NR_ACKED) {
if (asoc->strmout[chk->rec.data.sid].chunks_on_queues > 0) {
asoc->strmout[chk->rec.data.sid].chunks_on_queues--;
#ifdef INVARIANTS
} else {
panic("No chunks on the queues for sid %u.", chk->rec.data.sid);
#endif
}
}
if (chk->data != NULL) {
sctp_free_bufspace(stcb, asoc, chk, 1);
sctp_ulp_notify(SCTP_NOTIFY_SENT_DG_FAIL, stcb,
error, chk, so_locked);
if (chk->data) {
sctp_m_freem(chk->data);
chk->data = NULL;
}
}
sctp_free_a_chunk(stcb, chk, so_locked);
/* sa_ignore FREED_MEMORY */
}
/* pending send queue SHOULD be empty */
TAILQ_FOREACH_SAFE(chk, &asoc->send_queue, sctp_next, nchk) {
TAILQ_REMOVE(&asoc->send_queue, chk, sctp_next);
asoc->send_queue_cnt--;
if (asoc->strmout[chk->rec.data.sid].chunks_on_queues > 0) {
asoc->strmout[chk->rec.data.sid].chunks_on_queues--;
#ifdef INVARIANTS
} else {
panic("No chunks on the queues for sid %u.", chk->rec.data.sid);
#endif
}
if (chk->data != NULL) {
sctp_free_bufspace(stcb, asoc, chk, 1);
sctp_ulp_notify(SCTP_NOTIFY_UNSENT_DG_FAIL, stcb,
error, chk, so_locked);
if (chk->data) {
sctp_m_freem(chk->data);
chk->data = NULL;
}
}
sctp_free_a_chunk(stcb, chk, so_locked);
/* sa_ignore FREED_MEMORY */
}
for (i = 0; i < asoc->streamoutcnt; i++) {
/* For each stream */
outs = &asoc->strmout[i];
/* clean up any sends there */
TAILQ_FOREACH_SAFE(sp, &outs->outqueue, next, nsp) {
atomic_subtract_int(&asoc->stream_queue_cnt, 1);
TAILQ_REMOVE(&outs->outqueue, sp, next);
stcb->asoc.ss_functions.sctp_ss_remove_from_stream(stcb, asoc, outs, sp, 1);
sctp_free_spbufspace(stcb, asoc, sp);
if (sp->data) {
sctp_ulp_notify(SCTP_NOTIFY_SPECIAL_SP_FAIL, stcb,
error, (void *)sp, so_locked);
if (sp->data) {
sctp_m_freem(sp->data);
sp->data = NULL;
sp->tail_mbuf = NULL;
sp->length = 0;
}
}
if (sp->net) {
sctp_free_remote_addr(sp->net);
sp->net = NULL;
}
/* Free the chunk */
sctp_free_a_strmoq(stcb, sp, so_locked);
/* sa_ignore FREED_MEMORY */
}
}
}
void
sctp_abort_notification(struct sctp_tcb *stcb, uint8_t from_peer, uint16_t error,
struct sctp_abort_chunk *abort, int so_locked)
{
if (stcb == NULL) {
return;
}
if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) ||
((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) &&
(stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_CONNECTED))) {
stcb->sctp_ep->sctp_flags |= SCTP_PCB_FLAGS_WAS_ABORTED;
}
if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
(stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
(stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)) {
return;
}
SCTP_TCB_SEND_LOCK(stcb);
SCTP_ADD_SUBSTATE(stcb, SCTP_STATE_WAS_ABORTED);
/* Tell them we lost the asoc */
sctp_report_all_outbound(stcb, error, so_locked);
SCTP_TCB_SEND_UNLOCK(stcb);
if (from_peer) {
sctp_ulp_notify(SCTP_NOTIFY_ASSOC_REM_ABORTED, stcb, error, abort, so_locked);
} else {
sctp_ulp_notify(SCTP_NOTIFY_ASSOC_LOC_ABORTED, stcb, error, abort, so_locked);
}
}
void
sctp_abort_association(struct sctp_inpcb *inp, struct sctp_tcb *stcb,
struct mbuf *m, int iphlen,
struct sockaddr *src, struct sockaddr *dst,
struct sctphdr *sh, struct mbuf *op_err,
uint8_t mflowtype, uint32_t mflowid,
uint32_t vrf_id, uint16_t port)
{
uint32_t vtag;
vtag = 0;
if (stcb != NULL) {
vtag = stcb->asoc.peer_vtag;
vrf_id = stcb->asoc.vrf_id;
}
sctp_send_abort(m, iphlen, src, dst, sh, vtag, op_err,
mflowtype, mflowid, inp->fibnum,
vrf_id, port);
if (stcb != NULL) {
/* We have a TCB to abort, send notification too */
sctp_abort_notification(stcb, 0, 0, NULL, SCTP_SO_NOT_LOCKED);
/* Ok, now lets free it */
SCTP_STAT_INCR_COUNTER32(sctps_aborted);
if ((SCTP_GET_STATE(stcb) == SCTP_STATE_OPEN) ||
(SCTP_GET_STATE(stcb) == SCTP_STATE_SHUTDOWN_RECEIVED)) {
SCTP_STAT_DECR_GAUGE32(sctps_currestab);
}
(void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC,
SCTP_FROM_SCTPUTIL + SCTP_LOC_4);
}
}
#ifdef SCTP_ASOCLOG_OF_TSNS
void
sctp_print_out_track_log(struct sctp_tcb *stcb)
{
#ifdef NOSIY_PRINTS
int i;
SCTP_PRINTF("Last ep reason:%x\n", stcb->sctp_ep->last_abort_code);
SCTP_PRINTF("IN bound TSN log-aaa\n");
if ((stcb->asoc.tsn_in_at == 0) && (stcb->asoc.tsn_in_wrapped == 0)) {
SCTP_PRINTF("None rcvd\n");
goto none_in;
}
if (stcb->asoc.tsn_in_wrapped) {
for (i = stcb->asoc.tsn_in_at; i < SCTP_TSN_LOG_SIZE; i++) {
SCTP_PRINTF("TSN:%x strm:%d seq:%d flags:%x sz:%d\n",
stcb->asoc.in_tsnlog[i].tsn,
stcb->asoc.in_tsnlog[i].strm,
stcb->asoc.in_tsnlog[i].seq,
stcb->asoc.in_tsnlog[i].flgs,
stcb->asoc.in_tsnlog[i].sz);
}
}
if (stcb->asoc.tsn_in_at) {
for (i = 0; i < stcb->asoc.tsn_in_at; i++) {
SCTP_PRINTF("TSN:%x strm:%d seq:%d flags:%x sz:%d\n",
stcb->asoc.in_tsnlog[i].tsn,
stcb->asoc.in_tsnlog[i].strm,
stcb->asoc.in_tsnlog[i].seq,
stcb->asoc.in_tsnlog[i].flgs,
stcb->asoc.in_tsnlog[i].sz);
}
}
none_in:
SCTP_PRINTF("OUT bound TSN log-aaa\n");
if ((stcb->asoc.tsn_out_at == 0) &&
(stcb->asoc.tsn_out_wrapped == 0)) {
SCTP_PRINTF("None sent\n");
}
if (stcb->asoc.tsn_out_wrapped) {
for (i = stcb->asoc.tsn_out_at; i < SCTP_TSN_LOG_SIZE; i++) {
SCTP_PRINTF("TSN:%x strm:%d seq:%d flags:%x sz:%d\n",
stcb->asoc.out_tsnlog[i].tsn,
stcb->asoc.out_tsnlog[i].strm,
stcb->asoc.out_tsnlog[i].seq,
stcb->asoc.out_tsnlog[i].flgs,
stcb->asoc.out_tsnlog[i].sz);
}
}
if (stcb->asoc.tsn_out_at) {
for (i = 0; i < stcb->asoc.tsn_out_at; i++) {
SCTP_PRINTF("TSN:%x strm:%d seq:%d flags:%x sz:%d\n",
stcb->asoc.out_tsnlog[i].tsn,
stcb->asoc.out_tsnlog[i].strm,
stcb->asoc.out_tsnlog[i].seq,
stcb->asoc.out_tsnlog[i].flgs,
stcb->asoc.out_tsnlog[i].sz);
}
}
#endif
}
#endif
void
sctp_abort_an_association(struct sctp_inpcb *inp, struct sctp_tcb *stcb,
struct mbuf *op_err,
int so_locked)
{
if (stcb == NULL) {
/* Got to have a TCB */
if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) {
if (LIST_EMPTY(&inp->sctp_asoc_list)) {
sctp_inpcb_free(inp, SCTP_FREE_SHOULD_USE_ABORT,
SCTP_CALLED_DIRECTLY_NOCMPSET);
}
}
return;
}
/* notify the peer */
sctp_send_abort_tcb(stcb, op_err, so_locked);
SCTP_STAT_INCR_COUNTER32(sctps_aborted);
if ((SCTP_GET_STATE(stcb) == SCTP_STATE_OPEN) ||
(SCTP_GET_STATE(stcb) == SCTP_STATE_SHUTDOWN_RECEIVED)) {
SCTP_STAT_DECR_GAUGE32(sctps_currestab);
}
/* notify the ulp */
if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) {
sctp_abort_notification(stcb, 0, 0, NULL, so_locked);
}
/* now free the asoc */
#ifdef SCTP_ASOCLOG_OF_TSNS
sctp_print_out_track_log(stcb);
#endif
(void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC,
SCTP_FROM_SCTPUTIL + SCTP_LOC_5);
}
void
sctp_handle_ootb(struct mbuf *m, int iphlen, int offset,
struct sockaddr *src, struct sockaddr *dst,
struct sctphdr *sh, struct sctp_inpcb *inp,
struct mbuf *cause,
uint8_t mflowtype, uint32_t mflowid, uint16_t fibnum,
uint32_t vrf_id, uint16_t port)
{
struct sctp_chunkhdr *ch, chunk_buf;
unsigned int chk_length;
int contains_init_chunk;
SCTP_STAT_INCR_COUNTER32(sctps_outoftheblue);
/* Generate a TO address for future reference */
if (inp && (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) {
if (LIST_EMPTY(&inp->sctp_asoc_list)) {
sctp_inpcb_free(inp, SCTP_FREE_SHOULD_USE_ABORT,
SCTP_CALLED_DIRECTLY_NOCMPSET);
}
}
contains_init_chunk = 0;
ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, offset,
sizeof(*ch), (uint8_t *)&chunk_buf);
while (ch != NULL) {
chk_length = ntohs(ch->chunk_length);
if (chk_length < sizeof(*ch)) {
/* break to abort land */
break;
}
switch (ch->chunk_type) {
case SCTP_INIT:
contains_init_chunk = 1;
break;
case SCTP_PACKET_DROPPED:
/* we don't respond to pkt-dropped */
return;
case SCTP_ABORT_ASSOCIATION:
/* we don't respond with an ABORT to an ABORT */
return;
case SCTP_SHUTDOWN_COMPLETE:
/*
* we ignore it since we are not waiting for it and
* peer is gone
*/
return;
case SCTP_SHUTDOWN_ACK:
sctp_send_shutdown_complete2(src, dst, sh,
mflowtype, mflowid, fibnum,
vrf_id, port);
return;
default:
break;
}
offset += SCTP_SIZE32(chk_length);
ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, offset,
sizeof(*ch), (uint8_t *)&chunk_buf);
}
if ((SCTP_BASE_SYSCTL(sctp_blackhole) == 0) ||
((SCTP_BASE_SYSCTL(sctp_blackhole) == 1) &&
(contains_init_chunk == 0))) {
sctp_send_abort(m, iphlen, src, dst, sh, 0, cause,
mflowtype, mflowid, fibnum,
vrf_id, port);
}
}
/*
* check the inbound datagram to make sure there is not an abort inside it,
* if there is return 1, else return 0.
*/
int
sctp_is_there_an_abort_here(struct mbuf *m, int iphlen, uint32_t *vtagfill)
{
struct sctp_chunkhdr *ch;
struct sctp_init_chunk *init_chk, chunk_buf;
int offset;
unsigned int chk_length;
offset = iphlen + sizeof(struct sctphdr);
ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, offset, sizeof(*ch),
(uint8_t *)&chunk_buf);
while (ch != NULL) {
chk_length = ntohs(ch->chunk_length);
if (chk_length < sizeof(*ch)) {
/* packet is probably corrupt */
break;
}
/* we seem to be ok, is it an abort? */
if (ch->chunk_type == SCTP_ABORT_ASSOCIATION) {
/* yep, tell them */
return (1);
}
if (ch->chunk_type == SCTP_INITIATION) {
/* need to update the Vtag */
init_chk = (struct sctp_init_chunk *)sctp_m_getptr(m,
offset, sizeof(*init_chk), (uint8_t *)&chunk_buf);
if (init_chk != NULL) {
*vtagfill = ntohl(init_chk->init.initiate_tag);
}
}
/* Nope, move to the next chunk */
offset += SCTP_SIZE32(chk_length);
ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, offset,
sizeof(*ch), (uint8_t *)&chunk_buf);
}
return (0);
}
/*
* currently (2/02), ifa_addr embeds scope_id's and don't have sin6_scope_id
* set (i.e. it's 0) so, create this function to compare link local scopes
*/
#ifdef INET6
uint32_t
sctp_is_same_scope(struct sockaddr_in6 *addr1, struct sockaddr_in6 *addr2)
{
struct sockaddr_in6 a, b;
/* save copies */
a = *addr1;
b = *addr2;
if (a.sin6_scope_id == 0)
if (sa6_recoverscope(&a)) {
/* can't get scope, so can't match */
return (0);
}
if (b.sin6_scope_id == 0)
if (sa6_recoverscope(&b)) {
/* can't get scope, so can't match */
return (0);
}
if (a.sin6_scope_id != b.sin6_scope_id)
return (0);
return (1);
}
/*
* returns a sockaddr_in6 with embedded scope recovered and removed
*/
struct sockaddr_in6 *
sctp_recover_scope(struct sockaddr_in6 *addr, struct sockaddr_in6 *store)
{
/* check and strip embedded scope junk */
if (addr->sin6_family == AF_INET6) {
if (IN6_IS_SCOPE_LINKLOCAL(&addr->sin6_addr)) {
if (addr->sin6_scope_id == 0) {
*store = *addr;
if (!sa6_recoverscope(store)) {
/* use the recovered scope */
addr = store;
}
} else {
/* else, return the original "to" addr */
in6_clearscope(&addr->sin6_addr);
}
}
}
return (addr);
}
#endif
/*
* are the two addresses the same? currently a "scopeless" check returns: 1
* if same, 0 if not
*/
int
sctp_cmpaddr(struct sockaddr *sa1, struct sockaddr *sa2)
{
/* must be valid */
if (sa1 == NULL || sa2 == NULL)
return (0);
/* must be the same family */
if (sa1->sa_family != sa2->sa_family)
return (0);
switch (sa1->sa_family) {
#ifdef INET6
case AF_INET6:
{
/* IPv6 addresses */
struct sockaddr_in6 *sin6_1, *sin6_2;
sin6_1 = (struct sockaddr_in6 *)sa1;
sin6_2 = (struct sockaddr_in6 *)sa2;
return (SCTP6_ARE_ADDR_EQUAL(sin6_1,
sin6_2));
}
#endif
#ifdef INET
case AF_INET:
{
/* IPv4 addresses */
struct sockaddr_in *sin_1, *sin_2;
sin_1 = (struct sockaddr_in *)sa1;
sin_2 = (struct sockaddr_in *)sa2;
return (sin_1->sin_addr.s_addr == sin_2->sin_addr.s_addr);
}
#endif
default:
/* we don't do these... */
return (0);
}
}
void
sctp_print_address(struct sockaddr *sa)
{
#ifdef INET6
char ip6buf[INET6_ADDRSTRLEN];
#endif
switch (sa->sa_family) {
#ifdef INET6
case AF_INET6:
{
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)sa;
SCTP_PRINTF("IPv6 address: %s:port:%d scope:%u\n",
ip6_sprintf(ip6buf, &sin6->sin6_addr),
ntohs(sin6->sin6_port),
sin6->sin6_scope_id);
break;
}
#endif
#ifdef INET
case AF_INET:
{
struct sockaddr_in *sin;
unsigned char *p;
sin = (struct sockaddr_in *)sa;
p = (unsigned char *)&sin->sin_addr;
SCTP_PRINTF("IPv4 address: %u.%u.%u.%u:%d\n",
p[0], p[1], p[2], p[3], ntohs(sin->sin_port));
break;
}
#endif
default:
SCTP_PRINTF("?\n");
break;
}
}
void
sctp_pull_off_control_to_new_inp(struct sctp_inpcb *old_inp,
struct sctp_inpcb *new_inp,
struct sctp_tcb *stcb,
int waitflags)
{
/*
* go through our old INP and pull off any control structures that
* belong to stcb and move then to the new inp.
*/
struct socket *old_so, *new_so;
struct sctp_queued_to_read *control, *nctl;
struct sctp_readhead tmp_queue;
struct mbuf *m;
int error = 0;
old_so = old_inp->sctp_socket;
new_so = new_inp->sctp_socket;
TAILQ_INIT(&tmp_queue);
error = sblock(&old_so->so_rcv, waitflags);
if (error) {
/*
* Gak, can't get sblock, we have a problem. data will be
* left stranded.. and we don't dare look at it since the
* other thread may be reading something. Oh well, its a
* screwed up app that does a peeloff OR a accept while
* reading from the main socket... actually its only the
* peeloff() case, since I think read will fail on a
* listening socket..
*/
return;
}
/* lock the socket buffers */
SCTP_INP_READ_LOCK(old_inp);
TAILQ_FOREACH_SAFE(control, &old_inp->read_queue, next, nctl) {
/* Pull off all for out target stcb */
if (control->stcb == stcb) {
/* remove it we want it */
TAILQ_REMOVE(&old_inp->read_queue, control, next);
TAILQ_INSERT_TAIL(&tmp_queue, control, next);
m = control->data;
while (m) {
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) {
sctp_sblog(&old_so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBFREE, SCTP_BUF_LEN(m));
}
sctp_sbfree(control, stcb, &old_so->so_rcv, m);
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) {
sctp_sblog(&old_so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0);
}
m = SCTP_BUF_NEXT(m);
}
}
}
SCTP_INP_READ_UNLOCK(old_inp);
/* Remove the sb-lock on the old socket */
sbunlock(&old_so->so_rcv);
/* Now we move them over to the new socket buffer */
SCTP_INP_READ_LOCK(new_inp);
TAILQ_FOREACH_SAFE(control, &tmp_queue, next, nctl) {
TAILQ_INSERT_TAIL(&new_inp->read_queue, control, next);
m = control->data;
while (m) {
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) {
sctp_sblog(&new_so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBALLOC, SCTP_BUF_LEN(m));
}
sctp_sballoc(stcb, &new_so->so_rcv, m);
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) {
sctp_sblog(&new_so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0);
}
m = SCTP_BUF_NEXT(m);
}
}
SCTP_INP_READ_UNLOCK(new_inp);
}
void
sctp_wakeup_the_read_socket(struct sctp_inpcb *inp,
struct sctp_tcb *stcb,
int so_locked
SCTP_UNUSED
)
{
if ((inp != NULL) && (inp->sctp_socket != NULL)) {
sctp_sorwakeup(inp, inp->sctp_socket);
}
}
void
sctp_add_to_readq(struct sctp_inpcb *inp,
struct sctp_tcb *stcb,
struct sctp_queued_to_read *control,
struct sockbuf *sb,
int end,
int inp_read_lock_held,
int so_locked)
{
/*
* Here we must place the control on the end of the socket read
* queue AND increment sb_cc so that select will work properly on
* read.
*/
struct mbuf *m, *prev = NULL;
if (inp == NULL) {
/* Gak, TSNH!! */
#ifdef INVARIANTS
panic("Gak, inp NULL on add_to_readq");
#endif
return;
}
if (inp_read_lock_held == 0)
SCTP_INP_READ_LOCK(inp);
if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_CANT_READ) {
if (!control->on_strm_q) {
sctp_free_remote_addr(control->whoFrom);
if (control->data) {
sctp_m_freem(control->data);
control->data = NULL;
}
sctp_free_a_readq(stcb, control);
}
if (inp_read_lock_held == 0)
SCTP_INP_READ_UNLOCK(inp);
return;
}
if (!(control->spec_flags & M_NOTIFICATION)) {
atomic_add_int(&inp->total_recvs, 1);
if (!control->do_not_ref_stcb) {
atomic_add_int(&stcb->total_recvs, 1);
}
}
m = control->data;
control->held_length = 0;
control->length = 0;
while (m) {
if (SCTP_BUF_LEN(m) == 0) {
/* Skip mbufs with NO length */
if (prev == NULL) {
/* First one */
control->data = sctp_m_free(m);
m = control->data;
} else {
SCTP_BUF_NEXT(prev) = sctp_m_free(m);
m = SCTP_BUF_NEXT(prev);
}
if (m == NULL) {
control->tail_mbuf = prev;
}
continue;
}
prev = m;
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) {
sctp_sblog(sb, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBALLOC, SCTP_BUF_LEN(m));
}
sctp_sballoc(stcb, sb, m);
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) {
sctp_sblog(sb, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0);
}
atomic_add_int(&control->length, SCTP_BUF_LEN(m));
m = SCTP_BUF_NEXT(m);
}
if (prev != NULL) {
control->tail_mbuf = prev;
} else {
/* Everything got collapsed out?? */
if (!control->on_strm_q) {
sctp_free_remote_addr(control->whoFrom);
sctp_free_a_readq(stcb, control);
}
if (inp_read_lock_held == 0)
SCTP_INP_READ_UNLOCK(inp);
return;
}
if (end) {
control->end_added = 1;
}
TAILQ_INSERT_TAIL(&inp->read_queue, control, next);
control->on_read_q = 1;
if (inp_read_lock_held == 0)
SCTP_INP_READ_UNLOCK(inp);
if (inp && inp->sctp_socket) {
sctp_wakeup_the_read_socket(inp, stcb, so_locked);
}
}
/*************HOLD THIS COMMENT FOR PATCH FILE OF
*************ALTERNATE ROUTING CODE
*/
/*************HOLD THIS COMMENT FOR END OF PATCH FILE OF
*************ALTERNATE ROUTING CODE
*/
struct mbuf *
sctp_generate_cause(uint16_t code, char *info)
{
struct mbuf *m;
struct sctp_gen_error_cause *cause;
size_t info_len;
uint16_t len;
if ((code == 0) || (info == NULL)) {
return (NULL);
}
info_len = strlen(info);
if (info_len > (SCTP_MAX_CAUSE_LENGTH - sizeof(struct sctp_paramhdr))) {
return (NULL);
}
len = (uint16_t)(sizeof(struct sctp_paramhdr) + info_len);
m = sctp_get_mbuf_for_msg(len, 0, M_NOWAIT, 1, MT_DATA);
if (m != NULL) {
SCTP_BUF_LEN(m) = len;
cause = mtod(m, struct sctp_gen_error_cause *);
cause->code = htons(code);
cause->length = htons(len);
memcpy(cause->info, info, info_len);
}
return (m);
}
struct mbuf *
sctp_generate_no_user_data_cause(uint32_t tsn)
{
struct mbuf *m;
struct sctp_error_no_user_data *no_user_data_cause;
uint16_t len;
len = (uint16_t)sizeof(struct sctp_error_no_user_data);
m = sctp_get_mbuf_for_msg(len, 0, M_NOWAIT, 1, MT_DATA);
if (m != NULL) {
SCTP_BUF_LEN(m) = len;
no_user_data_cause = mtod(m, struct sctp_error_no_user_data *);
no_user_data_cause->cause.code = htons(SCTP_CAUSE_NO_USER_DATA);
no_user_data_cause->cause.length = htons(len);
no_user_data_cause->tsn = htonl(tsn);
}
return (m);
}
#ifdef SCTP_MBCNT_LOGGING
void
sctp_free_bufspace(struct sctp_tcb *stcb, struct sctp_association *asoc,
struct sctp_tmit_chunk *tp1, int chk_cnt)
{
if (tp1->data == NULL) {
return;
}
asoc->chunks_on_out_queue -= chk_cnt;
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MBCNT_LOGGING_ENABLE) {
sctp_log_mbcnt(SCTP_LOG_MBCNT_DECREASE,
asoc->total_output_queue_size,
tp1->book_size,
0,
tp1->mbcnt);
}
if (asoc->total_output_queue_size >= tp1->book_size) {
atomic_add_int(&asoc->total_output_queue_size, -tp1->book_size);
} else {
asoc->total_output_queue_size = 0;
}
if (stcb->sctp_socket && (((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) ||
((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE)))) {
if (stcb->sctp_socket->so_snd.sb_cc >= tp1->book_size) {
stcb->sctp_socket->so_snd.sb_cc -= tp1->book_size;
} else {
stcb->sctp_socket->so_snd.sb_cc = 0;
}
}
}
#endif
int
sctp_release_pr_sctp_chunk(struct sctp_tcb *stcb, struct sctp_tmit_chunk *tp1,
uint8_t sent, int so_locked)
{
struct sctp_stream_out *strq;
struct sctp_tmit_chunk *chk = NULL, *tp2;
struct sctp_stream_queue_pending *sp;
uint32_t mid;
uint16_t sid;
uint8_t foundeom = 0;
int ret_sz = 0;
int notdone;
int do_wakeup_routine = 0;
sid = tp1->rec.data.sid;
mid = tp1->rec.data.mid;
if (sent || !(tp1->rec.data.rcv_flags & SCTP_DATA_FIRST_FRAG)) {
stcb->asoc.abandoned_sent[0]++;
stcb->asoc.abandoned_sent[PR_SCTP_POLICY(tp1->flags)]++;
stcb->asoc.strmout[sid].abandoned_sent[0]++;
#if defined(SCTP_DETAILED_STR_STATS)
stcb->asoc.strmout[sid].abandoned_sent[PR_SCTP_POLICY(tp1->flags)]++;
#endif
} else {
stcb->asoc.abandoned_unsent[0]++;
stcb->asoc.abandoned_unsent[PR_SCTP_POLICY(tp1->flags)]++;
stcb->asoc.strmout[sid].abandoned_unsent[0]++;
#if defined(SCTP_DETAILED_STR_STATS)
stcb->asoc.strmout[sid].abandoned_unsent[PR_SCTP_POLICY(tp1->flags)]++;
#endif
}
do {
ret_sz += tp1->book_size;
if (tp1->data != NULL) {
if (tp1->sent < SCTP_DATAGRAM_RESEND) {
sctp_flight_size_decrease(tp1);
sctp_total_flight_decrease(stcb, tp1);
}
sctp_free_bufspace(stcb, &stcb->asoc, tp1, 1);
stcb->asoc.peers_rwnd += tp1->send_size;
stcb->asoc.peers_rwnd += SCTP_BASE_SYSCTL(sctp_peer_chunk_oh);
if (sent) {
sctp_ulp_notify(SCTP_NOTIFY_SENT_DG_FAIL, stcb, 0, tp1, so_locked);
} else {
sctp_ulp_notify(SCTP_NOTIFY_UNSENT_DG_FAIL, stcb, 0, tp1, so_locked);
}
if (tp1->data) {
sctp_m_freem(tp1->data);
tp1->data = NULL;
}
do_wakeup_routine = 1;
if (PR_SCTP_BUF_ENABLED(tp1->flags)) {
stcb->asoc.sent_queue_cnt_removeable--;
}
}
tp1->sent = SCTP_FORWARD_TSN_SKIP;
if ((tp1->rec.data.rcv_flags & SCTP_DATA_NOT_FRAG) ==
SCTP_DATA_NOT_FRAG) {
/* not frag'ed we ae done */
notdone = 0;
foundeom = 1;
} else if (tp1->rec.data.rcv_flags & SCTP_DATA_LAST_FRAG) {
/* end of frag, we are done */
notdone = 0;
foundeom = 1;
} else {
/*
* Its a begin or middle piece, we must mark all of
* it
*/
notdone = 1;
tp1 = TAILQ_NEXT(tp1, sctp_next);
}
} while (tp1 && notdone);
if (foundeom == 0) {
/*
* The multi-part message was scattered across the send and
* sent queue.
*/
TAILQ_FOREACH_SAFE(tp1, &stcb->asoc.send_queue, sctp_next, tp2) {
if ((tp1->rec.data.sid != sid) ||
(!SCTP_MID_EQ(stcb->asoc.idata_supported, tp1->rec.data.mid, mid))) {
break;
}
/*
* save to chk in case we have some on stream out
* queue. If so and we have an un-transmitted one we
* don't have to fudge the TSN.
*/
chk = tp1;
ret_sz += tp1->book_size;
sctp_free_bufspace(stcb, &stcb->asoc, tp1, 1);
if (sent) {
sctp_ulp_notify(SCTP_NOTIFY_SENT_DG_FAIL, stcb, 0, tp1, so_locked);
} else {
sctp_ulp_notify(SCTP_NOTIFY_UNSENT_DG_FAIL, stcb, 0, tp1, so_locked);
}
if (tp1->data) {
sctp_m_freem(tp1->data);
tp1->data = NULL;
}
/* No flight involved here book the size to 0 */
tp1->book_size = 0;
if (tp1->rec.data.rcv_flags & SCTP_DATA_LAST_FRAG) {
foundeom = 1;
}
do_wakeup_routine = 1;
tp1->sent = SCTP_FORWARD_TSN_SKIP;
TAILQ_REMOVE(&stcb->asoc.send_queue, tp1, sctp_next);
/*
* on to the sent queue so we can wait for it to be
* passed by.
*/
TAILQ_INSERT_TAIL(&stcb->asoc.sent_queue, tp1,
sctp_next);
stcb->asoc.send_queue_cnt--;
stcb->asoc.sent_queue_cnt++;
}
}
if (foundeom == 0) {
/*
* Still no eom found. That means there is stuff left on the
* stream out queue.. yuck.
*/
SCTP_TCB_SEND_LOCK(stcb);
strq = &stcb->asoc.strmout[sid];
sp = TAILQ_FIRST(&strq->outqueue);
if (sp != NULL) {
sp->discard_rest = 1;
/*
* We may need to put a chunk on the queue that
* holds the TSN that would have been sent with the
* LAST bit.
*/
if (chk == NULL) {
/* Yep, we have to */
sctp_alloc_a_chunk(stcb, chk);
if (chk == NULL) {
/*
* we are hosed. All we can do is
* nothing.. which will cause an
* abort if the peer is paying
* attention.
*/
goto oh_well;
}
memset(chk, 0, sizeof(*chk));
chk->rec.data.rcv_flags = 0;
chk->sent = SCTP_FORWARD_TSN_SKIP;
chk->asoc = &stcb->asoc;
if (stcb->asoc.idata_supported == 0) {
if (sp->sinfo_flags & SCTP_UNORDERED) {
chk->rec.data.mid = 0;
} else {
chk->rec.data.mid = strq->next_mid_ordered;
}
} else {
if (sp->sinfo_flags & SCTP_UNORDERED) {
chk->rec.data.mid = strq->next_mid_unordered;
} else {
chk->rec.data.mid = strq->next_mid_ordered;
}
}
chk->rec.data.sid = sp->sid;
chk->rec.data.ppid = sp->ppid;
chk->rec.data.context = sp->context;
chk->flags = sp->act_flags;
chk->whoTo = NULL;
chk->rec.data.tsn = atomic_fetchadd_int(&stcb->asoc.sending_seq, 1);
strq->chunks_on_queues++;
TAILQ_INSERT_TAIL(&stcb->asoc.sent_queue, chk, sctp_next);
stcb->asoc.sent_queue_cnt++;
stcb->asoc.pr_sctp_cnt++;
}
chk->rec.data.rcv_flags |= SCTP_DATA_LAST_FRAG;
if (sp->sinfo_flags & SCTP_UNORDERED) {
chk->rec.data.rcv_flags |= SCTP_DATA_UNORDERED;
}
if (stcb->asoc.idata_supported == 0) {
if ((sp->sinfo_flags & SCTP_UNORDERED) == 0) {
strq->next_mid_ordered++;
}
} else {
if (sp->sinfo_flags & SCTP_UNORDERED) {
strq->next_mid_unordered++;
} else {
strq->next_mid_ordered++;
}
}
oh_well:
if (sp->data) {
/*
* Pull any data to free up the SB and allow
* sender to "add more" while we will throw
* away :-)
*/
sctp_free_spbufspace(stcb, &stcb->asoc, sp);
ret_sz += sp->length;
do_wakeup_routine = 1;
sp->some_taken = 1;
sctp_m_freem(sp->data);
sp->data = NULL;
sp->tail_mbuf = NULL;
sp->length = 0;
}
}
SCTP_TCB_SEND_UNLOCK(stcb);
}
if (do_wakeup_routine) {
sctp_sowwakeup(stcb->sctp_ep, stcb->sctp_socket);
}
return (ret_sz);
}
/*
* checks to see if the given address, sa, is one that is currently known by
* the kernel note: can't distinguish the same address on multiple interfaces
* and doesn't handle multiple addresses with different zone/scope id's note:
* ifa_ifwithaddr() compares the entire sockaddr struct
*/
struct sctp_ifa *
sctp_find_ifa_in_ep(struct sctp_inpcb *inp, struct sockaddr *addr,
int holds_lock)
{
struct sctp_laddr *laddr;
if (holds_lock == 0) {
SCTP_INP_RLOCK(inp);
}
LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) {
if (laddr->ifa == NULL)
continue;
if (addr->sa_family != laddr->ifa->address.sa.sa_family)
continue;
#ifdef INET
if (addr->sa_family == AF_INET) {
if (((struct sockaddr_in *)addr)->sin_addr.s_addr ==
laddr->ifa->address.sin.sin_addr.s_addr) {
/* found him. */
break;
}
}
#endif
#ifdef INET6
if (addr->sa_family == AF_INET6) {
if (SCTP6_ARE_ADDR_EQUAL((struct sockaddr_in6 *)addr,
&laddr->ifa->address.sin6)) {
/* found him. */
break;
}
}
#endif
}
if (holds_lock == 0) {
SCTP_INP_RUNLOCK(inp);
}
if (laddr != NULL) {
return (laddr->ifa);
} else {
return (NULL);
}
}
uint32_t
sctp_get_ifa_hash_val(struct sockaddr *addr)
{
switch (addr->sa_family) {
#ifdef INET
case AF_INET:
{
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)addr;
return (sin->sin_addr.s_addr ^ (sin->sin_addr.s_addr >> 16));
}
#endif
#ifdef INET6
case AF_INET6:
{
struct sockaddr_in6 *sin6;
uint32_t hash_of_addr;
sin6 = (struct sockaddr_in6 *)addr;
hash_of_addr = (sin6->sin6_addr.s6_addr32[0] +
sin6->sin6_addr.s6_addr32[1] +
sin6->sin6_addr.s6_addr32[2] +
sin6->sin6_addr.s6_addr32[3]);
hash_of_addr = (hash_of_addr ^ (hash_of_addr >> 16));
return (hash_of_addr);
}
#endif
default:
break;
}
return (0);
}
struct sctp_ifa *
sctp_find_ifa_by_addr(struct sockaddr *addr, uint32_t vrf_id, int holds_lock)
{
struct sctp_ifa *sctp_ifap;
struct sctp_vrf *vrf;
struct sctp_ifalist *hash_head;
uint32_t hash_of_addr;
if (holds_lock == 0) {
SCTP_IPI_ADDR_RLOCK();
} else {
SCTP_IPI_ADDR_LOCK_ASSERT();
}
vrf = sctp_find_vrf(vrf_id);
if (vrf == NULL) {
if (holds_lock == 0)
SCTP_IPI_ADDR_RUNLOCK();
return (NULL);
}
hash_of_addr = sctp_get_ifa_hash_val(addr);
hash_head = &vrf->vrf_addr_hash[(hash_of_addr & vrf->vrf_addr_hashmark)];
if (hash_head == NULL) {
SCTP_PRINTF("hash_of_addr:%x mask:%x table:%x - ",
hash_of_addr, (uint32_t)vrf->vrf_addr_hashmark,
(uint32_t)(hash_of_addr & vrf->vrf_addr_hashmark));
sctp_print_address(addr);
SCTP_PRINTF("No such bucket for address\n");
if (holds_lock == 0)
SCTP_IPI_ADDR_RUNLOCK();
return (NULL);
}
LIST_FOREACH(sctp_ifap, hash_head, next_bucket) {
if (addr->sa_family != sctp_ifap->address.sa.sa_family)
continue;
#ifdef INET
if (addr->sa_family == AF_INET) {
if (((struct sockaddr_in *)addr)->sin_addr.s_addr ==
sctp_ifap->address.sin.sin_addr.s_addr) {
/* found him. */
break;
}
}
#endif
#ifdef INET6
if (addr->sa_family == AF_INET6) {
if (SCTP6_ARE_ADDR_EQUAL((struct sockaddr_in6 *)addr,
&sctp_ifap->address.sin6)) {
/* found him. */
break;
}
}
#endif
}
if (holds_lock == 0)
SCTP_IPI_ADDR_RUNLOCK();
return (sctp_ifap);
}
static void
sctp_user_rcvd(struct sctp_tcb *stcb, uint32_t *freed_so_far, int hold_rlock,
uint32_t rwnd_req)
{
/* User pulled some data, do we need a rwnd update? */
struct epoch_tracker et;
int r_unlocked = 0;
uint32_t dif, rwnd;
struct socket *so = NULL;
if (stcb == NULL)
return;
atomic_add_int(&stcb->asoc.refcnt, 1);
if ((SCTP_GET_STATE(stcb) == SCTP_STATE_SHUTDOWN_ACK_SENT) ||
(stcb->asoc.state & (SCTP_STATE_ABOUT_TO_BE_FREED | SCTP_STATE_SHUTDOWN_RECEIVED))) {
/* Pre-check If we are freeing no update */
goto no_lock;
}
SCTP_INP_INCR_REF(stcb->sctp_ep);
if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
(stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE)) {
goto out;
}
so = stcb->sctp_socket;
if (so == NULL) {
goto out;
}
atomic_add_int(&stcb->freed_by_sorcv_sincelast, *freed_so_far);
/* Have you have freed enough to look */
*freed_so_far = 0;
/* Yep, its worth a look and the lock overhead */
/* Figure out what the rwnd would be */
rwnd = sctp_calc_rwnd(stcb, &stcb->asoc);
if (rwnd >= stcb->asoc.my_last_reported_rwnd) {
dif = rwnd - stcb->asoc.my_last_reported_rwnd;
} else {
dif = 0;
}
if (dif >= rwnd_req) {
if (hold_rlock) {
SCTP_INP_READ_UNLOCK(stcb->sctp_ep);
r_unlocked = 1;
}
if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) {
/*
* One last check before we allow the guy possibly
* to get in. There is a race, where the guy has not
* reached the gate. In that case
*/
goto out;
}
SCTP_TCB_LOCK(stcb);
if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) {
/* No reports here */
SCTP_TCB_UNLOCK(stcb);
goto out;
}
SCTP_STAT_INCR(sctps_wu_sacks_sent);
NET_EPOCH_ENTER(et);
sctp_send_sack(stcb, SCTP_SO_LOCKED);
sctp_chunk_output(stcb->sctp_ep, stcb,
SCTP_OUTPUT_FROM_USR_RCVD, SCTP_SO_LOCKED);
/* make sure no timer is running */
NET_EPOCH_EXIT(et);
sctp_timer_stop(SCTP_TIMER_TYPE_RECV, stcb->sctp_ep, stcb, NULL,
SCTP_FROM_SCTPUTIL + SCTP_LOC_6);
SCTP_TCB_UNLOCK(stcb);
} else {
/* Update how much we have pending */
stcb->freed_by_sorcv_sincelast = dif;
}
out:
if (so && r_unlocked && hold_rlock) {
SCTP_INP_READ_LOCK(stcb->sctp_ep);
}
SCTP_INP_DECR_REF(stcb->sctp_ep);
no_lock:
atomic_add_int(&stcb->asoc.refcnt, -1);
return;
}
int
sctp_sorecvmsg(struct socket *so,
struct uio *uio,
struct mbuf **mp,
struct sockaddr *from,
int fromlen,
int *msg_flags,
struct sctp_sndrcvinfo *sinfo,
int filling_sinfo)
{
/*
* MSG flags we will look at MSG_DONTWAIT - non-blocking IO.
* MSG_PEEK - Look don't touch :-D (only valid with OUT mbuf copy
* mp=NULL thus uio is the copy method to userland) MSG_WAITALL - ??
* On the way out we may send out any combination of:
* MSG_NOTIFICATION MSG_EOR
*
*/
struct sctp_inpcb *inp = NULL;
ssize_t my_len = 0;
ssize_t cp_len = 0;
int error = 0;
struct sctp_queued_to_read *control = NULL, *ctl = NULL, *nxt = NULL;
struct mbuf *m = NULL;
struct sctp_tcb *stcb = NULL;
int wakeup_read_socket = 0;
int freecnt_applied = 0;
int out_flags = 0, in_flags = 0;
int block_allowed = 1;
uint32_t freed_so_far = 0;
ssize_t copied_so_far = 0;
int in_eeor_mode = 0;
int no_rcv_needed = 0;
uint32_t rwnd_req = 0;
int hold_sblock = 0;
int hold_rlock = 0;
ssize_t slen = 0;
uint32_t held_length = 0;
int sockbuf_lock = 0;
if (uio == NULL) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
return (EINVAL);
}
if (msg_flags) {
in_flags = *msg_flags;
if (in_flags & MSG_PEEK)
SCTP_STAT_INCR(sctps_read_peeks);
} else {
in_flags = 0;
}
slen = uio->uio_resid;
/* Pull in and set up our int flags */
if (in_flags & MSG_OOB) {
/* Out of band's NOT supported */
return (EOPNOTSUPP);
}
if ((in_flags & MSG_PEEK) && (mp != NULL)) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
return (EINVAL);
}
if ((in_flags & (MSG_DONTWAIT
| MSG_NBIO
)) ||
SCTP_SO_IS_NBIO(so)) {
block_allowed = 0;
}
/* setup the endpoint */
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == NULL) {
SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTPUTIL, EFAULT);
return (EFAULT);
}
rwnd_req = (SCTP_SB_LIMIT_RCV(so) >> SCTP_RWND_HIWAT_SHIFT);
/* Must be at least a MTU's worth */
if (rwnd_req < SCTP_MIN_RWND)
rwnd_req = SCTP_MIN_RWND;
in_eeor_mode = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_EXPLICIT_EOR);
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_RECV_RWND_LOGGING_ENABLE) {
sctp_misc_ints(SCTP_SORECV_ENTER,
rwnd_req, in_eeor_mode, so->so_rcv.sb_cc, (uint32_t)uio->uio_resid);
}
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_RECV_RWND_LOGGING_ENABLE) {
sctp_misc_ints(SCTP_SORECV_ENTERPL,
rwnd_req, block_allowed, so->so_rcv.sb_cc, (uint32_t)uio->uio_resid);
}
error = sblock(&so->so_rcv, (block_allowed ? SBL_WAIT : 0));
if (error) {
goto release_unlocked;
}
sockbuf_lock = 1;
restart:
restart_nosblocks:
if (hold_sblock == 0) {
SOCKBUF_LOCK(&so->so_rcv);
hold_sblock = 1;
}
if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
(inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE)) {
goto out;
}
if ((so->so_rcv.sb_state & SBS_CANTRCVMORE) && (so->so_rcv.sb_cc == 0)) {
if (so->so_error) {
error = so->so_error;
if ((in_flags & MSG_PEEK) == 0)
so->so_error = 0;
goto out;
} else {
if (so->so_rcv.sb_cc == 0) {
/* indicate EOF */
error = 0;
goto out;
}
}
}
if (so->so_rcv.sb_cc <= held_length) {
if (so->so_error) {
error = so->so_error;
if ((in_flags & MSG_PEEK) == 0) {
so->so_error = 0;
}
goto out;
}
if ((so->so_rcv.sb_cc == 0) &&
((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) ||
(inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL))) {
if ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0) {
/*
* For active open side clear flags for
* re-use passive open is blocked by
* connect.
*/
if (inp->sctp_flags & SCTP_PCB_FLAGS_WAS_ABORTED) {
/*
* You were aborted, passive side
* always hits here
*/
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, ECONNRESET);
error = ECONNRESET;
}
so->so_state &= ~(SS_ISCONNECTING |
SS_ISDISCONNECTING |
SS_ISCONFIRMING |
SS_ISCONNECTED);
if (error == 0) {
if ((inp->sctp_flags & SCTP_PCB_FLAGS_WAS_CONNECTED) == 0) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, ENOTCONN);
error = ENOTCONN;
}
}
goto out;
}
}
if (block_allowed) {
error = sbwait(&so->so_rcv);
if (error) {
goto out;
}
held_length = 0;
goto restart_nosblocks;
} else {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EWOULDBLOCK);
error = EWOULDBLOCK;
goto out;
}
}
if (hold_sblock == 1) {
SOCKBUF_UNLOCK(&so->so_rcv);
hold_sblock = 0;
}
/* we possibly have data we can read */
/* sa_ignore FREED_MEMORY */
control = TAILQ_FIRST(&inp->read_queue);
if (control == NULL) {
/*
* This could be happening since the appender did the
* increment but as not yet did the tailq insert onto the
* read_queue
*/
if (hold_rlock == 0) {
SCTP_INP_READ_LOCK(inp);
}
control = TAILQ_FIRST(&inp->read_queue);
if ((control == NULL) && (so->so_rcv.sb_cc != 0)) {
#ifdef INVARIANTS
panic("Huh, its non zero and nothing on control?");
#endif
so->so_rcv.sb_cc = 0;
}
SCTP_INP_READ_UNLOCK(inp);
hold_rlock = 0;
goto restart;
}
if ((control->length == 0) &&
(control->do_not_ref_stcb)) {
/*
* Clean up code for freeing assoc that left behind a
* pdapi.. maybe a peer in EEOR that just closed after
* sending and never indicated a EOR.
*/
if (hold_rlock == 0) {
hold_rlock = 1;
SCTP_INP_READ_LOCK(inp);
}
control->held_length = 0;
if (control->data) {
/* Hmm there is data here .. fix */
struct mbuf *m_tmp;
int cnt = 0;
m_tmp = control->data;
while (m_tmp) {
cnt += SCTP_BUF_LEN(m_tmp);
if (SCTP_BUF_NEXT(m_tmp) == NULL) {
control->tail_mbuf = m_tmp;
control->end_added = 1;
}
m_tmp = SCTP_BUF_NEXT(m_tmp);
}
control->length = cnt;
} else {
/* remove it */
TAILQ_REMOVE(&inp->read_queue, control, next);
/* Add back any hiddend data */
sctp_free_remote_addr(control->whoFrom);
sctp_free_a_readq(stcb, control);
}
if (hold_rlock) {
hold_rlock = 0;
SCTP_INP_READ_UNLOCK(inp);
}
goto restart;
}
if ((control->length == 0) &&
(control->end_added == 1)) {
/*
* Do we also need to check for (control->pdapi_aborted ==
* 1)?
*/
if (hold_rlock == 0) {
hold_rlock = 1;
SCTP_INP_READ_LOCK(inp);
}
TAILQ_REMOVE(&inp->read_queue, control, next);
if (control->data) {
#ifdef INVARIANTS
panic("control->data not null but control->length == 0");
#else
SCTP_PRINTF("Strange, data left in the control buffer. Cleaning up.\n");
sctp_m_freem(control->data);
control->data = NULL;
#endif
}
if (control->aux_data) {
sctp_m_free(control->aux_data);
control->aux_data = NULL;
}
#ifdef INVARIANTS
if (control->on_strm_q) {
panic("About to free ctl:%p so:%p and its in %d",
control, so, control->on_strm_q);
}
#endif
sctp_free_remote_addr(control->whoFrom);
sctp_free_a_readq(stcb, control);
if (hold_rlock) {
hold_rlock = 0;
SCTP_INP_READ_UNLOCK(inp);
}
goto restart;
}
if (control->length == 0) {
if ((sctp_is_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE)) &&
(filling_sinfo)) {
/* find a more suitable one then this */
ctl = TAILQ_NEXT(control, next);
while (ctl) {
if ((ctl->stcb != control->stcb) && (ctl->length) &&
(ctl->some_taken ||
(ctl->spec_flags & M_NOTIFICATION) ||
((ctl->do_not_ref_stcb == 0) &&
(ctl->stcb->asoc.strmin[ctl->sinfo_stream].delivery_started == 0)))
) {
/*-
* If we have a different TCB next, and there is data
* present. If we have already taken some (pdapi), OR we can
* ref the tcb and no delivery as started on this stream, we
* take it. Note we allow a notification on a different
* assoc to be delivered..
*/
control = ctl;
goto found_one;
} else if ((sctp_is_feature_on(inp, SCTP_PCB_FLAGS_INTERLEAVE_STRMS)) &&
(ctl->length) &&
((ctl->some_taken) ||
((ctl->do_not_ref_stcb == 0) &&
((ctl->spec_flags & M_NOTIFICATION) == 0) &&
(ctl->stcb->asoc.strmin[ctl->sinfo_stream].delivery_started == 0)))) {
/*-
* If we have the same tcb, and there is data present, and we
* have the strm interleave feature present. Then if we have
* taken some (pdapi) or we can refer to tht tcb AND we have
* not started a delivery for this stream, we can take it.
* Note we do NOT allow a notificaiton on the same assoc to
* be delivered.
*/
control = ctl;
goto found_one;
}
ctl = TAILQ_NEXT(ctl, next);
}
}
/*
* if we reach here, not suitable replacement is available
* <or> fragment interleave is NOT on. So stuff the sb_cc
* into the our held count, and its time to sleep again.
*/
held_length = so->so_rcv.sb_cc;
control->held_length = so->so_rcv.sb_cc;
goto restart;
}
/* Clear the held length since there is something to read */
control->held_length = 0;
found_one:
/*
* If we reach here, control has a some data for us to read off.
* Note that stcb COULD be NULL.
*/
if (hold_rlock == 0) {
hold_rlock = 1;
SCTP_INP_READ_LOCK(inp);
}
control->some_taken++;
stcb = control->stcb;
if (stcb) {
if ((control->do_not_ref_stcb == 0) &&
(stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED)) {
if (freecnt_applied == 0)
stcb = NULL;
} else if (control->do_not_ref_stcb == 0) {
/* you can't free it on me please */
/*
* The lock on the socket buffer protects us so the
* free code will stop. But since we used the
* socketbuf lock and the sender uses the tcb_lock
* to increment, we need to use the atomic add to
* the refcnt
*/
if (freecnt_applied) {
#ifdef INVARIANTS
panic("refcnt already incremented");
#else
SCTP_PRINTF("refcnt already incremented?\n");
#endif
} else {
atomic_add_int(&stcb->asoc.refcnt, 1);
freecnt_applied = 1;
}
/*
* Setup to remember how much we have not yet told
* the peer our rwnd has opened up. Note we grab the
* value from the tcb from last time. Note too that
* sack sending clears this when a sack is sent,
* which is fine. Once we hit the rwnd_req, we then
* will go to the sctp_user_rcvd() that will not
* lock until it KNOWs it MUST send a WUP-SACK.
*/
freed_so_far = (uint32_t)stcb->freed_by_sorcv_sincelast;
stcb->freed_by_sorcv_sincelast = 0;
}
}
if (stcb &&
((control->spec_flags & M_NOTIFICATION) == 0) &&
control->do_not_ref_stcb == 0) {
stcb->asoc.strmin[control->sinfo_stream].delivery_started = 1;
}
/* First lets get off the sinfo and sockaddr info */
if ((sinfo != NULL) && (filling_sinfo != 0)) {
sinfo->sinfo_stream = control->sinfo_stream;
sinfo->sinfo_ssn = (uint16_t)control->mid;
sinfo->sinfo_flags = control->sinfo_flags;
sinfo->sinfo_ppid = control->sinfo_ppid;
sinfo->sinfo_context = control->sinfo_context;
sinfo->sinfo_timetolive = control->sinfo_timetolive;
sinfo->sinfo_tsn = control->sinfo_tsn;
sinfo->sinfo_cumtsn = control->sinfo_cumtsn;
sinfo->sinfo_assoc_id = control->sinfo_assoc_id;
nxt = TAILQ_NEXT(control, next);
if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_EXT_RCVINFO) ||
sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVNXTINFO)) {
struct sctp_extrcvinfo *s_extra;
s_extra = (struct sctp_extrcvinfo *)sinfo;
if ((nxt) &&
(nxt->length)) {
s_extra->serinfo_next_flags = SCTP_NEXT_MSG_AVAIL;
if (nxt->sinfo_flags & SCTP_UNORDERED) {
s_extra->serinfo_next_flags |= SCTP_NEXT_MSG_IS_UNORDERED;
}
if (nxt->spec_flags & M_NOTIFICATION) {
s_extra->serinfo_next_flags |= SCTP_NEXT_MSG_IS_NOTIFICATION;
}
s_extra->serinfo_next_aid = nxt->sinfo_assoc_id;
s_extra->serinfo_next_length = nxt->length;
s_extra->serinfo_next_ppid = nxt->sinfo_ppid;
s_extra->serinfo_next_stream = nxt->sinfo_stream;
if (nxt->tail_mbuf != NULL) {
if (nxt->end_added) {
s_extra->serinfo_next_flags |= SCTP_NEXT_MSG_ISCOMPLETE;
}
}
} else {
/*
* we explicitly 0 this, since the memcpy
* got some other things beyond the older
* sinfo_ that is on the control's structure
* :-D
*/
nxt = NULL;
s_extra->serinfo_next_flags = SCTP_NO_NEXT_MSG;
s_extra->serinfo_next_aid = 0;
s_extra->serinfo_next_length = 0;
s_extra->serinfo_next_ppid = 0;
s_extra->serinfo_next_stream = 0;
}
}
/*
* update off the real current cum-ack, if we have an stcb.
*/
if ((control->do_not_ref_stcb == 0) && stcb)
sinfo->sinfo_cumtsn = stcb->asoc.cumulative_tsn;
/*
* mask off the high bits, we keep the actual chunk bits in
* there.
*/
sinfo->sinfo_flags &= 0x00ff;
if ((control->sinfo_flags >> 8) & SCTP_DATA_UNORDERED) {
sinfo->sinfo_flags |= SCTP_UNORDERED;
}
}
#ifdef SCTP_ASOCLOG_OF_TSNS
{
int index, newindex;
struct sctp_pcbtsn_rlog *entry;
do {
index = inp->readlog_index;
newindex = index + 1;
if (newindex >= SCTP_READ_LOG_SIZE) {
newindex = 0;
}
} while (atomic_cmpset_int(&inp->readlog_index, index, newindex) == 0);
entry = &inp->readlog[index];
entry->vtag = control->sinfo_assoc_id;
entry->strm = control->sinfo_stream;
entry->seq = (uint16_t)control->mid;
entry->sz = control->length;
entry->flgs = control->sinfo_flags;
}
#endif
if ((fromlen > 0) && (from != NULL)) {
union sctp_sockstore store;
size_t len;
switch (control->whoFrom->ro._l_addr.sa.sa_family) {
#ifdef INET6
case AF_INET6:
len = sizeof(struct sockaddr_in6);
store.sin6 = control->whoFrom->ro._l_addr.sin6;
store.sin6.sin6_port = control->port_from;
break;
#endif
#ifdef INET
case AF_INET:
#ifdef INET6
if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_NEEDS_MAPPED_V4)) {
len = sizeof(struct sockaddr_in6);
in6_sin_2_v4mapsin6(&control->whoFrom->ro._l_addr.sin,
&store.sin6);
store.sin6.sin6_port = control->port_from;
} else {
len = sizeof(struct sockaddr_in);
store.sin = control->whoFrom->ro._l_addr.sin;
store.sin.sin_port = control->port_from;
}
#else
len = sizeof(struct sockaddr_in);
store.sin = control->whoFrom->ro._l_addr.sin;
store.sin.sin_port = control->port_from;
#endif
break;
#endif
default:
len = 0;
break;
}
memcpy(from, &store, min((size_t)fromlen, len));
#ifdef INET6
{
struct sockaddr_in6 lsa6, *from6;
from6 = (struct sockaddr_in6 *)from;
sctp_recover_scope_mac(from6, (&lsa6));
}
#endif
}
if (hold_rlock) {
SCTP_INP_READ_UNLOCK(inp);
hold_rlock = 0;
}
if (hold_sblock) {
SOCKBUF_UNLOCK(&so->so_rcv);
hold_sblock = 0;
}
/* now copy out what data we can */
if (mp == NULL) {
/* copy out each mbuf in the chain up to length */
get_more_data:
m = control->data;
while (m) {
/* Move out all we can */
cp_len = uio->uio_resid;
my_len = SCTP_BUF_LEN(m);
if (cp_len > my_len) {
/* not enough in this buf */
cp_len = my_len;
}
if (hold_rlock) {
SCTP_INP_READ_UNLOCK(inp);
hold_rlock = 0;
}
if (cp_len > 0)
error = uiomove(mtod(m, char *), (int)cp_len, uio);
/* re-read */
if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) {
goto release;
}
if ((control->do_not_ref_stcb == 0) && stcb &&
stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) {
no_rcv_needed = 1;
}
if (error) {
/* error we are out of here */
goto release;
}
SCTP_INP_READ_LOCK(inp);
hold_rlock = 1;
if (cp_len == SCTP_BUF_LEN(m)) {
if ((SCTP_BUF_NEXT(m) == NULL) &&
(control->end_added)) {
out_flags |= MSG_EOR;
if ((control->do_not_ref_stcb == 0) &&
(control->stcb != NULL) &&
((control->spec_flags & M_NOTIFICATION) == 0))
control->stcb->asoc.strmin[control->sinfo_stream].delivery_started = 0;
}
if (control->spec_flags & M_NOTIFICATION) {
out_flags |= MSG_NOTIFICATION;
}
/* we ate up the mbuf */
if (in_flags & MSG_PEEK) {
/* just looking */
m = SCTP_BUF_NEXT(m);
copied_so_far += cp_len;
} else {
/* dispose of the mbuf */
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) {
sctp_sblog(&so->so_rcv,
control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBFREE, SCTP_BUF_LEN(m));
}
sctp_sbfree(control, stcb, &so->so_rcv, m);
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) {
sctp_sblog(&so->so_rcv,
control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0);
}
copied_so_far += cp_len;
freed_so_far += (uint32_t)cp_len;
freed_so_far += MSIZE;
atomic_subtract_int(&control->length, cp_len);
control->data = sctp_m_free(m);
m = control->data;
/*
* been through it all, must hold sb
* lock ok to null tail
*/
if (control->data == NULL) {
#ifdef INVARIANTS
if ((control->end_added == 0) ||
(TAILQ_NEXT(control, next) == NULL)) {
/*
* If the end is not
* added, OR the
* next is NOT null
* we MUST have the
* lock.
*/
if (mtx_owned(&inp->inp_rdata_mtx) == 0) {
panic("Hmm we don't own the lock?");
}
}
#endif
control->tail_mbuf = NULL;
#ifdef INVARIANTS
if ((control->end_added) && ((out_flags & MSG_EOR) == 0)) {
panic("end_added, nothing left and no MSG_EOR");
}
#endif
}
}
} else {
/* Do we need to trim the mbuf? */
if (control->spec_flags & M_NOTIFICATION) {
out_flags |= MSG_NOTIFICATION;
}
if ((in_flags & MSG_PEEK) == 0) {
SCTP_BUF_RESV_UF(m, cp_len);
SCTP_BUF_LEN(m) -= (int)cp_len;
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) {
sctp_sblog(&so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBFREE, (int)cp_len);
}
atomic_subtract_int(&so->so_rcv.sb_cc, cp_len);
if ((control->do_not_ref_stcb == 0) &&
stcb) {
atomic_subtract_int(&stcb->asoc.sb_cc, cp_len);
}
copied_so_far += cp_len;
freed_so_far += (uint32_t)cp_len;
freed_so_far += MSIZE;
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) {
sctp_sblog(&so->so_rcv, control->do_not_ref_stcb ? NULL : stcb,
SCTP_LOG_SBRESULT, 0);
}
atomic_subtract_int(&control->length, cp_len);
} else {
copied_so_far += cp_len;
}
}
if ((out_flags & MSG_EOR) || (uio->uio_resid == 0)) {
break;
}
if (((stcb) && (in_flags & MSG_PEEK) == 0) &&
(control->do_not_ref_stcb == 0) &&
(freed_so_far >= rwnd_req)) {
sctp_user_rcvd(stcb, &freed_so_far, hold_rlock, rwnd_req);
}
} /* end while(m) */
/*
* At this point we have looked at it all and we either have
* a MSG_EOR/or read all the user wants... <OR>
* control->length == 0.
*/
if ((out_flags & MSG_EOR) && ((in_flags & MSG_PEEK) == 0)) {
/* we are done with this control */
if (control->length == 0) {
if (control->data) {
#ifdef INVARIANTS
panic("control->data not null at read eor?");
#else
SCTP_PRINTF("Strange, data left in the control buffer .. invarients would panic?\n");
sctp_m_freem(control->data);
control->data = NULL;
#endif
}
done_with_control:
if (hold_rlock == 0) {
SCTP_INP_READ_LOCK(inp);
hold_rlock = 1;
}
TAILQ_REMOVE(&inp->read_queue, control, next);
/* Add back any hiddend data */
if (control->held_length) {
held_length = 0;
control->held_length = 0;
wakeup_read_socket = 1;
}
if (control->aux_data) {
sctp_m_free(control->aux_data);
control->aux_data = NULL;
}
no_rcv_needed = control->do_not_ref_stcb;
sctp_free_remote_addr(control->whoFrom);
control->data = NULL;
#ifdef INVARIANTS
if (control->on_strm_q) {
panic("About to free ctl:%p so:%p and its in %d",
control, so, control->on_strm_q);
}
#endif
sctp_free_a_readq(stcb, control);
control = NULL;
if ((freed_so_far >= rwnd_req) &&
(no_rcv_needed == 0))
sctp_user_rcvd(stcb, &freed_so_far, hold_rlock, rwnd_req);
} else {
/*
* The user did not read all of this
* message, turn off the returned MSG_EOR
* since we are leaving more behind on the
* control to read.
*/
#ifdef INVARIANTS
if (control->end_added &&
(control->data == NULL) &&
(control->tail_mbuf == NULL)) {
panic("Gak, control->length is corrupt?");
}
#endif
no_rcv_needed = control->do_not_ref_stcb;
out_flags &= ~MSG_EOR;
}
}
if (out_flags & MSG_EOR) {
goto release;
}
if ((uio->uio_resid == 0) ||
((in_eeor_mode) &&
(copied_so_far >= max(so->so_rcv.sb_lowat, 1)))) {
goto release;
}
/*
* If I hit here the receiver wants more and this message is
* NOT done (pd-api). So two questions. Can we block? if not
* we are done. Did the user NOT set MSG_WAITALL?
*/
if (block_allowed == 0) {
goto release;
}
/*
* We need to wait for more data a few things: - We don't
* sbunlock() so we don't get someone else reading. - We
* must be sure to account for the case where what is added
* is NOT to our control when we wakeup.
*/
/*
* Do we need to tell the transport a rwnd update might be
* needed before we go to sleep?
*/
if (((stcb) && (in_flags & MSG_PEEK) == 0) &&
((freed_so_far >= rwnd_req) &&
(control->do_not_ref_stcb == 0) &&
(no_rcv_needed == 0))) {
sctp_user_rcvd(stcb, &freed_so_far, hold_rlock, rwnd_req);
}
wait_some_more:
if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
goto release;
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)
goto release;
if (hold_rlock == 1) {
SCTP_INP_READ_UNLOCK(inp);
hold_rlock = 0;
}
if (hold_sblock == 0) {
SOCKBUF_LOCK(&so->so_rcv);
hold_sblock = 1;
}
if ((copied_so_far) && (control->length == 0) &&
(sctp_is_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE))) {
goto release;
}
if (so->so_rcv.sb_cc <= control->held_length) {
error = sbwait(&so->so_rcv);
if (error) {
goto release;
}
control->held_length = 0;
}
if (hold_sblock) {
SOCKBUF_UNLOCK(&so->so_rcv);
hold_sblock = 0;
}
if (control->length == 0) {
/* still nothing here */
if (control->end_added == 1) {
/* he aborted, or is done i.e.did a shutdown */
out_flags |= MSG_EOR;
if (control->pdapi_aborted) {
if ((control->do_not_ref_stcb == 0) && ((control->spec_flags & M_NOTIFICATION) == 0))
control->stcb->asoc.strmin[control->sinfo_stream].delivery_started = 0;
out_flags |= MSG_TRUNC;
} else {
if ((control->do_not_ref_stcb == 0) && ((control->spec_flags & M_NOTIFICATION) == 0))
control->stcb->asoc.strmin[control->sinfo_stream].delivery_started = 0;
}
goto done_with_control;
}
if (so->so_rcv.sb_cc > held_length) {
control->held_length = so->so_rcv.sb_cc;
held_length = 0;
}
goto wait_some_more;
} else if (control->data == NULL) {
/*
* we must re-sync since data is probably being
* added
*/
SCTP_INP_READ_LOCK(inp);
if ((control->length > 0) && (control->data == NULL)) {
/*
* big trouble.. we have the lock and its
* corrupt?
*/
#ifdef INVARIANTS
panic("Impossible data==NULL length !=0");
#endif
out_flags |= MSG_EOR;
out_flags |= MSG_TRUNC;
control->length = 0;
SCTP_INP_READ_UNLOCK(inp);
goto done_with_control;
}
SCTP_INP_READ_UNLOCK(inp);
/* We will fall around to get more data */
}
goto get_more_data;
} else {
/*-
* Give caller back the mbuf chain,
* store in uio_resid the length
*/
wakeup_read_socket = 0;
if ((control->end_added == 0) ||
(TAILQ_NEXT(control, next) == NULL)) {
/* Need to get rlock */
if (hold_rlock == 0) {
SCTP_INP_READ_LOCK(inp);
hold_rlock = 1;
}
}
if (control->end_added) {
out_flags |= MSG_EOR;
if ((control->do_not_ref_stcb == 0) &&
(control->stcb != NULL) &&
((control->spec_flags & M_NOTIFICATION) == 0))
control->stcb->asoc.strmin[control->sinfo_stream].delivery_started = 0;
}
if (control->spec_flags & M_NOTIFICATION) {
out_flags |= MSG_NOTIFICATION;
}
uio->uio_resid = control->length;
*mp = control->data;
m = control->data;
while (m) {
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) {
sctp_sblog(&so->so_rcv,
control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBFREE, SCTP_BUF_LEN(m));
}
sctp_sbfree(control, stcb, &so->so_rcv, m);
freed_so_far += (uint32_t)SCTP_BUF_LEN(m);
freed_so_far += MSIZE;
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) {
sctp_sblog(&so->so_rcv,
control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0);
}
m = SCTP_BUF_NEXT(m);
}
control->data = control->tail_mbuf = NULL;
control->length = 0;
if (out_flags & MSG_EOR) {
/* Done with this control */
goto done_with_control;
}
}
release:
if (hold_rlock == 1) {
SCTP_INP_READ_UNLOCK(inp);
hold_rlock = 0;
}
if (hold_sblock == 1) {
SOCKBUF_UNLOCK(&so->so_rcv);
hold_sblock = 0;
}
sbunlock(&so->so_rcv);
sockbuf_lock = 0;
release_unlocked:
if (hold_sblock) {
SOCKBUF_UNLOCK(&so->so_rcv);
hold_sblock = 0;
}
if ((stcb) && (in_flags & MSG_PEEK) == 0) {
if ((freed_so_far >= rwnd_req) &&
(control && (control->do_not_ref_stcb == 0)) &&
(no_rcv_needed == 0))
sctp_user_rcvd(stcb, &freed_so_far, hold_rlock, rwnd_req);
}
out:
if (msg_flags) {
*msg_flags = out_flags;
}
if (((out_flags & MSG_EOR) == 0) &&
((in_flags & MSG_PEEK) == 0) &&
(sinfo) &&
(sctp_is_feature_on(inp, SCTP_PCB_FLAGS_EXT_RCVINFO) ||
sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVNXTINFO))) {
struct sctp_extrcvinfo *s_extra;
s_extra = (struct sctp_extrcvinfo *)sinfo;
s_extra->serinfo_next_flags = SCTP_NO_NEXT_MSG;
}
if (hold_rlock == 1) {
SCTP_INP_READ_UNLOCK(inp);
}
if (hold_sblock) {
SOCKBUF_UNLOCK(&so->so_rcv);
}
if (sockbuf_lock) {
sbunlock(&so->so_rcv);
}
if (freecnt_applied) {
/*
* The lock on the socket buffer protects us so the free
* code will stop. But since we used the socketbuf lock and
* the sender uses the tcb_lock to increment, we need to use
* the atomic add to the refcnt.
*/
if (stcb == NULL) {
#ifdef INVARIANTS
panic("stcb for refcnt has gone NULL?");
goto stage_left;
#else
goto stage_left;
#endif
}
/* Save the value back for next time */
stcb->freed_by_sorcv_sincelast = freed_so_far;
atomic_add_int(&stcb->asoc.refcnt, -1);
}
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_RECV_RWND_LOGGING_ENABLE) {
if (stcb) {
sctp_misc_ints(SCTP_SORECV_DONE,
freed_so_far,
(uint32_t)((uio) ? (slen - uio->uio_resid) : slen),
stcb->asoc.my_rwnd,
so->so_rcv.sb_cc);
} else {
sctp_misc_ints(SCTP_SORECV_DONE,
freed_so_far,
(uint32_t)((uio) ? (slen - uio->uio_resid) : slen),
0,
so->so_rcv.sb_cc);
}
}
stage_left:
if (wakeup_read_socket) {
sctp_sorwakeup(inp, so);
}
return (error);
}
#ifdef SCTP_MBUF_LOGGING
struct mbuf *
sctp_m_free(struct mbuf *m)
{
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MBUF_LOGGING_ENABLE) {
sctp_log_mb(m, SCTP_MBUF_IFREE);
}
return (m_free(m));
}
void
sctp_m_freem(struct mbuf *mb)
{
while (mb != NULL)
mb = sctp_m_free(mb);
}
#endif
int
sctp_dynamic_set_primary(struct sockaddr *sa, uint32_t vrf_id)
{
/*
* Given a local address. For all associations that holds the
* address, request a peer-set-primary.
*/
struct sctp_ifa *ifa;
struct sctp_laddr *wi;
ifa = sctp_find_ifa_by_addr(sa, vrf_id, SCTP_ADDR_NOT_LOCKED);
if (ifa == NULL) {
SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTPUTIL, EADDRNOTAVAIL);
return (EADDRNOTAVAIL);
}
/*
* Now that we have the ifa we must awaken the iterator with this
* message.
*/
wi = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_laddr), struct sctp_laddr);
if (wi == NULL) {
SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTPUTIL, ENOMEM);
return (ENOMEM);
}
/* Now incr the count and int wi structure */
SCTP_INCR_LADDR_COUNT();
memset(wi, 0, sizeof(*wi));
(void)SCTP_GETTIME_TIMEVAL(&wi->start_time);
wi->ifa = ifa;
wi->action = SCTP_SET_PRIM_ADDR;
atomic_add_int(&ifa->refcount, 1);
/* Now add it to the work queue */
SCTP_WQ_ADDR_LOCK();
/*
* Should this really be a tailq? As it is we will process the
* newest first :-0
*/
LIST_INSERT_HEAD(&SCTP_BASE_INFO(addr_wq), wi, sctp_nxt_addr);
sctp_timer_start(SCTP_TIMER_TYPE_ADDR_WQ,
(struct sctp_inpcb *)NULL,
(struct sctp_tcb *)NULL,
(struct sctp_nets *)NULL);
SCTP_WQ_ADDR_UNLOCK();
return (0);
}
int
sctp_soreceive(struct socket *so,
struct sockaddr **psa,
struct uio *uio,
struct mbuf **mp0,
struct mbuf **controlp,
int *flagsp)
{
int error, fromlen;
uint8_t sockbuf[256];
struct sockaddr *from;
struct sctp_extrcvinfo sinfo;
int filling_sinfo = 1;
int flags;
struct sctp_inpcb *inp;
inp = (struct sctp_inpcb *)so->so_pcb;
/* pickup the assoc we are reading from */
if (inp == NULL) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
return (EINVAL);
}
if ((sctp_is_feature_off(inp, SCTP_PCB_FLAGS_RECVDATAIOEVNT) &&
sctp_is_feature_off(inp, SCTP_PCB_FLAGS_RECVRCVINFO) &&
sctp_is_feature_off(inp, SCTP_PCB_FLAGS_RECVNXTINFO)) ||
(controlp == NULL)) {
/* user does not want the sndrcv ctl */
filling_sinfo = 0;
}
if (psa) {
from = (struct sockaddr *)sockbuf;
fromlen = sizeof(sockbuf);
from->sa_len = 0;
} else {
from = NULL;
fromlen = 0;
}
if (filling_sinfo) {
memset(&sinfo, 0, sizeof(struct sctp_extrcvinfo));
}
if (flagsp != NULL) {
flags = *flagsp;
} else {
flags = 0;
}
error = sctp_sorecvmsg(so, uio, mp0, from, fromlen, &flags,
(struct sctp_sndrcvinfo *)&sinfo, filling_sinfo);
if (flagsp != NULL) {
*flagsp = flags;
}
if (controlp != NULL) {
/* copy back the sinfo in a CMSG format */
if (filling_sinfo && ((flags & MSG_NOTIFICATION) == 0)) {
*controlp = sctp_build_ctl_nchunk(inp,
(struct sctp_sndrcvinfo *)&sinfo);
} else {
*controlp = NULL;
}
}
if (psa) {
/* copy back the address info */
if (from && from->sa_len) {
*psa = sodupsockaddr(from, M_NOWAIT);
} else {
*psa = NULL;
}
}
return (error);
}
int
sctp_connectx_helper_add(struct sctp_tcb *stcb, struct sockaddr *addr,
int totaddr, int *error)
{
int added = 0;
int i;
struct sctp_inpcb *inp;
struct sockaddr *sa;
size_t incr = 0;
#ifdef INET
struct sockaddr_in *sin;
#endif
#ifdef INET6
struct sockaddr_in6 *sin6;
#endif
sa = addr;
inp = stcb->sctp_ep;
*error = 0;
for (i = 0; i < totaddr; i++) {
switch (sa->sa_family) {
#ifdef INET
case AF_INET:
incr = sizeof(struct sockaddr_in);
sin = (struct sockaddr_in *)sa;
if ((sin->sin_addr.s_addr == INADDR_ANY) ||
(sin->sin_addr.s_addr == INADDR_BROADCAST) ||
IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
(void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC,
SCTP_FROM_SCTPUTIL + SCTP_LOC_7);
*error = EINVAL;
goto out_now;
}
if (sctp_add_remote_addr(stcb, sa, NULL, stcb->asoc.port,
SCTP_DONOT_SETSCOPE,
SCTP_ADDR_IS_CONFIRMED)) {
/* assoc gone no un-lock */
SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ENOBUFS);
(void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC,
SCTP_FROM_SCTPUTIL + SCTP_LOC_8);
*error = ENOBUFS;
goto out_now;
}
added++;
break;
#endif
#ifdef INET6
case AF_INET6:
incr = sizeof(struct sockaddr_in6);
sin6 = (struct sockaddr_in6 *)sa;
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr) ||
IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) {
SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
(void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC,
SCTP_FROM_SCTPUTIL + SCTP_LOC_9);
*error = EINVAL;
goto out_now;
}
if (sctp_add_remote_addr(stcb, sa, NULL, stcb->asoc.port,
SCTP_DONOT_SETSCOPE,
SCTP_ADDR_IS_CONFIRMED)) {
/* assoc gone no un-lock */
SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ENOBUFS);
(void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC,
SCTP_FROM_SCTPUTIL + SCTP_LOC_10);
*error = ENOBUFS;
goto out_now;
}
added++;
break;
#endif
default:
break;
}
sa = (struct sockaddr *)((caddr_t)sa + incr);
}
out_now:
return (added);
}
int
sctp_connectx_helper_find(struct sctp_inpcb *inp, struct sockaddr *addr,
unsigned int totaddr,
unsigned int *num_v4, unsigned int *num_v6,
unsigned int limit)
{
struct sockaddr *sa;
struct sctp_tcb *stcb;
unsigned int incr, at, i;
at = 0;
sa = addr;
*num_v6 = *num_v4 = 0;
/* account and validate addresses */
if (totaddr == 0) {
return (EINVAL);
}
for (i = 0; i < totaddr; i++) {
if (at + sizeof(struct sockaddr) > limit) {
return (EINVAL);
}
switch (sa->sa_family) {
#ifdef INET
case AF_INET:
incr = (unsigned int)sizeof(struct sockaddr_in);
if (sa->sa_len != incr) {
return (EINVAL);
}
(*num_v4) += 1;
break;
#endif
#ifdef INET6
case AF_INET6:
{
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)sa;
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
/* Must be non-mapped for connectx */
return (EINVAL);
}
incr = (unsigned int)sizeof(struct sockaddr_in6);
if (sa->sa_len != incr) {
return (EINVAL);
}
(*num_v6) += 1;
break;
}
#endif
default:
return (EINVAL);
}
if ((at + incr) > limit) {
return (EINVAL);
}
SCTP_INP_INCR_REF(inp);
stcb = sctp_findassociation_ep_addr(&inp, sa, NULL, NULL, NULL);
if (stcb != NULL) {
SCTP_TCB_UNLOCK(stcb);
return (EALREADY);
} else {
SCTP_INP_DECR_REF(inp);
}
at += incr;
sa = (struct sockaddr *)((caddr_t)sa + incr);
}
return (0);
}
/*
* sctp_bindx(ADD) for one address.
* assumes all arguments are valid/checked by caller.
*/
void
sctp_bindx_add_address(struct socket *so, struct sctp_inpcb *inp,
struct sockaddr *sa, uint32_t vrf_id, int *error,
void *p)
{
#if defined(INET) && defined(INET6)
struct sockaddr_in sin;
#endif
#ifdef INET6
struct sockaddr_in6 *sin6;
#endif
#ifdef INET
struct sockaddr_in *sinp;
#endif
struct sockaddr *addr_to_use;
struct sctp_inpcb *lep;
uint16_t port;
/* see if we're bound all already! */
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
*error = EINVAL;
return;
}
switch (sa->sa_family) {
#ifdef INET6
case AF_INET6:
if (sa->sa_len != sizeof(struct sockaddr_in6)) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
*error = EINVAL;
return;
}
if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) {
/* can only bind v6 on PF_INET6 sockets */
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
*error = EINVAL;
return;
}
sin6 = (struct sockaddr_in6 *)sa;
port = sin6->sin6_port;
#ifdef INET
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) &&
SCTP_IPV6_V6ONLY(inp)) {
/* can't bind v4-mapped on PF_INET sockets */
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
*error = EINVAL;
return;
}
in6_sin6_2_sin(&sin, sin6);
addr_to_use = (struct sockaddr *)&sin;
} else {
addr_to_use = sa;
}
#else
addr_to_use = sa;
#endif
break;
#endif
#ifdef INET
case AF_INET:
if (sa->sa_len != sizeof(struct sockaddr_in)) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
*error = EINVAL;
return;
}
if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) &&
SCTP_IPV6_V6ONLY(inp)) {
/* can't bind v4 on PF_INET sockets */
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
*error = EINVAL;
return;
}
sinp = (struct sockaddr_in *)sa;
port = sinp->sin_port;
addr_to_use = sa;
break;
#endif
default:
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
*error = EINVAL;
return;
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) {
if (p == NULL) {
/* Can't get proc for Net/Open BSD */
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
*error = EINVAL;
return;
}
*error = sctp_inpcb_bind(so, addr_to_use, NULL, p);
return;
}
/* Validate the incoming port. */
if ((port != 0) && (port != inp->sctp_lport)) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
*error = EINVAL;
return;
}
lep = sctp_pcb_findep(addr_to_use, 1, 0, vrf_id);
if (lep == NULL) {
/* add the address */
*error = sctp_addr_mgmt_ep_sa(inp, addr_to_use,
SCTP_ADD_IP_ADDRESS, vrf_id);
} else {
if (lep != inp) {
*error = EADDRINUSE;
}
SCTP_INP_DECR_REF(lep);
}
}
/*
* sctp_bindx(DELETE) for one address.
* assumes all arguments are valid/checked by caller.
*/
void
sctp_bindx_delete_address(struct sctp_inpcb *inp,
struct sockaddr *sa, uint32_t vrf_id, int *error)
{
struct sockaddr *addr_to_use;
#if defined(INET) && defined(INET6)
struct sockaddr_in6 *sin6;
struct sockaddr_in sin;
#endif
/* see if we're bound all already! */
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
*error = EINVAL;
return;
}
switch (sa->sa_family) {
#ifdef INET6
case AF_INET6:
if (sa->sa_len != sizeof(struct sockaddr_in6)) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
*error = EINVAL;
return;
}
if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) {
/* can only bind v6 on PF_INET6 sockets */
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
*error = EINVAL;
return;
}
#ifdef INET
sin6 = (struct sockaddr_in6 *)sa;
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) &&
SCTP_IPV6_V6ONLY(inp)) {
/* can't bind mapped-v4 on PF_INET sockets */
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
*error = EINVAL;
return;
}
in6_sin6_2_sin(&sin, sin6);
addr_to_use = (struct sockaddr *)&sin;
} else {
addr_to_use = sa;
}
#else
addr_to_use = sa;
#endif
break;
#endif
#ifdef INET
case AF_INET:
if (sa->sa_len != sizeof(struct sockaddr_in)) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
*error = EINVAL;
return;
}
if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) &&
SCTP_IPV6_V6ONLY(inp)) {
/* can't bind v4 on PF_INET sockets */
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
*error = EINVAL;
return;
}
addr_to_use = sa;
break;
#endif
default:
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL);
*error = EINVAL;
return;
}
/* No lock required mgmt_ep_sa does its own locking. */
*error = sctp_addr_mgmt_ep_sa(inp, addr_to_use, SCTP_DEL_IP_ADDRESS,
vrf_id);
}
/*
* returns the valid local address count for an assoc, taking into account
* all scoping rules
*/
int
sctp_local_addr_count(struct sctp_tcb *stcb)
{
int loopback_scope;
#if defined(INET)
int ipv4_local_scope, ipv4_addr_legal;
#endif
#if defined(INET6)
int local_scope, site_scope, ipv6_addr_legal;
#endif
struct sctp_vrf *vrf;
struct sctp_ifn *sctp_ifn;
struct sctp_ifa *sctp_ifa;
int count = 0;
/* Turn on all the appropriate scopes */
loopback_scope = stcb->asoc.scope.loopback_scope;
#if defined(INET)
ipv4_local_scope = stcb->asoc.scope.ipv4_local_scope;
ipv4_addr_legal = stcb->asoc.scope.ipv4_addr_legal;
#endif
#if defined(INET6)
local_scope = stcb->asoc.scope.local_scope;
site_scope = stcb->asoc.scope.site_scope;
ipv6_addr_legal = stcb->asoc.scope.ipv6_addr_legal;
#endif
SCTP_IPI_ADDR_RLOCK();
vrf = sctp_find_vrf(stcb->asoc.vrf_id);
if (vrf == NULL) {
/* no vrf, no addresses */
SCTP_IPI_ADDR_RUNLOCK();
return (0);
}
if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
/*
* bound all case: go through all ifns on the vrf
*/
LIST_FOREACH(sctp_ifn, &vrf->ifnlist, next_ifn) {
if ((loopback_scope == 0) &&
SCTP_IFN_IS_IFT_LOOP(sctp_ifn)) {
continue;
}
LIST_FOREACH(sctp_ifa, &sctp_ifn->ifalist, next_ifa) {
if (sctp_is_addr_restricted(stcb, sctp_ifa))
continue;
switch (sctp_ifa->address.sa.sa_family) {
#ifdef INET
case AF_INET:
if (ipv4_addr_legal) {
struct sockaddr_in *sin;
sin = &sctp_ifa->address.sin;
if (sin->sin_addr.s_addr == 0) {
/*
* skip unspecified
* addrs
*/
continue;
}
if (prison_check_ip4(stcb->sctp_ep->ip_inp.inp.inp_cred,
&sin->sin_addr) != 0) {
continue;
}
if ((ipv4_local_scope == 0) &&
(IN4_ISPRIVATE_ADDRESS(&sin->sin_addr))) {
continue;
}
/* count this one */
count++;
} else {
continue;
}
break;
#endif
#ifdef INET6
case AF_INET6:
if (ipv6_addr_legal) {
struct sockaddr_in6 *sin6;
sin6 = &sctp_ifa->address.sin6;
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
continue;
}
if (prison_check_ip6(stcb->sctp_ep->ip_inp.inp.inp_cred,
&sin6->sin6_addr) != 0) {
continue;
}
if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
if (local_scope == 0)
continue;
if (sin6->sin6_scope_id == 0) {
if (sa6_recoverscope(sin6) != 0)
/*
*
* bad
* link
*
* local
*
* address
*/
continue;
}
}
if ((site_scope == 0) &&
(IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))) {
continue;
}
/* count this one */
count++;
}
break;
#endif
default:
/* TSNH */
break;
}
}
}
} else {
/*
* subset bound case
*/
struct sctp_laddr *laddr;
LIST_FOREACH(laddr, &stcb->sctp_ep->sctp_addr_list,
sctp_nxt_addr) {
if (sctp_is_addr_restricted(stcb, laddr->ifa)) {
continue;
}
/* count this one */
count++;
}
}
SCTP_IPI_ADDR_RUNLOCK();
return (count);
}
#if defined(SCTP_LOCAL_TRACE_BUF)
void
sctp_log_trace(uint32_t subsys, const char *str SCTP_UNUSED, uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e, uint32_t f)
{
uint32_t saveindex, newindex;
do {
saveindex = SCTP_BASE_SYSCTL(sctp_log).index;
if (saveindex >= SCTP_MAX_LOGGING_SIZE) {
newindex = 1;
} else {
newindex = saveindex + 1;
}
} while (atomic_cmpset_int(&SCTP_BASE_SYSCTL(sctp_log).index, saveindex, newindex) == 0);
if (saveindex >= SCTP_MAX_LOGGING_SIZE) {
saveindex = 0;
}
SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].timestamp = SCTP_GET_CYCLECOUNT;
SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].subsys = subsys;
SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].params[0] = a;
SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].params[1] = b;
SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].params[2] = c;
SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].params[3] = d;
SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].params[4] = e;
SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].params[5] = f;
}
#endif
static void
sctp_recv_udp_tunneled_packet(struct mbuf *m, int off, struct inpcb *inp,
const struct sockaddr *sa SCTP_UNUSED, void *ctx SCTP_UNUSED)
{
struct ip *iph;
#ifdef INET6
struct ip6_hdr *ip6;
#endif
struct mbuf *sp, *last;
struct udphdr *uhdr;
uint16_t port;
if ((m->m_flags & M_PKTHDR) == 0) {
/* Can't handle one that is not a pkt hdr */
goto out;
}
/* Pull the src port */
iph = mtod(m, struct ip *);
uhdr = (struct udphdr *)((caddr_t)iph + off);
port = uhdr->uh_sport;
/*
* Split out the mbuf chain. Leave the IP header in m, place the
* rest in the sp.
*/
sp = m_split(m, off, M_NOWAIT);
if (sp == NULL) {
/* Gak, drop packet, we can't do a split */
goto out;
}
if (sp->m_pkthdr.len < sizeof(struct udphdr) + sizeof(struct sctphdr)) {
/* Gak, packet can't have an SCTP header in it - too small */
m_freem(sp);
goto out;
}
/* Now pull up the UDP header and SCTP header together */
sp = m_pullup(sp, sizeof(struct udphdr) + sizeof(struct sctphdr));
if (sp == NULL) {
/* Gak pullup failed */
goto out;
}
/* Trim out the UDP header */
m_adj(sp, sizeof(struct udphdr));
/* Now reconstruct the mbuf chain */
for (last = m; last->m_next; last = last->m_next);
last->m_next = sp;
m->m_pkthdr.len += sp->m_pkthdr.len;
/*
* The CSUM_DATA_VALID flags indicates that the HW checked the UDP
* checksum and it was valid. Since CSUM_DATA_VALID ==
* CSUM_SCTP_VALID this would imply that the HW also verified the
* SCTP checksum. Therefore, clear the bit.
*/
SCTPDBG(SCTP_DEBUG_CRCOFFLOAD,
"sctp_recv_udp_tunneled_packet(): Packet of length %d received on %s with csum_flags 0x%b.\n",
m->m_pkthdr.len,
if_name(m->m_pkthdr.rcvif),
(int)m->m_pkthdr.csum_flags, CSUM_BITS);
m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
iph = mtod(m, struct ip *);
switch (iph->ip_v) {
#ifdef INET
case IPVERSION:
iph->ip_len = htons(ntohs(iph->ip_len) - sizeof(struct udphdr));
sctp_input_with_port(m, off, port);
break;
#endif
#ifdef INET6
case IPV6_VERSION >> 4:
ip6 = mtod(m, struct ip6_hdr *);
ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) - sizeof(struct udphdr));
sctp6_input_with_port(&m, &off, port);
break;
#endif
default:
goto out;
break;
}
return;
out:
m_freem(m);
}
#ifdef INET
static void
sctp_recv_icmp_tunneled_packet(int cmd, struct sockaddr *sa, void *vip, void *ctx SCTP_UNUSED)
{
struct ip *outer_ip, *inner_ip;
struct sctphdr *sh;
struct icmp *icmp;
struct udphdr *udp;
struct sctp_inpcb *inp;
struct sctp_tcb *stcb;
struct sctp_nets *net;
struct sctp_init_chunk *ch;
struct sockaddr_in src, dst;
uint8_t type, code;
inner_ip = (struct ip *)vip;
icmp = (struct icmp *)((caddr_t)inner_ip -
(sizeof(struct icmp) - sizeof(struct ip)));
outer_ip = (struct ip *)((caddr_t)icmp - sizeof(struct ip));
if (ntohs(outer_ip->ip_len) <
sizeof(struct ip) + 8 + (inner_ip->ip_hl << 2) + sizeof(struct udphdr) + 8) {
return;
}
udp = (struct udphdr *)((caddr_t)inner_ip + (inner_ip->ip_hl << 2));
sh = (struct sctphdr *)(udp + 1);
memset(&src, 0, sizeof(struct sockaddr_in));
src.sin_family = AF_INET;
src.sin_len = sizeof(struct sockaddr_in);
src.sin_port = sh->src_port;
src.sin_addr = inner_ip->ip_src;
memset(&dst, 0, sizeof(struct sockaddr_in));
dst.sin_family = AF_INET;
dst.sin_len = sizeof(struct sockaddr_in);
dst.sin_port = sh->dest_port;
dst.sin_addr = inner_ip->ip_dst;
/*
* 'dst' holds the dest of the packet that failed to be sent. 'src'
* holds our local endpoint address. Thus we reverse the dst and the
* src in the lookup.
*/
inp = NULL;
net = NULL;
stcb = sctp_findassociation_addr_sa((struct sockaddr *)&dst,
(struct sockaddr *)&src,
&inp, &net, 1,
SCTP_DEFAULT_VRFID);
if ((stcb != NULL) &&
(net != NULL) &&
(inp != NULL)) {
/* Check the UDP port numbers */
if ((udp->uh_dport != net->port) ||
(udp->uh_sport != htons(SCTP_BASE_SYSCTL(sctp_udp_tunneling_port)))) {
SCTP_TCB_UNLOCK(stcb);
return;
}
/* Check the verification tag */
if (ntohl(sh->v_tag) != 0) {
/*
* This must be the verification tag used for
* sending out packets. We don't consider packets
* reflecting the verification tag.
*/
if (ntohl(sh->v_tag) != stcb->asoc.peer_vtag) {
SCTP_TCB_UNLOCK(stcb);
return;
}
} else {
if (ntohs(outer_ip->ip_len) >=
sizeof(struct ip) +
8 + (inner_ip->ip_hl << 2) + 8 + 20) {
/*
* In this case we can check if we got an
* INIT chunk and if the initiate tag
* matches.
*/
ch = (struct sctp_init_chunk *)(sh + 1);
if ((ch->ch.chunk_type != SCTP_INITIATION) ||
(ntohl(ch->init.initiate_tag) != stcb->asoc.my_vtag)) {
SCTP_TCB_UNLOCK(stcb);
return;
}
} else {
SCTP_TCB_UNLOCK(stcb);
return;
}
}
type = icmp->icmp_type;
code = icmp->icmp_code;
if ((type == ICMP_UNREACH) &&
(code == ICMP_UNREACH_PORT)) {
code = ICMP_UNREACH_PROTOCOL;
}
sctp_notify(inp, stcb, net, type, code,
ntohs(inner_ip->ip_len),
(uint32_t)ntohs(icmp->icmp_nextmtu));
} else {
if ((stcb == NULL) && (inp != NULL)) {
/* reduce ref-count */
SCTP_INP_WLOCK(inp);
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
}
if (stcb) {
SCTP_TCB_UNLOCK(stcb);
}
}
return;
}
#endif
#ifdef INET6
static void
sctp_recv_icmp6_tunneled_packet(int cmd, struct sockaddr *sa, void *d, void *ctx SCTP_UNUSED)
{
struct ip6ctlparam *ip6cp;
struct sctp_inpcb *inp;
struct sctp_tcb *stcb;
struct sctp_nets *net;
struct sctphdr sh;
struct udphdr udp;
struct sockaddr_in6 src, dst;
uint8_t type, code;
ip6cp = (struct ip6ctlparam *)d;
/*
* XXX: We assume that when IPV6 is non NULL, M and OFF are valid.
*/
if (ip6cp->ip6c_m == NULL) {
return;
}
/*
* Check if we can safely examine the ports and the verification tag
* of the SCTP common header.
*/
if (ip6cp->ip6c_m->m_pkthdr.len <
ip6cp->ip6c_off + sizeof(struct udphdr) + offsetof(struct sctphdr, checksum)) {
return;
}
/* Copy out the UDP header. */
memset(&udp, 0, sizeof(struct udphdr));
m_copydata(ip6cp->ip6c_m,
ip6cp->ip6c_off,
sizeof(struct udphdr),
(caddr_t)&udp);
/* Copy out the port numbers and the verification tag. */
memset(&sh, 0, sizeof(struct sctphdr));
m_copydata(ip6cp->ip6c_m,
ip6cp->ip6c_off + sizeof(struct udphdr),
sizeof(uint16_t) + sizeof(uint16_t) + sizeof(uint32_t),
(caddr_t)&sh);
memset(&src, 0, sizeof(struct sockaddr_in6));
src.sin6_family = AF_INET6;
src.sin6_len = sizeof(struct sockaddr_in6);
src.sin6_port = sh.src_port;
src.sin6_addr = ip6cp->ip6c_ip6->ip6_src;
if (in6_setscope(&src.sin6_addr, ip6cp->ip6c_m->m_pkthdr.rcvif, NULL) != 0) {
return;
}
memset(&dst, 0, sizeof(struct sockaddr_in6));
dst.sin6_family = AF_INET6;
dst.sin6_len = sizeof(struct sockaddr_in6);
dst.sin6_port = sh.dest_port;
dst.sin6_addr = ip6cp->ip6c_ip6->ip6_dst;
if (in6_setscope(&dst.sin6_addr, ip6cp->ip6c_m->m_pkthdr.rcvif, NULL) != 0) {
return;
}
inp = NULL;
net = NULL;
stcb = sctp_findassociation_addr_sa((struct sockaddr *)&dst,
(struct sockaddr *)&src,
&inp, &net, 1, SCTP_DEFAULT_VRFID);
if ((stcb != NULL) &&
(net != NULL) &&
(inp != NULL)) {
/* Check the UDP port numbers */
if ((udp.uh_dport != net->port) ||
(udp.uh_sport != htons(SCTP_BASE_SYSCTL(sctp_udp_tunneling_port)))) {
SCTP_TCB_UNLOCK(stcb);
return;
}
/* Check the verification tag */
if (ntohl(sh.v_tag) != 0) {
/*
* This must be the verification tag used for
* sending out packets. We don't consider packets
* reflecting the verification tag.
*/
if (ntohl(sh.v_tag) != stcb->asoc.peer_vtag) {
SCTP_TCB_UNLOCK(stcb);
return;
}
} else {
if (ip6cp->ip6c_m->m_pkthdr.len >=
ip6cp->ip6c_off + sizeof(struct udphdr) +
sizeof(struct sctphdr) +
sizeof(struct sctp_chunkhdr) +
offsetof(struct sctp_init, a_rwnd)) {
/*
* In this case we can check if we got an
* INIT chunk and if the initiate tag
* matches.
*/
uint32_t initiate_tag;
uint8_t chunk_type;
m_copydata(ip6cp->ip6c_m,
ip6cp->ip6c_off +
sizeof(struct udphdr) +
sizeof(struct sctphdr),
sizeof(uint8_t),
(caddr_t)&chunk_type);
m_copydata(ip6cp->ip6c_m,
ip6cp->ip6c_off +
sizeof(struct udphdr) +
sizeof(struct sctphdr) +
sizeof(struct sctp_chunkhdr),
sizeof(uint32_t),
(caddr_t)&initiate_tag);
if ((chunk_type != SCTP_INITIATION) ||
(ntohl(initiate_tag) != stcb->asoc.my_vtag)) {
SCTP_TCB_UNLOCK(stcb);
return;
}
} else {
SCTP_TCB_UNLOCK(stcb);
return;
}
}
type = ip6cp->ip6c_icmp6->icmp6_type;
code = ip6cp->ip6c_icmp6->icmp6_code;
if ((type == ICMP6_DST_UNREACH) &&
(code == ICMP6_DST_UNREACH_NOPORT)) {
type = ICMP6_PARAM_PROB;
code = ICMP6_PARAMPROB_NEXTHEADER;
}
sctp6_notify(inp, stcb, net, type, code,
ntohl(ip6cp->ip6c_icmp6->icmp6_mtu));
} else {
if ((stcb == NULL) && (inp != NULL)) {
/* reduce inp's ref-count */
SCTP_INP_WLOCK(inp);
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
}
if (stcb) {
SCTP_TCB_UNLOCK(stcb);
}
}
}
#endif
void
sctp_over_udp_stop(void)
{
/*
* This function assumes sysctl caller holds sctp_sysctl_info_lock()
* for writting!
*/
#ifdef INET
if (SCTP_BASE_INFO(udp4_tun_socket) != NULL) {
soclose(SCTP_BASE_INFO(udp4_tun_socket));
SCTP_BASE_INFO(udp4_tun_socket) = NULL;
}
#endif
#ifdef INET6
if (SCTP_BASE_INFO(udp6_tun_socket) != NULL) {
soclose(SCTP_BASE_INFO(udp6_tun_socket));
SCTP_BASE_INFO(udp6_tun_socket) = NULL;
}
#endif
}
int
sctp_over_udp_start(void)
{
uint16_t port;
int ret;
#ifdef INET
struct sockaddr_in sin;
#endif
#ifdef INET6
struct sockaddr_in6 sin6;
#endif
/*
* This function assumes sysctl caller holds sctp_sysctl_info_lock()
* for writting!
*/
port = SCTP_BASE_SYSCTL(sctp_udp_tunneling_port);
if (ntohs(port) == 0) {
/* Must have a port set */
return (EINVAL);
}
#ifdef INET
if (SCTP_BASE_INFO(udp4_tun_socket) != NULL) {
/* Already running -- must stop first */
return (EALREADY);
}
#endif
#ifdef INET6
if (SCTP_BASE_INFO(udp6_tun_socket) != NULL) {
/* Already running -- must stop first */
return (EALREADY);
}
#endif
#ifdef INET
if ((ret = socreate(PF_INET, &SCTP_BASE_INFO(udp4_tun_socket),
SOCK_DGRAM, IPPROTO_UDP,
curthread->td_ucred, curthread))) {
sctp_over_udp_stop();
return (ret);
}
/* Call the special UDP hook. */
if ((ret = udp_set_kernel_tunneling(SCTP_BASE_INFO(udp4_tun_socket),
sctp_recv_udp_tunneled_packet,
sctp_recv_icmp_tunneled_packet,
NULL))) {
sctp_over_udp_stop();
return (ret);
}
/* Ok, we have a socket, bind it to the port. */
memset(&sin, 0, sizeof(struct sockaddr_in));
sin.sin_len = sizeof(struct sockaddr_in);
sin.sin_family = AF_INET;
sin.sin_port = htons(port);
if ((ret = sobind(SCTP_BASE_INFO(udp4_tun_socket),
(struct sockaddr *)&sin, curthread))) {
sctp_over_udp_stop();
return (ret);
}
#endif
#ifdef INET6
if ((ret = socreate(PF_INET6, &SCTP_BASE_INFO(udp6_tun_socket),
SOCK_DGRAM, IPPROTO_UDP,
curthread->td_ucred, curthread))) {
sctp_over_udp_stop();
return (ret);
}
/* Call the special UDP hook. */
if ((ret = udp_set_kernel_tunneling(SCTP_BASE_INFO(udp6_tun_socket),
sctp_recv_udp_tunneled_packet,
sctp_recv_icmp6_tunneled_packet,
NULL))) {
sctp_over_udp_stop();
return (ret);
}
/* Ok, we have a socket, bind it to the port. */
memset(&sin6, 0, sizeof(struct sockaddr_in6));
sin6.sin6_len = sizeof(struct sockaddr_in6);
sin6.sin6_family = AF_INET6;
sin6.sin6_port = htons(port);
if ((ret = sobind(SCTP_BASE_INFO(udp6_tun_socket),
(struct sockaddr *)&sin6, curthread))) {
sctp_over_udp_stop();
return (ret);
}
#endif
return (0);
}
/*
* sctp_min_mtu ()returns the minimum of all non-zero arguments.
* If all arguments are zero, zero is returned.
*/
uint32_t
sctp_min_mtu(uint32_t mtu1, uint32_t mtu2, uint32_t mtu3)
{
if (mtu1 > 0) {
if (mtu2 > 0) {
if (mtu3 > 0) {
return (min(mtu1, min(mtu2, mtu3)));
} else {
return (min(mtu1, mtu2));
}
} else {
if (mtu3 > 0) {
return (min(mtu1, mtu3));
} else {
return (mtu1);
}
}
} else {
if (mtu2 > 0) {
if (mtu3 > 0) {
return (min(mtu2, mtu3));
} else {
return (mtu2);
}
} else {
return (mtu3);
}
}
}
void
sctp_hc_set_mtu(union sctp_sockstore *addr, uint16_t fibnum, uint32_t mtu)
{
struct in_conninfo inc;
memset(&inc, 0, sizeof(struct in_conninfo));
inc.inc_fibnum = fibnum;
switch (addr->sa.sa_family) {
#ifdef INET
case AF_INET:
inc.inc_faddr = addr->sin.sin_addr;
break;
#endif
#ifdef INET6
case AF_INET6:
inc.inc_flags |= INC_ISIPV6;
inc.inc6_faddr = addr->sin6.sin6_addr;
break;
#endif
default:
return;
}
tcp_hc_updatemtu(&inc, (u_long)mtu);
}
uint32_t
sctp_hc_get_mtu(union sctp_sockstore *addr, uint16_t fibnum)
{
struct in_conninfo inc;
memset(&inc, 0, sizeof(struct in_conninfo));
inc.inc_fibnum = fibnum;
switch (addr->sa.sa_family) {
#ifdef INET
case AF_INET:
inc.inc_faddr = addr->sin.sin_addr;
break;
#endif
#ifdef INET6
case AF_INET6:
inc.inc_flags |= INC_ISIPV6;
inc.inc6_faddr = addr->sin6.sin6_addr;
break;
#endif
default:
return (0);
}
return ((uint32_t)tcp_hc_getmtu(&inc));
}
void
sctp_set_state(struct sctp_tcb *stcb, int new_state)
{
#if defined(KDTRACE_HOOKS)
int old_state = stcb->asoc.state;
#endif
KASSERT((new_state & ~SCTP_STATE_MASK) == 0,
("sctp_set_state: Can't set substate (new_state = %x)",
new_state));
stcb->asoc.state = (stcb->asoc.state & ~SCTP_STATE_MASK) | new_state;
if ((new_state == SCTP_STATE_SHUTDOWN_RECEIVED) ||
(new_state == SCTP_STATE_SHUTDOWN_SENT) ||
(new_state == SCTP_STATE_SHUTDOWN_ACK_SENT)) {
SCTP_CLEAR_SUBSTATE(stcb, SCTP_STATE_SHUTDOWN_PENDING);
}
#if defined(KDTRACE_HOOKS)
if (((old_state & SCTP_STATE_MASK) != new_state) &&
!(((old_state & SCTP_STATE_MASK) == SCTP_STATE_EMPTY) &&
(new_state == SCTP_STATE_INUSE))) {
SCTP_PROBE6(state__change, NULL, stcb, NULL, stcb, NULL, old_state);
}
#endif
}
void
sctp_add_substate(struct sctp_tcb *stcb, int substate)
{
#if defined(KDTRACE_HOOKS)
int old_state = stcb->asoc.state;
#endif
KASSERT((substate & SCTP_STATE_MASK) == 0,
("sctp_add_substate: Can't set state (substate = %x)",
substate));
stcb->asoc.state |= substate;
#if defined(KDTRACE_HOOKS)
if (((substate & SCTP_STATE_ABOUT_TO_BE_FREED) &&
((old_state & SCTP_STATE_ABOUT_TO_BE_FREED) == 0)) ||
((substate & SCTP_STATE_SHUTDOWN_PENDING) &&
((old_state & SCTP_STATE_SHUTDOWN_PENDING) == 0))) {
SCTP_PROBE6(state__change, NULL, stcb, NULL, stcb, NULL, old_state);
}
#endif
}