freebsd-dev/gnu/usr.bin/cc/cc_int/optabs.c
1995-05-30 05:05:38 +00:00

4233 lines
122 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Expand the basic unary and binary arithmetic operations, for GNU compiler.
Copyright (C) 1987, 1988, 1992, 1993, 1994 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "config.h"
#include "rtl.h"
#include "tree.h"
#include "flags.h"
#include "insn-flags.h"
#include "insn-codes.h"
#include "expr.h"
#include "insn-config.h"
#include "recog.h"
#include "reload.h"
#include <ctype.h>
/* Each optab contains info on how this target machine
can perform a particular operation
for all sizes and kinds of operands.
The operation to be performed is often specified
by passing one of these optabs as an argument.
See expr.h for documentation of these optabs. */
optab add_optab;
optab sub_optab;
optab smul_optab;
optab smul_highpart_optab;
optab umul_highpart_optab;
optab smul_widen_optab;
optab umul_widen_optab;
optab sdiv_optab;
optab sdivmod_optab;
optab udiv_optab;
optab udivmod_optab;
optab smod_optab;
optab umod_optab;
optab flodiv_optab;
optab ftrunc_optab;
optab and_optab;
optab ior_optab;
optab xor_optab;
optab ashl_optab;
optab lshr_optab;
optab ashr_optab;
optab rotl_optab;
optab rotr_optab;
optab smin_optab;
optab smax_optab;
optab umin_optab;
optab umax_optab;
optab mov_optab;
optab movstrict_optab;
optab neg_optab;
optab abs_optab;
optab one_cmpl_optab;
optab ffs_optab;
optab sqrt_optab;
optab sin_optab;
optab cos_optab;
optab cmp_optab;
optab ucmp_optab; /* Used only for libcalls for unsigned comparisons. */
optab tst_optab;
optab strlen_optab;
/* Tables of patterns for extending one integer mode to another. */
enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2];
/* Tables of patterns for converting between fixed and floating point. */
enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
/* Contains the optab used for each rtx code. */
optab code_to_optab[NUM_RTX_CODE + 1];
/* SYMBOL_REF rtx's for the library functions that are called
implicitly and not via optabs. */
rtx extendsfdf2_libfunc;
rtx extendsfxf2_libfunc;
rtx extendsftf2_libfunc;
rtx extenddfxf2_libfunc;
rtx extenddftf2_libfunc;
rtx truncdfsf2_libfunc;
rtx truncxfsf2_libfunc;
rtx trunctfsf2_libfunc;
rtx truncxfdf2_libfunc;
rtx trunctfdf2_libfunc;
rtx memcpy_libfunc;
rtx bcopy_libfunc;
rtx memcmp_libfunc;
rtx bcmp_libfunc;
rtx memset_libfunc;
rtx bzero_libfunc;
rtx eqhf2_libfunc;
rtx nehf2_libfunc;
rtx gthf2_libfunc;
rtx gehf2_libfunc;
rtx lthf2_libfunc;
rtx lehf2_libfunc;
rtx eqsf2_libfunc;
rtx nesf2_libfunc;
rtx gtsf2_libfunc;
rtx gesf2_libfunc;
rtx ltsf2_libfunc;
rtx lesf2_libfunc;
rtx eqdf2_libfunc;
rtx nedf2_libfunc;
rtx gtdf2_libfunc;
rtx gedf2_libfunc;
rtx ltdf2_libfunc;
rtx ledf2_libfunc;
rtx eqxf2_libfunc;
rtx nexf2_libfunc;
rtx gtxf2_libfunc;
rtx gexf2_libfunc;
rtx ltxf2_libfunc;
rtx lexf2_libfunc;
rtx eqtf2_libfunc;
rtx netf2_libfunc;
rtx gttf2_libfunc;
rtx getf2_libfunc;
rtx lttf2_libfunc;
rtx letf2_libfunc;
rtx floatsisf_libfunc;
rtx floatdisf_libfunc;
rtx floattisf_libfunc;
rtx floatsidf_libfunc;
rtx floatdidf_libfunc;
rtx floattidf_libfunc;
rtx floatsixf_libfunc;
rtx floatdixf_libfunc;
rtx floattixf_libfunc;
rtx floatsitf_libfunc;
rtx floatditf_libfunc;
rtx floattitf_libfunc;
rtx fixsfsi_libfunc;
rtx fixsfdi_libfunc;
rtx fixsfti_libfunc;
rtx fixdfsi_libfunc;
rtx fixdfdi_libfunc;
rtx fixdfti_libfunc;
rtx fixxfsi_libfunc;
rtx fixxfdi_libfunc;
rtx fixxfti_libfunc;
rtx fixtfsi_libfunc;
rtx fixtfdi_libfunc;
rtx fixtfti_libfunc;
rtx fixunssfsi_libfunc;
rtx fixunssfdi_libfunc;
rtx fixunssfti_libfunc;
rtx fixunsdfsi_libfunc;
rtx fixunsdfdi_libfunc;
rtx fixunsdfti_libfunc;
rtx fixunsxfsi_libfunc;
rtx fixunsxfdi_libfunc;
rtx fixunsxfti_libfunc;
rtx fixunstfsi_libfunc;
rtx fixunstfdi_libfunc;
rtx fixunstfti_libfunc;
/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
gives the gen_function to make a branch to test that condition. */
rtxfun bcc_gen_fctn[NUM_RTX_CODE];
/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
gives the insn code to make a store-condition insn
to test that condition. */
enum insn_code setcc_gen_code[NUM_RTX_CODE];
static int add_equal_note PROTO((rtx, rtx, enum rtx_code, rtx, rtx));
static rtx widen_operand PROTO((rtx, enum machine_mode,
enum machine_mode, int, int));
static enum insn_code can_fix_p PROTO((enum machine_mode, enum machine_mode,
int, int *));
static enum insn_code can_float_p PROTO((enum machine_mode, enum machine_mode,
int));
static rtx ftruncify PROTO((rtx));
static optab init_optab PROTO((enum rtx_code));
static void init_libfuncs PROTO((optab, int, int, char *, int));
static void init_integral_libfuncs PROTO((optab, char *, int));
static void init_floating_libfuncs PROTO((optab, char *, int));
static void init_complex_libfuncs PROTO((optab, char *, int));
/* Add a REG_EQUAL note to the last insn in SEQ. TARGET is being set to
the result of operation CODE applied to OP0 (and OP1 if it is a binary
operation).
If the last insn does not set TARGET, don't do anything, but return 1.
If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
don't add the REG_EQUAL note but return 0. Our caller can then try
again, ensuring that TARGET is not one of the operands. */
static int
add_equal_note (seq, target, code, op0, op1)
rtx seq;
rtx target;
enum rtx_code code;
rtx op0, op1;
{
rtx set;
int i;
rtx note;
if ((GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2'
&& GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<')
|| GET_CODE (seq) != SEQUENCE
|| (set = single_set (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))) == 0
|| GET_CODE (target) == ZERO_EXTRACT
|| (! rtx_equal_p (SET_DEST (set), target)
/* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the
SUBREG. */
&& (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
|| ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)),
target))))
return 1;
/* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
besides the last insn. */
if (reg_overlap_mentioned_p (target, op0)
|| (op1 && reg_overlap_mentioned_p (target, op1)))
for (i = XVECLEN (seq, 0) - 2; i >= 0; i--)
if (reg_set_p (target, XVECEXP (seq, 0, i)))
return 0;
if (GET_RTX_CLASS (code) == '1')
note = gen_rtx (code, GET_MODE (target), copy_rtx (op0));
else
note = gen_rtx (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))
= gen_rtx (EXPR_LIST, REG_EQUAL, note,
REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1)));
return 1;
}
/* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
not actually do a sign-extend or zero-extend, but can leave the
higher-order bits of the result rtx undefined, for example, in the case
of logical operations, but not right shifts. */
static rtx
widen_operand (op, mode, oldmode, unsignedp, no_extend)
rtx op;
enum machine_mode mode, oldmode;
int unsignedp;
int no_extend;
{
rtx result;
/* If we must extend do so. If OP is either a constant or a SUBREG
for a promoted object, also extend since it will be more efficient to
do so. */
if (! no_extend
|| GET_MODE (op) == VOIDmode
|| (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)))
return convert_modes (mode, oldmode, op, unsignedp);
/* If MODE is no wider than a single word, we return a paradoxical
SUBREG. */
if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
return gen_rtx (SUBREG, mode, force_reg (GET_MODE (op), op), 0);
/* Otherwise, get an object of MODE, clobber it, and set the low-order
part to OP. */
result = gen_reg_rtx (mode);
emit_insn (gen_rtx (CLOBBER, VOIDmode, result));
emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
return result;
}
/* Generate code to perform an operation specified by BINOPTAB
on operands OP0 and OP1, with result having machine-mode MODE.
UNSIGNEDP is for the case where we have to widen the operands
to perform the operation. It says to use zero-extension.
If TARGET is nonzero, the value
is generated there, if it is convenient to do so.
In all cases an rtx is returned for the locus of the value;
this may or may not be TARGET. */
rtx
expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
enum machine_mode mode;
optab binoptab;
rtx op0, op1;
rtx target;
int unsignedp;
enum optab_methods methods;
{
enum optab_methods next_methods
= (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
? OPTAB_WIDEN : methods);
enum mode_class class;
enum machine_mode wider_mode;
register rtx temp;
int commutative_op = 0;
int shift_op = (binoptab->code == ASHIFT
|| binoptab->code == ASHIFTRT
|| binoptab->code == LSHIFTRT
|| binoptab->code == ROTATE
|| binoptab->code == ROTATERT);
rtx entry_last = get_last_insn ();
rtx last;
class = GET_MODE_CLASS (mode);
op0 = protect_from_queue (op0, 0);
op1 = protect_from_queue (op1, 0);
if (target)
target = protect_from_queue (target, 1);
if (flag_force_mem)
{
op0 = force_not_mem (op0);
op1 = force_not_mem (op1);
}
/* If subtracting an integer constant, convert this into an addition of
the negated constant. */
if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
{
op1 = negate_rtx (mode, op1);
binoptab = add_optab;
}
/* If we are inside an appropriately-short loop and one operand is an
expensive constant, force it into a register. */
if (CONSTANT_P (op0) && preserve_subexpressions_p ()
&& rtx_cost (op0, binoptab->code) > 2)
op0 = force_reg (mode, op0);
if (CONSTANT_P (op1) && preserve_subexpressions_p ()
&& rtx_cost (op1, binoptab->code) > 2)
op1 = force_reg (shift_op ? word_mode : mode, op1);
/* Record where to delete back to if we backtrack. */
last = get_last_insn ();
/* If operation is commutative,
try to make the first operand a register.
Even better, try to make it the same as the target.
Also try to make the last operand a constant. */
if (GET_RTX_CLASS (binoptab->code) == 'c'
|| binoptab == smul_widen_optab
|| binoptab == umul_widen_optab
|| binoptab == smul_highpart_optab
|| binoptab == umul_highpart_optab)
{
commutative_op = 1;
if (((target == 0 || GET_CODE (target) == REG)
? ((GET_CODE (op1) == REG
&& GET_CODE (op0) != REG)
|| target == op1)
: rtx_equal_p (op1, target))
|| GET_CODE (op0) == CONST_INT)
{
temp = op1;
op1 = op0;
op0 = temp;
}
}
/* If we can do it with a three-operand insn, do so. */
if (methods != OPTAB_MUST_WIDEN
&& binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
{
int icode = (int) binoptab->handlers[(int) mode].insn_code;
enum machine_mode mode0 = insn_operand_mode[icode][1];
enum machine_mode mode1 = insn_operand_mode[icode][2];
rtx pat;
rtx xop0 = op0, xop1 = op1;
if (target)
temp = target;
else
temp = gen_reg_rtx (mode);
/* If it is a commutative operator and the modes would match
if we would swap the operands, we can save the conversions. */
if (commutative_op)
{
if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
&& GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
{
register rtx tmp;
tmp = op0; op0 = op1; op1 = tmp;
tmp = xop0; xop0 = xop1; xop1 = tmp;
}
}
/* In case the insn wants input operands in modes different from
the result, convert the operands. */
if (GET_MODE (op0) != VOIDmode
&& GET_MODE (op0) != mode0)
xop0 = convert_to_mode (mode0, xop0, unsignedp);
if (GET_MODE (xop1) != VOIDmode
&& GET_MODE (xop1) != mode1)
xop1 = convert_to_mode (mode1, xop1, unsignedp);
/* Now, if insn's predicates don't allow our operands, put them into
pseudo regs. */
if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
xop0 = copy_to_mode_reg (mode0, xop0);
if (! (*insn_operand_predicate[icode][2]) (xop1, mode1))
xop1 = copy_to_mode_reg (mode1, xop1);
if (! (*insn_operand_predicate[icode][0]) (temp, mode))
temp = gen_reg_rtx (mode);
pat = GEN_FCN (icode) (temp, xop0, xop1);
if (pat)
{
/* If PAT is a multi-insn sequence, try to add an appropriate
REG_EQUAL note to it. If we can't because TEMP conflicts with an
operand, call ourselves again, this time without a target. */
if (GET_CODE (pat) == SEQUENCE
&& ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
{
delete_insns_since (last);
return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
unsignedp, methods);
}
emit_insn (pat);
return temp;
}
else
delete_insns_since (last);
}
/* If this is a multiply, see if we can do a widening operation that
takes operands of this mode and makes a wider mode. */
if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
&& (((unsignedp ? umul_widen_optab : smul_widen_optab)
->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
!= CODE_FOR_nothing))
{
temp = expand_binop (GET_MODE_WIDER_MODE (mode),
unsignedp ? umul_widen_optab : smul_widen_optab,
op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
if (temp != 0)
{
if (GET_MODE_CLASS (mode) == MODE_INT)
return gen_lowpart (mode, temp);
else
return convert_to_mode (mode, temp, unsignedp);
}
}
/* Look for a wider mode of the same class for which we think we
can open-code the operation. Check for a widening multiply at the
wider mode as well. */
if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
&& methods != OPTAB_DIRECT && methods != OPTAB_LIB)
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
{
if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
|| (binoptab == smul_optab
&& GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
&& (((unsignedp ? umul_widen_optab : smul_widen_optab)
->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
!= CODE_FOR_nothing)))
{
rtx xop0 = op0, xop1 = op1;
int no_extend = 0;
/* For certain integer operations, we need not actually extend
the narrow operands, as long as we will truncate
the results to the same narrowness. */
if ((binoptab == ior_optab || binoptab == and_optab
|| binoptab == xor_optab
|| binoptab == add_optab || binoptab == sub_optab
|| binoptab == smul_optab || binoptab == ashl_optab)
&& class == MODE_INT)
no_extend = 1;
xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
/* The second operand of a shift must always be extended. */
xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
no_extend && binoptab != ashl_optab);
temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
unsignedp, OPTAB_DIRECT);
if (temp)
{
if (class != MODE_INT)
{
if (target == 0)
target = gen_reg_rtx (mode);
convert_move (target, temp, 0);
return target;
}
else
return gen_lowpart (mode, temp);
}
else
delete_insns_since (last);
}
}
/* These can be done a word at a time. */
if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
&& class == MODE_INT
&& GET_MODE_SIZE (mode) > UNITS_PER_WORD
&& binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
{
int i;
rtx insns;
rtx equiv_value;
/* If TARGET is the same as one of the operands, the REG_EQUAL note
won't be accurate, so use a new target. */
if (target == 0 || target == op0 || target == op1)
target = gen_reg_rtx (mode);
start_sequence ();
/* Do the actual arithmetic. */
for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
{
rtx target_piece = operand_subword (target, i, 1, mode);
rtx x = expand_binop (word_mode, binoptab,
operand_subword_force (op0, i, mode),
operand_subword_force (op1, i, mode),
target_piece, unsignedp, next_methods);
if (x == 0)
break;
if (target_piece != x)
emit_move_insn (target_piece, x);
}
insns = get_insns ();
end_sequence ();
if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
{
if (binoptab->code != UNKNOWN)
equiv_value
= gen_rtx (binoptab->code, mode, copy_rtx (op0), copy_rtx (op1));
else
equiv_value = 0;
emit_no_conflict_block (insns, target, op0, op1, equiv_value);
return target;
}
}
/* Synthesize double word shifts from single word shifts. */
if ((binoptab == lshr_optab || binoptab == ashl_optab
|| binoptab == ashr_optab)
&& class == MODE_INT
&& GET_CODE (op1) == CONST_INT
&& GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
&& binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
&& ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
&& lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
{
rtx insns, inter, equiv_value;
rtx into_target, outof_target;
rtx into_input, outof_input;
int shift_count, left_shift, outof_word;
/* If TARGET is the same as one of the operands, the REG_EQUAL note
won't be accurate, so use a new target. */
if (target == 0 || target == op0 || target == op1)
target = gen_reg_rtx (mode);
start_sequence ();
shift_count = INTVAL (op1);
/* OUTOF_* is the word we are shifting bits away from, and
INTO_* is the word that we are shifting bits towards, thus
they differ depending on the direction of the shift and
WORDS_BIG_ENDIAN. */
left_shift = binoptab == ashl_optab;
outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
outof_target = operand_subword (target, outof_word, 1, mode);
into_target = operand_subword (target, 1 - outof_word, 1, mode);
outof_input = operand_subword_force (op0, outof_word, mode);
into_input = operand_subword_force (op0, 1 - outof_word, mode);
if (shift_count >= BITS_PER_WORD)
{
inter = expand_binop (word_mode, binoptab,
outof_input,
GEN_INT (shift_count - BITS_PER_WORD),
into_target, unsignedp, next_methods);
if (inter != 0 && inter != into_target)
emit_move_insn (into_target, inter);
/* For a signed right shift, we must fill the word we are shifting
out of with copies of the sign bit. Otherwise it is zeroed. */
if (inter != 0 && binoptab != ashr_optab)
inter = CONST0_RTX (word_mode);
else if (inter != 0)
inter = expand_binop (word_mode, binoptab,
outof_input,
GEN_INT (BITS_PER_WORD - 1),
outof_target, unsignedp, next_methods);
if (inter != 0 && inter != outof_target)
emit_move_insn (outof_target, inter);
}
else
{
rtx carries;
optab reverse_unsigned_shift, unsigned_shift;
/* For a shift of less then BITS_PER_WORD, to compute the carry,
we must do a logical shift in the opposite direction of the
desired shift. */
reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
/* For a shift of less than BITS_PER_WORD, to compute the word
shifted towards, we need to unsigned shift the orig value of
that word. */
unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
carries = expand_binop (word_mode, reverse_unsigned_shift,
outof_input,
GEN_INT (BITS_PER_WORD - shift_count),
0, unsignedp, next_methods);
if (carries == 0)
inter = 0;
else
inter = expand_binop (word_mode, unsigned_shift, into_input,
op1, 0, unsignedp, next_methods);
if (inter != 0)
inter = expand_binop (word_mode, ior_optab, carries, inter,
into_target, unsignedp, next_methods);
if (inter != 0 && inter != into_target)
emit_move_insn (into_target, inter);
if (inter != 0)
inter = expand_binop (word_mode, binoptab, outof_input,
op1, outof_target, unsignedp, next_methods);
if (inter != 0 && inter != outof_target)
emit_move_insn (outof_target, inter);
}
insns = get_insns ();
end_sequence ();
if (inter != 0)
{
if (binoptab->code != UNKNOWN)
equiv_value = gen_rtx (binoptab->code, mode, op0, op1);
else
equiv_value = 0;
emit_no_conflict_block (insns, target, op0, op1, equiv_value);
return target;
}
}
/* Synthesize double word rotates from single word shifts. */
if ((binoptab == rotl_optab || binoptab == rotr_optab)
&& class == MODE_INT
&& GET_CODE (op1) == CONST_INT
&& GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
&& ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
&& lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
{
rtx insns, equiv_value;
rtx into_target, outof_target;
rtx into_input, outof_input;
rtx inter;
int shift_count, left_shift, outof_word;
/* If TARGET is the same as one of the operands, the REG_EQUAL note
won't be accurate, so use a new target. */
if (target == 0 || target == op0 || target == op1)
target = gen_reg_rtx (mode);
start_sequence ();
shift_count = INTVAL (op1);
/* OUTOF_* is the word we are shifting bits away from, and
INTO_* is the word that we are shifting bits towards, thus
they differ depending on the direction of the shift and
WORDS_BIG_ENDIAN. */
left_shift = (binoptab == rotl_optab);
outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
outof_target = operand_subword (target, outof_word, 1, mode);
into_target = operand_subword (target, 1 - outof_word, 1, mode);
outof_input = operand_subword_force (op0, outof_word, mode);
into_input = operand_subword_force (op0, 1 - outof_word, mode);
if (shift_count == BITS_PER_WORD)
{
/* This is just a word swap. */
emit_move_insn (outof_target, into_input);
emit_move_insn (into_target, outof_input);
inter = const0_rtx;
}
else
{
rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
rtx first_shift_count, second_shift_count;
optab reverse_unsigned_shift, unsigned_shift;
reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
? lshr_optab : ashl_optab);
unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
? ashl_optab : lshr_optab);
if (shift_count > BITS_PER_WORD)
{
first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
second_shift_count = GEN_INT (2*BITS_PER_WORD - shift_count);
}
else
{
first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
second_shift_count = GEN_INT (shift_count);
}
into_temp1 = expand_binop (word_mode, unsigned_shift,
outof_input, first_shift_count,
NULL_RTX, unsignedp, next_methods);
into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
into_input, second_shift_count,
into_target, unsignedp, next_methods);
if (into_temp1 != 0 && into_temp2 != 0)
inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
into_target, unsignedp, next_methods);
else
inter = 0;
if (inter != 0 && inter != into_target)
emit_move_insn (into_target, inter);
outof_temp1 = expand_binop (word_mode, unsigned_shift,
into_input, first_shift_count,
NULL_RTX, unsignedp, next_methods);
outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
outof_input, second_shift_count,
outof_target, unsignedp, next_methods);
if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
inter = expand_binop (word_mode, ior_optab,
outof_temp1, outof_temp2,
outof_target, unsignedp, next_methods);
if (inter != 0 && inter != outof_target)
emit_move_insn (outof_target, inter);
}
insns = get_insns ();
end_sequence ();
if (inter != 0)
{
if (binoptab->code != UNKNOWN)
equiv_value = gen_rtx (binoptab->code, mode, op0, op1);
else
equiv_value = 0;
/* We can't make this a no conflict block if this is a word swap,
because the word swap case fails if the input and output values
are in the same register. */
if (shift_count != BITS_PER_WORD)
emit_no_conflict_block (insns, target, op0, op1, equiv_value);
else
emit_insns (insns);
return target;
}
}
/* These can be done a word at a time by propagating carries. */
if ((binoptab == add_optab || binoptab == sub_optab)
&& class == MODE_INT
&& GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
&& binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
{
int i;
rtx carry_tmp = gen_reg_rtx (word_mode);
optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
rtx carry_in, carry_out;
rtx xop0, xop1;
/* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
value is one of those, use it. Otherwise, use 1 since it is the
one easiest to get. */
#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
int normalizep = STORE_FLAG_VALUE;
#else
int normalizep = 1;
#endif
/* Prepare the operands. */
xop0 = force_reg (mode, op0);
xop1 = force_reg (mode, op1);
if (target == 0 || GET_CODE (target) != REG
|| target == xop0 || target == xop1)
target = gen_reg_rtx (mode);
/* Indicate for flow that the entire target reg is being set. */
if (GET_CODE (target) == REG)
emit_insn (gen_rtx (CLOBBER, VOIDmode, target));
/* Do the actual arithmetic. */
for (i = 0; i < nwords; i++)
{
int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
rtx target_piece = operand_subword (target, index, 1, mode);
rtx op0_piece = operand_subword_force (xop0, index, mode);
rtx op1_piece = operand_subword_force (xop1, index, mode);
rtx x;
/* Main add/subtract of the input operands. */
x = expand_binop (word_mode, binoptab,
op0_piece, op1_piece,
target_piece, unsignedp, next_methods);
if (x == 0)
break;
if (i + 1 < nwords)
{
/* Store carry from main add/subtract. */
carry_out = gen_reg_rtx (word_mode);
carry_out = emit_store_flag (carry_out,
binoptab == add_optab ? LTU : GTU,
x, op0_piece,
word_mode, 1, normalizep);
if (carry_out == 0)
break;
}
if (i > 0)
{
/* Add/subtract previous carry to main result. */
x = expand_binop (word_mode,
normalizep == 1 ? binoptab : otheroptab,
x, carry_in,
target_piece, 1, next_methods);
if (x == 0)
break;
else if (target_piece != x)
emit_move_insn (target_piece, x);
if (i + 1 < nwords)
{
/* THIS CODE HAS NOT BEEN TESTED. */
/* Get out carry from adding/subtracting carry in. */
carry_tmp = emit_store_flag (carry_tmp,
binoptab == add_optab
? LTU : GTU,
x, carry_in,
word_mode, 1, normalizep);
/* Logical-ior the two poss. carry together. */
carry_out = expand_binop (word_mode, ior_optab,
carry_out, carry_tmp,
carry_out, 0, next_methods);
if (carry_out == 0)
break;
}
}
carry_in = carry_out;
}
if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
{
rtx temp = emit_move_insn (target, target);
REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL,
gen_rtx (binoptab->code, mode,
copy_rtx (xop0),
copy_rtx (xop1)),
REG_NOTES (temp));
return target;
}
else
delete_insns_since (last);
}
/* If we want to multiply two two-word values and have normal and widening
multiplies of single-word values, we can do this with three smaller
multiplications. Note that we do not make a REG_NO_CONFLICT block here
because we are not operating on one word at a time.
The multiplication proceeds as follows:
_______________________
[__op0_high_|__op0_low__]
_______________________
* [__op1_high_|__op1_low__]
_______________________________________________
_______________________
(1) [__op0_low__*__op1_low__]
_______________________
(2a) [__op0_low__*__op1_high_]
_______________________
(2b) [__op0_high_*__op1_low__]
_______________________
(3) [__op0_high_*__op1_high_]
This gives a 4-word result. Since we are only interested in the
lower 2 words, partial result (3) and the upper words of (2a) and
(2b) don't need to be calculated. Hence (2a) and (2b) can be
calculated using non-widening multiplication.
(1), however, needs to be calculated with an unsigned widening
multiplication. If this operation is not directly supported we
try using a signed widening multiplication and adjust the result.
This adjustment works as follows:
If both operands are positive then no adjustment is needed.
If the operands have different signs, for example op0_low < 0 and
op1_low >= 0, the instruction treats the most significant bit of
op0_low as a sign bit instead of a bit with significance
2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
with 2**BITS_PER_WORD - op0_low, and two's complements the
result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
the result.
Similarly, if both operands are negative, we need to add
(op0_low + op1_low) * 2**BITS_PER_WORD.
We use a trick to adjust quickly. We logically shift op0_low right
(op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
op0_high (op1_high) before it is used to calculate 2b (2a). If no
logical shift exists, we do an arithmetic right shift and subtract
the 0 or -1. */
if (binoptab == smul_optab
&& class == MODE_INT
&& GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
&& smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
&& add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
&& ((umul_widen_optab->handlers[(int) mode].insn_code
!= CODE_FOR_nothing)
|| (smul_widen_optab->handlers[(int) mode].insn_code
!= CODE_FOR_nothing)))
{
int low = (WORDS_BIG_ENDIAN ? 1 : 0);
int high = (WORDS_BIG_ENDIAN ? 0 : 1);
rtx op0_high = operand_subword_force (op0, high, mode);
rtx op0_low = operand_subword_force (op0, low, mode);
rtx op1_high = operand_subword_force (op1, high, mode);
rtx op1_low = operand_subword_force (op1, low, mode);
rtx product = 0;
rtx op0_xhigh;
rtx op1_xhigh;
/* If the target is the same as one of the inputs, don't use it. This
prevents problems with the REG_EQUAL note. */
if (target == op0 || target == op1)
target = 0;
/* Multiply the two lower words to get a double-word product.
If unsigned widening multiplication is available, use that;
otherwise use the signed form and compensate. */
if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
{
product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
target, 1, OPTAB_DIRECT);
/* If we didn't succeed, delete everything we did so far. */
if (product == 0)
delete_insns_since (last);
else
op0_xhigh = op0_high, op1_xhigh = op1_high;
}
if (product == 0
&& smul_widen_optab->handlers[(int) mode].insn_code
!= CODE_FOR_nothing)
{
rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
target, 1, OPTAB_DIRECT);
op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
NULL_RTX, 1, next_methods);
if (op0_xhigh)
op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
op0_xhigh, op0_xhigh, 0, next_methods);
else
{
op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
NULL_RTX, 0, next_methods);
if (op0_xhigh)
op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
op0_xhigh, op0_xhigh, 0,
next_methods);
}
op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
NULL_RTX, 1, next_methods);
if (op1_xhigh)
op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
op1_xhigh, op1_xhigh, 0, next_methods);
else
{
op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
NULL_RTX, 0, next_methods);
if (op1_xhigh)
op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
op1_xhigh, op1_xhigh, 0,
next_methods);
}
}
/* If we have been able to directly compute the product of the
low-order words of the operands and perform any required adjustments
of the operands, we proceed by trying two more multiplications
and then computing the appropriate sum.
We have checked above that the required addition is provided.
Full-word addition will normally always succeed, especially if
it is provided at all, so we don't worry about its failure. The
multiplication may well fail, however, so we do handle that. */
if (product && op0_xhigh && op1_xhigh)
{
rtx product_high = operand_subword (product, high, 1, mode);
rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
NULL_RTX, 0, OPTAB_DIRECT);
if (temp != 0)
temp = expand_binop (word_mode, add_optab, temp, product_high,
product_high, 0, next_methods);
if (temp != 0 && temp != product_high)
emit_move_insn (product_high, temp);
if (temp != 0)
temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
NULL_RTX, 0, OPTAB_DIRECT);
if (temp != 0)
temp = expand_binop (word_mode, add_optab, temp,
product_high, product_high,
0, next_methods);
if (temp != 0 && temp != product_high)
emit_move_insn (product_high, temp);
if (temp != 0)
{
temp = emit_move_insn (product, product);
REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL,
gen_rtx (MULT, mode, copy_rtx (op0),
copy_rtx (op1)),
REG_NOTES (temp));
return product;
}
}
/* If we get here, we couldn't do it for some reason even though we
originally thought we could. Delete anything we've emitted in
trying to do it. */
delete_insns_since (last);
}
/* We need to open-code the complex type operations: '+, -, * and /' */
/* At this point we allow operations between two similar complex
numbers, and also if one of the operands is not a complex number
but rather of MODE_FLOAT or MODE_INT. However, the caller
must make sure that the MODE of the non-complex operand matches
the SUBMODE of the complex operand. */
if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
{
rtx real0 = 0, imag0 = 0;
rtx real1 = 0, imag1 = 0;
rtx realr, imagr, res;
rtx seq;
rtx equiv_value;
int ok = 0;
/* Find the correct mode for the real and imaginary parts */
enum machine_mode submode
= mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
0);
if (submode == BLKmode)
abort ();
if (! target)
target = gen_reg_rtx (mode);
start_sequence ();
realr = gen_realpart (submode, target);
imagr = gen_imagpart (submode, target);
if (GET_MODE (op0) == mode)
{
real0 = gen_realpart (submode, op0);
imag0 = gen_imagpart (submode, op0);
}
else
real0 = op0;
if (GET_MODE (op1) == mode)
{
real1 = gen_realpart (submode, op1);
imag1 = gen_imagpart (submode, op1);
}
else
real1 = op1;
if (real0 == 0 || real1 == 0 || ! (imag0 != 0|| imag1 != 0))
abort ();
switch (binoptab->code)
{
case PLUS:
/* (a+ib) + (c+id) = (a+c) + i(b+d) */
case MINUS:
/* (a+ib) - (c+id) = (a-c) + i(b-d) */
res = expand_binop (submode, binoptab, real0, real1,
realr, unsignedp, methods);
if (res == 0)
break;
else if (res != realr)
emit_move_insn (realr, res);
if (imag0 && imag1)
res = expand_binop (submode, binoptab, imag0, imag1,
imagr, unsignedp, methods);
else if (imag0)
res = imag0;
else if (binoptab->code == MINUS)
res = expand_unop (submode, neg_optab, imag1, imagr, unsignedp);
else
res = imag1;
if (res == 0)
break;
else if (res != imagr)
emit_move_insn (imagr, res);
ok = 1;
break;
case MULT:
/* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
if (imag0 && imag1)
{
rtx temp1, temp2;
/* Don't fetch these from memory more than once. */
real0 = force_reg (submode, real0);
real1 = force_reg (submode, real1);
imag0 = force_reg (submode, imag0);
imag1 = force_reg (submode, imag1);
temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
unsignedp, methods);
temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
unsignedp, methods);
if (temp1 == 0 || temp2 == 0)
break;
res = expand_binop (submode, sub_optab, temp1, temp2,
realr, unsignedp, methods);
if (res == 0)
break;
else if (res != realr)
emit_move_insn (realr, res);
temp1 = expand_binop (submode, binoptab, real0, imag1,
NULL_RTX, unsignedp, methods);
temp2 = expand_binop (submode, binoptab, real1, imag0,
NULL_RTX, unsignedp, methods);
if (temp1 == 0 || temp2 == 0)
break;
res = expand_binop (submode, add_optab, temp1, temp2,
imagr, unsignedp, methods);
if (res == 0)
break;
else if (res != imagr)
emit_move_insn (imagr, res);
ok = 1;
}
else
{
/* Don't fetch these from memory more than once. */
real0 = force_reg (submode, real0);
real1 = force_reg (submode, real1);
res = expand_binop (submode, binoptab, real0, real1,
realr, unsignedp, methods);
if (res == 0)
break;
else if (res != realr)
emit_move_insn (realr, res);
if (imag0 != 0)
res = expand_binop (submode, binoptab,
real1, imag0, imagr, unsignedp, methods);
else
res = expand_binop (submode, binoptab,
real0, imag1, imagr, unsignedp, methods);
if (res == 0)
break;
else if (res != imagr)
emit_move_insn (imagr, res);
ok = 1;
}
break;
case DIV:
/* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
if (imag1 == 0)
{
/* (a+ib) / (c+i0) = (a/c) + i(b/c) */
/* Don't fetch these from memory more than once. */
real1 = force_reg (submode, real1);
/* Simply divide the real and imaginary parts by `c' */
if (class == MODE_COMPLEX_FLOAT)
res = expand_binop (submode, binoptab, real0, real1,
realr, unsignedp, methods);
else
res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
real0, real1, realr, unsignedp);
if (res == 0)
break;
else if (res != realr)
emit_move_insn (realr, res);
if (class == MODE_COMPLEX_FLOAT)
res = expand_binop (submode, binoptab, imag0, real1,
imagr, unsignedp, methods);
else
res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
imag0, real1, imagr, unsignedp);
if (res == 0)
break;
else if (res != imagr)
emit_move_insn (imagr, res);
ok = 1;
}
else
{
/* Divisor is of complex type:
X/(a+ib) */
rtx divisor;
rtx real_t, imag_t;
rtx lhs, rhs;
rtx temp1, temp2;
/* Don't fetch these from memory more than once. */
real0 = force_reg (submode, real0);
real1 = force_reg (submode, real1);
if (imag0 != 0)
imag0 = force_reg (submode, imag0);
imag1 = force_reg (submode, imag1);
/* Divisor: c*c + d*d */
temp1 = expand_binop (submode, smul_optab, real1, real1,
NULL_RTX, unsignedp, methods);
temp2 = expand_binop (submode, smul_optab, imag1, imag1,
NULL_RTX, unsignedp, methods);
if (temp1 == 0 || temp2 == 0)
break;
divisor = expand_binop (submode, add_optab, temp1, temp2,
NULL_RTX, unsignedp, methods);
if (divisor == 0)
break;
if (imag0 == 0)
{
/* ((a)(c-id))/divisor */
/* (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)) */
/* Calculate the dividend */
real_t = expand_binop (submode, smul_optab, real0, real1,
NULL_RTX, unsignedp, methods);
imag_t = expand_binop (submode, smul_optab, real0, imag1,
NULL_RTX, unsignedp, methods);
if (real_t == 0 || imag_t == 0)
break;
imag_t = expand_unop (submode, neg_optab, imag_t,
NULL_RTX, unsignedp);
}
else
{
/* ((a+ib)(c-id))/divider */
/* Calculate the dividend */
temp1 = expand_binop (submode, smul_optab, real0, real1,
NULL_RTX, unsignedp, methods);
temp2 = expand_binop (submode, smul_optab, imag0, imag1,
NULL_RTX, unsignedp, methods);
if (temp1 == 0 || temp2 == 0)
break;
real_t = expand_binop (submode, add_optab, temp1, temp2,
NULL_RTX, unsignedp, methods);
temp1 = expand_binop (submode, smul_optab, imag0, real1,
NULL_RTX, unsignedp, methods);
temp2 = expand_binop (submode, smul_optab, real0, imag1,
NULL_RTX, unsignedp, methods);
if (temp1 == 0 || temp2 == 0)
break;
imag_t = expand_binop (submode, sub_optab, temp1, temp2,
NULL_RTX, unsignedp, methods);
if (real_t == 0 || imag_t == 0)
break;
}
if (class == MODE_COMPLEX_FLOAT)
res = expand_binop (submode, binoptab, real_t, divisor,
realr, unsignedp, methods);
else
res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
real_t, divisor, realr, unsignedp);
if (res == 0)
break;
else if (res != realr)
emit_move_insn (realr, res);
if (class == MODE_COMPLEX_FLOAT)
res = expand_binop (submode, binoptab, imag_t, divisor,
imagr, unsignedp, methods);
else
res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
imag_t, divisor, imagr, unsignedp);
if (res == 0)
break;
else if (res != imagr)
emit_move_insn (imagr, res);
ok = 1;
}
break;
default:
abort ();
}
seq = get_insns ();
end_sequence ();
if (ok)
{
if (binoptab->code != UNKNOWN)
equiv_value
= gen_rtx (binoptab->code, mode, copy_rtx (op0), copy_rtx (op1));
else
equiv_value = 0;
emit_no_conflict_block (seq, target, op0, op1, equiv_value);
return target;
}
}
/* It can't be open-coded in this mode.
Use a library call if one is available and caller says that's ok. */
if (binoptab->handlers[(int) mode].libfunc
&& (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
{
rtx insns;
rtx funexp = binoptab->handlers[(int) mode].libfunc;
rtx op1x = op1;
enum machine_mode op1_mode = mode;
rtx value;
start_sequence ();
if (shift_op)
{
op1_mode = word_mode;
/* Specify unsigned here,
since negative shift counts are meaningless. */
op1x = convert_to_mode (word_mode, op1, 1);
}
if (GET_MODE (op0) != mode)
op0 = convert_to_mode (mode, op0, unsignedp);
/* Pass 1 for NO_QUEUE so we don't lose any increments
if the libcall is cse'd or moved. */
value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
NULL_RTX, 1, mode, 2,
op0, mode, op1x, op1_mode);
insns = get_insns ();
end_sequence ();
target = gen_reg_rtx (mode);
emit_libcall_block (insns, target, value,
gen_rtx (binoptab->code, mode, op0, op1));
return target;
}
delete_insns_since (last);
/* It can't be done in this mode. Can we do it in a wider mode? */
if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
|| methods == OPTAB_MUST_WIDEN))
{
/* Caller says, don't even try. */
delete_insns_since (entry_last);
return 0;
}
/* Compute the value of METHODS to pass to recursive calls.
Don't allow widening to be tried recursively. */
methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
/* Look for a wider mode of the same class for which it appears we can do
the operation. */
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
{
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
{
if ((binoptab->handlers[(int) wider_mode].insn_code
!= CODE_FOR_nothing)
|| (methods == OPTAB_LIB
&& binoptab->handlers[(int) wider_mode].libfunc))
{
rtx xop0 = op0, xop1 = op1;
int no_extend = 0;
/* For certain integer operations, we need not actually extend
the narrow operands, as long as we will truncate
the results to the same narrowness. */
if ((binoptab == ior_optab || binoptab == and_optab
|| binoptab == xor_optab
|| binoptab == add_optab || binoptab == sub_optab
|| binoptab == smul_optab || binoptab == ashl_optab)
&& class == MODE_INT)
no_extend = 1;
xop0 = widen_operand (xop0, wider_mode, mode,
unsignedp, no_extend);
/* The second operand of a shift must always be extended. */
xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
no_extend && binoptab != ashl_optab);
temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
unsignedp, methods);
if (temp)
{
if (class != MODE_INT)
{
if (target == 0)
target = gen_reg_rtx (mode);
convert_move (target, temp, 0);
return target;
}
else
return gen_lowpart (mode, temp);
}
else
delete_insns_since (last);
}
}
}
delete_insns_since (entry_last);
return 0;
}
/* Expand a binary operator which has both signed and unsigned forms.
UOPTAB is the optab for unsigned operations, and SOPTAB is for
signed operations.
If we widen unsigned operands, we may use a signed wider operation instead
of an unsigned wider operation, since the result would be the same. */
rtx
sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods)
enum machine_mode mode;
optab uoptab, soptab;
rtx op0, op1, target;
int unsignedp;
enum optab_methods methods;
{
register rtx temp;
optab direct_optab = unsignedp ? uoptab : soptab;
struct optab wide_soptab;
/* Do it without widening, if possible. */
temp = expand_binop (mode, direct_optab, op0, op1, target,
unsignedp, OPTAB_DIRECT);
if (temp || methods == OPTAB_DIRECT)
return temp;
/* Try widening to a signed int. Make a fake signed optab that
hides any signed insn for direct use. */
wide_soptab = *soptab;
wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
wide_soptab.handlers[(int) mode].libfunc = 0;
temp = expand_binop (mode, &wide_soptab, op0, op1, target,
unsignedp, OPTAB_WIDEN);
/* For unsigned operands, try widening to an unsigned int. */
if (temp == 0 && unsignedp)
temp = expand_binop (mode, uoptab, op0, op1, target,
unsignedp, OPTAB_WIDEN);
if (temp || methods == OPTAB_WIDEN)
return temp;
/* Use the right width lib call if that exists. */
temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
if (temp || methods == OPTAB_LIB)
return temp;
/* Must widen and use a lib call, use either signed or unsigned. */
temp = expand_binop (mode, &wide_soptab, op0, op1, target,
unsignedp, methods);
if (temp != 0)
return temp;
if (unsignedp)
return expand_binop (mode, uoptab, op0, op1, target,
unsignedp, methods);
return 0;
}
/* Generate code to perform an operation specified by BINOPTAB
on operands OP0 and OP1, with two results to TARG1 and TARG2.
We assume that the order of the operands for the instruction
is TARG0, OP0, OP1, TARG1, which would fit a pattern like
[(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
Either TARG0 or TARG1 may be zero, but what that means is that
that result is not actually wanted. We will generate it into
a dummy pseudo-reg and discard it. They may not both be zero.
Returns 1 if this operation can be performed; 0 if not. */
int
expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp)
optab binoptab;
rtx op0, op1;
rtx targ0, targ1;
int unsignedp;
{
enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
enum mode_class class;
enum machine_mode wider_mode;
rtx entry_last = get_last_insn ();
rtx last;
class = GET_MODE_CLASS (mode);
op0 = protect_from_queue (op0, 0);
op1 = protect_from_queue (op1, 0);
if (flag_force_mem)
{
op0 = force_not_mem (op0);
op1 = force_not_mem (op1);
}
/* If we are inside an appropriately-short loop and one operand is an
expensive constant, force it into a register. */
if (CONSTANT_P (op0) && preserve_subexpressions_p ()
&& rtx_cost (op0, binoptab->code) > 2)
op0 = force_reg (mode, op0);
if (CONSTANT_P (op1) && preserve_subexpressions_p ()
&& rtx_cost (op1, binoptab->code) > 2)
op1 = force_reg (mode, op1);
if (targ0)
targ0 = protect_from_queue (targ0, 1);
else
targ0 = gen_reg_rtx (mode);
if (targ1)
targ1 = protect_from_queue (targ1, 1);
else
targ1 = gen_reg_rtx (mode);
/* Record where to go back to if we fail. */
last = get_last_insn ();
if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
{
int icode = (int) binoptab->handlers[(int) mode].insn_code;
enum machine_mode mode0 = insn_operand_mode[icode][1];
enum machine_mode mode1 = insn_operand_mode[icode][2];
rtx pat;
rtx xop0 = op0, xop1 = op1;
/* In case this insn wants input operands in modes different from the
result, convert the operands. */
if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0)
xop0 = convert_to_mode (mode0, xop0, unsignedp);
if (GET_MODE (op1) != VOIDmode && GET_MODE (op1) != mode1)
xop1 = convert_to_mode (mode1, xop1, unsignedp);
/* Now, if insn doesn't accept these operands, put them into pseudos. */
if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
xop0 = copy_to_mode_reg (mode0, xop0);
if (! (*insn_operand_predicate[icode][2]) (xop1, mode1))
xop1 = copy_to_mode_reg (mode1, xop1);
/* We could handle this, but we should always be called with a pseudo
for our targets and all insns should take them as outputs. */
if (! (*insn_operand_predicate[icode][0]) (targ0, mode)
|| ! (*insn_operand_predicate[icode][3]) (targ1, mode))
abort ();
pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
if (pat)
{
emit_insn (pat);
return 1;
}
else
delete_insns_since (last);
}
/* It can't be done in this mode. Can we do it in a wider mode? */
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
{
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
{
if (binoptab->handlers[(int) wider_mode].insn_code
!= CODE_FOR_nothing)
{
register rtx t0 = gen_reg_rtx (wider_mode);
register rtx t1 = gen_reg_rtx (wider_mode);
if (expand_twoval_binop (binoptab,
convert_modes (wider_mode, mode, op0,
unsignedp),
convert_modes (wider_mode, mode, op1,
unsignedp),
t0, t1, unsignedp))
{
convert_move (targ0, t0, unsignedp);
convert_move (targ1, t1, unsignedp);
return 1;
}
else
delete_insns_since (last);
}
}
}
delete_insns_since (entry_last);
return 0;
}
/* Generate code to perform an operation specified by UNOPTAB
on operand OP0, with result having machine-mode MODE.
UNSIGNEDP is for the case where we have to widen the operands
to perform the operation. It says to use zero-extension.
If TARGET is nonzero, the value
is generated there, if it is convenient to do so.
In all cases an rtx is returned for the locus of the value;
this may or may not be TARGET. */
rtx
expand_unop (mode, unoptab, op0, target, unsignedp)
enum machine_mode mode;
optab unoptab;
rtx op0;
rtx target;
int unsignedp;
{
enum mode_class class;
enum machine_mode wider_mode;
register rtx temp;
rtx last = get_last_insn ();
rtx pat;
class = GET_MODE_CLASS (mode);
op0 = protect_from_queue (op0, 0);
if (flag_force_mem)
{
op0 = force_not_mem (op0);
}
if (target)
target = protect_from_queue (target, 1);
if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
{
int icode = (int) unoptab->handlers[(int) mode].insn_code;
enum machine_mode mode0 = insn_operand_mode[icode][1];
rtx xop0 = op0;
if (target)
temp = target;
else
temp = gen_reg_rtx (mode);
if (GET_MODE (xop0) != VOIDmode
&& GET_MODE (xop0) != mode0)
xop0 = convert_to_mode (mode0, xop0, unsignedp);
/* Now, if insn doesn't accept our operand, put it into a pseudo. */
if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
xop0 = copy_to_mode_reg (mode0, xop0);
if (! (*insn_operand_predicate[icode][0]) (temp, mode))
temp = gen_reg_rtx (mode);
pat = GEN_FCN (icode) (temp, xop0);
if (pat)
{
if (GET_CODE (pat) == SEQUENCE
&& ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
{
delete_insns_since (last);
return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
}
emit_insn (pat);
return temp;
}
else
delete_insns_since (last);
}
/* It can't be done in this mode. Can we open-code it in a wider mode? */
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
{
if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
{
rtx xop0 = op0;
/* For certain operations, we need not actually extend
the narrow operand, as long as we will truncate the
results to the same narrowness. */
xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
(unoptab == neg_optab
|| unoptab == one_cmpl_optab)
&& class == MODE_INT);
temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
unsignedp);
if (temp)
{
if (class != MODE_INT)
{
if (target == 0)
target = gen_reg_rtx (mode);
convert_move (target, temp, 0);
return target;
}
else
return gen_lowpart (mode, temp);
}
else
delete_insns_since (last);
}
}
/* These can be done a word at a time. */
if (unoptab == one_cmpl_optab
&& class == MODE_INT
&& GET_MODE_SIZE (mode) > UNITS_PER_WORD
&& unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
{
int i;
rtx insns;
if (target == 0 || target == op0)
target = gen_reg_rtx (mode);
start_sequence ();
/* Do the actual arithmetic. */
for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
{
rtx target_piece = operand_subword (target, i, 1, mode);
rtx x = expand_unop (word_mode, unoptab,
operand_subword_force (op0, i, mode),
target_piece, unsignedp);
if (target_piece != x)
emit_move_insn (target_piece, x);
}
insns = get_insns ();
end_sequence ();
emit_no_conflict_block (insns, target, op0, NULL_RTX,
gen_rtx (unoptab->code, mode, copy_rtx (op0)));
return target;
}
/* Open-code the complex negation operation. */
else if (unoptab == neg_optab
&& (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
{
rtx target_piece;
rtx x;
rtx seq;
/* Find the correct mode for the real and imaginary parts */
enum machine_mode submode
= mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
0);
if (submode == BLKmode)
abort ();
if (target == 0)
target = gen_reg_rtx (mode);
start_sequence ();
target_piece = gen_imagpart (submode, target);
x = expand_unop (submode, unoptab,
gen_imagpart (submode, op0),
target_piece, unsignedp);
if (target_piece != x)
emit_move_insn (target_piece, x);
target_piece = gen_realpart (submode, target);
x = expand_unop (submode, unoptab,
gen_realpart (submode, op0),
target_piece, unsignedp);
if (target_piece != x)
emit_move_insn (target_piece, x);
seq = get_insns ();
end_sequence ();
emit_no_conflict_block (seq, target, op0, 0,
gen_rtx (unoptab->code, mode, copy_rtx (op0)));
return target;
}
/* Now try a library call in this mode. */
if (unoptab->handlers[(int) mode].libfunc)
{
rtx insns;
rtx funexp = unoptab->handlers[(int) mode].libfunc;
rtx value;
start_sequence ();
/* Pass 1 for NO_QUEUE so we don't lose any increments
if the libcall is cse'd or moved. */
value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
NULL_RTX, 1, mode, 1, op0, mode);
insns = get_insns ();
end_sequence ();
target = gen_reg_rtx (mode);
emit_libcall_block (insns, target, value,
gen_rtx (unoptab->code, mode, op0));
return target;
}
/* It can't be done in this mode. Can we do it in a wider mode? */
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
{
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
{
if ((unoptab->handlers[(int) wider_mode].insn_code
!= CODE_FOR_nothing)
|| unoptab->handlers[(int) wider_mode].libfunc)
{
rtx xop0 = op0;
/* For certain operations, we need not actually extend
the narrow operand, as long as we will truncate the
results to the same narrowness. */
xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
(unoptab == neg_optab
|| unoptab == one_cmpl_optab)
&& class == MODE_INT);
temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
unsignedp);
if (temp)
{
if (class != MODE_INT)
{
if (target == 0)
target = gen_reg_rtx (mode);
convert_move (target, temp, 0);
return target;
}
else
return gen_lowpart (mode, temp);
}
else
delete_insns_since (last);
}
}
}
return 0;
}
/* Emit code to compute the absolute value of OP0, with result to
TARGET if convenient. (TARGET may be 0.) The return value says
where the result actually is to be found.
MODE is the mode of the operand; the mode of the result is
different but can be deduced from MODE.
UNSIGNEDP is relevant if extension is needed. */
rtx
expand_abs (mode, op0, target, unsignedp, safe)
enum machine_mode mode;
rtx op0;
rtx target;
int unsignedp;
int safe;
{
rtx temp, op1;
/* First try to do it with a special abs instruction. */
temp = expand_unop (mode, abs_optab, op0, target, 0);
if (temp != 0)
return temp;
/* If this machine has expensive jumps, we can do integer absolute
value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
where W is the width of MODE. */
if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
{
rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
size_int (GET_MODE_BITSIZE (mode) - 1),
NULL_RTX, 0);
temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
OPTAB_LIB_WIDEN);
if (temp != 0)
temp = expand_binop (mode, sub_optab, temp, extended, target, 0,
OPTAB_LIB_WIDEN);
if (temp != 0)
return temp;
}
/* If that does not win, use conditional jump and negate. */
op1 = gen_label_rtx ();
if (target == 0 || ! safe
|| GET_MODE (target) != mode
|| (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
|| (GET_CODE (target) == REG
&& REGNO (target) < FIRST_PSEUDO_REGISTER))
target = gen_reg_rtx (mode);
emit_move_insn (target, op0);
NO_DEFER_POP;
/* If this mode is an integer too wide to compare properly,
compare word by word. Rely on CSE to optimize constant cases. */
if (GET_MODE_CLASS (mode) == MODE_INT && ! can_compare_p (mode))
do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
NULL_RTX, op1);
else
{
temp = compare_from_rtx (target, CONST0_RTX (mode), GE, 0, mode,
NULL_RTX, 0);
if (temp == const1_rtx)
return target;
else if (temp != const0_rtx)
{
if (bcc_gen_fctn[(int) GET_CODE (temp)] != 0)
emit_jump_insn ((*bcc_gen_fctn[(int) GET_CODE (temp)]) (op1));
else
abort ();
}
}
op0 = expand_unop (mode, neg_optab, target, target, 0);
if (op0 != target)
emit_move_insn (target, op0);
emit_label (op1);
OK_DEFER_POP;
return target;
}
/* Emit code to compute the absolute value of OP0, with result to
TARGET if convenient. (TARGET may be 0.) The return value says
where the result actually is to be found.
MODE is the mode of the operand; the mode of the result is
different but can be deduced from MODE.
UNSIGNEDP is relevant for complex integer modes. */
rtx
expand_complex_abs (mode, op0, target, unsignedp)
enum machine_mode mode;
rtx op0;
rtx target;
int unsignedp;
{
enum mode_class class = GET_MODE_CLASS (mode);
enum machine_mode wider_mode;
register rtx temp;
rtx entry_last = get_last_insn ();
rtx last;
rtx pat;
/* Find the correct mode for the real and imaginary parts. */
enum machine_mode submode
= mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
0);
if (submode == BLKmode)
abort ();
op0 = protect_from_queue (op0, 0);
if (flag_force_mem)
{
op0 = force_not_mem (op0);
}
last = get_last_insn ();
if (target)
target = protect_from_queue (target, 1);
if (abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
{
int icode = (int) abs_optab->handlers[(int) mode].insn_code;
enum machine_mode mode0 = insn_operand_mode[icode][1];
rtx xop0 = op0;
if (target)
temp = target;
else
temp = gen_reg_rtx (submode);
if (GET_MODE (xop0) != VOIDmode
&& GET_MODE (xop0) != mode0)
xop0 = convert_to_mode (mode0, xop0, unsignedp);
/* Now, if insn doesn't accept our operand, put it into a pseudo. */
if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
xop0 = copy_to_mode_reg (mode0, xop0);
if (! (*insn_operand_predicate[icode][0]) (temp, submode))
temp = gen_reg_rtx (submode);
pat = GEN_FCN (icode) (temp, xop0);
if (pat)
{
if (GET_CODE (pat) == SEQUENCE
&& ! add_equal_note (pat, temp, abs_optab->code, xop0, NULL_RTX))
{
delete_insns_since (last);
return expand_unop (mode, abs_optab, op0, NULL_RTX, unsignedp);
}
emit_insn (pat);
return temp;
}
else
delete_insns_since (last);
}
/* It can't be done in this mode. Can we open-code it in a wider mode? */
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
{
if (abs_optab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
{
rtx xop0 = op0;
xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
if (temp)
{
if (class != MODE_COMPLEX_INT)
{
if (target == 0)
target = gen_reg_rtx (submode);
convert_move (target, temp, 0);
return target;
}
else
return gen_lowpart (submode, temp);
}
else
delete_insns_since (last);
}
}
/* Open-code the complex absolute-value operation
if we can open-code sqrt. Otherwise it's not worth while. */
if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing)
{
rtx real, imag, total;
real = gen_realpart (submode, op0);
imag = gen_imagpart (submode, op0);
/* Square both parts. */
real = expand_mult (submode, real, real, NULL_RTX, 0);
imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
/* Sum the parts. */
total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
0, OPTAB_LIB_WIDEN);
/* Get sqrt in TARGET. Set TARGET to where the result is. */
target = expand_unop (submode, sqrt_optab, total, target, 0);
if (target == 0)
delete_insns_since (last);
else
return target;
}
/* Now try a library call in this mode. */
if (abs_optab->handlers[(int) mode].libfunc)
{
rtx insns;
rtx funexp = abs_optab->handlers[(int) mode].libfunc;
rtx value;
start_sequence ();
/* Pass 1 for NO_QUEUE so we don't lose any increments
if the libcall is cse'd or moved. */
value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
NULL_RTX, 1, submode, 1, op0, mode);
insns = get_insns ();
end_sequence ();
target = gen_reg_rtx (submode);
emit_libcall_block (insns, target, value,
gen_rtx (abs_optab->code, mode, op0));
return target;
}
/* It can't be done in this mode. Can we do it in a wider mode? */
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
{
if ((abs_optab->handlers[(int) wider_mode].insn_code
!= CODE_FOR_nothing)
|| abs_optab->handlers[(int) wider_mode].libfunc)
{
rtx xop0 = op0;
xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
if (temp)
{
if (class != MODE_COMPLEX_INT)
{
if (target == 0)
target = gen_reg_rtx (submode);
convert_move (target, temp, 0);
return target;
}
else
return gen_lowpart (submode, temp);
}
else
delete_insns_since (last);
}
}
delete_insns_since (entry_last);
return 0;
}
/* Generate an instruction whose insn-code is INSN_CODE,
with two operands: an output TARGET and an input OP0.
TARGET *must* be nonzero, and the output is always stored there.
CODE is an rtx code such that (CODE OP0) is an rtx that describes
the value that is stored into TARGET. */
void
emit_unop_insn (icode, target, op0, code)
int icode;
rtx target;
rtx op0;
enum rtx_code code;
{
register rtx temp;
enum machine_mode mode0 = insn_operand_mode[icode][1];
rtx pat;
temp = target = protect_from_queue (target, 1);
op0 = protect_from_queue (op0, 0);
if (flag_force_mem)
op0 = force_not_mem (op0);
/* Now, if insn does not accept our operands, put them into pseudos. */
if (! (*insn_operand_predicate[icode][1]) (op0, mode0))
op0 = copy_to_mode_reg (mode0, op0);
if (! (*insn_operand_predicate[icode][0]) (temp, GET_MODE (temp))
|| (flag_force_mem && GET_CODE (temp) == MEM))
temp = gen_reg_rtx (GET_MODE (temp));
pat = GEN_FCN (icode) (temp, op0);
if (GET_CODE (pat) == SEQUENCE && code != UNKNOWN)
add_equal_note (pat, temp, code, op0, NULL_RTX);
emit_insn (pat);
if (temp != target)
emit_move_insn (target, temp);
}
/* Emit code to perform a series of operations on a multi-word quantity, one
word at a time.
Such a block is preceded by a CLOBBER of the output, consists of multiple
insns, each setting one word of the output, and followed by a SET copying
the output to itself.
Each of the insns setting words of the output receives a REG_NO_CONFLICT
note indicating that it doesn't conflict with the (also multi-word)
inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
notes.
INSNS is a block of code generated to perform the operation, not including
the CLOBBER and final copy. All insns that compute intermediate values
are first emitted, followed by the block as described above.
TARGET, OP0, and OP1 are the output and inputs of the operations,
respectively. OP1 may be zero for a unary operation.
EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note
on the last insn.
If TARGET is not a register, INSNS is simply emitted with no special
processing. Likewise if anything in INSNS is not an INSN or if
there is a libcall block inside INSNS.
The final insn emitted is returned. */
rtx
emit_no_conflict_block (insns, target, op0, op1, equiv)
rtx insns;
rtx target;
rtx op0, op1;
rtx equiv;
{
rtx prev, next, first, last, insn;
if (GET_CODE (target) != REG || reload_in_progress)
return emit_insns (insns);
else
for (insn = insns; insn; insn = NEXT_INSN (insn))
if (GET_CODE (insn) != INSN
|| find_reg_note (insn, REG_LIBCALL, NULL_RTX))
return emit_insns (insns);
/* First emit all insns that do not store into words of the output and remove
these from the list. */
for (insn = insns; insn; insn = next)
{
rtx set = 0;
int i;
next = NEXT_INSN (insn);
if (GET_CODE (PATTERN (insn)) == SET)
set = PATTERN (insn);
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
{
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
{
set = XVECEXP (PATTERN (insn), 0, i);
break;
}
}
if (set == 0)
abort ();
if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
{
if (PREV_INSN (insn))
NEXT_INSN (PREV_INSN (insn)) = next;
else
insns = next;
if (next)
PREV_INSN (next) = PREV_INSN (insn);
add_insn (insn);
}
}
prev = get_last_insn ();
/* Now write the CLOBBER of the output, followed by the setting of each
of the words, followed by the final copy. */
if (target != op0 && target != op1)
emit_insn (gen_rtx (CLOBBER, VOIDmode, target));
for (insn = insns; insn; insn = next)
{
next = NEXT_INSN (insn);
add_insn (insn);
if (op1 && GET_CODE (op1) == REG)
REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op1,
REG_NOTES (insn));
if (op0 && GET_CODE (op0) == REG)
REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op0,
REG_NOTES (insn));
}
if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
!= CODE_FOR_nothing)
{
last = emit_move_insn (target, target);
if (equiv)
REG_NOTES (last)
= gen_rtx (EXPR_LIST, REG_EQUAL, equiv, REG_NOTES (last));
}
else
last = get_last_insn ();
if (prev == 0)
first = get_insns ();
else
first = NEXT_INSN (prev);
/* Encapsulate the block so it gets manipulated as a unit. */
REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last,
REG_NOTES (first));
REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last));
return last;
}
/* Emit code to make a call to a constant function or a library call.
INSNS is a list containing all insns emitted in the call.
These insns leave the result in RESULT. Our block is to copy RESULT
to TARGET, which is logically equivalent to EQUIV.
We first emit any insns that set a pseudo on the assumption that these are
loading constants into registers; doing so allows them to be safely cse'ed
between blocks. Then we emit all the other insns in the block, followed by
an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
note with an operand of EQUIV.
Moving assignments to pseudos outside of the block is done to improve
the generated code, but is not required to generate correct code,
hence being unable to move an assignment is not grounds for not making
a libcall block. There are two reasons why it is safe to leave these
insns inside the block: First, we know that these pseudos cannot be
used in generated RTL outside the block since they are created for
temporary purposes within the block. Second, CSE will not record the
values of anything set inside a libcall block, so we know they must
be dead at the end of the block.
Except for the first group of insns (the ones setting pseudos), the
block is delimited by REG_RETVAL and REG_LIBCALL notes. */
void
emit_libcall_block (insns, target, result, equiv)
rtx insns;
rtx target;
rtx result;
rtx equiv;
{
rtx prev, next, first, last, insn;
/* First emit all insns that set pseudos. Remove them from the list as
we go. Avoid insns that set pseudos which were referenced in previous
insns. These can be generated by move_by_pieces, for example,
to update an address. Similarly, avoid insns that reference things
set in previous insns. */
for (insn = insns; insn; insn = next)
{
rtx set = single_set (insn);
next = NEXT_INSN (insn);
if (set != 0 && GET_CODE (SET_DEST (set)) == REG
&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
&& (insn == insns
|| (! reg_mentioned_p (SET_DEST (set), PATTERN (insns))
&& ! reg_used_between_p (SET_DEST (set), insns, insn)
&& ! modified_in_p (SET_SRC (set), insns)
&& ! modified_between_p (SET_SRC (set), insns, insn))))
{
if (PREV_INSN (insn))
NEXT_INSN (PREV_INSN (insn)) = next;
else
insns = next;
if (next)
PREV_INSN (next) = PREV_INSN (insn);
add_insn (insn);
}
}
prev = get_last_insn ();
/* Write the remaining insns followed by the final copy. */
for (insn = insns; insn; insn = next)
{
next = NEXT_INSN (insn);
add_insn (insn);
}
last = emit_move_insn (target, result);
REG_NOTES (last) = gen_rtx (EXPR_LIST,
REG_EQUAL, copy_rtx (equiv), REG_NOTES (last));
if (prev == 0)
first = get_insns ();
else
first = NEXT_INSN (prev);
/* Encapsulate the block so it gets manipulated as a unit. */
REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last,
REG_NOTES (first));
REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last));
}
/* Generate code to store zero in X. */
void
emit_clr_insn (x)
rtx x;
{
emit_move_insn (x, const0_rtx);
}
/* Generate code to store 1 in X
assuming it contains zero beforehand. */
void
emit_0_to_1_insn (x)
rtx x;
{
emit_move_insn (x, const1_rtx);
}
/* Generate code to compare X with Y
so that the condition codes are set.
MODE is the mode of the inputs (in case they are const_int).
UNSIGNEDP nonzero says that X and Y are unsigned;
this matters if they need to be widened.
If they have mode BLKmode, then SIZE specifies the size of both X and Y,
and ALIGN specifies the known shared alignment of X and Y.
COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
It is ignored for fixed-point and block comparisons;
it is used only for floating-point comparisons. */
void
emit_cmp_insn (x, y, comparison, size, mode, unsignedp, align)
rtx x, y;
enum rtx_code comparison;
rtx size;
enum machine_mode mode;
int unsignedp;
int align;
{
enum mode_class class;
enum machine_mode wider_mode;
class = GET_MODE_CLASS (mode);
/* They could both be VOIDmode if both args are immediate constants,
but we should fold that at an earlier stage.
With no special code here, this will call abort,
reminding the programmer to implement such folding. */
if (mode != BLKmode && flag_force_mem)
{
x = force_not_mem (x);
y = force_not_mem (y);
}
/* If we are inside an appropriately-short loop and one operand is an
expensive constant, force it into a register. */
if (CONSTANT_P (x) && preserve_subexpressions_p () && rtx_cost (x, COMPARE) > 2)
x = force_reg (mode, x);
if (CONSTANT_P (y) && preserve_subexpressions_p () && rtx_cost (y, COMPARE) > 2)
y = force_reg (mode, y);
/* Don't let both operands fail to indicate the mode. */
if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
x = force_reg (mode, x);
/* Handle all BLKmode compares. */
if (mode == BLKmode)
{
emit_queue ();
x = protect_from_queue (x, 0);
y = protect_from_queue (y, 0);
if (size == 0)
abort ();
#ifdef HAVE_cmpstrqi
if (HAVE_cmpstrqi
&& GET_CODE (size) == CONST_INT
&& INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
{
enum machine_mode result_mode
= insn_operand_mode[(int) CODE_FOR_cmpstrqi][0];
rtx result = gen_reg_rtx (result_mode);
emit_insn (gen_cmpstrqi (result, x, y, size, GEN_INT (align)));
emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX,
result_mode, 0, 0);
}
else
#endif
#ifdef HAVE_cmpstrhi
if (HAVE_cmpstrhi
&& GET_CODE (size) == CONST_INT
&& INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
{
enum machine_mode result_mode
= insn_operand_mode[(int) CODE_FOR_cmpstrhi][0];
rtx result = gen_reg_rtx (result_mode);
emit_insn (gen_cmpstrhi (result, x, y, size, GEN_INT (align)));
emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX,
result_mode, 0, 0);
}
else
#endif
#ifdef HAVE_cmpstrsi
if (HAVE_cmpstrsi)
{
enum machine_mode result_mode
= insn_operand_mode[(int) CODE_FOR_cmpstrsi][0];
rtx result = gen_reg_rtx (result_mode);
size = protect_from_queue (size, 0);
emit_insn (gen_cmpstrsi (result, x, y,
convert_to_mode (SImode, size, 1),
GEN_INT (align)));
emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX,
result_mode, 0, 0);
}
else
#endif
{
#ifdef TARGET_MEM_FUNCTIONS
emit_library_call (memcmp_libfunc, 0,
TYPE_MODE (integer_type_node), 3,
XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
size, Pmode);
#else
emit_library_call (bcmp_libfunc, 0,
TYPE_MODE (integer_type_node), 3,
XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
size, Pmode);
#endif
emit_cmp_insn (hard_libcall_value (TYPE_MODE (integer_type_node)),
const0_rtx, comparison, NULL_RTX,
TYPE_MODE (integer_type_node), 0, 0);
}
return;
}
/* Handle some compares against zero. */
if (y == CONST0_RTX (mode)
&& tst_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
{
int icode = (int) tst_optab->handlers[(int) mode].insn_code;
emit_queue ();
x = protect_from_queue (x, 0);
y = protect_from_queue (y, 0);
/* Now, if insn does accept these operands, put them into pseudos. */
if (! (*insn_operand_predicate[icode][0])
(x, insn_operand_mode[icode][0]))
x = copy_to_mode_reg (insn_operand_mode[icode][0], x);
emit_insn (GEN_FCN (icode) (x));
return;
}
/* Handle compares for which there is a directly suitable insn. */
if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
{
int icode = (int) cmp_optab->handlers[(int) mode].insn_code;
emit_queue ();
x = protect_from_queue (x, 0);
y = protect_from_queue (y, 0);
/* Now, if insn doesn't accept these operands, put them into pseudos. */
if (! (*insn_operand_predicate[icode][0])
(x, insn_operand_mode[icode][0]))
x = copy_to_mode_reg (insn_operand_mode[icode][0], x);
if (! (*insn_operand_predicate[icode][1])
(y, insn_operand_mode[icode][1]))
y = copy_to_mode_reg (insn_operand_mode[icode][1], y);
emit_insn (GEN_FCN (icode) (x, y));
return;
}
/* Try widening if we can find a direct insn that way. */
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
{
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
{
if (cmp_optab->handlers[(int) wider_mode].insn_code
!= CODE_FOR_nothing)
{
x = protect_from_queue (x, 0);
y = protect_from_queue (y, 0);
x = convert_modes (wider_mode, mode, x, unsignedp);
y = convert_modes (wider_mode, mode, y, unsignedp);
emit_cmp_insn (x, y, comparison, NULL_RTX,
wider_mode, unsignedp, align);
return;
}
}
}
/* Handle a lib call just for the mode we are using. */
if (cmp_optab->handlers[(int) mode].libfunc
&& class != MODE_FLOAT)
{
rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
/* If we want unsigned, and this mode has a distinct unsigned
comparison routine, use that. */
if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
libfunc = ucmp_optab->handlers[(int) mode].libfunc;
emit_library_call (libfunc, 1,
word_mode, 2, x, mode, y, mode);
/* Integer comparison returns a result that must be compared against 1,
so that even if we do an unsigned compare afterward,
there is still a value that can represent the result "less than". */
emit_cmp_insn (hard_libcall_value (word_mode), const1_rtx,
comparison, NULL_RTX, word_mode, unsignedp, 0);
return;
}
if (class == MODE_FLOAT)
emit_float_lib_cmp (x, y, comparison);
else
abort ();
}
/* Nonzero if a compare of mode MODE can be done straightforwardly
(without splitting it into pieces). */
int
can_compare_p (mode)
enum machine_mode mode;
{
do
{
if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
return 1;
mode = GET_MODE_WIDER_MODE (mode);
} while (mode != VOIDmode);
return 0;
}
/* Emit a library call comparison between floating point X and Y.
COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
void
emit_float_lib_cmp (x, y, comparison)
rtx x, y;
enum rtx_code comparison;
{
enum machine_mode mode = GET_MODE (x);
rtx libfunc = 0;
if (mode == HFmode)
switch (comparison)
{
case EQ:
libfunc = eqhf2_libfunc;
break;
case NE:
libfunc = nehf2_libfunc;
break;
case GT:
libfunc = gthf2_libfunc;
break;
case GE:
libfunc = gehf2_libfunc;
break;
case LT:
libfunc = lthf2_libfunc;
break;
case LE:
libfunc = lehf2_libfunc;
break;
}
else if (mode == SFmode)
switch (comparison)
{
case EQ:
libfunc = eqsf2_libfunc;
break;
case NE:
libfunc = nesf2_libfunc;
break;
case GT:
libfunc = gtsf2_libfunc;
break;
case GE:
libfunc = gesf2_libfunc;
break;
case LT:
libfunc = ltsf2_libfunc;
break;
case LE:
libfunc = lesf2_libfunc;
break;
}
else if (mode == DFmode)
switch (comparison)
{
case EQ:
libfunc = eqdf2_libfunc;
break;
case NE:
libfunc = nedf2_libfunc;
break;
case GT:
libfunc = gtdf2_libfunc;
break;
case GE:
libfunc = gedf2_libfunc;
break;
case LT:
libfunc = ltdf2_libfunc;
break;
case LE:
libfunc = ledf2_libfunc;
break;
}
else if (mode == XFmode)
switch (comparison)
{
case EQ:
libfunc = eqxf2_libfunc;
break;
case NE:
libfunc = nexf2_libfunc;
break;
case GT:
libfunc = gtxf2_libfunc;
break;
case GE:
libfunc = gexf2_libfunc;
break;
case LT:
libfunc = ltxf2_libfunc;
break;
case LE:
libfunc = lexf2_libfunc;
break;
}
else if (mode == TFmode)
switch (comparison)
{
case EQ:
libfunc = eqtf2_libfunc;
break;
case NE:
libfunc = netf2_libfunc;
break;
case GT:
libfunc = gttf2_libfunc;
break;
case GE:
libfunc = getf2_libfunc;
break;
case LT:
libfunc = lttf2_libfunc;
break;
case LE:
libfunc = letf2_libfunc;
break;
}
else
{
enum machine_mode wider_mode;
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
{
if ((cmp_optab->handlers[(int) wider_mode].insn_code
!= CODE_FOR_nothing)
|| (cmp_optab->handlers[(int) wider_mode].libfunc != 0))
{
x = protect_from_queue (x, 0);
y = protect_from_queue (y, 0);
x = convert_to_mode (wider_mode, x, 0);
y = convert_to_mode (wider_mode, y, 0);
emit_float_lib_cmp (x, y, comparison);
return;
}
}
abort ();
}
if (libfunc == 0)
abort ();
emit_library_call (libfunc, 1,
word_mode, 2, x, mode, y, mode);
emit_cmp_insn (hard_libcall_value (word_mode), const0_rtx, comparison,
NULL_RTX, word_mode, 0, 0);
}
/* Generate code to indirectly jump to a location given in the rtx LOC. */
void
emit_indirect_jump (loc)
rtx loc;
{
if (! ((*insn_operand_predicate[(int)CODE_FOR_indirect_jump][0])
(loc, Pmode)))
loc = copy_to_mode_reg (Pmode, loc);
emit_jump_insn (gen_indirect_jump (loc));
emit_barrier ();
}
/* These three functions generate an insn body and return it
rather than emitting the insn.
They do not protect from queued increments,
because they may be used 1) in protect_from_queue itself
and 2) in other passes where there is no queue. */
/* Generate and return an insn body to add Y to X. */
rtx
gen_add2_insn (x, y)
rtx x, y;
{
int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0])
|| ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1])
|| ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2]))
abort ();
return (GEN_FCN (icode) (x, x, y));
}
int
have_add2_insn (mode)
enum machine_mode mode;
{
return add_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
}
/* Generate and return an insn body to subtract Y from X. */
rtx
gen_sub2_insn (x, y)
rtx x, y;
{
int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0])
|| ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1])
|| ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2]))
abort ();
return (GEN_FCN (icode) (x, x, y));
}
int
have_sub2_insn (mode)
enum machine_mode mode;
{
return sub_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
}
/* Generate the body of an instruction to copy Y into X.
It may be a SEQUENCE, if one insn isn't enough. */
rtx
gen_move_insn (x, y)
rtx x, y;
{
register enum machine_mode mode = GET_MODE (x);
enum insn_code insn_code;
rtx seq;
if (mode == VOIDmode)
mode = GET_MODE (y);
insn_code = mov_optab->handlers[(int) mode].insn_code;
/* Handle MODE_CC modes: If we don't have a special move insn for this mode,
find a mode to do it in. If we have a movcc, use it. Otherwise,
find the MODE_INT mode of the same width. */
if (GET_MODE_CLASS (mode) == MODE_CC && insn_code == CODE_FOR_nothing)
{
enum machine_mode tmode = VOIDmode;
rtx x1 = x, y1 = y;
if (mode != CCmode
&& mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing)
tmode = CCmode;
else
for (tmode = QImode; tmode != VOIDmode;
tmode = GET_MODE_WIDER_MODE (tmode))
if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode))
break;
if (tmode == VOIDmode)
abort ();
/* Get X and Y in TMODE. We can't use gen_lowpart here because it
may call change_address which is not appropriate if we were
called when a reload was in progress. We don't have to worry
about changing the address since the size in bytes is supposed to
be the same. Copy the MEM to change the mode and move any
substitutions from the old MEM to the new one. */
if (reload_in_progress)
{
x = gen_lowpart_common (tmode, x1);
if (x == 0 && GET_CODE (x1) == MEM)
{
x = gen_rtx (MEM, tmode, XEXP (x1, 0));
RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (x1);
MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (x1);
MEM_VOLATILE_P (x) = MEM_VOLATILE_P (x1);
copy_replacements (x1, x);
}
y = gen_lowpart_common (tmode, y1);
if (y == 0 && GET_CODE (y1) == MEM)
{
y = gen_rtx (MEM, tmode, XEXP (y1, 0));
RTX_UNCHANGING_P (y) = RTX_UNCHANGING_P (y1);
MEM_IN_STRUCT_P (y) = MEM_IN_STRUCT_P (y1);
MEM_VOLATILE_P (y) = MEM_VOLATILE_P (y1);
copy_replacements (y1, y);
}
}
else
{
x = gen_lowpart (tmode, x);
y = gen_lowpart (tmode, y);
}
insn_code = mov_optab->handlers[(int) tmode].insn_code;
return (GEN_FCN (insn_code) (x, y));
}
start_sequence ();
emit_move_insn_1 (x, y);
seq = gen_sequence ();
end_sequence ();
return seq;
}
/* Return the insn code used to extend FROM_MODE to TO_MODE.
UNSIGNEDP specifies zero-extension instead of sign-extension. If
no such operation exists, CODE_FOR_nothing will be returned. */
enum insn_code
can_extend_p (to_mode, from_mode, unsignedp)
enum machine_mode to_mode, from_mode;
int unsignedp;
{
return extendtab[(int) to_mode][(int) from_mode][unsignedp];
}
/* Generate the body of an insn to extend Y (with mode MFROM)
into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
rtx
gen_extend_insn (x, y, mto, mfrom, unsignedp)
rtx x, y;
enum machine_mode mto, mfrom;
int unsignedp;
{
return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp]) (x, y));
}
/* can_fix_p and can_float_p say whether the target machine
can directly convert a given fixed point type to
a given floating point type, or vice versa.
The returned value is the CODE_FOR_... value to use,
or CODE_FOR_nothing if these modes cannot be directly converted.
*TRUNCP_PTR is set to 1 if it is necessary to output
an explicit FTRUNC insn before the fix insn; otherwise 0. */
static enum insn_code
can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr)
enum machine_mode fltmode, fixmode;
int unsignedp;
int *truncp_ptr;
{
*truncp_ptr = 0;
if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp] != CODE_FOR_nothing)
return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp];
if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing)
{
*truncp_ptr = 1;
return fixtab[(int) fltmode][(int) fixmode][unsignedp];
}
return CODE_FOR_nothing;
}
static enum insn_code
can_float_p (fltmode, fixmode, unsignedp)
enum machine_mode fixmode, fltmode;
int unsignedp;
{
return floattab[(int) fltmode][(int) fixmode][unsignedp];
}
/* Generate code to convert FROM to floating point
and store in TO. FROM must be fixed point and not VOIDmode.
UNSIGNEDP nonzero means regard FROM as unsigned.
Normally this is done by correcting the final value
if it is negative. */
void
expand_float (to, from, unsignedp)
rtx to, from;
int unsignedp;
{
enum insn_code icode;
register rtx target = to;
enum machine_mode fmode, imode;
/* Crash now, because we won't be able to decide which mode to use. */
if (GET_MODE (from) == VOIDmode)
abort ();
/* Look for an insn to do the conversion. Do it in the specified
modes if possible; otherwise convert either input, output or both to
wider mode. If the integer mode is wider than the mode of FROM,
we can do the conversion signed even if the input is unsigned. */
for (imode = GET_MODE (from); imode != VOIDmode;
imode = GET_MODE_WIDER_MODE (imode))
for (fmode = GET_MODE (to); fmode != VOIDmode;
fmode = GET_MODE_WIDER_MODE (fmode))
{
int doing_unsigned = unsignedp;
icode = can_float_p (fmode, imode, unsignedp);
if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
if (icode != CODE_FOR_nothing)
{
to = protect_from_queue (to, 1);
from = protect_from_queue (from, 0);
if (imode != GET_MODE (from))
from = convert_to_mode (imode, from, unsignedp);
if (fmode != GET_MODE (to))
target = gen_reg_rtx (fmode);
emit_unop_insn (icode, target, from,
doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
if (target != to)
convert_move (to, target, 0);
return;
}
}
#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
/* Unsigned integer, and no way to convert directly.
Convert as signed, then conditionally adjust the result. */
if (unsignedp)
{
rtx label = gen_label_rtx ();
rtx temp;
REAL_VALUE_TYPE offset;
emit_queue ();
to = protect_from_queue (to, 1);
from = protect_from_queue (from, 0);
if (flag_force_mem)
from = force_not_mem (from);
/* Look for a usable floating mode FMODE wider than the source and at
least as wide as the target. Using FMODE will avoid rounding woes
with unsigned values greater than the signed maximum value. */
for (fmode = GET_MODE (to); fmode != VOIDmode;
fmode = GET_MODE_WIDER_MODE (fmode))
if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
&& can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
break;
if (fmode == VOIDmode)
{
/* There is no such mode. Pretend the target is wide enough. */
fmode = GET_MODE (to);
/* Avoid double-rounding when TO is narrower than FROM. */
if ((significand_size (fmode) + 1)
< GET_MODE_BITSIZE (GET_MODE (from)))
{
rtx temp1;
rtx neglabel = gen_label_rtx ();
/* Don't use TARGET if it isn't a register, is a hard register,
or is the wrong mode. */
if (GET_CODE (target) != REG
|| REGNO (target) < FIRST_PSEUDO_REGISTER
|| GET_MODE (target) != fmode)
target = gen_reg_rtx (fmode);
imode = GET_MODE (from);
do_pending_stack_adjust ();
/* Test whether the sign bit is set. */
emit_cmp_insn (from, const0_rtx, GE, NULL_RTX, imode, 0, 0);
emit_jump_insn (gen_blt (neglabel));
/* The sign bit is not set. Convert as signed. */
expand_float (target, from, 0);
emit_jump_insn (gen_jump (label));
/* The sign bit is set.
Convert to a usable (positive signed) value by shifting right
one bit, while remembering if a nonzero bit was shifted
out; i.e., compute (from & 1) | (from >> 1). */
emit_label (neglabel);
temp = expand_binop (imode, and_optab, from, const1_rtx,
NULL_RTX, 1, OPTAB_LIB_WIDEN);
temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
NULL_RTX, 1);
temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
OPTAB_LIB_WIDEN);
expand_float (target, temp, 0);
/* Multiply by 2 to undo the shift above. */
temp = expand_binop (fmode, add_optab, target, target,
target, 0, OPTAB_LIB_WIDEN);
if (temp != target)
emit_move_insn (target, temp);
do_pending_stack_adjust ();
emit_label (label);
goto done;
}
}
/* If we are about to do some arithmetic to correct for an
unsigned operand, do it in a pseudo-register. */
if (GET_MODE (to) != fmode
|| GET_CODE (to) != REG || REGNO (to) < FIRST_PSEUDO_REGISTER)
target = gen_reg_rtx (fmode);
/* Convert as signed integer to floating. */
expand_float (target, from, 0);
/* If FROM is negative (and therefore TO is negative),
correct its value by 2**bitwidth. */
do_pending_stack_adjust ();
emit_cmp_insn (from, const0_rtx, GE, NULL_RTX, GET_MODE (from), 0, 0);
emit_jump_insn (gen_bge (label));
/* On SCO 3.2.1, ldexp rejects values outside [0.5, 1).
Rather than setting up a dconst_dot_5, let's hope SCO
fixes the bug. */
offset = REAL_VALUE_LDEXP (dconst1, GET_MODE_BITSIZE (GET_MODE (from)));
temp = expand_binop (fmode, add_optab, target,
CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
target, 0, OPTAB_LIB_WIDEN);
if (temp != target)
emit_move_insn (target, temp);
do_pending_stack_adjust ();
emit_label (label);
goto done;
}
#endif
/* No hardware instruction available; call a library routine to convert from
SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */
{
rtx libfcn;
rtx insns;
rtx value;
to = protect_from_queue (to, 1);
from = protect_from_queue (from, 0);
if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
from = convert_to_mode (SImode, from, unsignedp);
if (flag_force_mem)
from = force_not_mem (from);
if (GET_MODE (to) == SFmode)
{
if (GET_MODE (from) == SImode)
libfcn = floatsisf_libfunc;
else if (GET_MODE (from) == DImode)
libfcn = floatdisf_libfunc;
else if (GET_MODE (from) == TImode)
libfcn = floattisf_libfunc;
else
abort ();
}
else if (GET_MODE (to) == DFmode)
{
if (GET_MODE (from) == SImode)
libfcn = floatsidf_libfunc;
else if (GET_MODE (from) == DImode)
libfcn = floatdidf_libfunc;
else if (GET_MODE (from) == TImode)
libfcn = floattidf_libfunc;
else
abort ();
}
else if (GET_MODE (to) == XFmode)
{
if (GET_MODE (from) == SImode)
libfcn = floatsixf_libfunc;
else if (GET_MODE (from) == DImode)
libfcn = floatdixf_libfunc;
else if (GET_MODE (from) == TImode)
libfcn = floattixf_libfunc;
else
abort ();
}
else if (GET_MODE (to) == TFmode)
{
if (GET_MODE (from) == SImode)
libfcn = floatsitf_libfunc;
else if (GET_MODE (from) == DImode)
libfcn = floatditf_libfunc;
else if (GET_MODE (from) == TImode)
libfcn = floattitf_libfunc;
else
abort ();
}
else
abort ();
start_sequence ();
value = emit_library_call_value (libfcn, NULL_RTX, 1,
GET_MODE (to),
1, from, GET_MODE (from));
insns = get_insns ();
end_sequence ();
emit_libcall_block (insns, target, value,
gen_rtx (FLOAT, GET_MODE (to), from));
}
done:
/* Copy result to requested destination
if we have been computing in a temp location. */
if (target != to)
{
if (GET_MODE (target) == GET_MODE (to))
emit_move_insn (to, target);
else
convert_move (to, target, 0);
}
}
/* expand_fix: generate code to convert FROM to fixed point
and store in TO. FROM must be floating point. */
static rtx
ftruncify (x)
rtx x;
{
rtx temp = gen_reg_rtx (GET_MODE (x));
return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0);
}
void
expand_fix (to, from, unsignedp)
register rtx to, from;
int unsignedp;
{
enum insn_code icode;
register rtx target = to;
enum machine_mode fmode, imode;
int must_trunc = 0;
rtx libfcn = 0;
/* We first try to find a pair of modes, one real and one integer, at
least as wide as FROM and TO, respectively, in which we can open-code
this conversion. If the integer mode is wider than the mode of TO,
we can do the conversion either signed or unsigned. */
for (imode = GET_MODE (to); imode != VOIDmode;
imode = GET_MODE_WIDER_MODE (imode))
for (fmode = GET_MODE (from); fmode != VOIDmode;
fmode = GET_MODE_WIDER_MODE (fmode))
{
int doing_unsigned = unsignedp;
icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
if (icode != CODE_FOR_nothing)
{
to = protect_from_queue (to, 1);
from = protect_from_queue (from, 0);
if (fmode != GET_MODE (from))
from = convert_to_mode (fmode, from, 0);
if (must_trunc)
from = ftruncify (from);
if (imode != GET_MODE (to))
target = gen_reg_rtx (imode);
emit_unop_insn (icode, target, from,
doing_unsigned ? UNSIGNED_FIX : FIX);
if (target != to)
convert_move (to, target, unsignedp);
return;
}
}
#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
/* For an unsigned conversion, there is one more way to do it.
If we have a signed conversion, we generate code that compares
the real value to the largest representable positive number. If if
is smaller, the conversion is done normally. Otherwise, subtract
one plus the highest signed number, convert, and add it back.
We only need to check all real modes, since we know we didn't find
anything with a wider integer mode. */
if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
for (fmode = GET_MODE (from); fmode != VOIDmode;
fmode = GET_MODE_WIDER_MODE (fmode))
/* Make sure we won't lose significant bits doing this. */
if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))
&& CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
&must_trunc))
{
int bitsize;
REAL_VALUE_TYPE offset;
rtx limit, lab1, lab2, insn;
bitsize = GET_MODE_BITSIZE (GET_MODE (to));
offset = REAL_VALUE_LDEXP (dconst1, bitsize - 1);
limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
lab1 = gen_label_rtx ();
lab2 = gen_label_rtx ();
emit_queue ();
to = protect_from_queue (to, 1);
from = protect_from_queue (from, 0);
if (flag_force_mem)
from = force_not_mem (from);
if (fmode != GET_MODE (from))
from = convert_to_mode (fmode, from, 0);
/* See if we need to do the subtraction. */
do_pending_stack_adjust ();
emit_cmp_insn (from, limit, GE, NULL_RTX, GET_MODE (from), 0, 0);
emit_jump_insn (gen_bge (lab1));
/* If not, do the signed "fix" and branch around fixup code. */
expand_fix (to, from, 0);
emit_jump_insn (gen_jump (lab2));
emit_barrier ();
/* Otherwise, subtract 2**(N-1), convert to signed number,
then add 2**(N-1). Do the addition using XOR since this
will often generate better code. */
emit_label (lab1);
target = expand_binop (GET_MODE (from), sub_optab, from, limit,
NULL_RTX, 0, OPTAB_LIB_WIDEN);
expand_fix (to, target, 0);
target = expand_binop (GET_MODE (to), xor_optab, to,
GEN_INT ((HOST_WIDE_INT) 1 << (bitsize - 1)),
to, 1, OPTAB_LIB_WIDEN);
if (target != to)
emit_move_insn (to, target);
emit_label (lab2);
/* Make a place for a REG_NOTE and add it. */
insn = emit_move_insn (to, to);
REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL,
gen_rtx (UNSIGNED_FIX, GET_MODE (to),
copy_rtx (from)),
REG_NOTES (insn));
return;
}
#endif
/* We can't do it with an insn, so use a library call. But first ensure
that the mode of TO is at least as wide as SImode, since those are the
only library calls we know about. */
if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
{
target = gen_reg_rtx (SImode);
expand_fix (target, from, unsignedp);
}
else if (GET_MODE (from) == SFmode)
{
if (GET_MODE (to) == SImode)
libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc;
else if (GET_MODE (to) == DImode)
libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc;
else if (GET_MODE (to) == TImode)
libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc;
else
abort ();
}
else if (GET_MODE (from) == DFmode)
{
if (GET_MODE (to) == SImode)
libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc;
else if (GET_MODE (to) == DImode)
libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc;
else if (GET_MODE (to) == TImode)
libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc;
else
abort ();
}
else if (GET_MODE (from) == XFmode)
{
if (GET_MODE (to) == SImode)
libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc;
else if (GET_MODE (to) == DImode)
libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc;
else if (GET_MODE (to) == TImode)
libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc;
else
abort ();
}
else if (GET_MODE (from) == TFmode)
{
if (GET_MODE (to) == SImode)
libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc;
else if (GET_MODE (to) == DImode)
libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc;
else if (GET_MODE (to) == TImode)
libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc;
else
abort ();
}
else
abort ();
if (libfcn)
{
rtx insns;
rtx value;
to = protect_from_queue (to, 1);
from = protect_from_queue (from, 0);
if (flag_force_mem)
from = force_not_mem (from);
start_sequence ();
value = emit_library_call_value (libfcn, NULL_RTX, 1, GET_MODE (to),
1, from, GET_MODE (from));
insns = get_insns ();
end_sequence ();
emit_libcall_block (insns, target, value,
gen_rtx (unsignedp ? UNSIGNED_FIX : FIX,
GET_MODE (to), from));
}
if (GET_MODE (to) == GET_MODE (target))
emit_move_insn (to, target);
else
convert_move (to, target, 0);
}
static optab
init_optab (code)
enum rtx_code code;
{
int i;
optab op = (optab) xmalloc (sizeof (struct optab));
op->code = code;
for (i = 0; i < NUM_MACHINE_MODES; i++)
{
op->handlers[i].insn_code = CODE_FOR_nothing;
op->handlers[i].libfunc = 0;
}
if (code != UNKNOWN)
code_to_optab[(int) code] = op;
return op;
}
/* Initialize the libfunc fields of an entire group of entries in some
optab. Each entry is set equal to a string consisting of a leading
pair of underscores followed by a generic operation name followed by
a mode name (downshifted to lower case) followed by a single character
representing the number of operands for the given operation (which is
usually one of the characters '2', '3', or '4').
OPTABLE is the table in which libfunc fields are to be initialized.
FIRST_MODE is the first machine mode index in the given optab to
initialize.
LAST_MODE is the last machine mode index in the given optab to
initialize.
OPNAME is the generic (string) name of the operation.
SUFFIX is the character which specifies the number of operands for
the given generic operation.
*/
static void
init_libfuncs (optable, first_mode, last_mode, opname, suffix)
register optab optable;
register int first_mode;
register int last_mode;
register char *opname;
register char suffix;
{
register int mode;
register unsigned opname_len = strlen (opname);
for (mode = first_mode; (int) mode <= (int) last_mode;
mode = (enum machine_mode) ((int) mode + 1))
{
register char *mname = mode_name[(int) mode];
register unsigned mname_len = strlen (mname);
register char *libfunc_name
= (char *) xmalloc (2 + opname_len + mname_len + 1 + 1);
register char *p;
register char *q;
p = libfunc_name;
*p++ = '_';
*p++ = '_';
for (q = opname; *q; )
*p++ = *q++;
for (q = mname; *q; q++)
*p++ = tolower (*q);
*p++ = suffix;
*p++ = '\0';
optable->handlers[(int) mode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, libfunc_name);
}
}
/* Initialize the libfunc fields of an entire group of entries in some
optab which correspond to all integer mode operations. The parameters
have the same meaning as similarly named ones for the `init_libfuncs'
routine. (See above). */
static void
init_integral_libfuncs (optable, opname, suffix)
register optab optable;
register char *opname;
register char suffix;
{
init_libfuncs (optable, SImode, TImode, opname, suffix);
}
/* Initialize the libfunc fields of an entire group of entries in some
optab which correspond to all real mode operations. The parameters
have the same meaning as similarly named ones for the `init_libfuncs'
routine. (See above). */
static void
init_floating_libfuncs (optable, opname, suffix)
register optab optable;
register char *opname;
register char suffix;
{
init_libfuncs (optable, SFmode, TFmode, opname, suffix);
}
/* Initialize the libfunc fields of an entire group of entries in some
optab which correspond to all complex floating modes. The parameters
have the same meaning as similarly named ones for the `init_libfuncs'
routine. (See above). */
static void
init_complex_libfuncs (optable, opname, suffix)
register optab optable;
register char *opname;
register char suffix;
{
init_libfuncs (optable, SCmode, TCmode, opname, suffix);
}
/* Call this once to initialize the contents of the optabs
appropriately for the current target machine. */
void
init_optabs ()
{
int i, j;
enum insn_code *p;
/* Start by initializing all tables to contain CODE_FOR_nothing. */
for (p = fixtab[0][0];
p < fixtab[0][0] + sizeof fixtab / sizeof (fixtab[0][0][0]);
p++)
*p = CODE_FOR_nothing;
for (p = fixtrunctab[0][0];
p < fixtrunctab[0][0] + sizeof fixtrunctab / sizeof (fixtrunctab[0][0][0]);
p++)
*p = CODE_FOR_nothing;
for (p = floattab[0][0];
p < floattab[0][0] + sizeof floattab / sizeof (floattab[0][0][0]);
p++)
*p = CODE_FOR_nothing;
for (p = extendtab[0][0];
p < extendtab[0][0] + sizeof extendtab / sizeof extendtab[0][0][0];
p++)
*p = CODE_FOR_nothing;
for (i = 0; i < NUM_RTX_CODE; i++)
setcc_gen_code[i] = CODE_FOR_nothing;
add_optab = init_optab (PLUS);
sub_optab = init_optab (MINUS);
smul_optab = init_optab (MULT);
smul_highpart_optab = init_optab (UNKNOWN);
umul_highpart_optab = init_optab (UNKNOWN);
smul_widen_optab = init_optab (UNKNOWN);
umul_widen_optab = init_optab (UNKNOWN);
sdiv_optab = init_optab (DIV);
sdivmod_optab = init_optab (UNKNOWN);
udiv_optab = init_optab (UDIV);
udivmod_optab = init_optab (UNKNOWN);
smod_optab = init_optab (MOD);
umod_optab = init_optab (UMOD);
flodiv_optab = init_optab (DIV);
ftrunc_optab = init_optab (UNKNOWN);
and_optab = init_optab (AND);
ior_optab = init_optab (IOR);
xor_optab = init_optab (XOR);
ashl_optab = init_optab (ASHIFT);
ashr_optab = init_optab (ASHIFTRT);
lshr_optab = init_optab (LSHIFTRT);
rotl_optab = init_optab (ROTATE);
rotr_optab = init_optab (ROTATERT);
smin_optab = init_optab (SMIN);
smax_optab = init_optab (SMAX);
umin_optab = init_optab (UMIN);
umax_optab = init_optab (UMAX);
mov_optab = init_optab (UNKNOWN);
movstrict_optab = init_optab (UNKNOWN);
cmp_optab = init_optab (UNKNOWN);
ucmp_optab = init_optab (UNKNOWN);
tst_optab = init_optab (UNKNOWN);
neg_optab = init_optab (NEG);
abs_optab = init_optab (ABS);
one_cmpl_optab = init_optab (NOT);
ffs_optab = init_optab (FFS);
sqrt_optab = init_optab (SQRT);
sin_optab = init_optab (UNKNOWN);
cos_optab = init_optab (UNKNOWN);
strlen_optab = init_optab (UNKNOWN);
for (i = 0; i < NUM_MACHINE_MODES; i++)
{
movstr_optab[i] = CODE_FOR_nothing;
#ifdef HAVE_SECONDARY_RELOADS
reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
#endif
}
/* Fill in the optabs with the insns we support. */
init_all_optabs ();
#ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
/* This flag says the same insns that convert to a signed fixnum
also convert validly to an unsigned one. */
for (i = 0; i < NUM_MACHINE_MODES; i++)
for (j = 0; j < NUM_MACHINE_MODES; j++)
fixtrunctab[i][j][1] = fixtrunctab[i][j][0];
#endif
#ifdef EXTRA_CC_MODES
init_mov_optab ();
#endif
/* Initialize the optabs with the names of the library functions. */
init_integral_libfuncs (add_optab, "add", '3');
init_floating_libfuncs (add_optab, "add", '3');
init_integral_libfuncs (sub_optab, "sub", '3');
init_floating_libfuncs (sub_optab, "sub", '3');
init_integral_libfuncs (smul_optab, "mul", '3');
init_floating_libfuncs (smul_optab, "mul", '3');
init_integral_libfuncs (sdiv_optab, "div", '3');
init_integral_libfuncs (udiv_optab, "udiv", '3');
init_integral_libfuncs (sdivmod_optab, "divmod", '4');
init_integral_libfuncs (udivmod_optab, "udivmod", '4');
init_integral_libfuncs (smod_optab, "mod", '3');
init_integral_libfuncs (umod_optab, "umod", '3');
init_floating_libfuncs (flodiv_optab, "div", '3');
init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
init_integral_libfuncs (and_optab, "and", '3');
init_integral_libfuncs (ior_optab, "ior", '3');
init_integral_libfuncs (xor_optab, "xor", '3');
init_integral_libfuncs (ashl_optab, "ashl", '3');
init_integral_libfuncs (ashr_optab, "ashr", '3');
init_integral_libfuncs (lshr_optab, "lshr", '3');
init_integral_libfuncs (smin_optab, "min", '3');
init_floating_libfuncs (smin_optab, "min", '3');
init_integral_libfuncs (smax_optab, "max", '3');
init_floating_libfuncs (smax_optab, "max", '3');
init_integral_libfuncs (umin_optab, "umin", '3');
init_integral_libfuncs (umax_optab, "umax", '3');
init_integral_libfuncs (neg_optab, "neg", '2');
init_floating_libfuncs (neg_optab, "neg", '2');
init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
init_integral_libfuncs (ffs_optab, "ffs", '2');
/* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
init_integral_libfuncs (cmp_optab, "cmp", '2');
init_integral_libfuncs (ucmp_optab, "ucmp", '2');
init_floating_libfuncs (cmp_optab, "cmp", '2');
#ifdef MULSI3_LIBCALL
smul_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, MULSI3_LIBCALL);
#endif
#ifdef MULDI3_LIBCALL
smul_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, MULDI3_LIBCALL);
#endif
#ifdef MULTI3_LIBCALL
smul_optab->handlers[(int) TImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, MULTI3_LIBCALL);
#endif
#ifdef DIVSI3_LIBCALL
sdiv_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, DIVSI3_LIBCALL);
#endif
#ifdef DIVDI3_LIBCALL
sdiv_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, DIVDI3_LIBCALL);
#endif
#ifdef DIVTI3_LIBCALL
sdiv_optab->handlers[(int) TImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, DIVTI3_LIBCALL);
#endif
#ifdef UDIVSI3_LIBCALL
udiv_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, UDIVSI3_LIBCALL);
#endif
#ifdef UDIVDI3_LIBCALL
udiv_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, UDIVDI3_LIBCALL);
#endif
#ifdef UDIVTI3_LIBCALL
udiv_optab->handlers[(int) TImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, UDIVTI3_LIBCALL);
#endif
#ifdef MODSI3_LIBCALL
smod_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, MODSI3_LIBCALL);
#endif
#ifdef MODDI3_LIBCALL
smod_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, MODDI3_LIBCALL);
#endif
#ifdef MODTI3_LIBCALL
smod_optab->handlers[(int) TImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, MODTI3_LIBCALL);
#endif
#ifdef UMODSI3_LIBCALL
umod_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, UMODSI3_LIBCALL);
#endif
#ifdef UMODDI3_LIBCALL
umod_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, UMODDI3_LIBCALL);
#endif
#ifdef UMODTI3_LIBCALL
umod_optab->handlers[(int) TImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, UMODTI3_LIBCALL);
#endif
/* Define library calls for quad FP instructions */
#ifdef ADDTF3_LIBCALL
add_optab->handlers[(int) TFmode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, ADDTF3_LIBCALL);
#endif
#ifdef SUBTF3_LIBCALL
sub_optab->handlers[(int) TFmode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, SUBTF3_LIBCALL);
#endif
#ifdef MULTF3_LIBCALL
smul_optab->handlers[(int) TFmode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, MULTF3_LIBCALL);
#endif
#ifdef DIVTF3_LIBCALL
flodiv_optab->handlers[(int) TFmode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, DIVTF3_LIBCALL);
#endif
#ifdef SQRTTF2_LIBCALL
sqrt_optab->handlers[(int) TFmode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, SQRTTF2_LIBCALL);
#endif
/* Use cabs for DC complex abs, since systems generally have cabs.
Don't define any libcall for SCmode, so that cabs will be used. */
abs_optab->handlers[(int) DCmode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "cabs");
/* The ffs function operates on `int'. */
#ifndef INT_TYPE_SIZE
#define INT_TYPE_SIZE BITS_PER_WORD
#endif
ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)] .libfunc
= gen_rtx (SYMBOL_REF, Pmode, "ffs");
extendsfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfdf2");
extendsfxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfxf2");
extendsftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsftf2");
extenddfxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extenddfxf2");
extenddftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extenddftf2");
truncdfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncdfsf2");
truncxfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncxfsf2");
trunctfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__trunctfsf2");
truncxfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncxfdf2");
trunctfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__trunctfdf2");
memcpy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcpy");
bcopy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bcopy");
memcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcmp");
bcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gcc_bcmp");
memset_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memset");
bzero_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bzero");
eqhf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqhf2");
nehf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nehf2");
gthf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gthf2");
gehf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gehf2");
lthf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lthf2");
lehf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lehf2");
eqsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqsf2");
nesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nesf2");
gtsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtsf2");
gesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gesf2");
ltsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltsf2");
lesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lesf2");
eqdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqdf2");
nedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nedf2");
gtdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtdf2");
gedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gedf2");
ltdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltdf2");
ledf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ledf2");
eqxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqxf2");
nexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nexf2");
gtxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtxf2");
gexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gexf2");
ltxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltxf2");
lexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lexf2");
eqtf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqtf2");
netf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__netf2");
gttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gttf2");
getf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__getf2");
lttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lttf2");
letf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__letf2");
/* Define library calls for quad FP instructions */
#ifdef EQTF2_LIBCALL
eqtf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, EQTF2_LIBCALL);
#endif
#ifdef NETF2_LIBCALL
netf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, NETF2_LIBCALL);
#endif
#ifdef GTTF2_LIBCALL
gttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, GTTF2_LIBCALL);
#endif
#ifdef GETF2_LIBCALL
getf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, GETF2_LIBCALL);
#endif
#ifdef LTTF2_LIBCALL
lttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, LTTF2_LIBCALL);
#endif
#ifdef LETF2_LIBCALL
letf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, LETF2_LIBCALL);
#endif
floatsisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsisf");
floatdisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdisf");
floattisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattisf");
floatsidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsidf");
floatdidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdidf");
floattidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattidf");
floatsixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsixf");
floatdixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdixf");
floattixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattixf");
floatsitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsitf");
floatditf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatditf");
floattitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattitf");
fixsfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfsi");
fixsfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfdi");
fixsfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfti");
fixdfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfsi");
fixdfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfdi");
fixdfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfti");
fixxfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfsi");
fixxfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfdi");
fixxfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfti");
fixtfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfsi");
fixtfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfdi");
fixtfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfti");
fixunssfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfsi");
fixunssfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfdi");
fixunssfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfti");
fixunsdfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfsi");
fixunsdfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfdi");
fixunsdfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfti");
fixunsxfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfsi");
fixunsxfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfdi");
fixunsxfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfti");
fixunstfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfsi");
fixunstfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfdi");
fixunstfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfti");
/* Define library calls for quad FP instructions */
#ifdef TRUNCTFSF2_LIBCALL
trunctfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, TRUNCTFSF2_LIBCALL);
#endif
#ifdef TRUNCTFDF2_LIBCALL
trunctfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, TRUNCTFDF2_LIBCALL);
#endif
#ifdef EXTENDSFTF2_LIBCALL
extendsftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, EXTENDSFTF2_LIBCALL);
#endif
#ifdef EXTENDDFTF2_LIBCALL
extenddftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, EXTENDDFTF2_LIBCALL);
#endif
#ifdef FLOATSITF2_LIBCALL
floatsitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, FLOATSITF2_LIBCALL);
#endif
#ifdef FIX_TRUNCTFSI2_LIBCALL
fixtfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, FIX_TRUNCTFSI2_LIBCALL);
#endif
#ifdef FIXUNS_TRUNCTFSI2_LIBCALL
fixunstfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, FIXUNS_TRUNCTFSI2_LIBCALL);
#endif
#ifdef INIT_TARGET_OPTABS
/* Allow the target to add more libcalls or rename some, etc. */
INIT_TARGET_OPTABS;
#endif
}
#ifdef BROKEN_LDEXP
/* SCO 3.2 apparently has a broken ldexp. */
double
ldexp(x,n)
double x;
int n;
{
if (n > 0)
while (n--)
x *= 2;
return x;
}
#endif /* BROKEN_LDEXP */