freebsd-dev/contrib/libstdc++/stl/stl_slist.h
1999-10-16 03:52:48 +00:00

946 lines
28 KiB
C++

/*
* Copyright (c) 1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_SLIST_H
#define __SGI_STL_INTERNAL_SLIST_H
__STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#pragma set woff 1375
#endif
struct _Slist_node_base
{
_Slist_node_base* _M_next;
};
inline _Slist_node_base*
__slist_make_link(_Slist_node_base* __prev_node,
_Slist_node_base* __new_node)
{
__new_node->_M_next = __prev_node->_M_next;
__prev_node->_M_next = __new_node;
return __new_node;
}
inline _Slist_node_base*
__slist_previous(_Slist_node_base* __head,
const _Slist_node_base* __node)
{
while (__head && __head->_M_next != __node)
__head = __head->_M_next;
return __head;
}
inline const _Slist_node_base*
__slist_previous(const _Slist_node_base* __head,
const _Slist_node_base* __node)
{
while (__head && __head->_M_next != __node)
__head = __head->_M_next;
return __head;
}
inline void __slist_splice_after(_Slist_node_base* __pos,
_Slist_node_base* __before_first,
_Slist_node_base* __before_last)
{
if (__pos != __before_first && __pos != __before_last) {
_Slist_node_base* __first = __before_first->_M_next;
_Slist_node_base* __after = __pos->_M_next;
__before_first->_M_next = __before_last->_M_next;
__pos->_M_next = __first;
__before_last->_M_next = __after;
}
}
inline _Slist_node_base* __slist_reverse(_Slist_node_base* __node)
{
_Slist_node_base* __result = __node;
__node = __node->_M_next;
__result->_M_next = 0;
while(__node) {
_Slist_node_base* __next = __node->_M_next;
__node->_M_next = __result;
__result = __node;
__node = __next;
}
return __result;
}
inline size_t __slist_size(_Slist_node_base* __node)
{
size_t __result = 0;
for ( ; __node != 0; __node = __node->_M_next)
++__result;
return __result;
}
template <class _Tp>
struct _Slist_node : public _Slist_node_base
{
_Tp _M_data;
};
struct _Slist_iterator_base
{
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef forward_iterator_tag iterator_category;
_Slist_node_base* _M_node;
_Slist_iterator_base(_Slist_node_base* __x) : _M_node(__x) {}
void _M_incr() { _M_node = _M_node->_M_next; }
bool operator==(const _Slist_iterator_base& __x) const {
return _M_node == __x._M_node;
}
bool operator!=(const _Slist_iterator_base& __x) const {
return _M_node != __x._M_node;
}
};
template <class _Tp, class _Ref, class _Ptr>
struct _Slist_iterator : public _Slist_iterator_base
{
typedef _Slist_iterator<_Tp, _Tp&, _Tp*> iterator;
typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
typedef _Slist_iterator<_Tp, _Ref, _Ptr> _Self;
typedef _Tp value_type;
typedef _Ptr pointer;
typedef _Ref reference;
typedef _Slist_node<_Tp> _Node;
_Slist_iterator(_Node* __x) : _Slist_iterator_base(__x) {}
_Slist_iterator() : _Slist_iterator_base(0) {}
_Slist_iterator(const iterator& __x) : _Slist_iterator_base(__x._M_node) {}
reference operator*() const { return ((_Node*) _M_node)->_M_data; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
_Self& operator++()
{
_M_incr();
return *this;
}
_Self operator++(int)
{
_Self __tmp = *this;
_M_incr();
return __tmp;
}
};
#ifndef __STL_CLASS_PARTIAL_SPECIALIZATION
inline ptrdiff_t* distance_type(const _Slist_iterator_base&) {
return 0;
}
inline forward_iterator_tag iterator_category(const _Slist_iterator_base&) {
return forward_iterator_tag();
}
template <class _Tp, class _Ref, class _Ptr>
inline _Tp* value_type(const _Slist_iterator<_Tp, _Ref, _Ptr>&) {
return 0;
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
// Base class that encapsulates details of allocators. Three cases:
// an ordinary standard-conforming allocator, a standard-conforming
// allocator with no non-static data, and an SGI-style allocator.
// This complexity is necessary only because we're worrying about backward
// compatibility and because we want to avoid wasting storage on an
// allocator instance if it isn't necessary.
#ifdef __STL_USE_STD_ALLOCATORS
// Base for general standard-conforming allocators.
template <class _Tp, class _Allocator, bool _IsStatic>
class _Slist_alloc_base {
public:
typedef typename _Alloc_traits<_Tp,_Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return _M_node_allocator; }
_Slist_alloc_base(const allocator_type& __a) : _M_node_allocator(__a) {}
protected:
_Slist_node<_Tp>* _M_get_node()
{ return _M_node_allocator.allocate(1); }
void _M_put_node(_Slist_node<_Tp>* __p)
{ _M_node_allocator.deallocate(__p, 1); }
protected:
typename _Alloc_traits<_Slist_node<_Tp>,_Allocator>::allocator_type
_M_node_allocator;
_Slist_node_base _M_head;
};
// Specialization for instanceless allocators.
template <class _Tp, class _Allocator>
class _Slist_alloc_base<_Tp,_Allocator, true> {
public:
typedef typename _Alloc_traits<_Tp,_Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Slist_alloc_base(const allocator_type&) {}
protected:
typedef typename _Alloc_traits<_Slist_node<_Tp>, _Allocator>::_Alloc_type
_Alloc_type;
_Slist_node<_Tp>* _M_get_node() { return _Alloc_type::allocate(1); }
void _M_put_node(_Slist_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); }
protected:
_Slist_node_base _M_head;
};
template <class _Tp, class _Alloc>
struct _Slist_base
: public _Slist_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
typedef _Slist_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
_Base;
typedef typename _Base::allocator_type allocator_type;
_Slist_base(const allocator_type& __a) : _Base(__a) { _M_head._M_next = 0; }
~_Slist_base() { _M_erase_after(&_M_head, 0); }
protected:
_Slist_node_base* _M_erase_after(_Slist_node_base* __pos)
{
_Slist_node<_Tp>* __next = (_Slist_node<_Tp>*) (__pos->_M_next);
_Slist_node_base* __next_next = __next->_M_next;
__pos->_M_next = __next_next;
destroy(&__next->_M_data);
_M_put_node(__next);
return __next_next;
}
_Slist_node_base* _M_erase_after(_Slist_node_base*, _Slist_node_base*);
};
#else /* __STL_USE_STD_ALLOCATORS */
template <class _Tp, class _Alloc>
struct _Slist_base {
typedef _Alloc allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Slist_base(const allocator_type&) { _M_head._M_next = 0; }
~_Slist_base() { _M_erase_after(&_M_head, 0); }
protected:
typedef simple_alloc<_Slist_node<_Tp>, _Alloc> _Alloc_type;
_Slist_node<_Tp>* _M_get_node() { return _Alloc_type::allocate(1); }
void _M_put_node(_Slist_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); }
_Slist_node_base* _M_erase_after(_Slist_node_base* __pos)
{
_Slist_node<_Tp>* __next = (_Slist_node<_Tp>*) (__pos->_M_next);
_Slist_node_base* __next_next = __next->_M_next;
__pos->_M_next = __next_next;
destroy(&__next->_M_data);
_M_put_node(__next);
return __next_next;
}
_Slist_node_base* _M_erase_after(_Slist_node_base*, _Slist_node_base*);
protected:
_Slist_node_base _M_head;
};
#endif /* __STL_USE_STD_ALLOCATORS */
template <class _Tp, class _Alloc>
_Slist_node_base*
_Slist_base<_Tp,_Alloc>::_M_erase_after(_Slist_node_base* __before_first,
_Slist_node_base* __last_node) {
_Slist_node<_Tp>* __cur = (_Slist_node<_Tp>*) (__before_first->_M_next);
while (__cur != __last_node) {
_Slist_node<_Tp>* __tmp = __cur;
__cur = (_Slist_node<_Tp>*) __cur->_M_next;
destroy(&__tmp->_M_data);
_M_put_node(__tmp);
}
__before_first->_M_next = __last_node;
return __last_node;
}
template <class _Tp, class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >
class slist : private _Slist_base<_Tp,_Alloc>
{
private:
typedef _Slist_base<_Tp,_Alloc> _Base;
public:
typedef _Tp value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Slist_iterator<_Tp, _Tp&, _Tp*> iterator;
typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
typedef typename _Base::allocator_type allocator_type;
allocator_type get_allocator() const { return _Base::get_allocator(); }
private:
typedef _Slist_node<_Tp> _Node;
typedef _Slist_node_base _Node_base;
typedef _Slist_iterator_base _Iterator_base;
_Node* _M_create_node(const value_type& __x) {
_Node* __node = _M_get_node();
__STL_TRY {
construct(&__node->_M_data, __x);
__node->_M_next = 0;
}
__STL_UNWIND(_M_put_node(__node));
return __node;
}
_Node* _M_create_node() {
_Node* __node = _M_get_node();
__STL_TRY {
construct(&__node->_M_data);
__node->_M_next = 0;
}
__STL_UNWIND(_M_put_node(__node));
return __node;
}
private:
#ifdef __STL_USE_NAMESPACES
using _Base::_M_get_node;
using _Base::_M_put_node;
using _Base::_M_erase_after;
using _Base::_M_head;
#endif /* __STL_USE_NAMESPACES */
public:
explicit slist(const allocator_type& __a = allocator_type()) : _Base(__a) {}
slist(size_type __n, const value_type& __x,
const allocator_type& __a = allocator_type()) : _Base(__a)
{ _M_insert_after_fill(&_M_head, __n, __x); }
explicit slist(size_type __n) : _Base(allocator_type())
{ _M_insert_after_fill(&_M_head, __n, value_type()); }
#ifdef __STL_MEMBER_TEMPLATES
// We don't need any dispatching tricks here, because _M_insert_after_range
// already does them.
template <class _InputIterator>
slist(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type()) : _Base(__a)
{ _M_insert_after_range(&_M_head, __first, __last); }
#else /* __STL_MEMBER_TEMPLATES */
slist(const_iterator __first, const_iterator __last,
const allocator_type& __a = allocator_type()) : _Base(__a)
{ _M_insert_after_range(&_M_head, __first, __last); }
slist(const value_type* __first, const value_type* __last,
const allocator_type& __a = allocator_type()) : _Base(__a)
{ _M_insert_after_range(&_M_head, __first, __last); }
#endif /* __STL_MEMBER_TEMPLATES */
slist(const slist& __x) : _Base(__x.get_allocator())
{ _M_insert_after_range(&_M_head, __x.begin(), __x.end()); }
slist& operator= (const slist& __x);
~slist() {}
public:
// assign(), a generalized assignment member function. Two
// versions: one that takes a count, and one that takes a range.
// The range version is a member template, so we dispatch on whether
// or not the type is an integer.
void assign(size_type __n, const _Tp& __val);
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
void assign(_InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
template <class _Integer>
void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ assign((size_type) __n, (_Tp) __val); }
template <class _InputIterator>
void _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
__false_type);
#endif /* __STL_MEMBER_TEMPLATES */
public:
iterator begin() { return iterator((_Node*)_M_head._M_next); }
const_iterator begin() const
{ return const_iterator((_Node*)_M_head._M_next);}
iterator end() { return iterator(0); }
const_iterator end() const { return const_iterator(0); }
size_type size() const { return __slist_size(_M_head._M_next); }
size_type max_size() const { return size_type(-1); }
bool empty() const { return _M_head._M_next == 0; }
void swap(slist& __x) { __STD::swap(_M_head._M_next, __x._M_head._M_next); }
public:
friend bool operator== __STL_NULL_TMPL_ARGS (const slist<_Tp,_Alloc>& _SL1,
const slist<_Tp,_Alloc>& _SL2);
public:
reference front() { return ((_Node*) _M_head._M_next)->_M_data; }
const_reference front() const
{ return ((_Node*) _M_head._M_next)->_M_data; }
void push_front(const value_type& __x) {
__slist_make_link(&_M_head, _M_create_node(__x));
}
void push_front() { __slist_make_link(&_M_head, _M_create_node());}
void pop_front() {
_Node* __node = (_Node*) _M_head._M_next;
_M_head._M_next = __node->_M_next;
destroy(&__node->_M_data);
_M_put_node(__node);
}
iterator previous(const_iterator __pos) {
return iterator((_Node*) __slist_previous(&_M_head, __pos._M_node));
}
const_iterator previous(const_iterator __pos) const {
return const_iterator((_Node*) __slist_previous(&_M_head, __pos._M_node));
}
private:
_Node* _M_insert_after(_Node_base* __pos, const value_type& __x) {
return (_Node*) (__slist_make_link(__pos, _M_create_node(__x)));
}
_Node* _M_insert_after(_Node_base* __pos) {
return (_Node*) (__slist_make_link(__pos, _M_create_node()));
}
void _M_insert_after_fill(_Node_base* __pos,
size_type __n, const value_type& __x) {
for (size_type __i = 0; __i < __n; ++__i)
__pos = __slist_make_link(__pos, _M_create_node(__x));
}
#ifdef __STL_MEMBER_TEMPLATES
// Check whether it's an integral type. If so, it's not an iterator.
template <class _InIter>
void _M_insert_after_range(_Node_base* __pos,
_InIter __first, _InIter __last) {
typedef typename _Is_integer<_InIter>::_Integral _Integral;
_M_insert_after_range(__pos, __first, __last, _Integral());
}
template <class _Integer>
void _M_insert_after_range(_Node_base* __pos, _Integer __n, _Integer __x,
__true_type) {
_M_insert_after_fill(__pos, __n, __x);
}
template <class _InIter>
void _M_insert_after_range(_Node_base* __pos,
_InIter __first, _InIter __last,
__false_type) {
while (__first != __last) {
__pos = __slist_make_link(__pos, _M_create_node(*__first));
++__first;
}
}
#else /* __STL_MEMBER_TEMPLATES */
void _M_insert_after_range(_Node_base* __pos,
const_iterator __first, const_iterator __last) {
while (__first != __last) {
__pos = __slist_make_link(__pos, _M_create_node(*__first));
++__first;
}
}
void _M_insert_after_range(_Node_base* __pos,
const value_type* __first,
const value_type* __last) {
while (__first != __last) {
__pos = __slist_make_link(__pos, _M_create_node(*__first));
++__first;
}
}
#endif /* __STL_MEMBER_TEMPLATES */
public:
iterator insert_after(iterator __pos, const value_type& __x) {
return iterator(_M_insert_after(__pos._M_node, __x));
}
iterator insert_after(iterator __pos) {
return insert_after(__pos, value_type());
}
void insert_after(iterator __pos, size_type __n, const value_type& __x) {
_M_insert_after_fill(__pos._M_node, __n, __x);
}
#ifdef __STL_MEMBER_TEMPLATES
// We don't need any dispatching tricks here, because _M_insert_after_range
// already does them.
template <class _InIter>
void insert_after(iterator __pos, _InIter __first, _InIter __last) {
_M_insert_after_range(__pos._M_node, __first, __last);
}
#else /* __STL_MEMBER_TEMPLATES */
void insert_after(iterator __pos,
const_iterator __first, const_iterator __last) {
_M_insert_after_range(__pos._M_node, __first, __last);
}
void insert_after(iterator __pos,
const value_type* __first, const value_type* __last) {
_M_insert_after_range(__pos._M_node, __first, __last);
}
#endif /* __STL_MEMBER_TEMPLATES */
iterator insert(iterator __pos, const value_type& __x) {
return iterator(_M_insert_after(__slist_previous(&_M_head, __pos._M_node),
__x));
}
iterator insert(iterator __pos) {
return iterator(_M_insert_after(__slist_previous(&_M_head, __pos._M_node),
value_type()));
}
void insert(iterator __pos, size_type __n, const value_type& __x) {
_M_insert_after_fill(__slist_previous(&_M_head, __pos._M_node), __n, __x);
}
#ifdef __STL_MEMBER_TEMPLATES
// We don't need any dispatching tricks here, because _M_insert_after_range
// already does them.
template <class _InIter>
void insert(iterator __pos, _InIter __first, _InIter __last) {
_M_insert_after_range(__slist_previous(&_M_head, __pos._M_node),
__first, __last);
}
#else /* __STL_MEMBER_TEMPLATES */
void insert(iterator __pos, const_iterator __first, const_iterator __last) {
_M_insert_after_range(__slist_previous(&_M_head, __pos._M_node),
__first, __last);
}
void insert(iterator __pos, const value_type* __first,
const value_type* __last) {
_M_insert_after_range(__slist_previous(&_M_head, __pos._M_node),
__first, __last);
}
#endif /* __STL_MEMBER_TEMPLATES */
public:
iterator erase_after(iterator __pos) {
return iterator((_Node*) _M_erase_after(__pos._M_node));
}
iterator erase_after(iterator __before_first, iterator __last) {
return iterator((_Node*) _M_erase_after(__before_first._M_node,
__last._M_node));
}
iterator erase(iterator __pos) {
return (_Node*) _M_erase_after(__slist_previous(&_M_head,
__pos._M_node));
}
iterator erase(iterator __first, iterator __last) {
return (_Node*) _M_erase_after(
__slist_previous(&_M_head, __first._M_node), __last._M_node);
}
void resize(size_type new_size, const _Tp& __x);
void resize(size_type new_size) { resize(new_size, _Tp()); }
void clear() { _M_erase_after(&_M_head, 0); }
public:
// Moves the range [__before_first + 1, __before_last + 1) to *this,
// inserting it immediately after __pos. This is constant time.
void splice_after(iterator __pos,
iterator __before_first, iterator __before_last)
{
if (__before_first != __before_last)
__slist_splice_after(__pos._M_node, __before_first._M_node,
__before_last._M_node);
}
// Moves the element that follows __prev to *this, inserting it immediately
// after __pos. This is constant time.
void splice_after(iterator __pos, iterator __prev)
{
__slist_splice_after(__pos._M_node,
__prev._M_node, __prev._M_node->_M_next);
}
// Linear in distance(begin(), __pos), and linear in __x.size().
void splice(iterator __pos, slist& __x) {
if (__x._M_head._M_next)
__slist_splice_after(__slist_previous(&_M_head, __pos._M_node),
&__x._M_head, __slist_previous(&__x._M_head, 0));
}
// Linear in distance(begin(), __pos), and in distance(__x.begin(), __i).
void splice(iterator __pos, slist& __x, iterator __i) {
__slist_splice_after(__slist_previous(&_M_head, __pos._M_node),
__slist_previous(&__x._M_head, __i._M_node),
__i._M_node);
}
// Linear in distance(begin(), __pos), in distance(__x.begin(), __first),
// and in distance(__first, __last).
void splice(iterator __pos, slist& __x, iterator __first, iterator __last)
{
if (__first != __last)
__slist_splice_after(__slist_previous(&_M_head, __pos._M_node),
__slist_previous(&__x._M_head, __first._M_node),
__slist_previous(__first._M_node, __last._M_node));
}
public:
void reverse() {
if (_M_head._M_next)
_M_head._M_next = __slist_reverse(_M_head._M_next);
}
void remove(const _Tp& __val);
void unique();
void merge(slist& __x);
void sort();
#ifdef __STL_MEMBER_TEMPLATES
template <class _Predicate>
void remove_if(_Predicate __pred);
template <class _BinaryPredicate>
void unique(_BinaryPredicate __pred);
template <class _StrictWeakOrdering>
void merge(slist&, _StrictWeakOrdering);
template <class _StrictWeakOrdering>
void sort(_StrictWeakOrdering __comp);
#endif /* __STL_MEMBER_TEMPLATES */
};
template <class _Tp, class _Alloc>
slist<_Tp,_Alloc>& slist<_Tp,_Alloc>::operator=(const slist<_Tp,_Alloc>& __x)
{
if (&__x != this) {
_Node_base* __p1 = &_M_head;
_Node* __n1 = (_Node*) _M_head._M_next;
const _Node* __n2 = (const _Node*) __x._M_head._M_next;
while (__n1 && __n2) {
__n1->_M_data = __n2->_M_data;
__p1 = __n1;
__n1 = (_Node*) __n1->_M_next;
__n2 = (const _Node*) __n2->_M_next;
}
if (__n2 == 0)
_M_erase_after(__p1, 0);
else
_M_insert_after_range(__p1, const_iterator((_Node*)__n2),
const_iterator(0));
}
return *this;
}
template <class _Tp, class _Alloc>
void slist<_Tp, _Alloc>::assign(size_type __n, const _Tp& __val) {
_Node_base* __prev = &_M_head;
_Node* __node = (_Node*) _M_head._M_next;
for ( ; __node != 0 && __n > 0 ; --__n) {
__node->_M_data = __val;
__prev = __node;
__node = (_Node*) __node->_M_next;
}
if (__n > 0)
_M_insert_after_fill(__prev, __n, __val);
else
_M_erase_after(__prev, 0);
}
#ifdef __STL_MEMBER_TEMPLATES
template <class _Tp, class _Alloc> template <class _InputIter>
void
slist<_Tp, _Alloc>::_M_assign_dispatch(_InputIter __first, _InputIter __last,
__false_type)
{
_Node_base* __prev = &_M_head;
_Node* __node = (_Node*) _M_head._M_next;
while (__node != 0 && __first != __last) {
__node->_M_data = *__first;
__prev = __node;
__node = (_Node*) __node->_M_next;
++__first;
}
if (__first != __last)
_M_insert_after_range(__prev, __first, __last);
else
_M_erase_after(__prev, 0);
}
#endif /* __STL_MEMBER_TEMPLATES */
template <class _Tp, class _Alloc>
inline bool
operator==(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2)
{
typedef typename slist<_Tp,_Alloc>::_Node _Node;
_Node* __n1 = (_Node*) _SL1._M_head._M_next;
_Node* __n2 = (_Node*) _SL2._M_head._M_next;
while (__n1 && __n2 && __n1->_M_data == __n2->_M_data) {
__n1 = (_Node*) __n1->_M_next;
__n2 = (_Node*) __n2->_M_next;
}
return __n1 == 0 && __n2 == 0;
}
template <class _Tp, class _Alloc>
inline bool operator<(const slist<_Tp,_Alloc>& _SL1,
const slist<_Tp,_Alloc>& _SL2)
{
return lexicographical_compare(_SL1.begin(), _SL1.end(),
_SL2.begin(), _SL2.end());
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _Tp, class _Alloc>
inline void swap(slist<_Tp,_Alloc>& __x, slist<_Tp,_Alloc>& __y) {
__x.swap(__y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
template <class _Tp, class _Alloc>
void slist<_Tp,_Alloc>::resize(size_type __len, const _Tp& __x)
{
_Node_base* __cur = &_M_head;
while (__cur->_M_next != 0 && __len > 0) {
--__len;
__cur = __cur->_M_next;
}
if (__cur->_M_next)
_M_erase_after(__cur, 0);
else
_M_insert_after_fill(__cur, __len, __x);
}
template <class _Tp, class _Alloc>
void slist<_Tp,_Alloc>::remove(const _Tp& __val)
{
_Node_base* __cur = &_M_head;
while (__cur && __cur->_M_next) {
if (((_Node*) __cur->_M_next)->_M_data == __val)
_M_erase_after(__cur);
else
__cur = __cur->_M_next;
}
}
template <class _Tp, class _Alloc>
void slist<_Tp,_Alloc>::unique()
{
_Node_base* __cur = _M_head._M_next;
if (__cur) {
while (__cur->_M_next) {
if (((_Node*)__cur)->_M_data ==
((_Node*)(__cur->_M_next))->_M_data)
_M_erase_after(__cur);
else
__cur = __cur->_M_next;
}
}
}
template <class _Tp, class _Alloc>
void slist<_Tp,_Alloc>::merge(slist<_Tp,_Alloc>& __x)
{
_Node_base* __n1 = &_M_head;
while (__n1->_M_next && __x._M_head._M_next) {
if (((_Node*) __x._M_head._M_next)->_M_data <
((_Node*) __n1->_M_next)->_M_data)
__slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
__n1 = __n1->_M_next;
}
if (__x._M_head._M_next) {
__n1->_M_next = __x._M_head._M_next;
__x._M_head._M_next = 0;
}
}
template <class _Tp, class _Alloc>
void slist<_Tp,_Alloc>::sort()
{
if (_M_head._M_next && _M_head._M_next->_M_next) {
slist __carry;
slist __counter[64];
int __fill = 0;
while (!empty()) {
__slist_splice_after(&__carry._M_head, &_M_head, _M_head._M_next);
int __i = 0;
while (__i < __fill && !__counter[__i].empty()) {
__counter[__i].merge(__carry);
__carry.swap(__counter[__i]);
++__i;
}
__carry.swap(__counter[__i]);
if (__i == __fill)
++__fill;
}
for (int __i = 1; __i < __fill; ++__i)
__counter[__i].merge(__counter[__i-1]);
this->swap(__counter[__fill-1]);
}
}
#ifdef __STL_MEMBER_TEMPLATES
template <class _Tp, class _Alloc>
template <class _Predicate>
void slist<_Tp,_Alloc>::remove_if(_Predicate __pred)
{
_Node_base* __cur = &_M_head;
while (__cur->_M_next) {
if (__pred(((_Node*) __cur->_M_next)->_M_data))
_M_erase_after(__cur);
else
__cur = __cur->_M_next;
}
}
template <class _Tp, class _Alloc> template <class _BinaryPredicate>
void slist<_Tp,_Alloc>::unique(_BinaryPredicate __pred)
{
_Node* __cur = (_Node*) _M_head._M_next;
if (__cur) {
while (__cur->_M_next) {
if (__pred(((_Node*)__cur)->_M_data,
((_Node*)(__cur->_M_next))->_M_data))
_M_erase_after(__cur);
else
__cur = (_Node*) __cur->_M_next;
}
}
}
template <class _Tp, class _Alloc> template <class _StrictWeakOrdering>
void slist<_Tp,_Alloc>::merge(slist<_Tp,_Alloc>& __x,
_StrictWeakOrdering __comp)
{
_Node_base* __n1 = &_M_head;
while (__n1->_M_next && __x._M_head._M_next) {
if (__comp(((_Node*) __x._M_head._M_next)->_M_data,
((_Node*) __n1->_M_next)->_M_data))
__slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
__n1 = __n1->_M_next;
}
if (__x._M_head._M_next) {
__n1->_M_next = __x._M_head._M_next;
__x._M_head._M_next = 0;
}
}
template <class _Tp, class _Alloc> template <class _StrictWeakOrdering>
void slist<_Tp,_Alloc>::sort(_StrictWeakOrdering __comp)
{
if (_M_head._M_next && _M_head._M_next->_M_next) {
slist __carry;
slist __counter[64];
int __fill = 0;
while (!empty()) {
__slist_splice_after(&__carry._M_head, &_M_head, _M_head._M_next);
int __i = 0;
while (__i < __fill && !__counter[__i].empty()) {
__counter[__i].merge(__carry, __comp);
__carry.swap(__counter[__i]);
++__i;
}
__carry.swap(__counter[__i]);
if (__i == __fill)
++__fill;
}
for (int __i = 1; __i < __fill; ++__i)
__counter[__i].merge(__counter[__i-1], __comp);
this->swap(__counter[__fill-1]);
}
}
#endif /* __STL_MEMBER_TEMPLATES */
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#pragma reset woff 1375
#endif
__STL_END_NAMESPACE
#endif /* __SGI_STL_INTERNAL_SLIST_H */
// Local Variables:
// mode:C++
// End: