freebsd-dev/sys/sparc64/sparc64/vm_machdep.c
Konstantin Belousov b32ecf44bc Flip the semantic of M_NOWAIT to only require the allocation to not
sleep, and perform the page allocations with VM_ALLOC_SYSTEM
class. Previously, the allocation was also allowed to completely drain
the reserve of the free pages, being translated to VM_ALLOC_INTERRUPT
request class for vm_page_alloc() and similar functions.

Allow the caller of malloc* to request the 'deep drain' semantic by
providing M_USE_RESERVE flag, now translated to VM_ALLOC_INTERRUPT
class. Previously, it resulted in less aggressive VM_ALLOC_SYSTEM
allocation class.

Centralize the translation of the M_* malloc(9) flags in the single
inline function malloc2vm_flags().

Discussion started by:	"Sears, Steven" <Steven.Sears@netapp.com>
Reviewed by:	alc, mdf (previous version)
Tested by:	pho (previous version)
MFC after:	2 weeks
2012-11-14 20:01:40 +00:00

542 lines
13 KiB
C

/*-
* Copyright (c) 1982, 1986 The Regents of the University of California.
* Copyright (c) 1989, 1990 William Jolitz
* Copyright (c) 1994 John Dyson
* Copyright (c) 2001 Jake Burkholder.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department, and William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91
* Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
* from: FreeBSD: src/sys/i386/i386/vm_machdep.c,v 1.167 2001/07/12
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_pmap.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sysent.h>
#include <sys/sf_buf.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#include <sys/unistd.h>
#include <sys/vmmeter.h>
#include <dev/ofw/openfirm.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_param.h>
#include <vm/uma.h>
#include <vm/uma_int.h>
#include <machine/cache.h>
#include <machine/cpu.h>
#include <machine/fp.h>
#include <machine/frame.h>
#include <machine/fsr.h>
#include <machine/md_var.h>
#include <machine/ofw_machdep.h>
#include <machine/ofw_mem.h>
#include <machine/pcb.h>
#include <machine/tlb.h>
#include <machine/tstate.h>
#ifndef NSFBUFS
#define NSFBUFS (512 + maxusers * 16)
#endif
static void sf_buf_init(void *arg);
SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL);
/*
* Expanded sf_freelist head. Really an SLIST_HEAD() in disguise, with the
* sf_freelist head with the sf_lock mutex.
*/
static struct {
SLIST_HEAD(, sf_buf) sf_head;
struct mtx sf_lock;
} sf_freelist;
static u_int sf_buf_alloc_want;
PMAP_STATS_VAR(uma_nsmall_alloc);
PMAP_STATS_VAR(uma_nsmall_alloc_oc);
PMAP_STATS_VAR(uma_nsmall_free);
void
cpu_exit(struct thread *td)
{
struct proc *p;
p = td->td_proc;
p->p_md.md_sigtramp = NULL;
if (p->p_md.md_utrap != NULL) {
utrap_free(p->p_md.md_utrap);
p->p_md.md_utrap = NULL;
}
}
void
cpu_thread_exit(struct thread *td)
{
}
void
cpu_thread_clean(struct thread *td)
{
}
void
cpu_thread_alloc(struct thread *td)
{
struct pcb *pcb;
pcb = (struct pcb *)((td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
sizeof(struct pcb)) & ~0x3fUL);
pcb->pcb_nsaved = 0;
td->td_frame = (struct trapframe *)pcb - 1;
td->td_pcb = pcb;
}
void
cpu_thread_free(struct thread *td)
{
}
void
cpu_thread_swapin(struct thread *td)
{
}
void
cpu_thread_swapout(struct thread *td)
{
}
void
cpu_set_syscall_retval(struct thread *td, int error)
{
switch (error) {
case 0:
td->td_frame->tf_out[0] = td->td_retval[0];
td->td_frame->tf_out[1] = td->td_retval[1];
td->td_frame->tf_tstate &= ~TSTATE_XCC_C;
break;
case ERESTART:
/*
* Undo the tpc advancement we have done on syscall
* enter, we want to reexecute the system call.
*/
td->td_frame->tf_tpc = td->td_pcb->pcb_tpc;
td->td_frame->tf_tnpc -= 4;
break;
case EJUSTRETURN:
break;
default:
if (td->td_proc->p_sysent->sv_errsize) {
if (error >= td->td_proc->p_sysent->sv_errsize)
error = -1; /* XXX */
else
error = td->td_proc->p_sysent->sv_errtbl[error];
}
td->td_frame->tf_out[0] = error;
td->td_frame->tf_tstate |= TSTATE_XCC_C;
break;
}
}
void
cpu_set_upcall(struct thread *td, struct thread *td0)
{
struct trapframe *tf;
struct frame *fr;
struct pcb *pcb;
bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
pcb = td->td_pcb;
tf = td->td_frame;
fr = (struct frame *)tf - 1;
fr->fr_local[0] = (u_long)fork_return;
fr->fr_local[1] = (u_long)td;
fr->fr_local[2] = (u_long)tf;
pcb->pcb_pc = (u_long)fork_trampoline - 8;
pcb->pcb_sp = (u_long)fr - SPOFF;
/* Setup to release the spin count in fork_exit(). */
td->td_md.md_spinlock_count = 1;
td->td_md.md_saved_pil = 0;
}
void
cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
stack_t *stack)
{
struct trapframe *tf;
uint64_t sp;
if (td == curthread)
flushw();
tf = td->td_frame;
sp = (uint64_t)stack->ss_sp + stack->ss_size;
tf->tf_out[0] = (uint64_t)arg;
tf->tf_out[6] = sp - SPOFF - sizeof(struct frame);
tf->tf_tpc = (uint64_t)entry;
tf->tf_tnpc = tf->tf_tpc + 4;
td->td_retval[0] = tf->tf_out[0];
td->td_retval[1] = tf->tf_out[1];
}
int
cpu_set_user_tls(struct thread *td, void *tls_base)
{
if (td == curthread)
flushw();
td->td_frame->tf_global[7] = (uint64_t)tls_base;
return (0);
}
/*
* Finish a fork operation, with process p2 nearly set up.
* Copy and update the pcb, set up the stack so that the child
* ready to run and return to user mode.
*/
void
cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags)
{
struct trapframe *tf;
struct frame *fp;
struct pcb *pcb1;
struct pcb *pcb2;
vm_offset_t sp;
int error;
int i;
KASSERT(td1 == curthread || td1 == &thread0,
("cpu_fork: p1 not curproc and not proc0"));
if ((flags & RFPROC) == 0)
return;
p2->p_md.md_sigtramp = td1->td_proc->p_md.md_sigtramp;
p2->p_md.md_utrap = utrap_hold(td1->td_proc->p_md.md_utrap);
/* The pcb must be aligned on a 64-byte boundary. */
pcb1 = td1->td_pcb;
pcb2 = (struct pcb *)((td2->td_kstack + td2->td_kstack_pages *
PAGE_SIZE - sizeof(struct pcb)) & ~0x3fUL);
td2->td_pcb = pcb2;
/*
* Ensure that p1's pcb is up to date.
*/
critical_enter();
if ((td1->td_frame->tf_fprs & FPRS_FEF) != 0)
savefpctx(pcb1->pcb_ufp);
critical_exit();
/* Make sure the copied windows are spilled. */
flushw();
/* Copy the pcb (this will copy the windows saved in the pcb, too). */
bcopy(pcb1, pcb2, sizeof(*pcb1));
/*
* If we're creating a new user process and we're sharing the address
* space, the parent's top most frame must be saved in the pcb. The
* child will pop the frame when it returns to user mode, and may
* overwrite it with its own data causing much suffering for the
* parent. We check if its already in the pcb, and if not copy it
* in. Its unlikely that the copyin will fail, but if so there's not
* much we can do. The parent will likely crash soon anyway in that
* case.
*/
if ((flags & RFMEM) != 0 && td1 != &thread0) {
sp = td1->td_frame->tf_sp;
for (i = 0; i < pcb1->pcb_nsaved; i++) {
if (pcb1->pcb_rwsp[i] == sp)
break;
}
if (i == pcb1->pcb_nsaved) {
error = copyin((caddr_t)sp + SPOFF, &pcb1->pcb_rw[i],
sizeof(struct rwindow));
if (error == 0) {
pcb1->pcb_rwsp[i] = sp;
pcb1->pcb_nsaved++;
}
}
}
/*
* Create a new fresh stack for the new process.
* Copy the trap frame for the return to user mode as if from a
* syscall. This copies most of the user mode register values.
*/
tf = (struct trapframe *)pcb2 - 1;
bcopy(td1->td_frame, tf, sizeof(*tf));
tf->tf_out[0] = 0; /* Child returns zero */
tf->tf_out[1] = 0;
tf->tf_tstate &= ~TSTATE_XCC_C; /* success */
tf->tf_fprs = 0;
td2->td_frame = tf;
fp = (struct frame *)tf - 1;
fp->fr_local[0] = (u_long)fork_return;
fp->fr_local[1] = (u_long)td2;
fp->fr_local[2] = (u_long)tf;
/* Terminate stack traces at this frame. */
fp->fr_pc = fp->fr_fp = 0;
pcb2->pcb_sp = (u_long)fp - SPOFF;
pcb2->pcb_pc = (u_long)fork_trampoline - 8;
/* Setup to release the spin count in fork_exit(). */
td2->td_md.md_spinlock_count = 1;
td2->td_md.md_saved_pil = 0;
/*
* Now, cpu_switch() can schedule the new process.
*/
}
void
cpu_reset(void)
{
static char bspec[64] = "";
phandle_t chosen;
static struct {
cell_t name;
cell_t nargs;
cell_t nreturns;
cell_t bootspec;
} args = {
(cell_t)"boot",
1,
0,
(cell_t)bspec
};
if ((chosen = OF_finddevice("/chosen")) != -1) {
if (OF_getprop(chosen, "bootpath", bspec, sizeof(bspec)) == -1)
bspec[0] = '\0';
bspec[sizeof(bspec) - 1] = '\0';
}
cpu_shutdown(&args);
}
/*
* Intercept the return address from a freshly forked process that has NOT
* been scheduled yet.
*
* This is needed to make kernel threads stay in kernel mode.
*/
void
cpu_set_fork_handler(struct thread *td, void (*func)(void *), void *arg)
{
struct frame *fp;
struct pcb *pcb;
pcb = td->td_pcb;
fp = (struct frame *)(pcb->pcb_sp + SPOFF);
fp->fr_local[0] = (u_long)func;
fp->fr_local[1] = (u_long)arg;
}
int
is_physical_memory(vm_paddr_t addr)
{
struct ofw_mem_region *mr;
for (mr = sparc64_memreg; mr < sparc64_memreg + sparc64_nmemreg; mr++)
if (addr >= mr->mr_start && addr < mr->mr_start + mr->mr_size)
return (1);
return (0);
}
/*
* Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
*/
static void
sf_buf_init(void *arg)
{
struct sf_buf *sf_bufs;
vm_offset_t sf_base;
int i;
nsfbufs = NSFBUFS;
TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs);
mtx_init(&sf_freelist.sf_lock, "sf_bufs list lock", NULL, MTX_DEF);
SLIST_INIT(&sf_freelist.sf_head);
sf_base = kmem_alloc_nofault(kernel_map, nsfbufs * PAGE_SIZE);
sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
M_NOWAIT | M_ZERO);
for (i = 0; i < nsfbufs; i++) {
sf_bufs[i].kva = sf_base + i * PAGE_SIZE;
SLIST_INSERT_HEAD(&sf_freelist.sf_head, &sf_bufs[i], free_list);
}
sf_buf_alloc_want = 0;
}
/*
* Get an sf_buf from the freelist. Will block if none are available.
*/
struct sf_buf *
sf_buf_alloc(struct vm_page *m, int flags)
{
struct sf_buf *sf;
int error;
mtx_lock(&sf_freelist.sf_lock);
while ((sf = SLIST_FIRST(&sf_freelist.sf_head)) == NULL) {
if (flags & SFB_NOWAIT)
break;
sf_buf_alloc_want++;
mbstat.sf_allocwait++;
error = msleep(&sf_freelist, &sf_freelist.sf_lock,
(flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0);
sf_buf_alloc_want--;
/*
* If we got a signal, don't risk going back to sleep.
*/
if (error)
break;
}
if (sf != NULL) {
SLIST_REMOVE_HEAD(&sf_freelist.sf_head, free_list);
sf->m = m;
nsfbufsused++;
nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
pmap_qenter(sf->kva, &sf->m, 1);
}
mtx_unlock(&sf_freelist.sf_lock);
return (sf);
}
/*
* Release resources back to the system.
*/
void
sf_buf_free(struct sf_buf *sf)
{
pmap_qremove(sf->kva, 1);
mtx_lock(&sf_freelist.sf_lock);
SLIST_INSERT_HEAD(&sf_freelist.sf_head, sf, free_list);
nsfbufsused--;
if (sf_buf_alloc_want > 0)
wakeup(&sf_freelist);
mtx_unlock(&sf_freelist.sf_lock);
}
void
swi_vm(void *v)
{
/* Nothing to do here - busdma bounce buffers are not implemented. */
}
void *
uma_small_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
{
vm_paddr_t pa;
vm_page_t m;
int pflags;
void *va;
PMAP_STATS_INC(uma_nsmall_alloc);
*flags = UMA_SLAB_PRIV;
pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
for (;;) {
m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
if (m == NULL) {
if (wait & M_NOWAIT)
return (NULL);
else
VM_WAIT;
} else
break;
}
pa = VM_PAGE_TO_PHYS(m);
if (dcache_color_ignore == 0 && m->md.color != DCACHE_COLOR(pa)) {
KASSERT(m->md.colors[0] == 0 && m->md.colors[1] == 0,
("uma_small_alloc: free page %p still has mappings!", m));
PMAP_STATS_INC(uma_nsmall_alloc_oc);
m->md.color = DCACHE_COLOR(pa);
dcache_page_inval(pa);
}
va = (void *)TLB_PHYS_TO_DIRECT(pa);
if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
cpu_block_zero(va, PAGE_SIZE);
return (va);
}
void
uma_small_free(void *mem, int size, u_int8_t flags)
{
vm_page_t m;
PMAP_STATS_INC(uma_nsmall_free);
m = PHYS_TO_VM_PAGE(TLB_DIRECT_TO_PHYS((vm_offset_t)mem));
m->wire_count--;
vm_page_free(m);
atomic_subtract_int(&cnt.v_wire_count, 1);
}