7844 lines
216 KiB
C
7844 lines
216 KiB
C
/* Subroutines for insn-output.c for Sun SPARC.
|
||
Copyright (C) 1987, 88, 89, 92-98, 1999 Free Software Foundation, Inc.
|
||
Contributed by Michael Tiemann (tiemann@cygnus.com)
|
||
64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
|
||
at Cygnus Support.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "real.h"
|
||
#include "insn-config.h"
|
||
#include "conditions.h"
|
||
#include "insn-flags.h"
|
||
#include "output.h"
|
||
#include "insn-attr.h"
|
||
#include "flags.h"
|
||
#include "expr.h"
|
||
#include "recog.h"
|
||
#include "toplev.h"
|
||
|
||
/* 1 if the caller has placed an "unimp" insn immediately after the call.
|
||
This is used in v8 code when calling a function that returns a structure.
|
||
v9 doesn't have this. Be careful to have this test be the same as that
|
||
used on the call. */
|
||
|
||
#define SKIP_CALLERS_UNIMP_P \
|
||
(!TARGET_ARCH64 && current_function_returns_struct \
|
||
&& ! integer_zerop (DECL_SIZE (DECL_RESULT (current_function_decl))) \
|
||
&& (TREE_CODE (DECL_SIZE (DECL_RESULT (current_function_decl))) \
|
||
== INTEGER_CST))
|
||
|
||
/* Global variables for machine-dependent things. */
|
||
|
||
/* Size of frame. Need to know this to emit return insns from leaf procedures.
|
||
ACTUAL_FSIZE is set by compute_frame_size() which is called during the
|
||
reload pass. This is important as the value is later used in insn
|
||
scheduling (to see what can go in a delay slot).
|
||
APPARENT_FSIZE is the size of the stack less the register save area and less
|
||
the outgoing argument area. It is used when saving call preserved regs. */
|
||
static int apparent_fsize;
|
||
static int actual_fsize;
|
||
|
||
/* Save the operands last given to a compare for use when we
|
||
generate a scc or bcc insn. */
|
||
|
||
rtx sparc_compare_op0, sparc_compare_op1;
|
||
|
||
/* We may need an epilogue if we spill too many registers.
|
||
If this is non-zero, then we branch here for the epilogue. */
|
||
static rtx leaf_label;
|
||
|
||
#ifdef LEAF_REGISTERS
|
||
|
||
/* Vector to say how input registers are mapped to output
|
||
registers. FRAME_POINTER_REGNUM cannot be remapped by
|
||
this function to eliminate it. You must use -fomit-frame-pointer
|
||
to get that. */
|
||
char leaf_reg_remap[] =
|
||
{ 0, 1, 2, 3, 4, 5, 6, 7,
|
||
-1, -1, -1, -1, -1, -1, 14, -1,
|
||
-1, -1, -1, -1, -1, -1, -1, -1,
|
||
8, 9, 10, 11, 12, 13, -1, 15,
|
||
|
||
32, 33, 34, 35, 36, 37, 38, 39,
|
||
40, 41, 42, 43, 44, 45, 46, 47,
|
||
48, 49, 50, 51, 52, 53, 54, 55,
|
||
56, 57, 58, 59, 60, 61, 62, 63,
|
||
64, 65, 66, 67, 68, 69, 70, 71,
|
||
72, 73, 74, 75, 76, 77, 78, 79,
|
||
80, 81, 82, 83, 84, 85, 86, 87,
|
||
88, 89, 90, 91, 92, 93, 94, 95,
|
||
96, 97, 98, 99, 100};
|
||
|
||
#endif
|
||
|
||
/* Name of where we pretend to think the frame pointer points.
|
||
Normally, this is "%fp", but if we are in a leaf procedure,
|
||
this is "%sp+something". We record "something" separately as it may be
|
||
too big for reg+constant addressing. */
|
||
|
||
static const char *frame_base_name;
|
||
static int frame_base_offset;
|
||
|
||
static rtx pic_setup_code PROTO((void));
|
||
static void sparc_init_modes PROTO((void));
|
||
static int save_regs PROTO((FILE *, int, int, const char *,
|
||
int, int, int));
|
||
static int restore_regs PROTO((FILE *, int, int, const char *, int, int));
|
||
static void build_big_number PROTO((FILE *, int, const char *));
|
||
static int function_arg_slotno PROTO((const CUMULATIVE_ARGS *,
|
||
enum machine_mode, tree, int, int,
|
||
int *, int *));
|
||
|
||
static int supersparc_adjust_cost PROTO((rtx, rtx, rtx, int));
|
||
static int hypersparc_adjust_cost PROTO((rtx, rtx, rtx, int));
|
||
static int ultrasparc_adjust_cost PROTO((rtx, rtx, rtx, int));
|
||
|
||
static void sparc_output_addr_vec PROTO((rtx));
|
||
static void sparc_output_addr_diff_vec PROTO((rtx));
|
||
static void sparc_output_deferred_case_vectors PROTO((void));
|
||
|
||
|
||
#ifdef DWARF2_DEBUGGING_INFO
|
||
extern char *dwarf2out_cfi_label ();
|
||
#endif
|
||
|
||
/* Option handling. */
|
||
|
||
/* Code model option as passed by user. */
|
||
const char *sparc_cmodel_string;
|
||
/* Parsed value. */
|
||
enum cmodel sparc_cmodel;
|
||
|
||
/* Record alignment options as passed by user. */
|
||
const char *sparc_align_loops_string;
|
||
const char *sparc_align_jumps_string;
|
||
const char *sparc_align_funcs_string;
|
||
|
||
/* Parsed values, as a power of two. */
|
||
int sparc_align_loops;
|
||
int sparc_align_jumps;
|
||
int sparc_align_funcs;
|
||
|
||
struct sparc_cpu_select sparc_select[] =
|
||
{
|
||
/* switch name, tune arch */
|
||
{ (char *)0, "default", 1, 1 },
|
||
{ (char *)0, "-mcpu=", 1, 1 },
|
||
{ (char *)0, "-mtune=", 1, 0 },
|
||
{ 0, 0, 0, 0 }
|
||
};
|
||
|
||
/* CPU type. This is set from TARGET_CPU_DEFAULT and -m{cpu,tune}=xxx. */
|
||
enum processor_type sparc_cpu;
|
||
|
||
/* Validate and override various options, and do some machine dependent
|
||
initialization. */
|
||
|
||
void
|
||
sparc_override_options ()
|
||
{
|
||
static struct code_model {
|
||
const char *name;
|
||
int value;
|
||
} cmodels[] = {
|
||
{ "32", CM_32 },
|
||
{ "medlow", CM_MEDLOW },
|
||
{ "medmid", CM_MEDMID },
|
||
{ "medany", CM_MEDANY },
|
||
{ "embmedany", CM_EMBMEDANY },
|
||
{ 0, 0 }
|
||
};
|
||
struct code_model *cmodel;
|
||
/* Map TARGET_CPU_DEFAULT to value for -m{arch,tune}=. */
|
||
static struct cpu_default {
|
||
int cpu;
|
||
const char *name;
|
||
} cpu_default[] = {
|
||
/* There must be one entry here for each TARGET_CPU value. */
|
||
{ TARGET_CPU_sparc, "cypress" },
|
||
{ TARGET_CPU_sparclet, "tsc701" },
|
||
{ TARGET_CPU_sparclite, "f930" },
|
||
{ TARGET_CPU_v8, "v8" },
|
||
{ TARGET_CPU_hypersparc, "hypersparc" },
|
||
{ TARGET_CPU_sparclite86x, "sparclite86x" },
|
||
{ TARGET_CPU_supersparc, "supersparc" },
|
||
{ TARGET_CPU_v9, "v9" },
|
||
{ TARGET_CPU_ultrasparc, "ultrasparc" },
|
||
{ 0, 0 }
|
||
};
|
||
struct cpu_default *def;
|
||
/* Table of values for -m{cpu,tune}=. */
|
||
static struct cpu_table {
|
||
const char *name;
|
||
enum processor_type processor;
|
||
int disable;
|
||
int enable;
|
||
} cpu_table[] = {
|
||
{ "v7", PROCESSOR_V7, MASK_ISA, 0 },
|
||
{ "cypress", PROCESSOR_CYPRESS, MASK_ISA, 0 },
|
||
{ "v8", PROCESSOR_V8, MASK_ISA, MASK_V8 },
|
||
/* TI TMS390Z55 supersparc */
|
||
{ "supersparc", PROCESSOR_SUPERSPARC, MASK_ISA, MASK_V8 },
|
||
{ "sparclite", PROCESSOR_SPARCLITE, MASK_ISA, MASK_SPARCLITE },
|
||
/* The Fujitsu MB86930 is the original sparclite chip, with no fpu.
|
||
The Fujitsu MB86934 is the recent sparclite chip, with an fpu. */
|
||
{ "f930", PROCESSOR_F930, MASK_ISA|MASK_FPU, MASK_SPARCLITE },
|
||
{ "f934", PROCESSOR_F934, MASK_ISA, MASK_SPARCLITE|MASK_FPU },
|
||
{ "hypersparc", PROCESSOR_HYPERSPARC, MASK_ISA, MASK_V8|MASK_FPU },
|
||
{ "sparclite86x", PROCESSOR_SPARCLITE86X, MASK_ISA|MASK_FPU, MASK_V8 },
|
||
{ "sparclet", PROCESSOR_SPARCLET, MASK_ISA, MASK_SPARCLET },
|
||
/* TEMIC sparclet */
|
||
{ "tsc701", PROCESSOR_TSC701, MASK_ISA, MASK_SPARCLET },
|
||
{ "v9", PROCESSOR_V9, MASK_ISA, MASK_V9 },
|
||
/* TI ultrasparc */
|
||
{ "ultrasparc", PROCESSOR_ULTRASPARC, MASK_ISA, MASK_V9 },
|
||
{ 0, 0, 0, 0 }
|
||
};
|
||
struct cpu_table *cpu;
|
||
struct sparc_cpu_select *sel;
|
||
int fpu;
|
||
|
||
#ifndef SPARC_BI_ARCH
|
||
/* Check for unsupported architecture size. */
|
||
if (! TARGET_64BIT != DEFAULT_ARCH32_P)
|
||
{
|
||
error ("%s is not supported by this configuration",
|
||
DEFAULT_ARCH32_P ? "-m64" : "-m32");
|
||
}
|
||
#endif
|
||
|
||
/* At the moment we don't allow different pointer size and architecture */
|
||
if (! TARGET_64BIT != ! TARGET_PTR64)
|
||
{
|
||
error ("-mptr%d not allowed on -m%d",
|
||
TARGET_PTR64 ? 64 : 32, TARGET_64BIT ? 64 : 32);
|
||
if (TARGET_64BIT)
|
||
target_flags |= MASK_PTR64;
|
||
else
|
||
target_flags &= ~MASK_PTR64;
|
||
}
|
||
|
||
/* Code model selection. */
|
||
sparc_cmodel = SPARC_DEFAULT_CMODEL;
|
||
|
||
#ifdef SPARC_BI_ARCH
|
||
if (TARGET_ARCH32)
|
||
sparc_cmodel = CM_32;
|
||
#endif
|
||
|
||
if (sparc_cmodel_string != NULL)
|
||
{
|
||
if (TARGET_ARCH64)
|
||
{
|
||
for (cmodel = &cmodels[0]; cmodel->name; cmodel++)
|
||
if (strcmp (sparc_cmodel_string, cmodel->name) == 0)
|
||
break;
|
||
if (cmodel->name == NULL)
|
||
error ("bad value (%s) for -mcmodel= switch", sparc_cmodel_string);
|
||
else
|
||
sparc_cmodel = cmodel->value;
|
||
}
|
||
else
|
||
error ("-mcmodel= is not supported on 32 bit systems");
|
||
}
|
||
|
||
fpu = TARGET_FPU; /* save current -mfpu status */
|
||
|
||
/* Set the default CPU. */
|
||
for (def = &cpu_default[0]; def->name; ++def)
|
||
if (def->cpu == TARGET_CPU_DEFAULT)
|
||
break;
|
||
if (! def->name)
|
||
abort ();
|
||
sparc_select[0].string = def->name;
|
||
|
||
for (sel = &sparc_select[0]; sel->name; ++sel)
|
||
{
|
||
if (sel->string)
|
||
{
|
||
for (cpu = &cpu_table[0]; cpu->name; ++cpu)
|
||
if (! strcmp (sel->string, cpu->name))
|
||
{
|
||
if (sel->set_tune_p)
|
||
sparc_cpu = cpu->processor;
|
||
|
||
if (sel->set_arch_p)
|
||
{
|
||
target_flags &= ~cpu->disable;
|
||
target_flags |= cpu->enable;
|
||
}
|
||
break;
|
||
}
|
||
|
||
if (! cpu->name)
|
||
error ("bad value (%s) for %s switch", sel->string, sel->name);
|
||
}
|
||
}
|
||
|
||
/* If -mfpu or -mno-fpu was explicitly used, don't override with
|
||
the processor default. */
|
||
if (TARGET_FPU_SET)
|
||
target_flags = (target_flags & ~MASK_FPU) | fpu;
|
||
|
||
/* Use the deprecated v8 insns for sparc64 in 32 bit mode. */
|
||
if (TARGET_V9 && TARGET_ARCH32)
|
||
target_flags |= MASK_DEPRECATED_V8_INSNS;
|
||
|
||
/* V8PLUS requires V9, makes no sense in 64 bit mode. */
|
||
if (! TARGET_V9 || TARGET_ARCH64)
|
||
target_flags &= ~MASK_V8PLUS;
|
||
|
||
/* Don't use stack biasing in 32 bit mode. */
|
||
if (TARGET_ARCH32)
|
||
target_flags &= ~MASK_STACK_BIAS;
|
||
|
||
/* Don't allow -mvis if FPU is disabled. */
|
||
if (! TARGET_FPU)
|
||
target_flags &= ~MASK_VIS;
|
||
|
||
/* Validate -malign-loops= value, or provide default. */
|
||
if (sparc_align_loops_string)
|
||
{
|
||
sparc_align_loops = exact_log2 (atoi (sparc_align_loops_string));
|
||
if (sparc_align_loops < 2 || sparc_align_loops > 7)
|
||
fatal ("-malign-loops=%s is not between 4 and 128 or is not a power of two",
|
||
sparc_align_loops_string);
|
||
}
|
||
else
|
||
{
|
||
/* ??? This relies on ASM_OUTPUT_ALIGN to not emit the alignment if
|
||
its 0. This sounds a bit kludgey. */
|
||
sparc_align_loops = 0;
|
||
}
|
||
|
||
/* Validate -malign-jumps= value, or provide default. */
|
||
if (sparc_align_jumps_string)
|
||
{
|
||
sparc_align_jumps = exact_log2 (atoi (sparc_align_jumps_string));
|
||
if (sparc_align_jumps < 2 || sparc_align_loops > 7)
|
||
fatal ("-malign-jumps=%s is not between 4 and 128 or is not a power of two",
|
||
sparc_align_jumps_string);
|
||
}
|
||
else
|
||
{
|
||
/* ??? This relies on ASM_OUTPUT_ALIGN to not emit the alignment if
|
||
its 0. This sounds a bit kludgey. */
|
||
sparc_align_jumps = 0;
|
||
}
|
||
|
||
/* Validate -malign-functions= value, or provide default. */
|
||
if (sparc_align_funcs_string)
|
||
{
|
||
sparc_align_funcs = exact_log2 (atoi (sparc_align_funcs_string));
|
||
if (sparc_align_funcs < 2 || sparc_align_loops > 7)
|
||
fatal ("-malign-functions=%s is not between 4 and 128 or is not a power of two",
|
||
sparc_align_funcs_string);
|
||
}
|
||
else
|
||
sparc_align_funcs = DEFAULT_SPARC_ALIGN_FUNCS;
|
||
|
||
/* Validate PCC_STRUCT_RETURN. */
|
||
if (flag_pcc_struct_return == DEFAULT_PCC_STRUCT_RETURN)
|
||
flag_pcc_struct_return = (TARGET_ARCH64 ? 0 : 1);
|
||
|
||
/* Do various machine dependent initializations. */
|
||
sparc_init_modes ();
|
||
|
||
if ((profile_flag || profile_block_flag)
|
||
&& sparc_cmodel != CM_MEDLOW)
|
||
{
|
||
error ("profiling does not support code models other than medlow");
|
||
}
|
||
}
|
||
|
||
/* Miscellaneous utilities. */
|
||
|
||
/* Nonzero if CODE, a comparison, is suitable for use in v9 conditional move
|
||
or branch on register contents instructions. */
|
||
|
||
int
|
||
v9_regcmp_p (code)
|
||
enum rtx_code code;
|
||
{
|
||
return (code == EQ || code == NE || code == GE || code == LT
|
||
|| code == LE || code == GT);
|
||
}
|
||
|
||
|
||
/* Operand constraints. */
|
||
|
||
/* Return non-zero only if OP is a register of mode MODE,
|
||
or const0_rtx. Don't allow const0_rtx if TARGET_LIVE_G0 because
|
||
%g0 may contain anything. */
|
||
|
||
int
|
||
reg_or_0_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (register_operand (op, mode))
|
||
return 1;
|
||
if (TARGET_LIVE_G0)
|
||
return 0;
|
||
if (op == const0_rtx)
|
||
return 1;
|
||
if (GET_MODE (op) == VOIDmode && GET_CODE (op) == CONST_DOUBLE
|
||
&& CONST_DOUBLE_HIGH (op) == 0
|
||
&& CONST_DOUBLE_LOW (op) == 0)
|
||
return 1;
|
||
if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
|
||
&& GET_CODE (op) == CONST_DOUBLE
|
||
&& fp_zero_operand (op))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Nonzero if OP is a floating point value with value 0.0. */
|
||
|
||
int
|
||
fp_zero_operand (op)
|
||
rtx op;
|
||
{
|
||
REAL_VALUE_TYPE r;
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
|
||
return (REAL_VALUES_EQUAL (r, dconst0) && ! REAL_VALUE_MINUS_ZERO (r));
|
||
}
|
||
|
||
/* Nonzero if OP is an integer register. */
|
||
|
||
int
|
||
intreg_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
return (register_operand (op, SImode)
|
||
|| (TARGET_ARCH64 && register_operand (op, DImode)));
|
||
}
|
||
|
||
/* Nonzero if OP is a floating point condition code register. */
|
||
|
||
int
|
||
fcc_reg_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
/* This can happen when recog is called from combine. Op may be a MEM.
|
||
Fail instead of calling abort in this case. */
|
||
if (GET_CODE (op) != REG)
|
||
return 0;
|
||
|
||
if (mode != VOIDmode && mode != GET_MODE (op))
|
||
return 0;
|
||
if (mode == VOIDmode
|
||
&& (GET_MODE (op) != CCFPmode && GET_MODE (op) != CCFPEmode))
|
||
return 0;
|
||
|
||
#if 0 /* ??? ==> 1 when %fcc0-3 are pseudos first. See gen_compare_reg(). */
|
||
if (reg_renumber == 0)
|
||
return REGNO (op) >= FIRST_PSEUDO_REGISTER;
|
||
return REGNO_OK_FOR_CCFP_P (REGNO (op));
|
||
#else
|
||
return (unsigned) REGNO (op) - SPARC_FIRST_V9_FCC_REG < 4;
|
||
#endif
|
||
}
|
||
|
||
/* Nonzero if OP is an integer or floating point condition code register. */
|
||
|
||
int
|
||
icc_or_fcc_reg_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == REG && REGNO (op) == SPARC_ICC_REG)
|
||
{
|
||
if (mode != VOIDmode && mode != GET_MODE (op))
|
||
return 0;
|
||
if (mode == VOIDmode
|
||
&& GET_MODE (op) != CCmode && GET_MODE (op) != CCXmode)
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
return fcc_reg_operand (op, mode);
|
||
}
|
||
|
||
/* Nonzero if OP can appear as the dest of a RESTORE insn. */
|
||
int
|
||
restore_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (GET_CODE (op) == REG && GET_MODE (op) == mode
|
||
&& (REGNO (op) < 8 || (REGNO (op) >= 24 && REGNO (op) < 32)));
|
||
}
|
||
|
||
/* Call insn on SPARC can take a PC-relative constant address, or any regular
|
||
memory address. */
|
||
|
||
int
|
||
call_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) != MEM)
|
||
abort ();
|
||
op = XEXP (op, 0);
|
||
return (symbolic_operand (op, mode) || memory_address_p (Pmode, op));
|
||
}
|
||
|
||
int
|
||
call_operand_address (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (symbolic_operand (op, mode) || memory_address_p (Pmode, op));
|
||
}
|
||
|
||
/* Returns 1 if OP is either a symbol reference or a sum of a symbol
|
||
reference and a constant. */
|
||
|
||
int
|
||
symbolic_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
switch (GET_CODE (op))
|
||
{
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
return 1;
|
||
|
||
case CONST:
|
||
op = XEXP (op, 0);
|
||
return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
|
||
|| GET_CODE (XEXP (op, 0)) == LABEL_REF)
|
||
&& GET_CODE (XEXP (op, 1)) == CONST_INT);
|
||
|
||
/* ??? This clause seems to be irrelevant. */
|
||
case CONST_DOUBLE:
|
||
return GET_MODE (op) == mode;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return truth value of statement that OP is a symbolic memory
|
||
operand of mode MODE. */
|
||
|
||
int
|
||
symbolic_memory_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
if (GET_CODE (op) == SUBREG)
|
||
op = SUBREG_REG (op);
|
||
if (GET_CODE (op) != MEM)
|
||
return 0;
|
||
op = XEXP (op, 0);
|
||
return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST
|
||
|| GET_CODE (op) == HIGH || GET_CODE (op) == LABEL_REF);
|
||
}
|
||
|
||
/* Return truth value of statement that OP is a LABEL_REF of mode MODE. */
|
||
|
||
int
|
||
label_ref_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) != LABEL_REF)
|
||
return 0;
|
||
if (GET_MODE (op) != mode)
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Return 1 if the operand is an argument used in generating pic references
|
||
in either the medium/low or medium/anywhere code models of sparc64. */
|
||
|
||
int
|
||
sp64_medium_pic_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
/* Check for (const (minus (symbol_ref:GOT)
|
||
(const (minus (label) (pc))))). */
|
||
if (GET_CODE (op) != CONST)
|
||
return 0;
|
||
op = XEXP (op, 0);
|
||
if (GET_CODE (op) != MINUS)
|
||
return 0;
|
||
if (GET_CODE (XEXP (op, 0)) != SYMBOL_REF)
|
||
return 0;
|
||
/* ??? Ensure symbol is GOT. */
|
||
if (GET_CODE (XEXP (op, 1)) != CONST)
|
||
return 0;
|
||
if (GET_CODE (XEXP (XEXP (op, 1), 0)) != MINUS)
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Return 1 if the operand is a data segment reference. This includes
|
||
the readonly data segment, or in other words anything but the text segment.
|
||
This is needed in the medium/anywhere code model on v9. These values
|
||
are accessed with EMBMEDANY_BASE_REG. */
|
||
|
||
int
|
||
data_segment_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
switch (GET_CODE (op))
|
||
{
|
||
case SYMBOL_REF :
|
||
return ! SYMBOL_REF_FLAG (op);
|
||
case PLUS :
|
||
/* Assume canonical format of symbol + constant.
|
||
Fall through. */
|
||
case CONST :
|
||
return data_segment_operand (XEXP (op, 0));
|
||
default :
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return 1 if the operand is a text segment reference.
|
||
This is needed in the medium/anywhere code model on v9. */
|
||
|
||
int
|
||
text_segment_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
switch (GET_CODE (op))
|
||
{
|
||
case LABEL_REF :
|
||
return 1;
|
||
case SYMBOL_REF :
|
||
return SYMBOL_REF_FLAG (op);
|
||
case PLUS :
|
||
/* Assume canonical format of symbol + constant.
|
||
Fall through. */
|
||
case CONST :
|
||
return text_segment_operand (XEXP (op, 0));
|
||
default :
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return 1 if the operand is either a register or a memory operand that is
|
||
not symbolic. */
|
||
|
||
int
|
||
reg_or_nonsymb_mem_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (register_operand (op, mode))
|
||
return 1;
|
||
|
||
if (memory_operand (op, mode) && ! symbolic_memory_operand (op, mode))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
splittable_symbolic_memory_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
if (GET_CODE (op) != MEM)
|
||
return 0;
|
||
if (! symbolic_operand (XEXP (op, 0), Pmode))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
int
|
||
splittable_immediate_memory_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
if (GET_CODE (op) != MEM)
|
||
return 0;
|
||
if (! immediate_operand (XEXP (op, 0), Pmode))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Return truth value of whether OP is EQ or NE. */
|
||
|
||
int
|
||
eq_or_neq (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
return (GET_CODE (op) == EQ || GET_CODE (op) == NE);
|
||
}
|
||
|
||
/* Return 1 if this is a comparison operator, but not an EQ, NE, GEU,
|
||
or LTU for non-floating-point. We handle those specially. */
|
||
|
||
int
|
||
normal_comp_operator (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
enum rtx_code code = GET_CODE (op);
|
||
|
||
if (GET_RTX_CLASS (code) != '<')
|
||
return 0;
|
||
|
||
if (GET_MODE (XEXP (op, 0)) == CCFPmode
|
||
|| GET_MODE (XEXP (op, 0)) == CCFPEmode)
|
||
return 1;
|
||
|
||
return (code != NE && code != EQ && code != GEU && code != LTU);
|
||
}
|
||
|
||
/* Return 1 if this is a comparison operator. This allows the use of
|
||
MATCH_OPERATOR to recognize all the branch insns. */
|
||
|
||
int
|
||
noov_compare_op (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
enum rtx_code code = GET_CODE (op);
|
||
|
||
if (GET_RTX_CLASS (code) != '<')
|
||
return 0;
|
||
|
||
if (GET_MODE (XEXP (op, 0)) == CC_NOOVmode)
|
||
/* These are the only branches which work with CC_NOOVmode. */
|
||
return (code == EQ || code == NE || code == GE || code == LT);
|
||
return 1;
|
||
}
|
||
|
||
/* Nonzero if OP is a comparison operator suitable for use in v9
|
||
conditional move or branch on register contents instructions. */
|
||
|
||
int
|
||
v9_regcmp_op (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
enum rtx_code code = GET_CODE (op);
|
||
|
||
if (GET_RTX_CLASS (code) != '<')
|
||
return 0;
|
||
|
||
return v9_regcmp_p (code);
|
||
}
|
||
|
||
/* Return 1 if this is a SIGN_EXTEND or ZERO_EXTEND operation. */
|
||
|
||
int
|
||
extend_op (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
return GET_CODE (op) == SIGN_EXTEND || GET_CODE (op) == ZERO_EXTEND;
|
||
}
|
||
|
||
/* Return nonzero if OP is an operator of mode MODE which can set
|
||
the condition codes explicitly. We do not include PLUS and MINUS
|
||
because these require CC_NOOVmode, which we handle explicitly. */
|
||
|
||
int
|
||
cc_arithop (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
if (GET_CODE (op) == AND
|
||
|| GET_CODE (op) == IOR
|
||
|| GET_CODE (op) == XOR)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return nonzero if OP is an operator of mode MODE which can bitwise
|
||
complement its second operand and set the condition codes explicitly. */
|
||
|
||
int
|
||
cc_arithopn (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
/* XOR is not here because combine canonicalizes (xor (not ...) ...)
|
||
and (xor ... (not ...)) to (not (xor ...)). */
|
||
return (GET_CODE (op) == AND
|
||
|| GET_CODE (op) == IOR);
|
||
}
|
||
|
||
/* Return true if OP is a register, or is a CONST_INT that can fit in a
|
||
signed 13 bit immediate field. This is an acceptable SImode operand for
|
||
most 3 address instructions. */
|
||
|
||
int
|
||
arith_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
int val;
|
||
if (register_operand (op, mode))
|
||
return 1;
|
||
if (GET_CODE (op) != CONST_INT)
|
||
return 0;
|
||
val = INTVAL (op) & 0xffffffff;
|
||
return SPARC_SIMM13_P (val);
|
||
}
|
||
|
||
/* Return true if OP is a constant 4096 */
|
||
|
||
int
|
||
arith_4096_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
int val;
|
||
if (GET_CODE (op) != CONST_INT)
|
||
return 0;
|
||
val = INTVAL (op) & 0xffffffff;
|
||
return val == 4096;
|
||
}
|
||
|
||
/* Return true if OP is suitable as second operand for add/sub */
|
||
|
||
int
|
||
arith_add_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return arith_operand (op, mode) || arith_4096_operand (op, mode);
|
||
}
|
||
|
||
/* Return true if OP is a CONST_INT or a CONST_DOUBLE which can fit in the
|
||
immediate field of OR and XOR instructions. Used for 64-bit
|
||
constant formation patterns. */
|
||
int
|
||
const64_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
return ((GET_CODE (op) == CONST_INT
|
||
&& SPARC_SIMM13_P (INTVAL (op)))
|
||
#if HOST_BITS_PER_WIDE_INT != 64
|
||
|| (GET_CODE (op) == CONST_DOUBLE
|
||
&& SPARC_SIMM13_P (CONST_DOUBLE_LOW (op))
|
||
&& (CONST_DOUBLE_HIGH (op) ==
|
||
((CONST_DOUBLE_LOW (op) & 0x80000000) != 0 ?
|
||
(HOST_WIDE_INT)0xffffffff : 0)))
|
||
#endif
|
||
);
|
||
}
|
||
|
||
/* The same, but only for sethi instructions. */
|
||
int
|
||
const64_high_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
return ((GET_CODE (op) == CONST_INT
|
||
&& (INTVAL (op) & 0xfffffc00) != 0
|
||
&& SPARC_SETHI_P (INTVAL (op))
|
||
#if HOST_BITS_PER_WIDE_INT != 64
|
||
/* Must be positive on non-64bit host else the
|
||
optimizer is fooled into thinking that sethi
|
||
sign extends, even though it does not. */
|
||
&& INTVAL (op) >= 0
|
||
#endif
|
||
)
|
||
|| (GET_CODE (op) == CONST_DOUBLE
|
||
&& CONST_DOUBLE_HIGH (op) == 0
|
||
&& (CONST_DOUBLE_LOW (op) & 0xfffffc00) != 0
|
||
&& SPARC_SETHI_P (CONST_DOUBLE_LOW (op))));
|
||
}
|
||
|
||
/* Return true if OP is a register, or is a CONST_INT that can fit in a
|
||
signed 11 bit immediate field. This is an acceptable SImode operand for
|
||
the movcc instructions. */
|
||
|
||
int
|
||
arith11_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (register_operand (op, mode)
|
||
|| (GET_CODE (op) == CONST_INT && SPARC_SIMM11_P (INTVAL (op))));
|
||
}
|
||
|
||
/* Return true if OP is a register, or is a CONST_INT that can fit in a
|
||
signed 10 bit immediate field. This is an acceptable SImode operand for
|
||
the movrcc instructions. */
|
||
|
||
int
|
||
arith10_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (register_operand (op, mode)
|
||
|| (GET_CODE (op) == CONST_INT && SPARC_SIMM10_P (INTVAL (op))));
|
||
}
|
||
|
||
/* Return true if OP is a register, is a CONST_INT that fits in a 13 bit
|
||
immediate field, or is a CONST_DOUBLE whose both parts fit in a 13 bit
|
||
immediate field.
|
||
v9: Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that
|
||
can fit in a 13 bit immediate field. This is an acceptable DImode operand
|
||
for most 3 address instructions. */
|
||
|
||
int
|
||
arith_double_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (register_operand (op, mode)
|
||
|| (GET_CODE (op) == CONST_INT && SMALL_INT (op))
|
||
|| (! TARGET_ARCH64
|
||
&& GET_CODE (op) == CONST_DOUBLE
|
||
&& (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x1000) < 0x2000
|
||
&& (unsigned HOST_WIDE_INT) (CONST_DOUBLE_HIGH (op) + 0x1000) < 0x2000)
|
||
|| (TARGET_ARCH64
|
||
&& GET_CODE (op) == CONST_DOUBLE
|
||
&& (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x1000) < 0x2000
|
||
&& ((CONST_DOUBLE_HIGH (op) == -1
|
||
&& (CONST_DOUBLE_LOW (op) & 0x1000) == 0x1000)
|
||
|| (CONST_DOUBLE_HIGH (op) == 0
|
||
&& (CONST_DOUBLE_LOW (op) & 0x1000) == 0))));
|
||
}
|
||
|
||
/* Return true if OP is a constant 4096 for DImode on ARCH64 */
|
||
|
||
int
|
||
arith_double_4096_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
return (TARGET_ARCH64 &&
|
||
((GET_CODE (op) == CONST_INT && INTVAL (op) == 4096) ||
|
||
(GET_CODE (op) == CONST_DOUBLE &&
|
||
CONST_DOUBLE_LOW (op) == 4096 &&
|
||
CONST_DOUBLE_HIGH (op) == 0)));
|
||
}
|
||
|
||
/* Return true if OP is suitable as second operand for add/sub in DImode */
|
||
|
||
int
|
||
arith_double_add_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return arith_double_operand (op, mode) || arith_double_4096_operand (op, mode);
|
||
}
|
||
|
||
/* Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that
|
||
can fit in an 11 bit immediate field. This is an acceptable DImode
|
||
operand for the movcc instructions. */
|
||
/* ??? Replace with arith11_operand? */
|
||
|
||
int
|
||
arith11_double_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (register_operand (op, mode)
|
||
|| (GET_CODE (op) == CONST_DOUBLE
|
||
&& (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
|
||
&& (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x400) < 0x800
|
||
&& ((CONST_DOUBLE_HIGH (op) == -1
|
||
&& (CONST_DOUBLE_LOW (op) & 0x400) == 0x400)
|
||
|| (CONST_DOUBLE_HIGH (op) == 0
|
||
&& (CONST_DOUBLE_LOW (op) & 0x400) == 0)))
|
||
|| (GET_CODE (op) == CONST_INT
|
||
&& (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
|
||
&& (unsigned HOST_WIDE_INT) (INTVAL (op) + 0x400) < 0x800));
|
||
}
|
||
|
||
/* Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that
|
||
can fit in an 10 bit immediate field. This is an acceptable DImode
|
||
operand for the movrcc instructions. */
|
||
/* ??? Replace with arith10_operand? */
|
||
|
||
int
|
||
arith10_double_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (register_operand (op, mode)
|
||
|| (GET_CODE (op) == CONST_DOUBLE
|
||
&& (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
|
||
&& (unsigned) (CONST_DOUBLE_LOW (op) + 0x200) < 0x400
|
||
&& ((CONST_DOUBLE_HIGH (op) == -1
|
||
&& (CONST_DOUBLE_LOW (op) & 0x200) == 0x200)
|
||
|| (CONST_DOUBLE_HIGH (op) == 0
|
||
&& (CONST_DOUBLE_LOW (op) & 0x200) == 0)))
|
||
|| (GET_CODE (op) == CONST_INT
|
||
&& (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
|
||
&& (unsigned HOST_WIDE_INT) (INTVAL (op) + 0x200) < 0x400));
|
||
}
|
||
|
||
/* Return truth value of whether OP is a integer which fits the
|
||
range constraining immediate operands in most three-address insns,
|
||
which have a 13 bit immediate field. */
|
||
|
||
int
|
||
small_int (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
return (GET_CODE (op) == CONST_INT && SMALL_INT (op));
|
||
}
|
||
|
||
int
|
||
small_int_or_double (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
return ((GET_CODE (op) == CONST_INT && SMALL_INT (op))
|
||
|| (GET_CODE (op) == CONST_DOUBLE
|
||
&& CONST_DOUBLE_HIGH (op) == 0
|
||
&& SPARC_SIMM13_P (CONST_DOUBLE_LOW (op))));
|
||
}
|
||
|
||
/* Recognize operand values for the umul instruction. That instruction sign
|
||
extends immediate values just like all other sparc instructions, but
|
||
interprets the extended result as an unsigned number. */
|
||
|
||
int
|
||
uns_small_int (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
#if HOST_BITS_PER_WIDE_INT > 32
|
||
/* All allowed constants will fit a CONST_INT. */
|
||
return (GET_CODE (op) == CONST_INT
|
||
&& ((INTVAL (op) >= 0 && INTVAL (op) < 0x1000)
|
||
|| (INTVAL (op) >= 0xFFFFF000
|
||
&& INTVAL (op) < 0x100000000)));
|
||
#else
|
||
return ((GET_CODE (op) == CONST_INT && (unsigned) INTVAL (op) < 0x1000)
|
||
|| (GET_CODE (op) == CONST_DOUBLE
|
||
&& CONST_DOUBLE_HIGH (op) == 0
|
||
&& (unsigned) CONST_DOUBLE_LOW (op) - 0xFFFFF000 < 0x1000));
|
||
#endif
|
||
}
|
||
|
||
int
|
||
uns_arith_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return register_operand (op, mode) || uns_small_int (op, mode);
|
||
}
|
||
|
||
/* Return truth value of statement that OP is a call-clobbered register. */
|
||
int
|
||
clobbered_register (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
return (GET_CODE (op) == REG && call_used_regs[REGNO (op)]);
|
||
}
|
||
|
||
/* Return 1 if OP is const0_rtx, used for TARGET_LIVE_G0 insns. */
|
||
|
||
int
|
||
zero_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
return op == const0_rtx;
|
||
}
|
||
|
||
/* Return 1 if OP is a valid operand for the source of a move insn. */
|
||
|
||
int
|
||
input_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
/* If both modes are non-void they must be the same. */
|
||
if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
|
||
return 0;
|
||
|
||
/* Only a tiny bit of handling for CONSTANT_P_RTX is necessary. */
|
||
if (GET_CODE (op) == CONST && GET_CODE (XEXP (op, 0)) == CONSTANT_P_RTX)
|
||
return 1;
|
||
|
||
/* Allow any one instruction integer constant, and all CONST_INT
|
||
variants when we are working in DImode and !arch64. */
|
||
if (GET_MODE_CLASS (mode) == MODE_INT
|
||
&& ((GET_CODE (op) == CONST_INT
|
||
&& ((SPARC_SETHI_P (INTVAL (op))
|
||
&& (! TARGET_ARCH64
|
||
|| (INTVAL (op) >= 0)
|
||
|| mode == SImode))
|
||
|| SPARC_SIMM13_P (INTVAL (op))
|
||
|| (mode == DImode
|
||
&& ! TARGET_ARCH64)))
|
||
|| (TARGET_ARCH64
|
||
&& GET_CODE (op) == CONST_DOUBLE
|
||
&& ((CONST_DOUBLE_HIGH (op) == 0
|
||
&& SPARC_SETHI_P (CONST_DOUBLE_LOW (op)))
|
||
||
|
||
#if HOST_BITS_PER_WIDE_INT == 64
|
||
(CONST_DOUBLE_HIGH (op) == 0
|
||
&& SPARC_SIMM13_P (CONST_DOUBLE_LOW (op)))
|
||
#else
|
||
(SPARC_SIMM13_P (CONST_DOUBLE_LOW (op))
|
||
&& (((CONST_DOUBLE_LOW (op) & 0x80000000) == 0
|
||
&& CONST_DOUBLE_HIGH (op) == 0)
|
||
|| (CONST_DOUBLE_HIGH (op) == -1)))
|
||
#endif
|
||
))))
|
||
return 1;
|
||
|
||
/* If !arch64 and this is a DImode const, allow it so that
|
||
the splits can be generated. */
|
||
if (! TARGET_ARCH64
|
||
&& mode == DImode
|
||
&& GET_CODE (op) == CONST_DOUBLE)
|
||
return 1;
|
||
|
||
if (register_operand (op, mode))
|
||
return 1;
|
||
|
||
/* If this is a SUBREG, look inside so that we handle
|
||
paradoxical ones. */
|
||
if (GET_CODE (op) == SUBREG)
|
||
op = SUBREG_REG (op);
|
||
|
||
/* Check for valid MEM forms. */
|
||
if (GET_CODE (op) == MEM)
|
||
{
|
||
rtx inside = XEXP (op, 0);
|
||
|
||
if (GET_CODE (inside) == LO_SUM)
|
||
{
|
||
/* We can't allow these because all of the splits
|
||
(eventually as they trickle down into DFmode
|
||
splits) require offsettable memory references. */
|
||
if (! TARGET_V9
|
||
&& GET_MODE (op) == TFmode)
|
||
return 0;
|
||
|
||
return (register_operand (XEXP (inside, 0), Pmode)
|
||
&& CONSTANT_P (XEXP (inside, 1)));
|
||
}
|
||
return memory_address_p (mode, inside);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* We know it can't be done in one insn when we get here,
|
||
the movsi expander guarentees this. */
|
||
void
|
||
sparc_emit_set_const32 (op0, op1)
|
||
rtx op0;
|
||
rtx op1;
|
||
{
|
||
enum machine_mode mode = GET_MODE (op0);
|
||
rtx temp;
|
||
|
||
if (GET_CODE (op1) == CONST_INT)
|
||
{
|
||
HOST_WIDE_INT value = INTVAL (op1);
|
||
|
||
if (SPARC_SETHI_P (value)
|
||
|| SPARC_SIMM13_P (value))
|
||
abort ();
|
||
}
|
||
|
||
/* Full 2-insn decomposition is needed. */
|
||
if (reload_in_progress || reload_completed)
|
||
temp = op0;
|
||
else
|
||
temp = gen_reg_rtx (mode);
|
||
|
||
if (GET_CODE (op1) == CONST_INT)
|
||
{
|
||
/* Emit them as real moves instead of a HIGH/LO_SUM,
|
||
this way CSE can see everything and reuse intermediate
|
||
values if it wants. */
|
||
if (TARGET_ARCH64
|
||
&& HOST_BITS_PER_WIDE_INT != 64
|
||
&& (INTVAL (op1) & 0x80000000) != 0)
|
||
{
|
||
emit_insn (gen_rtx_SET (VOIDmode,
|
||
temp,
|
||
gen_rtx_CONST_DOUBLE (VOIDmode, const0_rtx,
|
||
INTVAL (op1) & 0xfffffc00, 0)));
|
||
}
|
||
else
|
||
{
|
||
emit_insn (gen_rtx_SET (VOIDmode,
|
||
temp,
|
||
GEN_INT (INTVAL (op1) & 0xfffffc00)));
|
||
}
|
||
emit_insn (gen_rtx_SET (VOIDmode,
|
||
op0,
|
||
gen_rtx_IOR (mode,
|
||
temp,
|
||
GEN_INT (INTVAL (op1) & 0x3ff))));
|
||
}
|
||
else
|
||
{
|
||
/* A symbol, emit in the traditional way. */
|
||
emit_insn (gen_rtx_SET (VOIDmode,
|
||
temp,
|
||
gen_rtx_HIGH (mode,
|
||
op1)));
|
||
emit_insn (gen_rtx_SET (VOIDmode,
|
||
op0,
|
||
gen_rtx_LO_SUM (mode,
|
||
temp,
|
||
op1)));
|
||
|
||
}
|
||
}
|
||
|
||
|
||
/* Sparc-v9 code-model support. */
|
||
void
|
||
sparc_emit_set_symbolic_const64 (op0, op1, temp1)
|
||
rtx op0;
|
||
rtx op1;
|
||
rtx temp1;
|
||
{
|
||
switch (sparc_cmodel)
|
||
{
|
||
case CM_MEDLOW:
|
||
/* The range spanned by all instructions in the object is less
|
||
than 2^31 bytes (2GB) and the distance from any instruction
|
||
to the location of the label _GLOBAL_OFFSET_TABLE_ is less
|
||
than 2^31 bytes (2GB).
|
||
|
||
The executable must be in the low 4TB of the virtual address
|
||
space.
|
||
|
||
sethi %hi(symbol), %temp
|
||
or %temp, %lo(symbol), %reg */
|
||
emit_insn (gen_rtx_SET (VOIDmode, temp1, gen_rtx_HIGH (DImode, op1)));
|
||
emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_LO_SUM (DImode, temp1, op1)));
|
||
break;
|
||
|
||
case CM_MEDMID:
|
||
/* The range spanned by all instructions in the object is less
|
||
than 2^31 bytes (2GB) and the distance from any instruction
|
||
to the location of the label _GLOBAL_OFFSET_TABLE_ is less
|
||
than 2^31 bytes (2GB).
|
||
|
||
The executable must be in the low 16TB of the virtual address
|
||
space.
|
||
|
||
sethi %h44(symbol), %temp1
|
||
or %temp1, %m44(symbol), %temp2
|
||
sllx %temp2, 12, %temp3
|
||
or %temp3, %l44(symbol), %reg */
|
||
emit_insn (gen_seth44 (op0, op1));
|
||
emit_insn (gen_setm44 (op0, op0, op1));
|
||
emit_insn (gen_rtx_SET (VOIDmode, temp1,
|
||
gen_rtx_ASHIFT (DImode, op0, GEN_INT (12))));
|
||
emit_insn (gen_setl44 (op0, temp1, op1));
|
||
break;
|
||
|
||
case CM_MEDANY:
|
||
/* The range spanned by all instructions in the object is less
|
||
than 2^31 bytes (2GB) and the distance from any instruction
|
||
to the location of the label _GLOBAL_OFFSET_TABLE_ is less
|
||
than 2^31 bytes (2GB).
|
||
|
||
The executable can be placed anywhere in the virtual address
|
||
space.
|
||
|
||
sethi %hh(symbol), %temp1
|
||
sethi %lm(symbol), %temp2
|
||
or %temp1, %hm(symbol), %temp3
|
||
or %temp2, %lo(symbol), %temp4
|
||
sllx %temp3, 32, %temp5
|
||
or %temp4, %temp5, %reg */
|
||
|
||
/* Getting this right wrt. reloading is really tricky.
|
||
We _MUST_ have a seperate temporary at this point,
|
||
if we don't barf immediately instead of generating
|
||
incorrect code. */
|
||
if (temp1 == op0)
|
||
abort ();
|
||
|
||
emit_insn (gen_sethh (op0, op1));
|
||
emit_insn (gen_setlm (temp1, op1));
|
||
emit_insn (gen_sethm (op0, op0, op1));
|
||
emit_insn (gen_rtx_SET (VOIDmode, op0,
|
||
gen_rtx_ASHIFT (DImode, op0, GEN_INT (32))));
|
||
emit_insn (gen_rtx_SET (VOIDmode, op0,
|
||
gen_rtx_PLUS (DImode, op0, temp1)));
|
||
emit_insn (gen_setlo (op0, op0, op1));
|
||
break;
|
||
|
||
case CM_EMBMEDANY:
|
||
/* Old old old backwards compatibility kruft here.
|
||
Essentially it is MEDLOW with a fixed 64-bit
|
||
virtual base added to all data segment addresses.
|
||
Text-segment stuff is computed like MEDANY, we can't
|
||
reuse the code above because the relocation knobs
|
||
look different.
|
||
|
||
Data segment: sethi %hi(symbol), %temp1
|
||
or %temp1, %lo(symbol), %temp2
|
||
add %temp2, EMBMEDANY_BASE_REG, %reg
|
||
|
||
Text segment: sethi %uhi(symbol), %temp1
|
||
sethi %hi(symbol), %temp2
|
||
or %temp1, %ulo(symbol), %temp3
|
||
or %temp2, %lo(symbol), %temp4
|
||
sllx %temp3, 32, %temp5
|
||
or %temp4, %temp5, %reg */
|
||
if (data_segment_operand (op1, GET_MODE (op1)))
|
||
{
|
||
emit_insn (gen_embmedany_sethi (temp1, op1));
|
||
emit_insn (gen_embmedany_brsum (op0, temp1));
|
||
emit_insn (gen_embmedany_losum (op0, op0, op1));
|
||
}
|
||
else
|
||
{
|
||
/* Getting this right wrt. reloading is really tricky.
|
||
We _MUST_ have a seperate temporary at this point,
|
||
so we barf immediately instead of generating
|
||
incorrect code. */
|
||
if (temp1 == op0)
|
||
abort ();
|
||
|
||
emit_insn (gen_embmedany_textuhi (op0, op1));
|
||
emit_insn (gen_embmedany_texthi (temp1, op1));
|
||
emit_insn (gen_embmedany_textulo (op0, op0, op1));
|
||
emit_insn (gen_rtx_SET (VOIDmode, op0,
|
||
gen_rtx_ASHIFT (DImode, op0, GEN_INT (32))));
|
||
emit_insn (gen_rtx_SET (VOIDmode, op0,
|
||
gen_rtx_PLUS (DImode, op0, temp1)));
|
||
emit_insn (gen_embmedany_textlo (op0, op0, op1));
|
||
}
|
||
break;
|
||
|
||
default:
|
||
abort();
|
||
}
|
||
}
|
||
|
||
/* These avoid problems when cross compiling. If we do not
|
||
go through all this hair then the optimizer will see
|
||
invalid REG_EQUAL notes or in some cases none at all. */
|
||
static void sparc_emit_set_safe_HIGH64 PROTO ((rtx, HOST_WIDE_INT));
|
||
static rtx gen_safe_SET64 PROTO ((rtx, HOST_WIDE_INT));
|
||
static rtx gen_safe_OR64 PROTO ((rtx, HOST_WIDE_INT));
|
||
static rtx gen_safe_XOR64 PROTO ((rtx, HOST_WIDE_INT));
|
||
|
||
#if HOST_BITS_PER_WIDE_INT == 64
|
||
#define GEN_HIGHINT64(__x) GEN_INT ((__x) & 0xfffffc00)
|
||
#define GEN_INT64(__x) GEN_INT (__x)
|
||
#else
|
||
#define GEN_HIGHINT64(__x) \
|
||
gen_rtx_CONST_DOUBLE (VOIDmode, const0_rtx, \
|
||
(__x) & 0xfffffc00, 0)
|
||
#define GEN_INT64(__x) \
|
||
gen_rtx_CONST_DOUBLE (VOIDmode, const0_rtx, \
|
||
(__x) & 0xffffffff, \
|
||
((__x) & 0x80000000 \
|
||
? 0xffffffff : 0))
|
||
#endif
|
||
|
||
/* The optimizer is not to assume anything about exactly
|
||
which bits are set for a HIGH, they are unspecified.
|
||
Unfortunately this leads to many missed optimizations
|
||
during CSE. We mask out the non-HIGH bits, and matches
|
||
a plain movdi, to alleviate this problem. */
|
||
static void
|
||
sparc_emit_set_safe_HIGH64 (dest, val)
|
||
rtx dest;
|
||
HOST_WIDE_INT val;
|
||
{
|
||
emit_insn (gen_rtx_SET (VOIDmode, dest, GEN_HIGHINT64 (val)));
|
||
}
|
||
|
||
static rtx
|
||
gen_safe_SET64 (dest, val)
|
||
rtx dest;
|
||
HOST_WIDE_INT val;
|
||
{
|
||
return gen_rtx_SET (VOIDmode, dest, GEN_INT64 (val));
|
||
}
|
||
|
||
static rtx
|
||
gen_safe_OR64 (src, val)
|
||
rtx src;
|
||
HOST_WIDE_INT val;
|
||
{
|
||
return gen_rtx_IOR (DImode, src, GEN_INT64 (val));
|
||
}
|
||
|
||
static rtx
|
||
gen_safe_XOR64 (src, val)
|
||
rtx src;
|
||
HOST_WIDE_INT val;
|
||
{
|
||
return gen_rtx_XOR (DImode, src, GEN_INT64 (val));
|
||
}
|
||
|
||
/* Worker routines for 64-bit constant formation on arch64.
|
||
One of the key things to be doing in these emissions is
|
||
to create as many temp REGs as possible. This makes it
|
||
possible for half-built constants to be used later when
|
||
such values are similar to something required later on.
|
||
Without doing this, the optimizer cannot see such
|
||
opportunities. */
|
||
|
||
static void sparc_emit_set_const64_quick1
|
||
PROTO((rtx, rtx, unsigned HOST_WIDE_INT, int));
|
||
|
||
static void
|
||
sparc_emit_set_const64_quick1 (op0, temp, low_bits, is_neg)
|
||
rtx op0;
|
||
rtx temp;
|
||
unsigned HOST_WIDE_INT low_bits;
|
||
int is_neg;
|
||
{
|
||
unsigned HOST_WIDE_INT high_bits;
|
||
|
||
if (is_neg)
|
||
high_bits = (~low_bits) & 0xffffffff;
|
||
else
|
||
high_bits = low_bits;
|
||
|
||
sparc_emit_set_safe_HIGH64 (temp, high_bits);
|
||
if (!is_neg)
|
||
{
|
||
emit_insn (gen_rtx_SET (VOIDmode, op0,
|
||
gen_safe_OR64 (temp, (high_bits & 0x3ff))));
|
||
}
|
||
else
|
||
{
|
||
/* If we are XOR'ing with -1, then we should emit a one's complement
|
||
instead. This way the combiner will notice logical operations
|
||
such as ANDN later on and substitute. */
|
||
if ((low_bits & 0x3ff) == 0x3ff)
|
||
{
|
||
emit_insn (gen_rtx_SET (VOIDmode, op0,
|
||
gen_rtx_NOT (DImode, temp)));
|
||
}
|
||
else
|
||
{
|
||
emit_insn (gen_rtx_SET (VOIDmode, op0,
|
||
gen_safe_XOR64 (temp,
|
||
(-0x400 | (low_bits & 0x3ff)))));
|
||
}
|
||
}
|
||
}
|
||
|
||
static void sparc_emit_set_const64_quick2
|
||
PROTO((rtx, rtx, unsigned HOST_WIDE_INT,
|
||
unsigned HOST_WIDE_INT, int));
|
||
|
||
static void
|
||
sparc_emit_set_const64_quick2 (op0, temp, high_bits, low_immediate, shift_count)
|
||
rtx op0;
|
||
rtx temp;
|
||
unsigned HOST_WIDE_INT high_bits;
|
||
unsigned HOST_WIDE_INT low_immediate;
|
||
int shift_count;
|
||
{
|
||
rtx temp2 = op0;
|
||
|
||
if ((high_bits & 0xfffffc00) != 0)
|
||
{
|
||
sparc_emit_set_safe_HIGH64 (temp, high_bits);
|
||
if ((high_bits & ~0xfffffc00) != 0)
|
||
emit_insn (gen_rtx_SET (VOIDmode, op0,
|
||
gen_safe_OR64 (temp, (high_bits & 0x3ff))));
|
||
else
|
||
temp2 = temp;
|
||
}
|
||
else
|
||
{
|
||
emit_insn (gen_safe_SET64 (temp, high_bits));
|
||
temp2 = temp;
|
||
}
|
||
|
||
/* Now shift it up into place. */
|
||
emit_insn (gen_rtx_SET (VOIDmode, op0,
|
||
gen_rtx_ASHIFT (DImode, temp2,
|
||
GEN_INT (shift_count))));
|
||
|
||
/* If there is a low immediate part piece, finish up by
|
||
putting that in as well. */
|
||
if (low_immediate != 0)
|
||
emit_insn (gen_rtx_SET (VOIDmode, op0,
|
||
gen_safe_OR64 (op0, low_immediate)));
|
||
}
|
||
|
||
static void sparc_emit_set_const64_longway
|
||
PROTO((rtx, rtx, unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT));
|
||
|
||
/* Full 64-bit constant decomposition. Even though this is the
|
||
'worst' case, we still optimize a few things away. */
|
||
static void
|
||
sparc_emit_set_const64_longway (op0, temp, high_bits, low_bits)
|
||
rtx op0;
|
||
rtx temp;
|
||
unsigned HOST_WIDE_INT high_bits;
|
||
unsigned HOST_WIDE_INT low_bits;
|
||
{
|
||
rtx sub_temp;
|
||
|
||
if (reload_in_progress || reload_completed)
|
||
sub_temp = op0;
|
||
else
|
||
sub_temp = gen_reg_rtx (DImode);
|
||
|
||
if ((high_bits & 0xfffffc00) != 0)
|
||
{
|
||
sparc_emit_set_safe_HIGH64 (temp, high_bits);
|
||
if ((high_bits & ~0xfffffc00) != 0)
|
||
emit_insn (gen_rtx_SET (VOIDmode,
|
||
sub_temp,
|
||
gen_safe_OR64 (temp, (high_bits & 0x3ff))));
|
||
else
|
||
sub_temp = temp;
|
||
}
|
||
else
|
||
{
|
||
emit_insn (gen_safe_SET64 (temp, high_bits));
|
||
sub_temp = temp;
|
||
}
|
||
|
||
if (!reload_in_progress && !reload_completed)
|
||
{
|
||
rtx temp2 = gen_reg_rtx (DImode);
|
||
rtx temp3 = gen_reg_rtx (DImode);
|
||
rtx temp4 = gen_reg_rtx (DImode);
|
||
|
||
emit_insn (gen_rtx_SET (VOIDmode, temp4,
|
||
gen_rtx_ASHIFT (DImode, sub_temp,
|
||
GEN_INT (32))));
|
||
|
||
sparc_emit_set_safe_HIGH64 (temp2, low_bits);
|
||
if ((low_bits & ~0xfffffc00) != 0)
|
||
{
|
||
emit_insn (gen_rtx_SET (VOIDmode, temp3,
|
||
gen_safe_OR64 (temp2, (low_bits & 0x3ff))));
|
||
emit_insn (gen_rtx_SET (VOIDmode, op0,
|
||
gen_rtx_PLUS (DImode, temp4, temp3)));
|
||
}
|
||
else
|
||
{
|
||
emit_insn (gen_rtx_SET (VOIDmode, op0,
|
||
gen_rtx_PLUS (DImode, temp4, temp2)));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
rtx low1 = GEN_INT ((low_bits >> (32 - 12)) & 0xfff);
|
||
rtx low2 = GEN_INT ((low_bits >> (32 - 12 - 12)) & 0xfff);
|
||
rtx low3 = GEN_INT ((low_bits >> (32 - 12 - 12 - 8)) & 0x0ff);
|
||
int to_shift = 12;
|
||
|
||
/* We are in the middle of reload, so this is really
|
||
painful. However we do still make an attempt to
|
||
avoid emitting truly stupid code. */
|
||
if (low1 != const0_rtx)
|
||
{
|
||
emit_insn (gen_rtx_SET (VOIDmode, op0,
|
||
gen_rtx_ASHIFT (DImode, sub_temp,
|
||
GEN_INT (to_shift))));
|
||
emit_insn (gen_rtx_SET (VOIDmode, op0,
|
||
gen_rtx_IOR (DImode, op0, low1)));
|
||
sub_temp = op0;
|
||
to_shift = 12;
|
||
}
|
||
else
|
||
{
|
||
to_shift += 12;
|
||
}
|
||
if (low2 != const0_rtx)
|
||
{
|
||
emit_insn (gen_rtx_SET (VOIDmode, op0,
|
||
gen_rtx_ASHIFT (DImode, sub_temp,
|
||
GEN_INT (to_shift))));
|
||
emit_insn (gen_rtx_SET (VOIDmode, op0,
|
||
gen_rtx_IOR (DImode, op0, low2)));
|
||
sub_temp = op0;
|
||
to_shift = 8;
|
||
}
|
||
else
|
||
{
|
||
to_shift += 8;
|
||
}
|
||
emit_insn (gen_rtx_SET (VOIDmode, op0,
|
||
gen_rtx_ASHIFT (DImode, sub_temp,
|
||
GEN_INT (to_shift))));
|
||
if (low3 != const0_rtx)
|
||
emit_insn (gen_rtx_SET (VOIDmode, op0,
|
||
gen_rtx_IOR (DImode, op0, low3)));
|
||
/* phew... */
|
||
}
|
||
}
|
||
|
||
/* Analyze a 64-bit constant for certain properties. */
|
||
static void analyze_64bit_constant
|
||
PROTO((unsigned HOST_WIDE_INT,
|
||
unsigned HOST_WIDE_INT,
|
||
int *, int *, int *));
|
||
|
||
static void
|
||
analyze_64bit_constant (high_bits, low_bits, hbsp, lbsp, abbasp)
|
||
unsigned HOST_WIDE_INT high_bits, low_bits;
|
||
int *hbsp, *lbsp, *abbasp;
|
||
{
|
||
int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
|
||
int i;
|
||
|
||
lowest_bit_set = highest_bit_set = -1;
|
||
i = 0;
|
||
do
|
||
{
|
||
if ((lowest_bit_set == -1)
|
||
&& ((low_bits >> i) & 1))
|
||
lowest_bit_set = i;
|
||
if ((highest_bit_set == -1)
|
||
&& ((high_bits >> (32 - i - 1)) & 1))
|
||
highest_bit_set = (64 - i - 1);
|
||
}
|
||
while (++i < 32
|
||
&& ((highest_bit_set == -1)
|
||
|| (lowest_bit_set == -1)));
|
||
if (i == 32)
|
||
{
|
||
i = 0;
|
||
do
|
||
{
|
||
if ((lowest_bit_set == -1)
|
||
&& ((high_bits >> i) & 1))
|
||
lowest_bit_set = i + 32;
|
||
if ((highest_bit_set == -1)
|
||
&& ((low_bits >> (32 - i - 1)) & 1))
|
||
highest_bit_set = 32 - i - 1;
|
||
}
|
||
while (++i < 32
|
||
&& ((highest_bit_set == -1)
|
||
|| (lowest_bit_set == -1)));
|
||
}
|
||
/* If there are no bits set this should have gone out
|
||
as one instruction! */
|
||
if (lowest_bit_set == -1
|
||
|| highest_bit_set == -1)
|
||
abort ();
|
||
all_bits_between_are_set = 1;
|
||
for (i = lowest_bit_set; i <= highest_bit_set; i++)
|
||
{
|
||
if (i < 32)
|
||
{
|
||
if ((low_bits & (1 << i)) != 0)
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
if ((high_bits & (1 << (i - 32))) != 0)
|
||
continue;
|
||
}
|
||
all_bits_between_are_set = 0;
|
||
break;
|
||
}
|
||
*hbsp = highest_bit_set;
|
||
*lbsp = lowest_bit_set;
|
||
*abbasp = all_bits_between_are_set;
|
||
}
|
||
|
||
static int const64_is_2insns
|
||
PROTO((unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT));
|
||
|
||
static int
|
||
const64_is_2insns (high_bits, low_bits)
|
||
unsigned HOST_WIDE_INT high_bits, low_bits;
|
||
{
|
||
int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
|
||
|
||
if (high_bits == 0
|
||
|| high_bits == 0xffffffff)
|
||
return 1;
|
||
|
||
analyze_64bit_constant (high_bits, low_bits,
|
||
&highest_bit_set, &lowest_bit_set,
|
||
&all_bits_between_are_set);
|
||
|
||
if ((highest_bit_set == 63
|
||
|| lowest_bit_set == 0)
|
||
&& all_bits_between_are_set != 0)
|
||
return 1;
|
||
|
||
if ((highest_bit_set - lowest_bit_set) < 21)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static unsigned HOST_WIDE_INT create_simple_focus_bits
|
||
PROTO((unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
|
||
int, int));
|
||
|
||
static unsigned HOST_WIDE_INT
|
||
create_simple_focus_bits (high_bits, low_bits, lowest_bit_set, shift)
|
||
unsigned HOST_WIDE_INT high_bits, low_bits;
|
||
int lowest_bit_set, shift;
|
||
{
|
||
HOST_WIDE_INT hi, lo;
|
||
|
||
if (lowest_bit_set < 32)
|
||
{
|
||
lo = (low_bits >> lowest_bit_set) << shift;
|
||
hi = ((high_bits << (32 - lowest_bit_set)) << shift);
|
||
}
|
||
else
|
||
{
|
||
lo = 0;
|
||
hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
|
||
}
|
||
if (hi & lo)
|
||
abort ();
|
||
return (hi | lo);
|
||
}
|
||
|
||
/* Here we are sure to be arch64 and this is an integer constant
|
||
being loaded into a register. Emit the most efficient
|
||
insn sequence possible. Detection of all the 1-insn cases
|
||
has been done already. */
|
||
void
|
||
sparc_emit_set_const64 (op0, op1)
|
||
rtx op0;
|
||
rtx op1;
|
||
{
|
||
unsigned HOST_WIDE_INT high_bits, low_bits;
|
||
int lowest_bit_set, highest_bit_set;
|
||
int all_bits_between_are_set;
|
||
rtx temp;
|
||
|
||
/* Sanity check that we know what we are working with. */
|
||
if (! TARGET_ARCH64
|
||
|| GET_CODE (op0) != REG
|
||
|| (REGNO (op0) >= SPARC_FIRST_FP_REG
|
||
&& REGNO (op0) <= SPARC_LAST_V9_FP_REG))
|
||
abort ();
|
||
|
||
if (reload_in_progress || reload_completed)
|
||
temp = op0;
|
||
else
|
||
temp = gen_reg_rtx (DImode);
|
||
|
||
if (GET_CODE (op1) != CONST_DOUBLE
|
||
&& GET_CODE (op1) != CONST_INT)
|
||
{
|
||
sparc_emit_set_symbolic_const64 (op0, op1, temp);
|
||
return;
|
||
}
|
||
|
||
if (GET_CODE (op1) == CONST_DOUBLE)
|
||
{
|
||
#if HOST_BITS_PER_WIDE_INT == 64
|
||
high_bits = (CONST_DOUBLE_LOW (op1) >> 32) & 0xffffffff;
|
||
low_bits = CONST_DOUBLE_LOW (op1) & 0xffffffff;
|
||
#else
|
||
high_bits = CONST_DOUBLE_HIGH (op1);
|
||
low_bits = CONST_DOUBLE_LOW (op1);
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
#if HOST_BITS_PER_WIDE_INT == 64
|
||
high_bits = ((INTVAL (op1) >> 32) & 0xffffffff);
|
||
low_bits = (INTVAL (op1) & 0xffffffff);
|
||
#else
|
||
high_bits = ((INTVAL (op1) < 0) ?
|
||
0xffffffff :
|
||
0x00000000);
|
||
low_bits = INTVAL (op1);
|
||
#endif
|
||
}
|
||
|
||
/* low_bits bits 0 --> 31
|
||
high_bits bits 32 --> 63 */
|
||
|
||
analyze_64bit_constant (high_bits, low_bits,
|
||
&highest_bit_set, &lowest_bit_set,
|
||
&all_bits_between_are_set);
|
||
|
||
/* First try for a 2-insn sequence. */
|
||
|
||
/* These situations are preferred because the optimizer can
|
||
* do more things with them:
|
||
* 1) mov -1, %reg
|
||
* sllx %reg, shift, %reg
|
||
* 2) mov -1, %reg
|
||
* srlx %reg, shift, %reg
|
||
* 3) mov some_small_const, %reg
|
||
* sllx %reg, shift, %reg
|
||
*/
|
||
if (((highest_bit_set == 63
|
||
|| lowest_bit_set == 0)
|
||
&& all_bits_between_are_set != 0)
|
||
|| ((highest_bit_set - lowest_bit_set) < 12))
|
||
{
|
||
HOST_WIDE_INT the_const = -1;
|
||
int shift = lowest_bit_set;
|
||
|
||
if ((highest_bit_set != 63
|
||
&& lowest_bit_set != 0)
|
||
|| all_bits_between_are_set == 0)
|
||
{
|
||
the_const =
|
||
create_simple_focus_bits (high_bits, low_bits,
|
||
lowest_bit_set, 0);
|
||
}
|
||
else if (lowest_bit_set == 0)
|
||
shift = -(63 - highest_bit_set);
|
||
|
||
if (! SPARC_SIMM13_P (the_const))
|
||
abort ();
|
||
|
||
emit_insn (gen_safe_SET64 (temp, the_const));
|
||
if (shift > 0)
|
||
emit_insn (gen_rtx_SET (VOIDmode,
|
||
op0,
|
||
gen_rtx_ASHIFT (DImode,
|
||
temp,
|
||
GEN_INT (shift))));
|
||
else if (shift < 0)
|
||
emit_insn (gen_rtx_SET (VOIDmode,
|
||
op0,
|
||
gen_rtx_LSHIFTRT (DImode,
|
||
temp,
|
||
GEN_INT (-shift))));
|
||
else
|
||
abort ();
|
||
return;
|
||
}
|
||
|
||
/* Now a range of 22 or less bits set somewhere.
|
||
* 1) sethi %hi(focus_bits), %reg
|
||
* sllx %reg, shift, %reg
|
||
* 2) sethi %hi(focus_bits), %reg
|
||
* srlx %reg, shift, %reg
|
||
*/
|
||
if ((highest_bit_set - lowest_bit_set) < 21)
|
||
{
|
||
unsigned HOST_WIDE_INT focus_bits =
|
||
create_simple_focus_bits (high_bits, low_bits,
|
||
lowest_bit_set, 10);
|
||
|
||
if (! SPARC_SETHI_P (focus_bits))
|
||
abort ();
|
||
|
||
sparc_emit_set_safe_HIGH64 (temp, focus_bits);
|
||
|
||
/* If lowest_bit_set == 10 then a sethi alone could have done it. */
|
||
if (lowest_bit_set < 10)
|
||
emit_insn (gen_rtx_SET (VOIDmode,
|
||
op0,
|
||
gen_rtx_LSHIFTRT (DImode, temp,
|
||
GEN_INT (10 - lowest_bit_set))));
|
||
else if (lowest_bit_set > 10)
|
||
emit_insn (gen_rtx_SET (VOIDmode,
|
||
op0,
|
||
gen_rtx_ASHIFT (DImode, temp,
|
||
GEN_INT (lowest_bit_set - 10))));
|
||
else
|
||
abort ();
|
||
return;
|
||
}
|
||
|
||
/* 1) sethi %hi(low_bits), %reg
|
||
* or %reg, %lo(low_bits), %reg
|
||
* 2) sethi %hi(~low_bits), %reg
|
||
* xor %reg, %lo(-0x400 | (low_bits & 0x3ff)), %reg
|
||
*/
|
||
if (high_bits == 0
|
||
|| high_bits == 0xffffffff)
|
||
{
|
||
sparc_emit_set_const64_quick1 (op0, temp, low_bits,
|
||
(high_bits == 0xffffffff));
|
||
return;
|
||
}
|
||
|
||
/* Now, try 3-insn sequences. */
|
||
|
||
/* 1) sethi %hi(high_bits), %reg
|
||
* or %reg, %lo(high_bits), %reg
|
||
* sllx %reg, 32, %reg
|
||
*/
|
||
if (low_bits == 0)
|
||
{
|
||
sparc_emit_set_const64_quick2 (op0, temp, high_bits, 0, 32);
|
||
return;
|
||
}
|
||
|
||
/* We may be able to do something quick
|
||
when the constant is negated, so try that. */
|
||
if (const64_is_2insns ((~high_bits) & 0xffffffff,
|
||
(~low_bits) & 0xfffffc00))
|
||
{
|
||
/* NOTE: The trailing bits get XOR'd so we need the
|
||
non-negated bits, not the negated ones. */
|
||
unsigned HOST_WIDE_INT trailing_bits = low_bits & 0x3ff;
|
||
|
||
if ((((~high_bits) & 0xffffffff) == 0
|
||
&& ((~low_bits) & 0x80000000) == 0)
|
||
|| (((~high_bits) & 0xffffffff) == 0xffffffff
|
||
&& ((~low_bits) & 0x80000000) != 0))
|
||
{
|
||
int fast_int = (~low_bits & 0xffffffff);
|
||
|
||
if ((SPARC_SETHI_P (fast_int)
|
||
&& (~high_bits & 0xffffffff) == 0)
|
||
|| SPARC_SIMM13_P (fast_int))
|
||
emit_insn (gen_safe_SET64 (temp, fast_int));
|
||
else
|
||
sparc_emit_set_const64 (temp, GEN_INT64 (fast_int));
|
||
}
|
||
else
|
||
{
|
||
rtx negated_const;
|
||
#if HOST_BITS_PER_WIDE_INT == 64
|
||
negated_const = GEN_INT (((~low_bits) & 0xfffffc00) |
|
||
(((HOST_WIDE_INT)((~high_bits) & 0xffffffff))<<32));
|
||
#else
|
||
negated_const = gen_rtx_CONST_DOUBLE (DImode, const0_rtx,
|
||
(~low_bits) & 0xfffffc00,
|
||
(~high_bits) & 0xffffffff);
|
||
#endif
|
||
sparc_emit_set_const64 (temp, negated_const);
|
||
}
|
||
|
||
/* If we are XOR'ing with -1, then we should emit a one's complement
|
||
instead. This way the combiner will notice logical operations
|
||
such as ANDN later on and substitute. */
|
||
if (trailing_bits == 0x3ff)
|
||
{
|
||
emit_insn (gen_rtx_SET (VOIDmode, op0,
|
||
gen_rtx_NOT (DImode, temp)));
|
||
}
|
||
else
|
||
{
|
||
emit_insn (gen_rtx_SET (VOIDmode,
|
||
op0,
|
||
gen_safe_XOR64 (temp,
|
||
(-0x400 | trailing_bits))));
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* 1) sethi %hi(xxx), %reg
|
||
* or %reg, %lo(xxx), %reg
|
||
* sllx %reg, yyy, %reg
|
||
*
|
||
* ??? This is just a generalized version of the low_bits==0
|
||
* thing above, FIXME...
|
||
*/
|
||
if ((highest_bit_set - lowest_bit_set) < 32)
|
||
{
|
||
unsigned HOST_WIDE_INT focus_bits =
|
||
create_simple_focus_bits (high_bits, low_bits,
|
||
lowest_bit_set, 0);
|
||
|
||
/* We can't get here in this state. */
|
||
if (highest_bit_set < 32
|
||
|| lowest_bit_set >= 32)
|
||
abort ();
|
||
|
||
/* So what we know is that the set bits straddle the
|
||
middle of the 64-bit word. */
|
||
sparc_emit_set_const64_quick2 (op0, temp,
|
||
focus_bits, 0,
|
||
lowest_bit_set);
|
||
return;
|
||
}
|
||
|
||
/* 1) sethi %hi(high_bits), %reg
|
||
* or %reg, %lo(high_bits), %reg
|
||
* sllx %reg, 32, %reg
|
||
* or %reg, low_bits, %reg
|
||
*/
|
||
if (SPARC_SIMM13_P(low_bits)
|
||
&& ((int)low_bits > 0))
|
||
{
|
||
sparc_emit_set_const64_quick2 (op0, temp, high_bits, low_bits, 32);
|
||
return;
|
||
}
|
||
|
||
/* The easiest way when all else fails, is full decomposition. */
|
||
#if 0
|
||
printf ("sparc_emit_set_const64: Hard constant [%08lx%08lx] neg[%08lx%08lx]\n",
|
||
high_bits, low_bits, ~high_bits, ~low_bits);
|
||
#endif
|
||
sparc_emit_set_const64_longway (op0, temp, high_bits, low_bits);
|
||
}
|
||
|
||
/* X and Y are two things to compare using CODE. Emit the compare insn and
|
||
return the rtx for the cc reg in the proper mode. */
|
||
|
||
rtx
|
||
gen_compare_reg (code, x, y)
|
||
enum rtx_code code;
|
||
rtx x, y;
|
||
{
|
||
enum machine_mode mode = SELECT_CC_MODE (code, x, y);
|
||
rtx cc_reg;
|
||
|
||
/* ??? We don't have movcc patterns so we cannot generate pseudo regs for the
|
||
fcc regs (cse can't tell they're really call clobbered regs and will
|
||
remove a duplicate comparison even if there is an intervening function
|
||
call - it will then try to reload the cc reg via an int reg which is why
|
||
we need the movcc patterns). It is possible to provide the movcc
|
||
patterns by using the ldxfsr/stxfsr v9 insns. I tried it: you need two
|
||
registers (say %g1,%g5) and it takes about 6 insns. A better fix would be
|
||
to tell cse that CCFPE mode registers (even pseudos) are call
|
||
clobbered. */
|
||
|
||
/* ??? This is an experiment. Rather than making changes to cse which may
|
||
or may not be easy/clean, we do our own cse. This is possible because
|
||
we will generate hard registers. Cse knows they're call clobbered (it
|
||
doesn't know the same thing about pseudos). If we guess wrong, no big
|
||
deal, but if we win, great! */
|
||
|
||
if (TARGET_V9 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
|
||
#if 1 /* experiment */
|
||
{
|
||
int reg;
|
||
/* We cycle through the registers to ensure they're all exercised. */
|
||
static int next_fcc_reg = 0;
|
||
/* Previous x,y for each fcc reg. */
|
||
static rtx prev_args[4][2];
|
||
|
||
/* Scan prev_args for x,y. */
|
||
for (reg = 0; reg < 4; reg++)
|
||
if (prev_args[reg][0] == x && prev_args[reg][1] == y)
|
||
break;
|
||
if (reg == 4)
|
||
{
|
||
reg = next_fcc_reg;
|
||
prev_args[reg][0] = x;
|
||
prev_args[reg][1] = y;
|
||
next_fcc_reg = (next_fcc_reg + 1) & 3;
|
||
}
|
||
cc_reg = gen_rtx_REG (mode, reg + SPARC_FIRST_V9_FCC_REG);
|
||
}
|
||
#else
|
||
cc_reg = gen_reg_rtx (mode);
|
||
#endif /* ! experiment */
|
||
else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
|
||
cc_reg = gen_rtx_REG (mode, SPARC_FCC_REG);
|
||
else
|
||
cc_reg = gen_rtx_REG (mode, SPARC_ICC_REG);
|
||
|
||
emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
|
||
gen_rtx_COMPARE (mode, x, y)));
|
||
|
||
return cc_reg;
|
||
}
|
||
|
||
/* This function is used for v9 only.
|
||
CODE is the code for an Scc's comparison.
|
||
OPERANDS[0] is the target of the Scc insn.
|
||
OPERANDS[1] is the value we compare against const0_rtx (which hasn't
|
||
been generated yet).
|
||
|
||
This function is needed to turn
|
||
|
||
(set (reg:SI 110)
|
||
(gt (reg:CCX 100 %icc)
|
||
(const_int 0)))
|
||
into
|
||
(set (reg:SI 110)
|
||
(gt:DI (reg:CCX 100 %icc)
|
||
(const_int 0)))
|
||
|
||
IE: The instruction recognizer needs to see the mode of the comparison to
|
||
find the right instruction. We could use "gt:DI" right in the
|
||
define_expand, but leaving it out allows us to handle DI, SI, etc.
|
||
|
||
We refer to the global sparc compare operands sparc_compare_op0 and
|
||
sparc_compare_op1. */
|
||
|
||
int
|
||
gen_v9_scc (compare_code, operands)
|
||
enum rtx_code compare_code;
|
||
register rtx *operands;
|
||
{
|
||
rtx temp, op0, op1;
|
||
|
||
if (! TARGET_ARCH64
|
||
&& (GET_MODE (sparc_compare_op0) == DImode
|
||
|| GET_MODE (operands[0]) == DImode))
|
||
return 0;
|
||
|
||
/* Handle the case where operands[0] == sparc_compare_op0.
|
||
We "early clobber" the result. */
|
||
if (REGNO (operands[0]) == REGNO (sparc_compare_op0))
|
||
{
|
||
op0 = gen_reg_rtx (GET_MODE (sparc_compare_op0));
|
||
emit_move_insn (op0, sparc_compare_op0);
|
||
}
|
||
else
|
||
op0 = sparc_compare_op0;
|
||
/* For consistency in the following. */
|
||
op1 = sparc_compare_op1;
|
||
|
||
/* Try to use the movrCC insns. */
|
||
if (TARGET_ARCH64
|
||
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
|
||
&& op1 == const0_rtx
|
||
&& v9_regcmp_p (compare_code))
|
||
{
|
||
/* Special case for op0 != 0. This can be done with one instruction if
|
||
operands[0] == sparc_compare_op0. We don't assume they are equal
|
||
now though. */
|
||
|
||
if (compare_code == NE
|
||
&& GET_MODE (operands[0]) == DImode
|
||
&& GET_MODE (op0) == DImode)
|
||
{
|
||
emit_insn (gen_rtx_SET (VOIDmode, operands[0], op0));
|
||
emit_insn (gen_rtx_SET (VOIDmode, operands[0],
|
||
gen_rtx_IF_THEN_ELSE (DImode,
|
||
gen_rtx_fmt_ee (compare_code, DImode,
|
||
op0, const0_rtx),
|
||
const1_rtx,
|
||
operands[0])));
|
||
return 1;
|
||
}
|
||
|
||
emit_insn (gen_rtx_SET (VOIDmode, operands[0], const0_rtx));
|
||
if (GET_MODE (op0) != DImode)
|
||
{
|
||
temp = gen_reg_rtx (DImode);
|
||
convert_move (temp, op0, 0);
|
||
}
|
||
else
|
||
temp = op0;
|
||
emit_insn (gen_rtx_SET (VOIDmode, operands[0],
|
||
gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]),
|
||
gen_rtx_fmt_ee (compare_code, DImode,
|
||
temp, const0_rtx),
|
||
const1_rtx,
|
||
operands[0])));
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
operands[1] = gen_compare_reg (compare_code, op0, op1);
|
||
|
||
switch (GET_MODE (operands[1]))
|
||
{
|
||
case CCmode :
|
||
case CCXmode :
|
||
case CCFPEmode :
|
||
case CCFPmode :
|
||
break;
|
||
default :
|
||
abort ();
|
||
}
|
||
emit_insn (gen_rtx_SET (VOIDmode, operands[0], const0_rtx));
|
||
emit_insn (gen_rtx_SET (VOIDmode, operands[0],
|
||
gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]),
|
||
gen_rtx_fmt_ee (compare_code,
|
||
GET_MODE (operands[1]),
|
||
operands[1], const0_rtx),
|
||
const1_rtx, operands[0])));
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* Emit a conditional jump insn for the v9 architecture using comparison code
|
||
CODE and jump target LABEL.
|
||
This function exists to take advantage of the v9 brxx insns. */
|
||
|
||
void
|
||
emit_v9_brxx_insn (code, op0, label)
|
||
enum rtx_code code;
|
||
rtx op0, label;
|
||
{
|
||
emit_jump_insn (gen_rtx_SET (VOIDmode,
|
||
pc_rtx,
|
||
gen_rtx_IF_THEN_ELSE (VOIDmode,
|
||
gen_rtx_fmt_ee (code, GET_MODE (op0),
|
||
op0, const0_rtx),
|
||
gen_rtx_LABEL_REF (VOIDmode, label),
|
||
pc_rtx)));
|
||
}
|
||
|
||
/* Return nonzero if a return peephole merging return with
|
||
setting of output register is ok. */
|
||
int
|
||
leaf_return_peephole_ok ()
|
||
{
|
||
return (actual_fsize == 0);
|
||
}
|
||
|
||
/* Return nonzero if TRIAL can go into the function epilogue's
|
||
delay slot. SLOT is the slot we are trying to fill. */
|
||
|
||
int
|
||
eligible_for_epilogue_delay (trial, slot)
|
||
rtx trial;
|
||
int slot;
|
||
{
|
||
rtx pat, src;
|
||
|
||
if (slot >= 1)
|
||
return 0;
|
||
|
||
if (GET_CODE (trial) != INSN || GET_CODE (PATTERN (trial)) != SET)
|
||
return 0;
|
||
|
||
if (get_attr_length (trial) != 1)
|
||
return 0;
|
||
|
||
/* If %g0 is live, there are lots of things we can't handle.
|
||
Rather than trying to find them all now, let's punt and only
|
||
optimize things as necessary. */
|
||
if (TARGET_LIVE_G0)
|
||
return 0;
|
||
|
||
/* In the case of a true leaf function, anything can go into the delay slot.
|
||
A delay slot only exists however if the frame size is zero, otherwise
|
||
we will put an insn to adjust the stack after the return. */
|
||
if (current_function_uses_only_leaf_regs)
|
||
{
|
||
if (leaf_return_peephole_ok ())
|
||
return ((get_attr_in_uncond_branch_delay (trial)
|
||
== IN_BRANCH_DELAY_TRUE));
|
||
return 0;
|
||
}
|
||
|
||
/* If only trivial `restore' insns work, nothing can go in the
|
||
delay slot. */
|
||
else if (TARGET_BROKEN_SAVERESTORE)
|
||
return 0;
|
||
|
||
pat = PATTERN (trial);
|
||
|
||
/* Otherwise, only operations which can be done in tandem with
|
||
a `restore' insn can go into the delay slot. */
|
||
if (GET_CODE (SET_DEST (pat)) != REG
|
||
|| REGNO (SET_DEST (pat)) >= 32
|
||
|| REGNO (SET_DEST (pat)) < 24)
|
||
return 0;
|
||
|
||
/* The set of insns matched here must agree precisely with the set of
|
||
patterns paired with a RETURN in sparc.md. */
|
||
|
||
src = SET_SRC (pat);
|
||
|
||
/* This matches "*return_[qhs]i" or even "*return_di" on TARGET_ARCH64. */
|
||
if (arith_operand (src, GET_MODE (src)))
|
||
{
|
||
if (TARGET_ARCH64)
|
||
return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode);
|
||
else
|
||
return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (SImode);
|
||
}
|
||
|
||
/* This matches "*return_di". */
|
||
else if (arith_double_operand (src, GET_MODE (src)))
|
||
return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode);
|
||
|
||
/* This matches "*return_sf_no_fpu". */
|
||
else if (! TARGET_FPU && restore_operand (SET_DEST (pat), SFmode)
|
||
&& register_operand (src, SFmode))
|
||
return 1;
|
||
|
||
/* This matches "*return_addsi". */
|
||
else if (GET_CODE (src) == PLUS
|
||
&& arith_operand (XEXP (src, 0), SImode)
|
||
&& arith_operand (XEXP (src, 1), SImode)
|
||
&& (register_operand (XEXP (src, 0), SImode)
|
||
|| register_operand (XEXP (src, 1), SImode)))
|
||
return 1;
|
||
|
||
/* This matches "*return_adddi". */
|
||
else if (GET_CODE (src) == PLUS
|
||
&& arith_double_operand (XEXP (src, 0), DImode)
|
||
&& arith_double_operand (XEXP (src, 1), DImode)
|
||
&& (register_operand (XEXP (src, 0), DImode)
|
||
|| register_operand (XEXP (src, 1), DImode)))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
check_return_regs (x)
|
||
rtx x;
|
||
{
|
||
switch (GET_CODE (x))
|
||
{
|
||
case REG:
|
||
return IN_OR_GLOBAL_P (x);
|
||
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
return 1;
|
||
|
||
case SET:
|
||
case IOR:
|
||
case AND:
|
||
case XOR:
|
||
case PLUS:
|
||
case MINUS:
|
||
if (check_return_regs (XEXP (x, 1)) == 0)
|
||
return 0;
|
||
case NOT:
|
||
case NEG:
|
||
case MEM:
|
||
return check_return_regs (XEXP (x, 0));
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
}
|
||
|
||
/* Return 1 if TRIAL references only in and global registers. */
|
||
int
|
||
eligible_for_return_delay (trial)
|
||
rtx trial;
|
||
{
|
||
if (GET_CODE (PATTERN (trial)) != SET)
|
||
return 0;
|
||
|
||
return check_return_regs (PATTERN (trial));
|
||
}
|
||
|
||
int
|
||
short_branch (uid1, uid2)
|
||
int uid1, uid2;
|
||
{
|
||
unsigned int delta = insn_addresses[uid1] - insn_addresses[uid2];
|
||
if (delta + 1024 < 2048)
|
||
return 1;
|
||
/* warning ("long branch, distance %d", delta); */
|
||
return 0;
|
||
}
|
||
|
||
/* Return non-zero if REG is not used after INSN.
|
||
We assume REG is a reload reg, and therefore does
|
||
not live past labels or calls or jumps. */
|
||
int
|
||
reg_unused_after (reg, insn)
|
||
rtx reg;
|
||
rtx insn;
|
||
{
|
||
enum rtx_code code, prev_code = UNKNOWN;
|
||
|
||
while ((insn = NEXT_INSN (insn)))
|
||
{
|
||
if (prev_code == CALL_INSN && call_used_regs[REGNO (reg)])
|
||
return 1;
|
||
|
||
code = GET_CODE (insn);
|
||
if (GET_CODE (insn) == CODE_LABEL)
|
||
return 1;
|
||
|
||
if (GET_RTX_CLASS (code) == 'i')
|
||
{
|
||
rtx set = single_set (insn);
|
||
int in_src = set && reg_overlap_mentioned_p (reg, SET_SRC (set));
|
||
if (set && in_src)
|
||
return 0;
|
||
if (set && reg_overlap_mentioned_p (reg, SET_DEST (set)))
|
||
return 1;
|
||
if (set == 0 && reg_overlap_mentioned_p (reg, PATTERN (insn)))
|
||
return 0;
|
||
}
|
||
prev_code = code;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* The table we use to reference PIC data. */
|
||
static rtx global_offset_table;
|
||
|
||
/* The function we use to get at it. */
|
||
static rtx get_pc_symbol;
|
||
static char get_pc_symbol_name[256];
|
||
|
||
/* Ensure that we are not using patterns that are not OK with PIC. */
|
||
|
||
int
|
||
check_pic (i)
|
||
int i;
|
||
{
|
||
switch (flag_pic)
|
||
{
|
||
case 1:
|
||
if (GET_CODE (recog_operand[i]) == SYMBOL_REF
|
||
|| (GET_CODE (recog_operand[i]) == CONST
|
||
&& ! (GET_CODE (XEXP (recog_operand[i], 0)) == MINUS
|
||
&& (XEXP (XEXP (recog_operand[i], 0), 0)
|
||
== global_offset_table)
|
||
&& (GET_CODE (XEXP (XEXP (recog_operand[i], 0), 1))
|
||
== CONST))))
|
||
abort ();
|
||
case 2:
|
||
default:
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* Return true if X is an address which needs a temporary register when
|
||
reloaded while generating PIC code. */
|
||
|
||
int
|
||
pic_address_needs_scratch (x)
|
||
rtx x;
|
||
{
|
||
/* An address which is a symbolic plus a non SMALL_INT needs a temp reg. */
|
||
if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
|
||
&& ! SMALL_INT (XEXP (XEXP (x, 0), 1)))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Legitimize PIC addresses. If the address is already position-independent,
|
||
we return ORIG. Newly generated position-independent addresses go into a
|
||
reg. This is REG if non zero, otherwise we allocate register(s) as
|
||
necessary. */
|
||
|
||
rtx
|
||
legitimize_pic_address (orig, mode, reg)
|
||
rtx orig;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
rtx reg;
|
||
{
|
||
if (GET_CODE (orig) == SYMBOL_REF)
|
||
{
|
||
rtx pic_ref, address;
|
||
rtx insn;
|
||
|
||
if (reg == 0)
|
||
{
|
||
if (reload_in_progress || reload_completed)
|
||
abort ();
|
||
else
|
||
reg = gen_reg_rtx (Pmode);
|
||
}
|
||
|
||
if (flag_pic == 2)
|
||
{
|
||
/* If not during reload, allocate another temp reg here for loading
|
||
in the address, so that these instructions can be optimized
|
||
properly. */
|
||
rtx temp_reg = ((reload_in_progress || reload_completed)
|
||
? reg : gen_reg_rtx (Pmode));
|
||
|
||
/* Must put the SYMBOL_REF inside an UNSPEC here so that cse
|
||
won't get confused into thinking that these two instructions
|
||
are loading in the true address of the symbol. If in the
|
||
future a PIC rtx exists, that should be used instead. */
|
||
if (Pmode == SImode)
|
||
{
|
||
emit_insn (gen_movsi_high_pic (temp_reg, orig));
|
||
emit_insn (gen_movsi_lo_sum_pic (temp_reg, temp_reg, orig));
|
||
}
|
||
else
|
||
{
|
||
emit_insn (gen_movdi_high_pic (temp_reg, orig));
|
||
emit_insn (gen_movdi_lo_sum_pic (temp_reg, temp_reg, orig));
|
||
}
|
||
address = temp_reg;
|
||
}
|
||
else
|
||
address = orig;
|
||
|
||
pic_ref = gen_rtx_MEM (Pmode,
|
||
gen_rtx_PLUS (Pmode,
|
||
pic_offset_table_rtx, address));
|
||
current_function_uses_pic_offset_table = 1;
|
||
RTX_UNCHANGING_P (pic_ref) = 1;
|
||
insn = emit_move_insn (reg, pic_ref);
|
||
/* Put a REG_EQUAL note on this insn, so that it can be optimized
|
||
by loop. */
|
||
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, orig,
|
||
REG_NOTES (insn));
|
||
return reg;
|
||
}
|
||
else if (GET_CODE (orig) == CONST)
|
||
{
|
||
rtx base, offset;
|
||
|
||
if (GET_CODE (XEXP (orig, 0)) == PLUS
|
||
&& XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
|
||
return orig;
|
||
|
||
if (reg == 0)
|
||
{
|
||
if (reload_in_progress || reload_completed)
|
||
abort ();
|
||
else
|
||
reg = gen_reg_rtx (Pmode);
|
||
}
|
||
|
||
if (GET_CODE (XEXP (orig, 0)) == PLUS)
|
||
{
|
||
base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
|
||
offset = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
|
||
base == reg ? 0 : reg);
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
if (GET_CODE (offset) == CONST_INT)
|
||
{
|
||
if (SMALL_INT (offset))
|
||
return plus_constant_for_output (base, INTVAL (offset));
|
||
else if (! reload_in_progress && ! reload_completed)
|
||
offset = force_reg (Pmode, offset);
|
||
else
|
||
/* If we reach here, then something is seriously wrong. */
|
||
abort ();
|
||
}
|
||
return gen_rtx_PLUS (Pmode, base, offset);
|
||
}
|
||
else if (GET_CODE (orig) == LABEL_REF)
|
||
/* ??? Why do we do this? */
|
||
/* Now movsi_pic_label_ref uses it, but we ought to be checking that
|
||
the register is live instead, in case it is eliminated. */
|
||
current_function_uses_pic_offset_table = 1;
|
||
|
||
return orig;
|
||
}
|
||
|
||
/* Return the RTX for insns to set the PIC register. */
|
||
|
||
static rtx
|
||
pic_setup_code ()
|
||
{
|
||
rtx seq;
|
||
|
||
start_sequence ();
|
||
emit_insn (gen_get_pc (pic_offset_table_rtx, global_offset_table,
|
||
get_pc_symbol));
|
||
seq = gen_sequence ();
|
||
end_sequence ();
|
||
|
||
return seq;
|
||
}
|
||
|
||
/* Emit special PIC prologues and epilogues. */
|
||
|
||
void
|
||
finalize_pic ()
|
||
{
|
||
/* Labels to get the PC in the prologue of this function. */
|
||
int orig_flag_pic = flag_pic;
|
||
rtx insn;
|
||
|
||
if (current_function_uses_pic_offset_table == 0)
|
||
return;
|
||
|
||
if (! flag_pic)
|
||
abort ();
|
||
|
||
/* If we havn't emitted the special get_pc helper function, do so now. */
|
||
if (get_pc_symbol_name[0] == 0)
|
||
{
|
||
int align;
|
||
|
||
ASM_GENERATE_INTERNAL_LABEL (get_pc_symbol_name, "LGETPC", 0);
|
||
text_section ();
|
||
|
||
align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT);
|
||
if (align > 0)
|
||
ASM_OUTPUT_ALIGN (asm_out_file, align);
|
||
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LGETPC", 0);
|
||
fputs ("\tretl\n\tadd %o7,%l7,%l7\n", asm_out_file);
|
||
}
|
||
|
||
/* Initialize every time through, since we can't easily
|
||
know this to be permanent. */
|
||
global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
|
||
get_pc_symbol = gen_rtx_SYMBOL_REF (Pmode, get_pc_symbol_name);
|
||
flag_pic = 0;
|
||
|
||
emit_insn_after (pic_setup_code (), get_insns ());
|
||
|
||
/* Insert the code in each nonlocal goto receiver.
|
||
If you make changes here or to the nonlocal_goto_receiver
|
||
pattern, make sure the unspec_volatile numbers still
|
||
match. */
|
||
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
||
if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE
|
||
&& XINT (PATTERN (insn), 1) == 5)
|
||
emit_insn_after (pic_setup_code (), insn);
|
||
|
||
flag_pic = orig_flag_pic;
|
||
|
||
/* Need to emit this whether or not we obey regdecls,
|
||
since setjmp/longjmp can cause life info to screw up.
|
||
??? In the case where we don't obey regdecls, this is not sufficient
|
||
since we may not fall out the bottom. */
|
||
emit_insn (gen_rtx_USE (VOIDmode, pic_offset_table_rtx));
|
||
}
|
||
|
||
/* Return 1 if RTX is a MEM which is known to be aligned to at
|
||
least an 8 byte boundary. */
|
||
|
||
int
|
||
mem_min_alignment (mem, desired)
|
||
rtx mem;
|
||
int desired;
|
||
{
|
||
rtx addr, base, offset;
|
||
|
||
/* If it's not a MEM we can't accept it. */
|
||
if (GET_CODE (mem) != MEM)
|
||
return 0;
|
||
|
||
addr = XEXP (mem, 0);
|
||
base = offset = NULL_RTX;
|
||
if (GET_CODE (addr) == PLUS)
|
||
{
|
||
if (GET_CODE (XEXP (addr, 0)) == REG)
|
||
{
|
||
base = XEXP (addr, 0);
|
||
|
||
/* What we are saying here is that if the base
|
||
REG is aligned properly, the compiler will make
|
||
sure any REG based index upon it will be so
|
||
as well. */
|
||
if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
|
||
offset = XEXP (addr, 1);
|
||
else
|
||
offset = const0_rtx;
|
||
}
|
||
}
|
||
else if (GET_CODE (addr) == REG)
|
||
{
|
||
base = addr;
|
||
offset = const0_rtx;
|
||
}
|
||
|
||
if (base != NULL_RTX)
|
||
{
|
||
int regno = REGNO (base);
|
||
|
||
if (regno != FRAME_POINTER_REGNUM
|
||
&& regno != STACK_POINTER_REGNUM)
|
||
{
|
||
/* Check if the compiler has recorded some information
|
||
about the alignment of the base REG. If reload has
|
||
completed, we already matched with proper alignments. */
|
||
if (((regno_pointer_align != NULL
|
||
&& REGNO_POINTER_ALIGN (regno) >= desired)
|
||
|| reload_completed)
|
||
&& ((INTVAL (offset) & (desired - 1)) == 0))
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
if (((INTVAL (offset) - SPARC_STACK_BIAS) & (desired - 1)) == 0)
|
||
return 1;
|
||
}
|
||
}
|
||
else if (! TARGET_UNALIGNED_DOUBLES
|
||
|| CONSTANT_P (addr)
|
||
|| GET_CODE (addr) == LO_SUM)
|
||
{
|
||
/* Anything else we know is properly aligned unless TARGET_UNALIGNED_DOUBLES
|
||
is true, in which case we can only assume that an access is aligned if
|
||
it is to a constant address, or the address involves a LO_SUM. */
|
||
return 1;
|
||
}
|
||
|
||
/* An obviously unaligned address. */
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Vectors to keep interesting information about registers where it can easily
|
||
be got. We use to use the actual mode value as the bit number, but there
|
||
are more than 32 modes now. Instead we use two tables: one indexed by
|
||
hard register number, and one indexed by mode. */
|
||
|
||
/* The purpose of sparc_mode_class is to shrink the range of modes so that
|
||
they all fit (as bit numbers) in a 32 bit word (again). Each real mode is
|
||
mapped into one sparc_mode_class mode. */
|
||
|
||
enum sparc_mode_class {
|
||
S_MODE, D_MODE, T_MODE, O_MODE,
|
||
SF_MODE, DF_MODE, TF_MODE, OF_MODE,
|
||
CC_MODE, CCFP_MODE
|
||
};
|
||
|
||
/* Modes for single-word and smaller quantities. */
|
||
#define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE))
|
||
|
||
/* Modes for double-word and smaller quantities. */
|
||
#define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE))
|
||
|
||
/* Modes for quad-word and smaller quantities. */
|
||
#define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE))
|
||
|
||
/* Modes for single-float quantities. We must allow any single word or
|
||
smaller quantity. This is because the fix/float conversion instructions
|
||
take integer inputs/outputs from the float registers. */
|
||
#define SF_MODES (S_MODES)
|
||
|
||
/* Modes for double-float and smaller quantities. */
|
||
#define DF_MODES (S_MODES | D_MODES)
|
||
|
||
#define DF_MODES64 DF_MODES
|
||
|
||
/* Modes for double-float only quantities. */
|
||
#define DF_ONLY_MODES ((1 << (int) DF_MODE) | (1 << (int) D_MODE))
|
||
|
||
/* Modes for double-float and larger quantities. */
|
||
#define DF_UP_MODES (DF_ONLY_MODES | TF_ONLY_MODES)
|
||
|
||
/* Modes for quad-float only quantities. */
|
||
#define TF_ONLY_MODES (1 << (int) TF_MODE)
|
||
|
||
/* Modes for quad-float and smaller quantities. */
|
||
#define TF_MODES (DF_MODES | TF_ONLY_MODES)
|
||
|
||
#define TF_MODES64 (DF_MODES64 | TF_ONLY_MODES)
|
||
|
||
/* Modes for condition codes. */
|
||
#define CC_MODES (1 << (int) CC_MODE)
|
||
#define CCFP_MODES (1 << (int) CCFP_MODE)
|
||
|
||
/* Value is 1 if register/mode pair is acceptable on sparc.
|
||
The funny mixture of D and T modes is because integer operations
|
||
do not specially operate on tetra quantities, so non-quad-aligned
|
||
registers can hold quadword quantities (except %o4 and %i4 because
|
||
they cross fixed registers). */
|
||
|
||
/* This points to either the 32 bit or the 64 bit version. */
|
||
int *hard_regno_mode_classes;
|
||
|
||
static int hard_32bit_mode_classes[] = {
|
||
S_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
|
||
T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES,
|
||
T_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
|
||
T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES,
|
||
|
||
TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
|
||
TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
|
||
TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
|
||
TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
|
||
|
||
/* FP regs f32 to f63. Only the even numbered registers actually exist,
|
||
and none can hold SFmode/SImode values. */
|
||
DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
|
||
DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
|
||
DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
|
||
DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
|
||
|
||
/* %fcc[0123] */
|
||
CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES,
|
||
|
||
/* %icc */
|
||
CC_MODES
|
||
};
|
||
|
||
static int hard_64bit_mode_classes[] = {
|
||
D_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
|
||
T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
|
||
T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
|
||
T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
|
||
|
||
TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES,
|
||
TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES,
|
||
TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES,
|
||
TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES,
|
||
|
||
/* FP regs f32 to f63. Only the even numbered registers actually exist,
|
||
and none can hold SFmode/SImode values. */
|
||
DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
|
||
DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
|
||
DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
|
||
DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
|
||
|
||
/* %fcc[0123] */
|
||
CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES,
|
||
|
||
/* %icc */
|
||
CC_MODES
|
||
};
|
||
|
||
int sparc_mode_class [NUM_MACHINE_MODES];
|
||
|
||
enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
|
||
|
||
static void
|
||
sparc_init_modes ()
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
||
{
|
||
switch (GET_MODE_CLASS (i))
|
||
{
|
||
case MODE_INT:
|
||
case MODE_PARTIAL_INT:
|
||
case MODE_COMPLEX_INT:
|
||
if (GET_MODE_SIZE (i) <= 4)
|
||
sparc_mode_class[i] = 1 << (int) S_MODE;
|
||
else if (GET_MODE_SIZE (i) == 8)
|
||
sparc_mode_class[i] = 1 << (int) D_MODE;
|
||
else if (GET_MODE_SIZE (i) == 16)
|
||
sparc_mode_class[i] = 1 << (int) T_MODE;
|
||
else if (GET_MODE_SIZE (i) == 32)
|
||
sparc_mode_class[i] = 1 << (int) O_MODE;
|
||
else
|
||
sparc_mode_class[i] = 0;
|
||
break;
|
||
case MODE_FLOAT:
|
||
case MODE_COMPLEX_FLOAT:
|
||
if (GET_MODE_SIZE (i) <= 4)
|
||
sparc_mode_class[i] = 1 << (int) SF_MODE;
|
||
else if (GET_MODE_SIZE (i) == 8)
|
||
sparc_mode_class[i] = 1 << (int) DF_MODE;
|
||
else if (GET_MODE_SIZE (i) == 16)
|
||
sparc_mode_class[i] = 1 << (int) TF_MODE;
|
||
else if (GET_MODE_SIZE (i) == 32)
|
||
sparc_mode_class[i] = 1 << (int) OF_MODE;
|
||
else
|
||
sparc_mode_class[i] = 0;
|
||
break;
|
||
case MODE_CC:
|
||
default:
|
||
/* mode_class hasn't been initialized yet for EXTRA_CC_MODES, so
|
||
we must explicitly check for them here. */
|
||
if (i == (int) CCFPmode || i == (int) CCFPEmode)
|
||
sparc_mode_class[i] = 1 << (int) CCFP_MODE;
|
||
else if (i == (int) CCmode || i == (int) CC_NOOVmode
|
||
|| i == (int) CCXmode || i == (int) CCX_NOOVmode)
|
||
sparc_mode_class[i] = 1 << (int) CC_MODE;
|
||
else
|
||
sparc_mode_class[i] = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (TARGET_ARCH64)
|
||
hard_regno_mode_classes = hard_64bit_mode_classes;
|
||
else
|
||
hard_regno_mode_classes = hard_32bit_mode_classes;
|
||
|
||
/* Initialize the array used by REGNO_REG_CLASS. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
if (i < 16 && TARGET_V8PLUS)
|
||
sparc_regno_reg_class[i] = I64_REGS;
|
||
else if (i < 32)
|
||
sparc_regno_reg_class[i] = GENERAL_REGS;
|
||
else if (i < 64)
|
||
sparc_regno_reg_class[i] = FP_REGS;
|
||
else if (i < 96)
|
||
sparc_regno_reg_class[i] = EXTRA_FP_REGS;
|
||
else if (i < 100)
|
||
sparc_regno_reg_class[i] = FPCC_REGS;
|
||
else
|
||
sparc_regno_reg_class[i] = NO_REGS;
|
||
}
|
||
}
|
||
|
||
/* Save non call used registers from LOW to HIGH at BASE+OFFSET.
|
||
N_REGS is the number of 4-byte regs saved thus far. This applies even to
|
||
v9 int regs as it simplifies the code. */
|
||
|
||
static int
|
||
save_regs (file, low, high, base, offset, n_regs, real_offset)
|
||
FILE *file;
|
||
int low, high;
|
||
const char *base;
|
||
int offset;
|
||
int n_regs;
|
||
int real_offset;
|
||
{
|
||
int i;
|
||
|
||
if (TARGET_ARCH64 && high <= 32)
|
||
{
|
||
for (i = low; i < high; i++)
|
||
{
|
||
if (regs_ever_live[i] && ! call_used_regs[i])
|
||
{
|
||
fprintf (file, "\tstx\t%s, [%s+%d]\n",
|
||
reg_names[i], base, offset + 4 * n_regs);
|
||
if (dwarf2out_do_frame ())
|
||
dwarf2out_reg_save ("", i, real_offset + 4 * n_regs);
|
||
n_regs += 2;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (i = low; i < high; i += 2)
|
||
{
|
||
if (regs_ever_live[i] && ! call_used_regs[i])
|
||
{
|
||
if (regs_ever_live[i+1] && ! call_used_regs[i+1])
|
||
{
|
||
fprintf (file, "\tstd\t%s, [%s+%d]\n",
|
||
reg_names[i], base, offset + 4 * n_regs);
|
||
if (dwarf2out_do_frame ())
|
||
{
|
||
char *l = dwarf2out_cfi_label ();
|
||
dwarf2out_reg_save (l, i, real_offset + 4 * n_regs);
|
||
dwarf2out_reg_save (l, i+1, real_offset + 4 * n_regs + 4);
|
||
}
|
||
n_regs += 2;
|
||
}
|
||
else
|
||
{
|
||
fprintf (file, "\tst\t%s, [%s+%d]\n",
|
||
reg_names[i], base, offset + 4 * n_regs);
|
||
if (dwarf2out_do_frame ())
|
||
dwarf2out_reg_save ("", i, real_offset + 4 * n_regs);
|
||
n_regs += 2;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (regs_ever_live[i+1] && ! call_used_regs[i+1])
|
||
{
|
||
fprintf (file, "\tst\t%s, [%s+%d]\n",
|
||
reg_names[i+1], base, offset + 4 * n_regs + 4);
|
||
if (dwarf2out_do_frame ())
|
||
dwarf2out_reg_save ("", i + 1, real_offset + 4 * n_regs + 4);
|
||
n_regs += 2;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return n_regs;
|
||
}
|
||
|
||
/* Restore non call used registers from LOW to HIGH at BASE+OFFSET.
|
||
|
||
N_REGS is the number of 4-byte regs saved thus far. This applies even to
|
||
v9 int regs as it simplifies the code. */
|
||
|
||
static int
|
||
restore_regs (file, low, high, base, offset, n_regs)
|
||
FILE *file;
|
||
int low, high;
|
||
const char *base;
|
||
int offset;
|
||
int n_regs;
|
||
{
|
||
int i;
|
||
|
||
if (TARGET_ARCH64 && high <= 32)
|
||
{
|
||
for (i = low; i < high; i++)
|
||
{
|
||
if (regs_ever_live[i] && ! call_used_regs[i])
|
||
fprintf (file, "\tldx\t[%s+%d], %s\n",
|
||
base, offset + 4 * n_regs, reg_names[i]),
|
||
n_regs += 2;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (i = low; i < high; i += 2)
|
||
{
|
||
if (regs_ever_live[i] && ! call_used_regs[i])
|
||
if (regs_ever_live[i+1] && ! call_used_regs[i+1])
|
||
fprintf (file, "\tldd\t[%s+%d], %s\n",
|
||
base, offset + 4 * n_regs, reg_names[i]),
|
||
n_regs += 2;
|
||
else
|
||
fprintf (file, "\tld\t[%s+%d],%s\n",
|
||
base, offset + 4 * n_regs, reg_names[i]),
|
||
n_regs += 2;
|
||
else if (regs_ever_live[i+1] && ! call_used_regs[i+1])
|
||
fprintf (file, "\tld\t[%s+%d],%s\n",
|
||
base, offset + 4 * n_regs + 4, reg_names[i+1]),
|
||
n_regs += 2;
|
||
}
|
||
}
|
||
return n_regs;
|
||
}
|
||
|
||
/* Static variables we want to share between prologue and epilogue. */
|
||
|
||
/* Number of live general or floating point registers needed to be saved
|
||
(as 4-byte quantities). This is only done if TARGET_EPILOGUE. */
|
||
static int num_gfregs;
|
||
|
||
/* Compute the frame size required by the function. This function is called
|
||
during the reload pass and also by output_function_prologue(). */
|
||
|
||
int
|
||
compute_frame_size (size, leaf_function)
|
||
int size;
|
||
int leaf_function;
|
||
{
|
||
int n_regs = 0, i;
|
||
int outgoing_args_size = (current_function_outgoing_args_size
|
||
+ REG_PARM_STACK_SPACE (current_function_decl));
|
||
|
||
if (TARGET_EPILOGUE)
|
||
{
|
||
/* N_REGS is the number of 4-byte regs saved thus far. This applies
|
||
even to v9 int regs to be consistent with save_regs/restore_regs. */
|
||
|
||
if (TARGET_ARCH64)
|
||
{
|
||
for (i = 0; i < 8; i++)
|
||
if (regs_ever_live[i] && ! call_used_regs[i])
|
||
n_regs += 2;
|
||
}
|
||
else
|
||
{
|
||
for (i = 0; i < 8; i += 2)
|
||
if ((regs_ever_live[i] && ! call_used_regs[i])
|
||
|| (regs_ever_live[i+1] && ! call_used_regs[i+1]))
|
||
n_regs += 2;
|
||
}
|
||
|
||
for (i = 32; i < (TARGET_V9 ? 96 : 64); i += 2)
|
||
if ((regs_ever_live[i] && ! call_used_regs[i])
|
||
|| (regs_ever_live[i+1] && ! call_used_regs[i+1]))
|
||
n_regs += 2;
|
||
}
|
||
|
||
/* Set up values for use in `function_epilogue'. */
|
||
num_gfregs = n_regs;
|
||
|
||
if (leaf_function && n_regs == 0
|
||
&& size == 0 && current_function_outgoing_args_size == 0)
|
||
{
|
||
actual_fsize = apparent_fsize = 0;
|
||
}
|
||
else
|
||
{
|
||
/* We subtract STARTING_FRAME_OFFSET, remember it's negative.
|
||
The stack bias (if any) is taken out to undo its effects. */
|
||
apparent_fsize = (size - STARTING_FRAME_OFFSET + SPARC_STACK_BIAS + 7) & -8;
|
||
apparent_fsize += n_regs * 4;
|
||
actual_fsize = apparent_fsize + ((outgoing_args_size + 7) & -8);
|
||
}
|
||
|
||
/* Make sure nothing can clobber our register windows.
|
||
If a SAVE must be done, or there is a stack-local variable,
|
||
the register window area must be allocated.
|
||
??? For v8 we apparently need an additional 8 bytes of reserved space. */
|
||
if (leaf_function == 0 || size > 0)
|
||
actual_fsize += (16 * UNITS_PER_WORD) + (TARGET_ARCH64 ? 0 : 8);
|
||
|
||
return SPARC_STACK_ALIGN (actual_fsize);
|
||
}
|
||
|
||
/* Build a (32 bit) big number in a register. */
|
||
/* ??? We may be able to use the set macro here too. */
|
||
|
||
static void
|
||
build_big_number (file, num, reg)
|
||
FILE *file;
|
||
int num;
|
||
const char *reg;
|
||
{
|
||
if (num >= 0 || ! TARGET_ARCH64)
|
||
{
|
||
fprintf (file, "\tsethi\t%%hi(%d), %s\n", num, reg);
|
||
if ((num & 0x3ff) != 0)
|
||
fprintf (file, "\tor\t%s, %%lo(%d), %s\n", reg, num, reg);
|
||
}
|
||
else /* num < 0 && TARGET_ARCH64 */
|
||
{
|
||
/* Sethi does not sign extend, so we must use a little trickery
|
||
to use it for negative numbers. Invert the constant before
|
||
loading it in, then use xor immediate to invert the loaded bits
|
||
(along with the upper 32 bits) to the desired constant. This
|
||
works because the sethi and immediate fields overlap. */
|
||
int asize = num;
|
||
int inv = ~asize;
|
||
int low = -0x400 + (asize & 0x3FF);
|
||
|
||
fprintf (file, "\tsethi\t%%hi(%d), %s\n\txor\t%s, %d, %s\n",
|
||
inv, reg, reg, low, reg);
|
||
}
|
||
}
|
||
|
||
/* Output code for the function prologue. */
|
||
|
||
void
|
||
output_function_prologue (file, size, leaf_function)
|
||
FILE *file;
|
||
int size;
|
||
int leaf_function;
|
||
{
|
||
/* Need to use actual_fsize, since we are also allocating
|
||
space for our callee (and our own register save area). */
|
||
actual_fsize = compute_frame_size (size, leaf_function);
|
||
|
||
if (leaf_function)
|
||
{
|
||
frame_base_name = "%sp";
|
||
frame_base_offset = actual_fsize + SPARC_STACK_BIAS;
|
||
}
|
||
else
|
||
{
|
||
frame_base_name = "%fp";
|
||
frame_base_offset = SPARC_STACK_BIAS;
|
||
}
|
||
|
||
/* This is only for the human reader. */
|
||
fprintf (file, "\t%s#PROLOGUE# 0\n", ASM_COMMENT_START);
|
||
|
||
if (actual_fsize == 0)
|
||
/* do nothing. */ ;
|
||
else if (! leaf_function && ! TARGET_BROKEN_SAVERESTORE)
|
||
{
|
||
if (actual_fsize <= 4096)
|
||
fprintf (file, "\tsave\t%%sp, -%d, %%sp\n", actual_fsize);
|
||
else if (actual_fsize <= 8192)
|
||
{
|
||
fprintf (file, "\tsave\t%%sp, -4096, %%sp\n");
|
||
fprintf (file, "\tadd\t%%sp, -%d, %%sp\n", actual_fsize - 4096);
|
||
}
|
||
else
|
||
{
|
||
build_big_number (file, -actual_fsize, "%g1");
|
||
fprintf (file, "\tsave\t%%sp, %%g1, %%sp\n");
|
||
}
|
||
}
|
||
else if (! leaf_function && TARGET_BROKEN_SAVERESTORE)
|
||
{
|
||
/* We assume the environment will properly handle or otherwise avoid
|
||
trouble associated with an interrupt occurring after the `save' or
|
||
trap occurring during it. */
|
||
fprintf (file, "\tsave\n");
|
||
|
||
if (actual_fsize <= 4096)
|
||
fprintf (file, "\tadd\t%%fp, -%d, %%sp\n", actual_fsize);
|
||
else if (actual_fsize <= 8192)
|
||
{
|
||
fprintf (file, "\tadd\t%%fp, -4096, %%sp\n");
|
||
fprintf (file, "\tadd\t%%fp, -%d, %%sp\n", actual_fsize - 4096);
|
||
}
|
||
else
|
||
{
|
||
build_big_number (file, -actual_fsize, "%g1");
|
||
fprintf (file, "\tadd\t%%fp, %%g1, %%sp\n");
|
||
}
|
||
}
|
||
else /* leaf function */
|
||
{
|
||
if (actual_fsize <= 4096)
|
||
fprintf (file, "\tadd\t%%sp, -%d, %%sp\n", actual_fsize);
|
||
else if (actual_fsize <= 8192)
|
||
{
|
||
fprintf (file, "\tadd\t%%sp, -4096, %%sp\n");
|
||
fprintf (file, "\tadd\t%%sp, -%d, %%sp\n", actual_fsize - 4096);
|
||
}
|
||
else
|
||
{
|
||
build_big_number (file, -actual_fsize, "%g1");
|
||
fprintf (file, "\tadd\t%%sp, %%g1, %%sp\n");
|
||
}
|
||
}
|
||
|
||
if (dwarf2out_do_frame () && actual_fsize)
|
||
{
|
||
char *label = dwarf2out_cfi_label ();
|
||
|
||
/* The canonical frame address refers to the top of the frame. */
|
||
dwarf2out_def_cfa (label, (leaf_function ? STACK_POINTER_REGNUM
|
||
: FRAME_POINTER_REGNUM),
|
||
frame_base_offset);
|
||
|
||
if (! leaf_function)
|
||
{
|
||
/* Note the register window save. This tells the unwinder that
|
||
it needs to restore the window registers from the previous
|
||
frame's window save area at 0(cfa). */
|
||
dwarf2out_window_save (label);
|
||
|
||
/* The return address (-8) is now in %i7. */
|
||
dwarf2out_return_reg (label, 31);
|
||
}
|
||
}
|
||
|
||
/* If doing anything with PIC, do it now. */
|
||
if (! flag_pic)
|
||
fprintf (file, "\t%s#PROLOGUE# 1\n", ASM_COMMENT_START);
|
||
|
||
/* Call saved registers are saved just above the outgoing argument area. */
|
||
if (num_gfregs)
|
||
{
|
||
int offset, real_offset, n_regs;
|
||
const char *base;
|
||
|
||
real_offset = -apparent_fsize;
|
||
offset = -apparent_fsize + frame_base_offset;
|
||
if (offset < -4096 || offset + num_gfregs * 4 > 4096)
|
||
{
|
||
/* ??? This might be optimized a little as %g1 might already have a
|
||
value close enough that a single add insn will do. */
|
||
/* ??? Although, all of this is probably only a temporary fix
|
||
because if %g1 can hold a function result, then
|
||
output_function_epilogue will lose (the result will get
|
||
clobbered). */
|
||
build_big_number (file, offset, "%g1");
|
||
fprintf (file, "\tadd\t%s, %%g1, %%g1\n", frame_base_name);
|
||
base = "%g1";
|
||
offset = 0;
|
||
}
|
||
else
|
||
{
|
||
base = frame_base_name;
|
||
}
|
||
|
||
n_regs = 0;
|
||
if (TARGET_EPILOGUE && ! leaf_function)
|
||
/* ??? Originally saved regs 0-15 here. */
|
||
n_regs = save_regs (file, 0, 8, base, offset, 0, real_offset);
|
||
else if (leaf_function)
|
||
/* ??? Originally saved regs 0-31 here. */
|
||
n_regs = save_regs (file, 0, 8, base, offset, 0, real_offset);
|
||
if (TARGET_EPILOGUE)
|
||
save_regs (file, 32, TARGET_V9 ? 96 : 64, base, offset, n_regs,
|
||
real_offset);
|
||
}
|
||
|
||
leaf_label = 0;
|
||
if (leaf_function && actual_fsize != 0)
|
||
{
|
||
/* warning ("leaf procedure with frame size %d", actual_fsize); */
|
||
if (! TARGET_EPILOGUE)
|
||
leaf_label = gen_label_rtx ();
|
||
}
|
||
}
|
||
|
||
/* Output code for the function epilogue. */
|
||
|
||
void
|
||
output_function_epilogue (file, size, leaf_function)
|
||
FILE *file;
|
||
int size ATTRIBUTE_UNUSED;
|
||
int leaf_function;
|
||
{
|
||
const char *ret;
|
||
|
||
if (leaf_label)
|
||
{
|
||
emit_label_after (leaf_label, get_last_insn ());
|
||
final_scan_insn (get_last_insn (), file, 0, 0, 1);
|
||
}
|
||
|
||
#ifdef FUNCTION_BLOCK_PROFILER_EXIT
|
||
else if (profile_block_flag == 2)
|
||
{
|
||
FUNCTION_BLOCK_PROFILER_EXIT(file);
|
||
}
|
||
#endif
|
||
|
||
else if (current_function_epilogue_delay_list == 0)
|
||
{
|
||
/* If code does not drop into the epilogue, we need
|
||
do nothing except output pending case vectors. */
|
||
rtx insn = get_last_insn ();
|
||
if (GET_CODE (insn) == NOTE)
|
||
insn = prev_nonnote_insn (insn);
|
||
if (insn && GET_CODE (insn) == BARRIER)
|
||
goto output_vectors;
|
||
}
|
||
|
||
/* Restore any call saved registers. */
|
||
if (num_gfregs)
|
||
{
|
||
int offset, n_regs;
|
||
const char *base;
|
||
|
||
offset = -apparent_fsize + frame_base_offset;
|
||
if (offset < -4096 || offset + num_gfregs * 4 > 4096 - 8 /*double*/)
|
||
{
|
||
build_big_number (file, offset, "%g1");
|
||
fprintf (file, "\tadd\t%s, %%g1, %%g1\n", frame_base_name);
|
||
base = "%g1";
|
||
offset = 0;
|
||
}
|
||
else
|
||
{
|
||
base = frame_base_name;
|
||
}
|
||
|
||
n_regs = 0;
|
||
if (TARGET_EPILOGUE && ! leaf_function)
|
||
/* ??? Originally saved regs 0-15 here. */
|
||
n_regs = restore_regs (file, 0, 8, base, offset, 0);
|
||
else if (leaf_function)
|
||
/* ??? Originally saved regs 0-31 here. */
|
||
n_regs = restore_regs (file, 0, 8, base, offset, 0);
|
||
if (TARGET_EPILOGUE)
|
||
restore_regs (file, 32, TARGET_V9 ? 96 : 64, base, offset, n_regs);
|
||
}
|
||
|
||
/* Work out how to skip the caller's unimp instruction if required. */
|
||
if (leaf_function)
|
||
ret = (SKIP_CALLERS_UNIMP_P ? "jmp\t%o7+12" : "retl");
|
||
else
|
||
ret = (SKIP_CALLERS_UNIMP_P ? "jmp\t%i7+12" : "ret");
|
||
|
||
if (TARGET_EPILOGUE || leaf_label)
|
||
{
|
||
int old_target_epilogue = TARGET_EPILOGUE;
|
||
target_flags &= ~old_target_epilogue;
|
||
|
||
if (! leaf_function)
|
||
{
|
||
/* If we wound up with things in our delay slot, flush them here. */
|
||
if (current_function_epilogue_delay_list)
|
||
{
|
||
rtx insn = emit_jump_insn_after (gen_rtx_RETURN (VOIDmode),
|
||
get_last_insn ());
|
||
PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode,
|
||
gen_rtvec (2,
|
||
PATTERN (XEXP (current_function_epilogue_delay_list, 0)),
|
||
PATTERN (insn)));
|
||
final_scan_insn (insn, file, 1, 0, 1);
|
||
}
|
||
else if (TARGET_V9 && ! SKIP_CALLERS_UNIMP_P)
|
||
fputs ("\treturn\t%i7+8\n\tnop\n", file);
|
||
else
|
||
fprintf (file, "\t%s\n\trestore\n", ret);
|
||
}
|
||
/* All of the following cases are for leaf functions. */
|
||
else if (current_function_epilogue_delay_list)
|
||
{
|
||
/* eligible_for_epilogue_delay_slot ensures that if this is a
|
||
leaf function, then we will only have insn in the delay slot
|
||
if the frame size is zero, thus no adjust for the stack is
|
||
needed here. */
|
||
if (actual_fsize != 0)
|
||
abort ();
|
||
fprintf (file, "\t%s\n", ret);
|
||
final_scan_insn (XEXP (current_function_epilogue_delay_list, 0),
|
||
file, 1, 0, 1);
|
||
}
|
||
/* Output 'nop' instead of 'sub %sp,-0,%sp' when no frame, so as to
|
||
avoid generating confusing assembly language output. */
|
||
else if (actual_fsize == 0)
|
||
fprintf (file, "\t%s\n\tnop\n", ret);
|
||
else if (actual_fsize <= 4096)
|
||
fprintf (file, "\t%s\n\tsub\t%%sp, -%d, %%sp\n", ret, actual_fsize);
|
||
else if (actual_fsize <= 8192)
|
||
fprintf (file, "\tsub\t%%sp, -4096, %%sp\n\t%s\n\tsub\t%%sp, -%d, %%sp\n",
|
||
ret, actual_fsize - 4096);
|
||
else if ((actual_fsize & 0x3ff) == 0)
|
||
fprintf (file, "\tsethi\t%%hi(%d), %%g1\n\t%s\n\tadd\t%%sp, %%g1, %%sp\n",
|
||
actual_fsize, ret);
|
||
else
|
||
fprintf (file, "\tsethi\t%%hi(%d), %%g1\n\tor\t%%g1, %%lo(%d), %%g1\n\t%s\n\tadd\t%%sp, %%g1, %%sp\n",
|
||
actual_fsize, actual_fsize, ret);
|
||
target_flags |= old_target_epilogue;
|
||
}
|
||
|
||
output_vectors:
|
||
sparc_output_deferred_case_vectors ();
|
||
}
|
||
|
||
/* Functions for handling argument passing.
|
||
|
||
For v8 the first six args are normally in registers and the rest are
|
||
pushed. Any arg that starts within the first 6 words is at least
|
||
partially passed in a register unless its data type forbids.
|
||
|
||
For v9, the argument registers are laid out as an array of 16 elements
|
||
and arguments are added sequentially. The first 6 int args and up to the
|
||
first 16 fp args (depending on size) are passed in regs.
|
||
|
||
Slot Stack Integral Float Float in structure Double Long Double
|
||
---- ----- -------- ----- ------------------ ------ -----------
|
||
15 [SP+248] %f31 %f30,%f31 %d30
|
||
14 [SP+240] %f29 %f28,%f29 %d28 %q28
|
||
13 [SP+232] %f27 %f26,%f27 %d26
|
||
12 [SP+224] %f25 %f24,%f25 %d24 %q24
|
||
11 [SP+216] %f23 %f22,%f23 %d22
|
||
10 [SP+208] %f21 %f20,%f21 %d20 %q20
|
||
9 [SP+200] %f19 %f18,%f19 %d18
|
||
8 [SP+192] %f17 %f16,%f17 %d16 %q16
|
||
7 [SP+184] %f15 %f14,%f15 %d14
|
||
6 [SP+176] %f13 %f12,%f13 %d12 %q12
|
||
5 [SP+168] %o5 %f11 %f10,%f11 %d10
|
||
4 [SP+160] %o4 %f9 %f8,%f9 %d8 %q8
|
||
3 [SP+152] %o3 %f7 %f6,%f7 %d6
|
||
2 [SP+144] %o2 %f5 %f4,%f5 %d4 %q4
|
||
1 [SP+136] %o1 %f3 %f2,%f3 %d2
|
||
0 [SP+128] %o0 %f1 %f0,%f1 %d0 %q0
|
||
|
||
Here SP = %sp if -mno-stack-bias or %sp+stack_bias otherwise.
|
||
|
||
Integral arguments are always passed as 64 bit quantities appropriately
|
||
extended.
|
||
|
||
Passing of floating point values is handled as follows.
|
||
If a prototype is in scope:
|
||
If the value is in a named argument (i.e. not a stdarg function or a
|
||
value not part of the `...') then the value is passed in the appropriate
|
||
fp reg.
|
||
If the value is part of the `...' and is passed in one of the first 6
|
||
slots then the value is passed in the appropriate int reg.
|
||
If the value is part of the `...' and is not passed in one of the first 6
|
||
slots then the value is passed in memory.
|
||
If a prototype is not in scope:
|
||
If the value is one of the first 6 arguments the value is passed in the
|
||
appropriate integer reg and the appropriate fp reg.
|
||
If the value is not one of the first 6 arguments the value is passed in
|
||
the appropriate fp reg and in memory.
|
||
*/
|
||
|
||
/* Maximum number of int regs for args. */
|
||
#define SPARC_INT_ARG_MAX 6
|
||
/* Maximum number of fp regs for args. */
|
||
#define SPARC_FP_ARG_MAX 16
|
||
|
||
#define ROUND_ADVANCE(SIZE) (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
|
||
/* Handle the INIT_CUMULATIVE_ARGS macro.
|
||
Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0. */
|
||
|
||
void
|
||
init_cumulative_args (cum, fntype, libname, indirect)
|
||
CUMULATIVE_ARGS *cum;
|
||
tree fntype;
|
||
tree libname ATTRIBUTE_UNUSED;
|
||
int indirect ATTRIBUTE_UNUSED;
|
||
{
|
||
cum->words = 0;
|
||
cum->prototype_p = fntype && TYPE_ARG_TYPES (fntype);
|
||
cum->libcall_p = fntype == 0;
|
||
}
|
||
|
||
/* Compute the slot number to pass an argument in.
|
||
Returns the slot number or -1 if passing on the stack.
|
||
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis).
|
||
INCOMING_P is zero for FUNCTION_ARG, nonzero for FUNCTION_INCOMING_ARG.
|
||
*PREGNO records the register number to use if scalar type.
|
||
*PPADDING records the amount of padding needed in words. */
|
||
|
||
static int
|
||
function_arg_slotno (cum, mode, type, named, incoming_p, pregno, ppadding)
|
||
const CUMULATIVE_ARGS *cum;
|
||
enum machine_mode mode;
|
||
tree type;
|
||
int named;
|
||
int incoming_p;
|
||
int *pregno;
|
||
int *ppadding;
|
||
{
|
||
int regbase = (incoming_p
|
||
? SPARC_INCOMING_INT_ARG_FIRST
|
||
: SPARC_OUTGOING_INT_ARG_FIRST);
|
||
int slotno = cum->words;
|
||
int regno;
|
||
|
||
*ppadding = 0;
|
||
|
||
if (type != 0 && TREE_ADDRESSABLE (type))
|
||
return -1;
|
||
if (TARGET_ARCH32
|
||
&& type != 0 && mode == BLKmode
|
||
&& TYPE_ALIGN (type) % PARM_BOUNDARY != 0)
|
||
return -1;
|
||
|
||
switch (mode)
|
||
{
|
||
case VOIDmode :
|
||
/* MODE is VOIDmode when generating the actual call.
|
||
See emit_call_1. */
|
||
return -1;
|
||
|
||
case QImode : case CQImode :
|
||
case HImode : case CHImode :
|
||
case SImode : case CSImode :
|
||
case DImode : case CDImode :
|
||
if (slotno >= SPARC_INT_ARG_MAX)
|
||
return -1;
|
||
regno = regbase + slotno;
|
||
break;
|
||
|
||
case SFmode : case SCmode :
|
||
case DFmode : case DCmode :
|
||
case TFmode : case TCmode :
|
||
if (TARGET_ARCH32)
|
||
{
|
||
if (slotno >= SPARC_INT_ARG_MAX)
|
||
return -1;
|
||
regno = regbase + slotno;
|
||
}
|
||
else
|
||
{
|
||
if ((mode == TFmode || mode == TCmode)
|
||
&& (slotno & 1) != 0)
|
||
slotno++, *ppadding = 1;
|
||
if (TARGET_FPU && named)
|
||
{
|
||
if (slotno >= SPARC_FP_ARG_MAX)
|
||
return -1;
|
||
regno = SPARC_FP_ARG_FIRST + slotno * 2;
|
||
if (mode == SFmode)
|
||
regno++;
|
||
}
|
||
else
|
||
{
|
||
if (slotno >= SPARC_INT_ARG_MAX)
|
||
return -1;
|
||
regno = regbase + slotno;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case BLKmode :
|
||
/* For sparc64, objects requiring 16 byte alignment get it. */
|
||
if (TARGET_ARCH64)
|
||
{
|
||
if (type && TYPE_ALIGN (type) == 128 && (slotno & 1) != 0)
|
||
slotno++, *ppadding = 1;
|
||
}
|
||
|
||
if (TARGET_ARCH32
|
||
|| (type && TREE_CODE (type) == UNION_TYPE))
|
||
{
|
||
if (slotno >= SPARC_INT_ARG_MAX)
|
||
return -1;
|
||
regno = regbase + slotno;
|
||
}
|
||
else
|
||
{
|
||
tree field;
|
||
int intregs_p = 0, fpregs_p = 0;
|
||
/* The ABI obviously doesn't specify how packed
|
||
structures are passed. These are defined to be passed
|
||
in int regs if possible, otherwise memory. */
|
||
int packed_p = 0;
|
||
|
||
/* First see what kinds of registers we need. */
|
||
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
||
{
|
||
if (TREE_CODE (field) == FIELD_DECL)
|
||
{
|
||
if (TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
|
||
&& TARGET_FPU)
|
||
fpregs_p = 1;
|
||
else
|
||
intregs_p = 1;
|
||
if (DECL_PACKED (field))
|
||
packed_p = 1;
|
||
}
|
||
}
|
||
if (packed_p || !named)
|
||
fpregs_p = 0, intregs_p = 1;
|
||
|
||
/* If all arg slots are filled, then must pass on stack. */
|
||
if (fpregs_p && slotno >= SPARC_FP_ARG_MAX)
|
||
return -1;
|
||
/* If there are only int args and all int arg slots are filled,
|
||
then must pass on stack. */
|
||
if (!fpregs_p && intregs_p && slotno >= SPARC_INT_ARG_MAX)
|
||
return -1;
|
||
/* Note that even if all int arg slots are filled, fp members may
|
||
still be passed in regs if such regs are available.
|
||
*PREGNO isn't set because there may be more than one, it's up
|
||
to the caller to compute them. */
|
||
return slotno;
|
||
}
|
||
break;
|
||
|
||
default :
|
||
abort ();
|
||
}
|
||
|
||
*pregno = regno;
|
||
return slotno;
|
||
}
|
||
|
||
/* Handle recursive register counting for structure field layout. */
|
||
|
||
struct function_arg_record_value_parms
|
||
{
|
||
rtx ret;
|
||
int slotno, named, regbase;
|
||
int nregs, intoffset;
|
||
};
|
||
|
||
static void function_arg_record_value_3
|
||
PROTO((int, struct function_arg_record_value_parms *));
|
||
static void function_arg_record_value_2
|
||
PROTO((tree, int, struct function_arg_record_value_parms *));
|
||
static rtx function_arg_record_value
|
||
PROTO((tree, enum machine_mode, int, int, int));
|
||
|
||
static void
|
||
function_arg_record_value_1 (type, startbitpos, parms)
|
||
tree type;
|
||
int startbitpos;
|
||
struct function_arg_record_value_parms *parms;
|
||
{
|
||
tree field;
|
||
|
||
/* The ABI obviously doesn't specify how packed structures are
|
||
passed. These are defined to be passed in int regs if possible,
|
||
otherwise memory. */
|
||
int packed_p = 0;
|
||
|
||
/* We need to compute how many registers are needed so we can
|
||
allocate the PARALLEL but before we can do that we need to know
|
||
whether there are any packed fields. If there are, int regs are
|
||
used regardless of whether there are fp values present. */
|
||
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
||
{
|
||
if (TREE_CODE (field) == FIELD_DECL && DECL_PACKED (field))
|
||
{
|
||
packed_p = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Compute how many registers we need. */
|
||
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
||
{
|
||
if (TREE_CODE (field) == FIELD_DECL)
|
||
{
|
||
int bitpos = startbitpos;
|
||
if (DECL_FIELD_BITPOS (field))
|
||
bitpos += TREE_INT_CST_LOW (DECL_FIELD_BITPOS (field));
|
||
/* ??? FIXME: else assume zero offset. */
|
||
|
||
if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE)
|
||
{
|
||
function_arg_record_value_1 (TREE_TYPE (field), bitpos, parms);
|
||
}
|
||
else if (TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
|
||
&& TARGET_FPU
|
||
&& ! packed_p
|
||
&& parms->named)
|
||
{
|
||
if (parms->intoffset != -1)
|
||
{
|
||
int intslots, this_slotno;
|
||
|
||
intslots = (bitpos - parms->intoffset + BITS_PER_WORD - 1)
|
||
/ BITS_PER_WORD;
|
||
this_slotno = parms->slotno + parms->intoffset
|
||
/ BITS_PER_WORD;
|
||
|
||
intslots = MIN (intslots, SPARC_INT_ARG_MAX - this_slotno);
|
||
intslots = MAX (intslots, 0);
|
||
parms->nregs += intslots;
|
||
parms->intoffset = -1;
|
||
}
|
||
|
||
/* There's no need to check this_slotno < SPARC_FP_ARG MAX.
|
||
If it wasn't true we wouldn't be here. */
|
||
parms->nregs += 1;
|
||
}
|
||
else
|
||
{
|
||
if (parms->intoffset == -1)
|
||
parms->intoffset = bitpos;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Handle recursive structure field register assignment. */
|
||
|
||
static void
|
||
function_arg_record_value_3 (bitpos, parms)
|
||
int bitpos;
|
||
struct function_arg_record_value_parms *parms;
|
||
{
|
||
enum machine_mode mode;
|
||
int regno, this_slotno, intslots, intoffset;
|
||
rtx reg;
|
||
|
||
if (parms->intoffset == -1)
|
||
return;
|
||
intoffset = parms->intoffset;
|
||
parms->intoffset = -1;
|
||
|
||
intslots = (bitpos - intoffset + BITS_PER_WORD - 1) / BITS_PER_WORD;
|
||
this_slotno = parms->slotno + intoffset / BITS_PER_WORD;
|
||
|
||
intslots = MIN (intslots, SPARC_INT_ARG_MAX - this_slotno);
|
||
if (intslots <= 0)
|
||
return;
|
||
|
||
/* If this is the trailing part of a word, only load that much into
|
||
the register. Otherwise load the whole register. Note that in
|
||
the latter case we may pick up unwanted bits. It's not a problem
|
||
at the moment but may wish to revisit. */
|
||
|
||
if (intoffset % BITS_PER_WORD != 0)
|
||
{
|
||
mode = mode_for_size (BITS_PER_WORD - intoffset%BITS_PER_WORD,
|
||
MODE_INT, 0);
|
||
}
|
||
else
|
||
mode = word_mode;
|
||
|
||
intoffset /= BITS_PER_UNIT;
|
||
do
|
||
{
|
||
regno = parms->regbase + this_slotno;
|
||
reg = gen_rtx_REG (mode, regno);
|
||
XVECEXP (parms->ret, 0, parms->nregs)
|
||
= gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (intoffset));
|
||
|
||
this_slotno += 1;
|
||
intoffset = (intoffset | (UNITS_PER_WORD-1)) + 1;
|
||
parms->nregs += 1;
|
||
intslots -= 1;
|
||
}
|
||
while (intslots > 0);
|
||
}
|
||
|
||
static void
|
||
function_arg_record_value_2 (type, startbitpos, parms)
|
||
tree type;
|
||
int startbitpos;
|
||
struct function_arg_record_value_parms *parms;
|
||
{
|
||
tree field;
|
||
int packed_p = 0;
|
||
|
||
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
||
{
|
||
if (TREE_CODE (field) == FIELD_DECL && DECL_PACKED (field))
|
||
{
|
||
packed_p = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
||
{
|
||
if (TREE_CODE (field) == FIELD_DECL)
|
||
{
|
||
int bitpos = startbitpos;
|
||
if (DECL_FIELD_BITPOS (field))
|
||
bitpos += TREE_INT_CST_LOW (DECL_FIELD_BITPOS (field));
|
||
/* ??? FIXME: else assume zero offset. */
|
||
|
||
if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE)
|
||
{
|
||
function_arg_record_value_2 (TREE_TYPE (field), bitpos, parms);
|
||
}
|
||
else if (TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
|
||
&& TARGET_FPU
|
||
&& ! packed_p
|
||
&& parms->named)
|
||
{
|
||
int this_slotno = parms->slotno + bitpos / BITS_PER_WORD;
|
||
rtx reg;
|
||
|
||
function_arg_record_value_3 (bitpos, parms);
|
||
|
||
reg = gen_rtx_REG (DECL_MODE (field),
|
||
(SPARC_FP_ARG_FIRST + this_slotno * 2
|
||
+ (DECL_MODE (field) == SFmode
|
||
&& (bitpos & 32) != 0)));
|
||
XVECEXP (parms->ret, 0, parms->nregs)
|
||
= gen_rtx_EXPR_LIST (VOIDmode, reg,
|
||
GEN_INT (bitpos / BITS_PER_UNIT));
|
||
parms->nregs += 1;
|
||
}
|
||
else
|
||
{
|
||
if (parms->intoffset == -1)
|
||
parms->intoffset = bitpos;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static rtx
|
||
function_arg_record_value (type, mode, slotno, named, regbase)
|
||
tree type;
|
||
enum machine_mode mode;
|
||
int slotno, named, regbase;
|
||
{
|
||
HOST_WIDE_INT typesize = int_size_in_bytes (type);
|
||
struct function_arg_record_value_parms parms;
|
||
int nregs;
|
||
|
||
parms.ret = NULL_RTX;
|
||
parms.slotno = slotno;
|
||
parms.named = named;
|
||
parms.regbase = regbase;
|
||
|
||
/* Compute how many registers we need. */
|
||
parms.nregs = 0;
|
||
parms.intoffset = 0;
|
||
function_arg_record_value_1 (type, 0, &parms);
|
||
|
||
if (parms.intoffset != -1)
|
||
{
|
||
int intslots, this_slotno;
|
||
|
||
intslots = (typesize*BITS_PER_UNIT - parms.intoffset + BITS_PER_WORD - 1)
|
||
/ BITS_PER_WORD;
|
||
this_slotno = slotno + parms.intoffset / BITS_PER_WORD;
|
||
|
||
intslots = MIN (intslots, SPARC_INT_ARG_MAX - this_slotno);
|
||
intslots = MAX (intslots, 0);
|
||
|
||
parms.nregs += intslots;
|
||
}
|
||
nregs = parms.nregs;
|
||
|
||
/* Allocate the vector and handle some annoying special cases. */
|
||
if (nregs == 0)
|
||
{
|
||
/* ??? Empty structure has no value? Duh? */
|
||
if (typesize <= 0)
|
||
{
|
||
/* Though there's nothing really to store, return a word register
|
||
anyway so the rest of gcc doesn't go nuts. Returning a PARALLEL
|
||
leads to breakage due to the fact that there are zero bytes to
|
||
load. */
|
||
return gen_rtx_REG (mode, regbase);
|
||
}
|
||
else
|
||
{
|
||
/* ??? C++ has structures with no fields, and yet a size. Give up
|
||
for now and pass everything back in integer registers. */
|
||
nregs = (typesize + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
||
}
|
||
if (nregs + slotno > SPARC_INT_ARG_MAX)
|
||
nregs = SPARC_INT_ARG_MAX - slotno;
|
||
}
|
||
if (nregs == 0)
|
||
abort ();
|
||
|
||
parms.ret = gen_rtx_PARALLEL (mode, rtvec_alloc (nregs));
|
||
|
||
/* Fill in the entries. */
|
||
parms.nregs = 0;
|
||
parms.intoffset = 0;
|
||
function_arg_record_value_2 (type, 0, &parms);
|
||
function_arg_record_value_3 (typesize * BITS_PER_UNIT, &parms);
|
||
|
||
if (parms.nregs != nregs)
|
||
abort ();
|
||
|
||
return parms.ret;
|
||
}
|
||
|
||
/* Handle the FUNCTION_ARG macro.
|
||
Determine where to put an argument to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis).
|
||
INCOMING_P is zero for FUNCTION_ARG, nonzero for FUNCTION_INCOMING_ARG. */
|
||
|
||
rtx
|
||
function_arg (cum, mode, type, named, incoming_p)
|
||
const CUMULATIVE_ARGS *cum;
|
||
enum machine_mode mode;
|
||
tree type;
|
||
int named;
|
||
int incoming_p;
|
||
{
|
||
int regbase = (incoming_p
|
||
? SPARC_INCOMING_INT_ARG_FIRST
|
||
: SPARC_OUTGOING_INT_ARG_FIRST);
|
||
int slotno, regno, padding;
|
||
rtx reg;
|
||
|
||
slotno = function_arg_slotno (cum, mode, type, named, incoming_p,
|
||
®no, &padding);
|
||
|
||
if (slotno == -1)
|
||
return 0;
|
||
|
||
if (TARGET_ARCH32)
|
||
{
|
||
reg = gen_rtx_REG (mode, regno);
|
||
return reg;
|
||
}
|
||
|
||
/* v9 fp args in reg slots beyond the int reg slots get passed in regs
|
||
but also have the slot allocated for them.
|
||
If no prototype is in scope fp values in register slots get passed
|
||
in two places, either fp regs and int regs or fp regs and memory. */
|
||
if ((GET_MODE_CLASS (mode) == MODE_FLOAT
|
||
|| GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
|
||
&& SPARC_FP_REG_P (regno))
|
||
{
|
||
reg = gen_rtx_REG (mode, regno);
|
||
if (cum->prototype_p || cum->libcall_p)
|
||
{
|
||
/* "* 2" because fp reg numbers are recorded in 4 byte
|
||
quantities. */
|
||
#if 0
|
||
/* ??? This will cause the value to be passed in the fp reg and
|
||
in the stack. When a prototype exists we want to pass the
|
||
value in the reg but reserve space on the stack. That's an
|
||
optimization, and is deferred [for a bit]. */
|
||
if ((regno - SPARC_FP_ARG_FIRST) >= SPARC_INT_ARG_MAX * 2)
|
||
return gen_rtx_PARALLEL (mode,
|
||
gen_rtvec (2,
|
||
gen_rtx_EXPR_LIST (VOIDmode,
|
||
NULL_RTX, const0_rtx),
|
||
gen_rtx_EXPR_LIST (VOIDmode,
|
||
reg, const0_rtx)));
|
||
else
|
||
#else
|
||
/* ??? It seems that passing back a register even when past
|
||
the area declared by REG_PARM_STACK_SPACE will allocate
|
||
space appropriately, and will not copy the data onto the
|
||
stack, exactly as we desire.
|
||
|
||
This is due to locate_and_pad_parm being called in
|
||
expand_call whenever reg_parm_stack_space > 0, which
|
||
while benefical to our example here, would seem to be
|
||
in error from what had been intended. Ho hum... -- r~ */
|
||
#endif
|
||
return reg;
|
||
}
|
||
else
|
||
{
|
||
rtx v0, v1;
|
||
|
||
if ((regno - SPARC_FP_ARG_FIRST) < SPARC_INT_ARG_MAX * 2)
|
||
{
|
||
int intreg;
|
||
|
||
/* On incoming, we don't need to know that the value
|
||
is passed in %f0 and %i0, and it confuses other parts
|
||
causing needless spillage even on the simplest cases. */
|
||
if (incoming_p)
|
||
return reg;
|
||
|
||
intreg = (SPARC_OUTGOING_INT_ARG_FIRST
|
||
+ (regno - SPARC_FP_ARG_FIRST) / 2);
|
||
|
||
v0 = gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx);
|
||
v1 = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (mode, intreg),
|
||
const0_rtx);
|
||
return gen_rtx_PARALLEL (mode, gen_rtvec (2, v0, v1));
|
||
}
|
||
else
|
||
{
|
||
v0 = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
|
||
v1 = gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx);
|
||
return gen_rtx_PARALLEL (mode, gen_rtvec (2, v0, v1));
|
||
}
|
||
}
|
||
}
|
||
else if (type && TREE_CODE (type) == RECORD_TYPE)
|
||
{
|
||
/* Structures up to 16 bytes in size are passed in arg slots on the
|
||
stack and are promoted to registers where possible. */
|
||
|
||
if (int_size_in_bytes (type) > 16)
|
||
abort (); /* shouldn't get here */
|
||
|
||
return function_arg_record_value (type, mode, slotno, named, regbase);
|
||
}
|
||
else if (type && TREE_CODE (type) == UNION_TYPE)
|
||
{
|
||
enum machine_mode mode;
|
||
int bytes = int_size_in_bytes (type);
|
||
|
||
if (bytes > 16)
|
||
abort ();
|
||
|
||
mode = mode_for_size (bytes * BITS_PER_UNIT, MODE_INT, 0);
|
||
reg = gen_rtx_REG (mode, regno);
|
||
}
|
||
else
|
||
{
|
||
/* Scalar or complex int. */
|
||
reg = gen_rtx_REG (mode, regno);
|
||
}
|
||
|
||
return reg;
|
||
}
|
||
|
||
/* Handle the FUNCTION_ARG_PARTIAL_NREGS macro.
|
||
For an arg passed partly in registers and partly in memory,
|
||
this is the number of registers used.
|
||
For args passed entirely in registers or entirely in memory, zero.
|
||
|
||
Any arg that starts in the first 6 regs but won't entirely fit in them
|
||
needs partial registers on v8. On v9, structures with integer
|
||
values in arg slots 5,6 will be passed in %o5 and SP+176, and complex fp
|
||
values that begin in the last fp reg [where "last fp reg" varies with the
|
||
mode] will be split between that reg and memory. */
|
||
|
||
int
|
||
function_arg_partial_nregs (cum, mode, type, named)
|
||
const CUMULATIVE_ARGS *cum;
|
||
enum machine_mode mode;
|
||
tree type;
|
||
int named;
|
||
{
|
||
int slotno, regno, padding;
|
||
|
||
/* We pass 0 for incoming_p here, it doesn't matter. */
|
||
slotno = function_arg_slotno (cum, mode, type, named, 0, ®no, &padding);
|
||
|
||
if (slotno == -1)
|
||
return 0;
|
||
|
||
if (TARGET_ARCH32)
|
||
{
|
||
if ((slotno + (mode == BLKmode
|
||
? ROUND_ADVANCE (int_size_in_bytes (type))
|
||
: ROUND_ADVANCE (GET_MODE_SIZE (mode))))
|
||
> NPARM_REGS (SImode))
|
||
return NPARM_REGS (SImode) - slotno;
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
if (type && AGGREGATE_TYPE_P (type))
|
||
{
|
||
int size = int_size_in_bytes (type);
|
||
int align = TYPE_ALIGN (type);
|
||
|
||
if (align == 16)
|
||
slotno += slotno & 1;
|
||
if (size > 8 && size <= 16
|
||
&& slotno == SPARC_INT_ARG_MAX - 1)
|
||
return 1;
|
||
}
|
||
else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT
|
||
|| (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
|
||
&& ! TARGET_FPU))
|
||
{
|
||
if (GET_MODE_ALIGNMENT (mode) == 128)
|
||
{
|
||
slotno += slotno & 1;
|
||
if (slotno == SPARC_INT_ARG_MAX - 2)
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
if (slotno == SPARC_INT_ARG_MAX - 1)
|
||
return 1;
|
||
}
|
||
}
|
||
else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
|
||
{
|
||
if (GET_MODE_ALIGNMENT (mode) == 128)
|
||
slotno += slotno & 1;
|
||
if ((slotno + GET_MODE_SIZE (mode) / UNITS_PER_WORD)
|
||
> SPARC_FP_ARG_MAX)
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Handle the FUNCTION_ARG_PASS_BY_REFERENCE macro.
|
||
!v9: The SPARC ABI stipulates passing struct arguments (of any size) and
|
||
quad-precision floats by invisible reference.
|
||
v9: Aggregates greater than 16 bytes are passed by reference.
|
||
For Pascal, also pass arrays by reference. */
|
||
|
||
int
|
||
function_arg_pass_by_reference (cum, mode, type, named)
|
||
const CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED;
|
||
enum machine_mode mode;
|
||
tree type;
|
||
int named ATTRIBUTE_UNUSED;
|
||
{
|
||
if (TARGET_ARCH32)
|
||
{
|
||
return ((type && AGGREGATE_TYPE_P (type))
|
||
|| mode == TFmode || mode == TCmode);
|
||
}
|
||
else
|
||
{
|
||
return ((type && TREE_CODE (type) == ARRAY_TYPE)
|
||
/* Consider complex values as aggregates, so care for TCmode. */
|
||
|| GET_MODE_SIZE (mode) > 16
|
||
|| (type && AGGREGATE_TYPE_P (type)
|
||
&& int_size_in_bytes (type) > 16));
|
||
}
|
||
}
|
||
|
||
/* Handle the FUNCTION_ARG_ADVANCE macro.
|
||
Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
TYPE is null for libcalls where that information may not be available. */
|
||
|
||
void
|
||
function_arg_advance (cum, mode, type, named)
|
||
CUMULATIVE_ARGS *cum;
|
||
enum machine_mode mode;
|
||
tree type;
|
||
int named;
|
||
{
|
||
int slotno, regno, padding;
|
||
|
||
/* We pass 0 for incoming_p here, it doesn't matter. */
|
||
slotno = function_arg_slotno (cum, mode, type, named, 0, ®no, &padding);
|
||
|
||
/* If register required leading padding, add it. */
|
||
if (slotno != -1)
|
||
cum->words += padding;
|
||
|
||
if (TARGET_ARCH32)
|
||
{
|
||
cum->words += (mode != BLKmode
|
||
? ROUND_ADVANCE (GET_MODE_SIZE (mode))
|
||
: ROUND_ADVANCE (int_size_in_bytes (type)));
|
||
}
|
||
else
|
||
{
|
||
if (type && AGGREGATE_TYPE_P (type))
|
||
{
|
||
int size = int_size_in_bytes (type);
|
||
|
||
if (size <= 8)
|
||
++cum->words;
|
||
else if (size <= 16)
|
||
cum->words += 2;
|
||
else /* passed by reference */
|
||
++cum->words;
|
||
}
|
||
else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
|
||
{
|
||
cum->words += 2;
|
||
}
|
||
else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
|
||
{
|
||
cum->words += GET_MODE_SIZE (mode) / UNITS_PER_WORD;
|
||
}
|
||
else
|
||
{
|
||
cum->words += (mode != BLKmode
|
||
? ROUND_ADVANCE (GET_MODE_SIZE (mode))
|
||
: ROUND_ADVANCE (int_size_in_bytes (type)));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Handle the FUNCTION_ARG_PADDING macro.
|
||
For the 64 bit ABI structs are always stored left shifted in their
|
||
argument slot. */
|
||
|
||
enum direction
|
||
function_arg_padding (mode, type)
|
||
enum machine_mode mode;
|
||
tree type;
|
||
{
|
||
if (TARGET_ARCH64 && type != 0 && AGGREGATE_TYPE_P (type))
|
||
return upward;
|
||
|
||
/* This is the default definition. */
|
||
return (! BYTES_BIG_ENDIAN
|
||
? upward
|
||
: ((mode == BLKmode
|
||
? (type && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
|
||
&& int_size_in_bytes (type) < (PARM_BOUNDARY / BITS_PER_UNIT))
|
||
: GET_MODE_BITSIZE (mode) < PARM_BOUNDARY)
|
||
? downward : upward));
|
||
}
|
||
|
||
/* Handle FUNCTION_VALUE, FUNCTION_OUTGOING_VALUE, and LIBCALL_VALUE macros.
|
||
For v9, function return values are subject to the same rules as arguments,
|
||
except that up to 32-bytes may be returned in registers. */
|
||
|
||
rtx
|
||
function_value (type, mode, incoming_p)
|
||
tree type;
|
||
enum machine_mode mode;
|
||
int incoming_p;
|
||
{
|
||
int regno;
|
||
int regbase = (incoming_p
|
||
? SPARC_OUTGOING_INT_ARG_FIRST
|
||
: SPARC_INCOMING_INT_ARG_FIRST);
|
||
|
||
if (TARGET_ARCH64 && type)
|
||
{
|
||
if (TREE_CODE (type) == RECORD_TYPE)
|
||
{
|
||
/* Structures up to 32 bytes in size are passed in registers,
|
||
promoted to fp registers where possible. */
|
||
|
||
if (int_size_in_bytes (type) > 32)
|
||
abort (); /* shouldn't get here */
|
||
|
||
return function_arg_record_value (type, mode, 0, 1, regbase);
|
||
}
|
||
else if (TREE_CODE (type) == UNION_TYPE)
|
||
{
|
||
int bytes = int_size_in_bytes (type);
|
||
|
||
if (bytes > 32)
|
||
abort ();
|
||
|
||
mode = mode_for_size (bytes * BITS_PER_UNIT, MODE_INT, 0);
|
||
}
|
||
}
|
||
|
||
if (TARGET_ARCH64
|
||
&& GET_MODE_CLASS (mode) == MODE_INT
|
||
&& GET_MODE_SIZE (mode) < UNITS_PER_WORD
|
||
&& type && TREE_CODE (type) != UNION_TYPE)
|
||
mode = DImode;
|
||
|
||
if (incoming_p)
|
||
regno = BASE_RETURN_VALUE_REG (mode);
|
||
else
|
||
regno = BASE_OUTGOING_VALUE_REG (mode);
|
||
|
||
return gen_rtx_REG (mode, regno);
|
||
}
|
||
|
||
/* Do what is necessary for `va_start'. The argument is ignored.
|
||
|
||
We look at the current function to determine if stdarg or varargs
|
||
is used and return the address of the first unnamed parameter. */
|
||
|
||
rtx
|
||
sparc_builtin_saveregs (arglist)
|
||
tree arglist ATTRIBUTE_UNUSED;
|
||
{
|
||
int first_reg = current_function_args_info.words;
|
||
rtx address;
|
||
int regno;
|
||
|
||
for (regno = first_reg; regno < NPARM_REGS (word_mode); regno++)
|
||
emit_move_insn (gen_rtx_MEM (word_mode,
|
||
gen_rtx_PLUS (Pmode,
|
||
frame_pointer_rtx,
|
||
GEN_INT (STACK_POINTER_OFFSET
|
||
+ UNITS_PER_WORD * regno))),
|
||
gen_rtx_REG (word_mode,
|
||
BASE_INCOMING_ARG_REG (word_mode) + regno));
|
||
|
||
address = gen_rtx_PLUS (Pmode,
|
||
frame_pointer_rtx,
|
||
GEN_INT (STACK_POINTER_OFFSET
|
||
+ UNITS_PER_WORD * first_reg));
|
||
|
||
if (current_function_check_memory_usage
|
||
&& first_reg < NPARM_REGS (word_mode))
|
||
emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
|
||
address, ptr_mode,
|
||
GEN_INT (UNITS_PER_WORD
|
||
* (NPARM_REGS (word_mode) - first_reg)),
|
||
TYPE_MODE (sizetype), GEN_INT (MEMORY_USE_RW),
|
||
TYPE_MODE (integer_type_node));
|
||
|
||
return address;
|
||
}
|
||
|
||
/* Return the string to output a conditional branch to LABEL, which is
|
||
the operand number of the label. OP is the conditional expression.
|
||
XEXP (OP, 0) is assumed to be a condition code register (integer or
|
||
floating point) and its mode specifies what kind of comparison we made.
|
||
|
||
REVERSED is non-zero if we should reverse the sense of the comparison.
|
||
|
||
ANNUL is non-zero if we should generate an annulling branch.
|
||
|
||
NOOP is non-zero if we have to follow this branch by a noop.
|
||
|
||
INSN, if set, is the insn. */
|
||
|
||
char *
|
||
output_cbranch (op, label, reversed, annul, noop, insn)
|
||
rtx op;
|
||
int label;
|
||
int reversed, annul, noop;
|
||
rtx insn;
|
||
{
|
||
static char string[32];
|
||
enum rtx_code code = GET_CODE (op);
|
||
rtx cc_reg = XEXP (op, 0);
|
||
enum machine_mode mode = GET_MODE (cc_reg);
|
||
static char v8_labelno[] = "%lX";
|
||
static char v9_icc_labelno[] = "%%icc, %lX";
|
||
static char v9_xcc_labelno[] = "%%xcc, %lX";
|
||
static char v9_fcc_labelno[] = "%%fccX, %lY";
|
||
char *labelno;
|
||
int labeloff, spaces = 8;
|
||
|
||
/* ??? !v9: FP branches cannot be preceded by another floating point insn.
|
||
Because there is currently no concept of pre-delay slots, we can fix
|
||
this only by always emitting a nop before a floating point branch. */
|
||
|
||
if ((mode == CCFPmode || mode == CCFPEmode) && ! TARGET_V9)
|
||
strcpy (string, "nop\n\t");
|
||
else
|
||
string[0] = '\0';
|
||
|
||
/* If not floating-point or if EQ or NE, we can just reverse the code. */
|
||
if (reversed
|
||
&& ((mode != CCFPmode && mode != CCFPEmode) || code == EQ || code == NE))
|
||
code = reverse_condition (code), reversed = 0;
|
||
|
||
/* Start by writing the branch condition. */
|
||
switch (code)
|
||
{
|
||
case NE:
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
{
|
||
strcat (string, "fbne");
|
||
spaces -= 4;
|
||
}
|
||
else
|
||
{
|
||
strcpy (string, "bne");
|
||
spaces -= 3;
|
||
}
|
||
break;
|
||
|
||
case EQ:
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
{
|
||
strcat (string, "fbe");
|
||
spaces -= 3;
|
||
}
|
||
else
|
||
{
|
||
strcpy (string, "be");
|
||
spaces -= 2;
|
||
}
|
||
break;
|
||
|
||
case GE:
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
{
|
||
if (reversed)
|
||
strcat (string, "fbul");
|
||
else
|
||
strcat (string, "fbge");
|
||
spaces -= 4;
|
||
}
|
||
else if (mode == CC_NOOVmode)
|
||
{
|
||
strcpy (string, "bpos");
|
||
spaces -= 4;
|
||
}
|
||
else
|
||
{
|
||
strcpy (string, "bge");
|
||
spaces -= 3;
|
||
}
|
||
break;
|
||
|
||
case GT:
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
{
|
||
if (reversed)
|
||
{
|
||
strcat (string, "fbule");
|
||
spaces -= 5;
|
||
}
|
||
else
|
||
{
|
||
strcat (string, "fbg");
|
||
spaces -= 3;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
strcpy (string, "bg");
|
||
spaces -= 2;
|
||
}
|
||
break;
|
||
|
||
case LE:
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
{
|
||
if (reversed)
|
||
strcat (string, "fbug");
|
||
else
|
||
strcat (string, "fble");
|
||
spaces -= 4;
|
||
}
|
||
else
|
||
{
|
||
strcpy (string, "ble");
|
||
spaces -= 3;
|
||
}
|
||
break;
|
||
|
||
case LT:
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
{
|
||
if (reversed)
|
||
{
|
||
strcat (string, "fbuge");
|
||
spaces -= 5;
|
||
}
|
||
else
|
||
{
|
||
strcat (string, "fbl");
|
||
spaces -= 3;
|
||
}
|
||
}
|
||
else if (mode == CC_NOOVmode)
|
||
{
|
||
strcpy (string, "bneg");
|
||
spaces -= 4;
|
||
}
|
||
else
|
||
{
|
||
strcpy (string, "bl");
|
||
spaces -= 2;
|
||
}
|
||
break;
|
||
|
||
case GEU:
|
||
strcpy (string, "bgeu");
|
||
spaces -= 4;
|
||
break;
|
||
|
||
case GTU:
|
||
strcpy (string, "bgu");
|
||
spaces -= 3;
|
||
break;
|
||
|
||
case LEU:
|
||
strcpy (string, "bleu");
|
||
spaces -= 4;
|
||
break;
|
||
|
||
case LTU:
|
||
strcpy (string, "blu");
|
||
spaces -= 3;
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
/* Now add the annulling, the label, and a possible noop. */
|
||
if (annul)
|
||
{
|
||
strcat (string, ",a");
|
||
spaces -= 2;
|
||
}
|
||
|
||
if (! TARGET_V9)
|
||
{
|
||
labeloff = 2;
|
||
labelno = v8_labelno;
|
||
}
|
||
else
|
||
{
|
||
rtx note;
|
||
|
||
if (insn && (note = find_reg_note (insn, REG_BR_PRED, NULL_RTX)))
|
||
{
|
||
strcat (string,
|
||
INTVAL (XEXP (note, 0)) & ATTR_FLAG_likely ? ",pt" : ",pn");
|
||
spaces -= 3;
|
||
}
|
||
|
||
labeloff = 9;
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
{
|
||
labeloff = 10;
|
||
labelno = v9_fcc_labelno;
|
||
/* Set the char indicating the number of the fcc reg to use. */
|
||
labelno[5] = REGNO (cc_reg) - SPARC_FIRST_V9_FCC_REG + '0';
|
||
}
|
||
else if (mode == CCXmode || mode == CCX_NOOVmode)
|
||
labelno = v9_xcc_labelno;
|
||
else
|
||
labelno = v9_icc_labelno;
|
||
}
|
||
/* Set the char indicating the number of the operand containing the
|
||
label_ref. */
|
||
labelno[labeloff] = label + '0';
|
||
if (spaces > 0)
|
||
strcat (string, "\t");
|
||
else
|
||
strcat (string, " ");
|
||
strcat (string, labelno);
|
||
|
||
if (noop)
|
||
strcat (string, "\n\tnop");
|
||
|
||
return string;
|
||
}
|
||
|
||
/* Return the string to output a conditional branch to LABEL, testing
|
||
register REG. LABEL is the operand number of the label; REG is the
|
||
operand number of the reg. OP is the conditional expression. The mode
|
||
of REG says what kind of comparison we made.
|
||
|
||
REVERSED is non-zero if we should reverse the sense of the comparison.
|
||
|
||
ANNUL is non-zero if we should generate an annulling branch.
|
||
|
||
NOOP is non-zero if we have to follow this branch by a noop. */
|
||
|
||
char *
|
||
output_v9branch (op, reg, label, reversed, annul, noop, insn)
|
||
rtx op;
|
||
int reg, label;
|
||
int reversed, annul, noop;
|
||
rtx insn;
|
||
{
|
||
static char string[20];
|
||
enum rtx_code code = GET_CODE (op);
|
||
enum machine_mode mode = GET_MODE (XEXP (op, 0));
|
||
static char labelno[] = "%X, %lX";
|
||
rtx note;
|
||
int spaces = 8;
|
||
|
||
/* If not floating-point or if EQ or NE, we can just reverse the code. */
|
||
if (reversed)
|
||
code = reverse_condition (code), reversed = 0;
|
||
|
||
/* Only 64 bit versions of these instructions exist. */
|
||
if (mode != DImode)
|
||
abort ();
|
||
|
||
/* Start by writing the branch condition. */
|
||
|
||
switch (code)
|
||
{
|
||
case NE:
|
||
strcpy (string, "brnz");
|
||
spaces -= 4;
|
||
break;
|
||
|
||
case EQ:
|
||
strcpy (string, "brz");
|
||
spaces -= 3;
|
||
break;
|
||
|
||
case GE:
|
||
strcpy (string, "brgez");
|
||
spaces -= 5;
|
||
break;
|
||
|
||
case LT:
|
||
strcpy (string, "brlz");
|
||
spaces -= 4;
|
||
break;
|
||
|
||
case LE:
|
||
strcpy (string, "brlez");
|
||
spaces -= 5;
|
||
break;
|
||
|
||
case GT:
|
||
strcpy (string, "brgz");
|
||
spaces -= 4;
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
/* Now add the annulling, reg, label, and nop. */
|
||
if (annul)
|
||
{
|
||
strcat (string, ",a");
|
||
spaces -= 2;
|
||
}
|
||
|
||
if (insn && (note = find_reg_note (insn, REG_BR_PRED, NULL_RTX)))
|
||
{
|
||
strcat (string,
|
||
INTVAL (XEXP (note, 0)) & ATTR_FLAG_likely ? ",pt" : ",pn");
|
||
spaces -= 3;
|
||
}
|
||
|
||
labelno[1] = reg + '0';
|
||
labelno[6] = label + '0';
|
||
if (spaces > 0)
|
||
strcat (string, "\t");
|
||
else
|
||
strcat (string, " ");
|
||
strcat (string, labelno);
|
||
|
||
if (noop)
|
||
strcat (string, "\n\tnop");
|
||
|
||
return string;
|
||
}
|
||
|
||
/* Renumber registers in delay slot. Replace registers instead of
|
||
renumbering because they may be shared.
|
||
|
||
This does not handle instructions other than move. */
|
||
|
||
static void
|
||
epilogue_renumber (where)
|
||
rtx *where;
|
||
{
|
||
rtx x = *where;
|
||
enum rtx_code code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case MEM:
|
||
*where = x = copy_rtx (x);
|
||
epilogue_renumber (&XEXP (x, 0));
|
||
return;
|
||
|
||
case REG:
|
||
{
|
||
int regno = REGNO (x);
|
||
if (regno > 8 && regno < 24)
|
||
abort ();
|
||
if (regno >= 24 && regno < 32)
|
||
*where = gen_rtx_REG (GET_MODE (x), regno - 16);
|
||
return;
|
||
}
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
return;
|
||
|
||
case IOR:
|
||
case AND:
|
||
case XOR:
|
||
case PLUS:
|
||
case MINUS:
|
||
epilogue_renumber (&XEXP (x, 1));
|
||
case NEG:
|
||
case NOT:
|
||
epilogue_renumber (&XEXP (x, 0));
|
||
return;
|
||
|
||
default:
|
||
debug_rtx (*where);
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Output assembler code to return from a function. */
|
||
|
||
const char *
|
||
output_return (operands)
|
||
rtx *operands;
|
||
{
|
||
rtx delay = final_sequence ? XVECEXP (final_sequence, 0, 1) : 0;
|
||
|
||
if (leaf_label)
|
||
{
|
||
operands[0] = leaf_label;
|
||
return "b%* %l0%(";
|
||
}
|
||
else if (current_function_uses_only_leaf_regs)
|
||
{
|
||
/* No delay slot in a leaf function. */
|
||
if (delay)
|
||
abort ();
|
||
|
||
/* If we didn't allocate a frame pointer for the current function,
|
||
the stack pointer might have been adjusted. Output code to
|
||
restore it now. */
|
||
|
||
operands[0] = GEN_INT (actual_fsize);
|
||
|
||
/* Use sub of negated value in first two cases instead of add to
|
||
allow actual_fsize == 4096. */
|
||
|
||
if (actual_fsize <= 4096)
|
||
{
|
||
if (SKIP_CALLERS_UNIMP_P)
|
||
return "jmp\t%%o7+12\n\tsub\t%%sp, -%0, %%sp";
|
||
else
|
||
return "retl\n\tsub\t%%sp, -%0, %%sp";
|
||
}
|
||
else if (actual_fsize <= 8192)
|
||
{
|
||
operands[0] = GEN_INT (actual_fsize - 4096);
|
||
if (SKIP_CALLERS_UNIMP_P)
|
||
return "sub\t%%sp, -4096, %%sp\n\tjmp\t%%o7+12\n\tsub\t%%sp, -%0, %%sp";
|
||
else
|
||
return "sub\t%%sp, -4096, %%sp\n\tretl\n\tsub\t%%sp, -%0, %%sp";
|
||
}
|
||
else if (SKIP_CALLERS_UNIMP_P)
|
||
{
|
||
if ((actual_fsize & 0x3ff) != 0)
|
||
return "sethi\t%%hi(%a0), %%g1\n\tor\t%%g1, %%lo(%a0), %%g1\n\tjmp\t%%o7+12\n\tadd\t%%sp, %%g1, %%sp";
|
||
else
|
||
return "sethi\t%%hi(%a0), %%g1\n\tjmp\t%%o7+12\n\tadd\t%%sp, %%g1, %%sp";
|
||
}
|
||
else
|
||
{
|
||
if ((actual_fsize & 0x3ff) != 0)
|
||
return "sethi %%hi(%a0),%%g1\n\tor %%g1,%%lo(%a0),%%g1\n\tretl\n\tadd %%sp,%%g1,%%sp";
|
||
else
|
||
return "sethi %%hi(%a0),%%g1\n\tretl\n\tadd %%sp,%%g1,%%sp";
|
||
}
|
||
}
|
||
else if (TARGET_V9)
|
||
{
|
||
if (delay)
|
||
{
|
||
epilogue_renumber (&SET_DEST (PATTERN (delay)));
|
||
epilogue_renumber (&SET_SRC (PATTERN (delay)));
|
||
}
|
||
if (SKIP_CALLERS_UNIMP_P)
|
||
return "return\t%%i7+12%#";
|
||
else
|
||
return "return\t%%i7+8%#";
|
||
}
|
||
else
|
||
{
|
||
if (delay)
|
||
abort ();
|
||
if (SKIP_CALLERS_UNIMP_P)
|
||
return "jmp\t%%i7+12\n\trestore";
|
||
else
|
||
return "ret\n\trestore";
|
||
}
|
||
}
|
||
|
||
/* Leaf functions and non-leaf functions have different needs. */
|
||
|
||
static int
|
||
reg_leaf_alloc_order[] = REG_LEAF_ALLOC_ORDER;
|
||
|
||
static int
|
||
reg_nonleaf_alloc_order[] = REG_ALLOC_ORDER;
|
||
|
||
static int *reg_alloc_orders[] = {
|
||
reg_leaf_alloc_order,
|
||
reg_nonleaf_alloc_order};
|
||
|
||
void
|
||
order_regs_for_local_alloc ()
|
||
{
|
||
static int last_order_nonleaf = 1;
|
||
|
||
if (regs_ever_live[15] != last_order_nonleaf)
|
||
{
|
||
last_order_nonleaf = !last_order_nonleaf;
|
||
bcopy ((char *) reg_alloc_orders[last_order_nonleaf],
|
||
(char *) reg_alloc_order, FIRST_PSEUDO_REGISTER * sizeof (int));
|
||
}
|
||
}
|
||
|
||
/* Return 1 if REG and MEM are legitimate enough to allow the various
|
||
mem<-->reg splits to be run. */
|
||
|
||
int
|
||
sparc_splitdi_legitimate (reg, mem)
|
||
rtx reg;
|
||
rtx mem;
|
||
{
|
||
/* Punt if we are here by mistake. */
|
||
if (! reload_completed)
|
||
abort ();
|
||
|
||
/* We must have an offsettable memory reference. */
|
||
if (! offsettable_memref_p (mem))
|
||
return 0;
|
||
|
||
/* If we have legitimate args for ldd/std, we do not want
|
||
the split to happen. */
|
||
if ((REGNO (reg) % 2) == 0
|
||
&& mem_min_alignment (mem, 8))
|
||
return 0;
|
||
|
||
/* Success. */
|
||
return 1;
|
||
}
|
||
|
||
/* Return 1 if x and y are some kind of REG and they refer to
|
||
different hard registers. This test is guarenteed to be
|
||
run after reload. */
|
||
|
||
int
|
||
sparc_absnegfloat_split_legitimate (x, y)
|
||
rtx x, y;
|
||
{
|
||
if (GET_CODE (x) == SUBREG)
|
||
x = alter_subreg (x);
|
||
if (GET_CODE (x) != REG)
|
||
return 0;
|
||
if (GET_CODE (y) == SUBREG)
|
||
y = alter_subreg (y);
|
||
if (GET_CODE (y) != REG)
|
||
return 0;
|
||
if (REGNO (x) == REGNO (y))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Return 1 if REGNO (reg1) is even and REGNO (reg1) == REGNO (reg2) - 1.
|
||
This makes them candidates for using ldd and std insns.
|
||
|
||
Note reg1 and reg2 *must* be hard registers. */
|
||
|
||
int
|
||
registers_ok_for_ldd_peep (reg1, reg2)
|
||
rtx reg1, reg2;
|
||
{
|
||
/* We might have been passed a SUBREG. */
|
||
if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG)
|
||
return 0;
|
||
|
||
if (REGNO (reg1) % 2 != 0)
|
||
return 0;
|
||
|
||
/* Integer ldd is deprecated in SPARC V9 */
|
||
if (TARGET_V9 && REGNO (reg1) < 32)
|
||
return 0;
|
||
|
||
return (REGNO (reg1) == REGNO (reg2) - 1);
|
||
}
|
||
|
||
/* Return 1 if addr1 and addr2 are suitable for use in an ldd or
|
||
std insn.
|
||
|
||
This can only happen when addr1 and addr2 are consecutive memory
|
||
locations (addr1 + 4 == addr2). addr1 must also be aligned on a
|
||
64 bit boundary (addr1 % 8 == 0).
|
||
|
||
We know %sp and %fp are kept aligned on a 64 bit boundary. Other
|
||
registers are assumed to *never* be properly aligned and are
|
||
rejected.
|
||
|
||
Knowing %sp and %fp are kept aligned on a 64 bit boundary, we
|
||
need only check that the offset for addr1 % 8 == 0. */
|
||
|
||
int
|
||
addrs_ok_for_ldd_peep (addr1, addr2)
|
||
rtx addr1, addr2;
|
||
{
|
||
int reg1, offset1;
|
||
|
||
/* Extract a register number and offset (if used) from the first addr. */
|
||
if (GET_CODE (addr1) == PLUS)
|
||
{
|
||
/* If not a REG, return zero. */
|
||
if (GET_CODE (XEXP (addr1, 0)) != REG)
|
||
return 0;
|
||
else
|
||
{
|
||
reg1 = REGNO (XEXP (addr1, 0));
|
||
/* The offset must be constant! */
|
||
if (GET_CODE (XEXP (addr1, 1)) != CONST_INT)
|
||
return 0;
|
||
offset1 = INTVAL (XEXP (addr1, 1));
|
||
}
|
||
}
|
||
else if (GET_CODE (addr1) != REG)
|
||
return 0;
|
||
else
|
||
{
|
||
reg1 = REGNO (addr1);
|
||
/* This was a simple (mem (reg)) expression. Offset is 0. */
|
||
offset1 = 0;
|
||
}
|
||
|
||
/* Make sure the second address is a (mem (plus (reg) (const_int). */
|
||
if (GET_CODE (addr2) != PLUS)
|
||
return 0;
|
||
|
||
if (GET_CODE (XEXP (addr2, 0)) != REG
|
||
|| GET_CODE (XEXP (addr2, 1)) != CONST_INT)
|
||
return 0;
|
||
|
||
/* Only %fp and %sp are allowed. Additionally both addresses must
|
||
use the same register. */
|
||
if (reg1 != FRAME_POINTER_REGNUM && reg1 != STACK_POINTER_REGNUM)
|
||
return 0;
|
||
|
||
if (reg1 != REGNO (XEXP (addr2, 0)))
|
||
return 0;
|
||
|
||
/* The first offset must be evenly divisible by 8 to ensure the
|
||
address is 64 bit aligned. */
|
||
if (offset1 % 8 != 0)
|
||
return 0;
|
||
|
||
/* The offset for the second addr must be 4 more than the first addr. */
|
||
if (INTVAL (XEXP (addr2, 1)) != offset1 + 4)
|
||
return 0;
|
||
|
||
/* All the tests passed. addr1 and addr2 are valid for ldd and std
|
||
instructions. */
|
||
return 1;
|
||
}
|
||
|
||
/* Return 1 if reg is a pseudo, or is the first register in
|
||
a hard register pair. This makes it a candidate for use in
|
||
ldd and std insns. */
|
||
|
||
int
|
||
register_ok_for_ldd (reg)
|
||
rtx reg;
|
||
{
|
||
/* We might have been passed a SUBREG. */
|
||
if (GET_CODE (reg) != REG)
|
||
return 0;
|
||
|
||
if (REGNO (reg) < FIRST_PSEUDO_REGISTER)
|
||
return (REGNO (reg) % 2 == 0);
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
/* Print operand X (an rtx) in assembler syntax to file FILE.
|
||
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
|
||
For `%' followed by punctuation, CODE is the punctuation and X is null. */
|
||
|
||
void
|
||
print_operand (file, x, code)
|
||
FILE *file;
|
||
rtx x;
|
||
int code;
|
||
{
|
||
switch (code)
|
||
{
|
||
case '#':
|
||
/* Output a 'nop' if there's nothing for the delay slot. */
|
||
if (dbr_sequence_length () == 0)
|
||
fputs ("\n\t nop", file);
|
||
return;
|
||
case '*':
|
||
/* Output an annul flag if there's nothing for the delay slot and we
|
||
are optimizing. This is always used with '(' below. */
|
||
/* Sun OS 4.1.1 dbx can't handle an annulled unconditional branch;
|
||
this is a dbx bug. So, we only do this when optimizing. */
|
||
/* On UltraSPARC, a branch in a delay slot causes a pipeline flush.
|
||
Always emit a nop in case the next instruction is a branch. */
|
||
if (dbr_sequence_length () == 0
|
||
&& (optimize && (int)sparc_cpu < PROCESSOR_V9))
|
||
fputs (",a", file);
|
||
return;
|
||
case '(':
|
||
/* Output a 'nop' if there's nothing for the delay slot and we are
|
||
not optimizing. This is always used with '*' above. */
|
||
if (dbr_sequence_length () == 0
|
||
&& ! (optimize && (int)sparc_cpu < PROCESSOR_V9))
|
||
fputs ("\n\t nop", file);
|
||
return;
|
||
case '_':
|
||
/* Output the Embedded Medium/Anywhere code model base register. */
|
||
fputs (EMBMEDANY_BASE_REG, file);
|
||
return;
|
||
case '@':
|
||
/* Print out what we are using as the frame pointer. This might
|
||
be %fp, or might be %sp+offset. */
|
||
/* ??? What if offset is too big? Perhaps the caller knows it isn't? */
|
||
fprintf (file, "%s+%d", frame_base_name, frame_base_offset);
|
||
return;
|
||
case 'Y':
|
||
/* Adjust the operand to take into account a RESTORE operation. */
|
||
if (GET_CODE (x) == CONST_INT)
|
||
break;
|
||
else if (GET_CODE (x) != REG)
|
||
output_operand_lossage ("Invalid %%Y operand");
|
||
else if (REGNO (x) < 8)
|
||
fputs (reg_names[REGNO (x)], file);
|
||
else if (REGNO (x) >= 24 && REGNO (x) < 32)
|
||
fputs (reg_names[REGNO (x)-16], file);
|
||
else
|
||
output_operand_lossage ("Invalid %%Y operand");
|
||
return;
|
||
case 'L':
|
||
/* Print out the low order register name of a register pair. */
|
||
if (WORDS_BIG_ENDIAN)
|
||
fputs (reg_names[REGNO (x)+1], file);
|
||
else
|
||
fputs (reg_names[REGNO (x)], file);
|
||
return;
|
||
case 'H':
|
||
/* Print out the high order register name of a register pair. */
|
||
if (WORDS_BIG_ENDIAN)
|
||
fputs (reg_names[REGNO (x)], file);
|
||
else
|
||
fputs (reg_names[REGNO (x)+1], file);
|
||
return;
|
||
case 'R':
|
||
/* Print out the second register name of a register pair or quad.
|
||
I.e., R (%o0) => %o1. */
|
||
fputs (reg_names[REGNO (x)+1], file);
|
||
return;
|
||
case 'S':
|
||
/* Print out the third register name of a register quad.
|
||
I.e., S (%o0) => %o2. */
|
||
fputs (reg_names[REGNO (x)+2], file);
|
||
return;
|
||
case 'T':
|
||
/* Print out the fourth register name of a register quad.
|
||
I.e., T (%o0) => %o3. */
|
||
fputs (reg_names[REGNO (x)+3], file);
|
||
return;
|
||
case 'x':
|
||
/* Print a condition code register. */
|
||
if (REGNO (x) == SPARC_ICC_REG)
|
||
{
|
||
/* We don't handle CC[X]_NOOVmode because they're not supposed
|
||
to occur here. */
|
||
if (GET_MODE (x) == CCmode)
|
||
fputs ("%icc", file);
|
||
else if (GET_MODE (x) == CCXmode)
|
||
fputs ("%xcc", file);
|
||
else
|
||
abort ();
|
||
}
|
||
else
|
||
/* %fccN register */
|
||
fputs (reg_names[REGNO (x)], file);
|
||
return;
|
||
case 'm':
|
||
/* Print the operand's address only. */
|
||
output_address (XEXP (x, 0));
|
||
return;
|
||
case 'r':
|
||
/* In this case we need a register. Use %g0 if the
|
||
operand is const0_rtx. */
|
||
if (x == const0_rtx
|
||
|| (GET_MODE (x) != VOIDmode && x == CONST0_RTX (GET_MODE (x))))
|
||
{
|
||
fputs ("%g0", file);
|
||
return;
|
||
}
|
||
else
|
||
break;
|
||
|
||
case 'A':
|
||
switch (GET_CODE (x))
|
||
{
|
||
case IOR: fputs ("or", file); break;
|
||
case AND: fputs ("and", file); break;
|
||
case XOR: fputs ("xor", file); break;
|
||
default: output_operand_lossage ("Invalid %%A operand");
|
||
}
|
||
return;
|
||
|
||
case 'B':
|
||
switch (GET_CODE (x))
|
||
{
|
||
case IOR: fputs ("orn", file); break;
|
||
case AND: fputs ("andn", file); break;
|
||
case XOR: fputs ("xnor", file); break;
|
||
default: output_operand_lossage ("Invalid %%B operand");
|
||
}
|
||
return;
|
||
|
||
/* These are used by the conditional move instructions. */
|
||
case 'c' :
|
||
case 'C':
|
||
{
|
||
enum rtx_code rc = (code == 'c'
|
||
? reverse_condition (GET_CODE (x))
|
||
: GET_CODE (x));
|
||
switch (rc)
|
||
{
|
||
case NE: fputs ("ne", file); break;
|
||
case EQ: fputs ("e", file); break;
|
||
case GE: fputs ("ge", file); break;
|
||
case GT: fputs ("g", file); break;
|
||
case LE: fputs ("le", file); break;
|
||
case LT: fputs ("l", file); break;
|
||
case GEU: fputs ("geu", file); break;
|
||
case GTU: fputs ("gu", file); break;
|
||
case LEU: fputs ("leu", file); break;
|
||
case LTU: fputs ("lu", file); break;
|
||
default: output_operand_lossage (code == 'c'
|
||
? "Invalid %%c operand"
|
||
: "Invalid %%C operand");
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* These are used by the movr instruction pattern. */
|
||
case 'd':
|
||
case 'D':
|
||
{
|
||
enum rtx_code rc = (code == 'd'
|
||
? reverse_condition (GET_CODE (x))
|
||
: GET_CODE (x));
|
||
switch (rc)
|
||
{
|
||
case NE: fputs ("ne", file); break;
|
||
case EQ: fputs ("e", file); break;
|
||
case GE: fputs ("gez", file); break;
|
||
case LT: fputs ("lz", file); break;
|
||
case LE: fputs ("lez", file); break;
|
||
case GT: fputs ("gz", file); break;
|
||
default: output_operand_lossage (code == 'd'
|
||
? "Invalid %%d operand"
|
||
: "Invalid %%D operand");
|
||
}
|
||
return;
|
||
}
|
||
|
||
case 'b':
|
||
{
|
||
/* Print a sign-extended character. */
|
||
int i = INTVAL (x) & 0xff;
|
||
if (i & 0x80)
|
||
i |= 0xffffff00;
|
||
fprintf (file, "%d", i);
|
||
return;
|
||
}
|
||
|
||
case 'f':
|
||
/* Operand must be a MEM; write its address. */
|
||
if (GET_CODE (x) != MEM)
|
||
output_operand_lossage ("Invalid %%f operand");
|
||
output_address (XEXP (x, 0));
|
||
return;
|
||
|
||
case 0:
|
||
/* Do nothing special. */
|
||
break;
|
||
|
||
default:
|
||
/* Undocumented flag. */
|
||
output_operand_lossage ("invalid operand output code");
|
||
}
|
||
|
||
if (GET_CODE (x) == REG)
|
||
fputs (reg_names[REGNO (x)], file);
|
||
else if (GET_CODE (x) == MEM)
|
||
{
|
||
fputc ('[', file);
|
||
/* Poor Sun assembler doesn't understand absolute addressing. */
|
||
if (CONSTANT_P (XEXP (x, 0))
|
||
&& ! TARGET_LIVE_G0)
|
||
fputs ("%g0+", file);
|
||
output_address (XEXP (x, 0));
|
||
fputc (']', file);
|
||
}
|
||
else if (GET_CODE (x) == HIGH)
|
||
{
|
||
fputs ("%hi(", file);
|
||
output_addr_const (file, XEXP (x, 0));
|
||
fputc (')', file);
|
||
}
|
||
else if (GET_CODE (x) == LO_SUM)
|
||
{
|
||
print_operand (file, XEXP (x, 0), 0);
|
||
if (TARGET_CM_MEDMID)
|
||
fputs ("+%l44(", file);
|
||
else
|
||
fputs ("+%lo(", file);
|
||
output_addr_const (file, XEXP (x, 1));
|
||
fputc (')', file);
|
||
}
|
||
else if (GET_CODE (x) == CONST_DOUBLE
|
||
&& (GET_MODE (x) == VOIDmode
|
||
|| GET_MODE_CLASS (GET_MODE (x)) == MODE_INT))
|
||
{
|
||
if (CONST_DOUBLE_HIGH (x) == 0)
|
||
fprintf (file, "%u", CONST_DOUBLE_LOW (x));
|
||
else if (CONST_DOUBLE_HIGH (x) == -1
|
||
&& CONST_DOUBLE_LOW (x) < 0)
|
||
fprintf (file, "%d", CONST_DOUBLE_LOW (x));
|
||
else
|
||
output_operand_lossage ("long long constant not a valid immediate operand");
|
||
}
|
||
else if (GET_CODE (x) == CONST_DOUBLE)
|
||
output_operand_lossage ("floating point constant not a valid immediate operand");
|
||
else { output_addr_const (file, x); }
|
||
}
|
||
|
||
/* This function outputs assembler code for VALUE to FILE, where VALUE is
|
||
a 64 bit (DImode) value. */
|
||
|
||
/* ??? If there is a 64 bit counterpart to .word that the assembler
|
||
understands, then using that would simply this code greatly. */
|
||
/* ??? We only output .xword's for symbols and only then in environments
|
||
where the assembler can handle them. */
|
||
|
||
void
|
||
output_double_int (file, value)
|
||
FILE *file;
|
||
rtx value;
|
||
{
|
||
if (GET_CODE (value) == CONST_INT)
|
||
{
|
||
/* ??? This has endianness issues. */
|
||
#if HOST_BITS_PER_WIDE_INT == 64
|
||
HOST_WIDE_INT xword = INTVAL (value);
|
||
HOST_WIDE_INT high, low;
|
||
|
||
high = (xword >> 32) & 0xffffffff;
|
||
low = xword & 0xffffffff;
|
||
ASM_OUTPUT_INT (file, GEN_INT (high));
|
||
ASM_OUTPUT_INT (file, GEN_INT (low));
|
||
#else
|
||
if (INTVAL (value) < 0)
|
||
ASM_OUTPUT_INT (file, constm1_rtx);
|
||
else
|
||
ASM_OUTPUT_INT (file, const0_rtx);
|
||
ASM_OUTPUT_INT (file, value);
|
||
#endif
|
||
}
|
||
else if (GET_CODE (value) == CONST_DOUBLE)
|
||
{
|
||
ASM_OUTPUT_INT (file, GEN_INT (CONST_DOUBLE_HIGH (value)));
|
||
ASM_OUTPUT_INT (file, GEN_INT (CONST_DOUBLE_LOW (value)));
|
||
}
|
||
else if (GET_CODE (value) == SYMBOL_REF
|
||
|| GET_CODE (value) == CONST
|
||
|| GET_CODE (value) == PLUS
|
||
|| (TARGET_ARCH64 &&
|
||
(GET_CODE (value) == LABEL_REF
|
||
|| GET_CODE (value) == CODE_LABEL
|
||
|| GET_CODE (value) == MINUS)))
|
||
{
|
||
if (! TARGET_V9)
|
||
{
|
||
ASM_OUTPUT_INT (file, const0_rtx);
|
||
ASM_OUTPUT_INT (file, value);
|
||
}
|
||
else
|
||
{
|
||
fprintf (file, "\t%s\t", ASM_LONGLONG);
|
||
output_addr_const (file, value);
|
||
fprintf (file, "\n");
|
||
}
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* Return the value of a code used in the .proc pseudo-op that says
|
||
what kind of result this function returns. For non-C types, we pick
|
||
the closest C type. */
|
||
|
||
#ifndef CHAR_TYPE_SIZE
|
||
#define CHAR_TYPE_SIZE BITS_PER_UNIT
|
||
#endif
|
||
|
||
#ifndef SHORT_TYPE_SIZE
|
||
#define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2)
|
||
#endif
|
||
|
||
#ifndef INT_TYPE_SIZE
|
||
#define INT_TYPE_SIZE BITS_PER_WORD
|
||
#endif
|
||
|
||
#ifndef LONG_TYPE_SIZE
|
||
#define LONG_TYPE_SIZE BITS_PER_WORD
|
||
#endif
|
||
|
||
#ifndef LONG_LONG_TYPE_SIZE
|
||
#define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
|
||
#endif
|
||
|
||
#ifndef FLOAT_TYPE_SIZE
|
||
#define FLOAT_TYPE_SIZE BITS_PER_WORD
|
||
#endif
|
||
|
||
#ifndef DOUBLE_TYPE_SIZE
|
||
#define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
|
||
#endif
|
||
|
||
#ifndef LONG_DOUBLE_TYPE_SIZE
|
||
#define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
|
||
#endif
|
||
|
||
unsigned long
|
||
sparc_type_code (type)
|
||
register tree type;
|
||
{
|
||
register unsigned long qualifiers = 0;
|
||
register unsigned shift;
|
||
|
||
/* Only the first 30 bits of the qualifier are valid. We must refrain from
|
||
setting more, since some assemblers will give an error for this. Also,
|
||
we must be careful to avoid shifts of 32 bits or more to avoid getting
|
||
unpredictable results. */
|
||
|
||
for (shift = 6; shift < 30; shift += 2, type = TREE_TYPE (type))
|
||
{
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case ERROR_MARK:
|
||
return qualifiers;
|
||
|
||
case ARRAY_TYPE:
|
||
qualifiers |= (3 << shift);
|
||
break;
|
||
|
||
case FUNCTION_TYPE:
|
||
case METHOD_TYPE:
|
||
qualifiers |= (2 << shift);
|
||
break;
|
||
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
case OFFSET_TYPE:
|
||
qualifiers |= (1 << shift);
|
||
break;
|
||
|
||
case RECORD_TYPE:
|
||
return (qualifiers | 8);
|
||
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
return (qualifiers | 9);
|
||
|
||
case ENUMERAL_TYPE:
|
||
return (qualifiers | 10);
|
||
|
||
case VOID_TYPE:
|
||
return (qualifiers | 16);
|
||
|
||
case INTEGER_TYPE:
|
||
/* If this is a range type, consider it to be the underlying
|
||
type. */
|
||
if (TREE_TYPE (type) != 0)
|
||
break;
|
||
|
||
/* Carefully distinguish all the standard types of C,
|
||
without messing up if the language is not C. We do this by
|
||
testing TYPE_PRECISION and TREE_UNSIGNED. The old code used to
|
||
look at both the names and the above fields, but that's redundant.
|
||
Any type whose size is between two C types will be considered
|
||
to be the wider of the two types. Also, we do not have a
|
||
special code to use for "long long", so anything wider than
|
||
long is treated the same. Note that we can't distinguish
|
||
between "int" and "long" in this code if they are the same
|
||
size, but that's fine, since neither can the assembler. */
|
||
|
||
if (TYPE_PRECISION (type) <= CHAR_TYPE_SIZE)
|
||
return (qualifiers | (TREE_UNSIGNED (type) ? 12 : 2));
|
||
|
||
else if (TYPE_PRECISION (type) <= SHORT_TYPE_SIZE)
|
||
return (qualifiers | (TREE_UNSIGNED (type) ? 13 : 3));
|
||
|
||
else if (TYPE_PRECISION (type) <= INT_TYPE_SIZE)
|
||
return (qualifiers | (TREE_UNSIGNED (type) ? 14 : 4));
|
||
|
||
else
|
||
return (qualifiers | (TREE_UNSIGNED (type) ? 15 : 5));
|
||
|
||
case REAL_TYPE:
|
||
/* If this is a range type, consider it to be the underlying
|
||
type. */
|
||
if (TREE_TYPE (type) != 0)
|
||
break;
|
||
|
||
/* Carefully distinguish all the standard types of C,
|
||
without messing up if the language is not C. */
|
||
|
||
if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
|
||
return (qualifiers | 6);
|
||
|
||
else
|
||
return (qualifiers | 7);
|
||
|
||
case COMPLEX_TYPE: /* GNU Fortran COMPLEX type. */
|
||
/* ??? We need to distinguish between double and float complex types,
|
||
but I don't know how yet because I can't reach this code from
|
||
existing front-ends. */
|
||
return (qualifiers | 7); /* Who knows? */
|
||
|
||
case CHAR_TYPE: /* GNU Pascal CHAR type. Not used in C. */
|
||
case BOOLEAN_TYPE: /* GNU Fortran BOOLEAN type. */
|
||
case FILE_TYPE: /* GNU Pascal FILE type. */
|
||
case SET_TYPE: /* GNU Pascal SET type. */
|
||
case LANG_TYPE: /* ? */
|
||
return qualifiers;
|
||
|
||
default:
|
||
abort (); /* Not a type! */
|
||
}
|
||
}
|
||
|
||
return qualifiers;
|
||
}
|
||
|
||
/* Nested function support. */
|
||
|
||
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
||
FNADDR is an RTX for the address of the function's pure code.
|
||
CXT is an RTX for the static chain value for the function.
|
||
|
||
This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
|
||
(to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
|
||
(to store insns). This is a bit excessive. Perhaps a different
|
||
mechanism would be better here.
|
||
|
||
Emit enough FLUSH insns to synchronize the data and instruction caches. */
|
||
|
||
void
|
||
sparc_initialize_trampoline (tramp, fnaddr, cxt)
|
||
rtx tramp, fnaddr, cxt;
|
||
{
|
||
/* SPARC 32 bit trampoline:
|
||
|
||
sethi %hi(fn), %g1
|
||
sethi %hi(static), %g2
|
||
jmp %g1+%lo(fn)
|
||
or %g2, %lo(static), %g2
|
||
|
||
SETHI i,r = 00rr rrr1 00ii iiii iiii iiii iiii iiii
|
||
JMPL r+i,d = 10dd ddd1 1100 0rrr rr1i iiii iiii iiii
|
||
*/
|
||
#ifdef TRANSFER_FROM_TRAMPOLINE
|
||
emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "__enable_execute_stack"),
|
||
0, VOIDmode, 1, tramp, Pmode);
|
||
#endif
|
||
|
||
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 0)),
|
||
expand_binop (SImode, ior_optab,
|
||
expand_shift (RSHIFT_EXPR, SImode, fnaddr,
|
||
size_int (10), 0, 1),
|
||
GEN_INT (0x03000000),
|
||
NULL_RTX, 1, OPTAB_DIRECT));
|
||
|
||
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 4)),
|
||
expand_binop (SImode, ior_optab,
|
||
expand_shift (RSHIFT_EXPR, SImode, cxt,
|
||
size_int (10), 0, 1),
|
||
GEN_INT (0x05000000),
|
||
NULL_RTX, 1, OPTAB_DIRECT));
|
||
|
||
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 8)),
|
||
expand_binop (SImode, ior_optab,
|
||
expand_and (fnaddr, GEN_INT (0x3ff), NULL_RTX),
|
||
GEN_INT (0x81c06000),
|
||
NULL_RTX, 1, OPTAB_DIRECT));
|
||
|
||
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 12)),
|
||
expand_binop (SImode, ior_optab,
|
||
expand_and (cxt, GEN_INT (0x3ff), NULL_RTX),
|
||
GEN_INT (0x8410a000),
|
||
NULL_RTX, 1, OPTAB_DIRECT));
|
||
|
||
emit_insn (gen_flush (validize_mem (gen_rtx_MEM (SImode, tramp))));
|
||
/* On UltraSPARC a flush flushes an entire cache line. The trampoline is
|
||
aligned on a 16 byte boundary so one flush clears it all. */
|
||
if (sparc_cpu != PROCESSOR_ULTRASPARC)
|
||
emit_insn (gen_flush (validize_mem (gen_rtx_MEM (SImode,
|
||
plus_constant (tramp, 8)))));
|
||
}
|
||
|
||
/* The 64 bit version is simpler because it makes more sense to load the
|
||
values as "immediate" data out of the trampoline. It's also easier since
|
||
we can read the PC without clobbering a register. */
|
||
|
||
void
|
||
sparc64_initialize_trampoline (tramp, fnaddr, cxt)
|
||
rtx tramp, fnaddr, cxt;
|
||
{
|
||
#ifdef TRANSFER_FROM_TRAMPOLINE
|
||
emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "__enable_execute_stack"),
|
||
0, VOIDmode, 1, tramp, Pmode);
|
||
#endif
|
||
|
||
/*
|
||
rd %pc, %g1
|
||
ldx [%g1+24], %g5
|
||
jmp %g5
|
||
ldx [%g1+16], %g5
|
||
+16 bytes data
|
||
*/
|
||
|
||
emit_move_insn (gen_rtx_MEM (SImode, tramp),
|
||
GEN_INT (0x83414000));
|
||
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 4)),
|
||
GEN_INT (0xca586018));
|
||
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 8)),
|
||
GEN_INT (0x81c14000));
|
||
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 12)),
|
||
GEN_INT (0xca586010));
|
||
emit_move_insn (gen_rtx_MEM (DImode, plus_constant (tramp, 16)), cxt);
|
||
emit_move_insn (gen_rtx_MEM (DImode, plus_constant (tramp, 24)), fnaddr);
|
||
emit_insn (gen_flush (validize_mem (gen_rtx_MEM (DImode, tramp))));
|
||
|
||
if (sparc_cpu != PROCESSOR_ULTRASPARC)
|
||
emit_insn (gen_flush (validize_mem (gen_rtx_MEM (DImode, plus_constant (tramp, 8)))));
|
||
}
|
||
|
||
/* Subroutines to support a flat (single) register window calling
|
||
convention. */
|
||
|
||
/* Single-register window sparc stack frames look like:
|
||
|
||
Before call After call
|
||
+-----------------------+ +-----------------------+
|
||
high | | | |
|
||
mem | caller's temps. | | caller's temps. |
|
||
| | | |
|
||
+-----------------------+ +-----------------------+
|
||
| | | |
|
||
| arguments on stack. | | arguments on stack. |
|
||
| | | |
|
||
+-----------------------+FP+92->+-----------------------+
|
||
| 6 words to save | | 6 words to save |
|
||
| arguments passed | | arguments passed |
|
||
| in registers, even | | in registers, even |
|
||
| if not passed. | | if not passed. |
|
||
SP+68->+-----------------------+FP+68->+-----------------------+
|
||
| 1 word struct addr | | 1 word struct addr |
|
||
+-----------------------+FP+64->+-----------------------+
|
||
| | | |
|
||
| 16 word reg save area | | 16 word reg save area |
|
||
| | | |
|
||
SP->+-----------------------+ FP->+-----------------------+
|
||
| 4 word area for |
|
||
| fp/alu reg moves |
|
||
FP-16->+-----------------------+
|
||
| |
|
||
| local variables |
|
||
| |
|
||
+-----------------------+
|
||
| |
|
||
| fp register save |
|
||
| |
|
||
+-----------------------+
|
||
| |
|
||
| gp register save |
|
||
| |
|
||
+-----------------------+
|
||
| |
|
||
| alloca allocations |
|
||
| |
|
||
+-----------------------+
|
||
| |
|
||
| arguments on stack |
|
||
| |
|
||
SP+92->+-----------------------+
|
||
| 6 words to save |
|
||
| arguments passed |
|
||
| in registers, even |
|
||
low | if not passed. |
|
||
memory SP+68->+-----------------------+
|
||
| 1 word struct addr |
|
||
SP+64->+-----------------------+
|
||
| |
|
||
I 16 word reg save area |
|
||
| |
|
||
SP->+-----------------------+ */
|
||
|
||
/* Structure to be filled in by sparc_flat_compute_frame_size with register
|
||
save masks, and offsets for the current function. */
|
||
|
||
struct sparc_frame_info
|
||
{
|
||
unsigned long total_size; /* # bytes that the entire frame takes up. */
|
||
unsigned long var_size; /* # bytes that variables take up. */
|
||
unsigned long args_size; /* # bytes that outgoing arguments take up. */
|
||
unsigned long extra_size; /* # bytes of extra gunk. */
|
||
unsigned int gp_reg_size; /* # bytes needed to store gp regs. */
|
||
unsigned int fp_reg_size; /* # bytes needed to store fp regs. */
|
||
unsigned long gmask; /* Mask of saved gp registers. */
|
||
unsigned long fmask; /* Mask of saved fp registers. */
|
||
unsigned long reg_offset; /* Offset from new sp to store regs. */
|
||
int initialized; /* Nonzero if frame size already calculated. */
|
||
};
|
||
|
||
/* Current frame information calculated by sparc_flat_compute_frame_size. */
|
||
struct sparc_frame_info current_frame_info;
|
||
|
||
/* Zero structure to initialize current_frame_info. */
|
||
struct sparc_frame_info zero_frame_info;
|
||
|
||
/* Tell prologue and epilogue if register REGNO should be saved / restored. */
|
||
|
||
#define RETURN_ADDR_REGNUM 15
|
||
#define FRAME_POINTER_MASK (1 << (FRAME_POINTER_REGNUM))
|
||
#define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM))
|
||
|
||
#define MUST_SAVE_REGISTER(regno) \
|
||
((regs_ever_live[regno] && !call_used_regs[regno]) \
|
||
|| (regno == FRAME_POINTER_REGNUM && frame_pointer_needed) \
|
||
|| (regno == RETURN_ADDR_REGNUM && regs_ever_live[RETURN_ADDR_REGNUM]))
|
||
|
||
/* Return the bytes needed to compute the frame pointer from the current
|
||
stack pointer. */
|
||
|
||
unsigned long
|
||
sparc_flat_compute_frame_size (size)
|
||
int size; /* # of var. bytes allocated. */
|
||
{
|
||
int regno;
|
||
unsigned long total_size; /* # bytes that the entire frame takes up. */
|
||
unsigned long var_size; /* # bytes that variables take up. */
|
||
unsigned long args_size; /* # bytes that outgoing arguments take up. */
|
||
unsigned long extra_size; /* # extra bytes. */
|
||
unsigned int gp_reg_size; /* # bytes needed to store gp regs. */
|
||
unsigned int fp_reg_size; /* # bytes needed to store fp regs. */
|
||
unsigned long gmask; /* Mask of saved gp registers. */
|
||
unsigned long fmask; /* Mask of saved fp registers. */
|
||
unsigned long reg_offset; /* Offset to register save area. */
|
||
int need_aligned_p; /* 1 if need the save area 8 byte aligned. */
|
||
|
||
/* This is the size of the 16 word reg save area, 1 word struct addr
|
||
area, and 4 word fp/alu register copy area. */
|
||
extra_size = -STARTING_FRAME_OFFSET + FIRST_PARM_OFFSET(0);
|
||
var_size = size;
|
||
gp_reg_size = 0;
|
||
fp_reg_size = 0;
|
||
gmask = 0;
|
||
fmask = 0;
|
||
reg_offset = 0;
|
||
need_aligned_p = 0;
|
||
|
||
args_size = 0;
|
||
if (!leaf_function_p ())
|
||
{
|
||
/* Also include the size needed for the 6 parameter registers. */
|
||
args_size = current_function_outgoing_args_size + 24;
|
||
}
|
||
total_size = var_size + args_size;
|
||
|
||
/* Calculate space needed for gp registers. */
|
||
for (regno = 1; regno <= 31; regno++)
|
||
{
|
||
if (MUST_SAVE_REGISTER (regno))
|
||
{
|
||
/* If we need to save two regs in a row, ensure there's room to bump
|
||
up the address to align it to a doubleword boundary. */
|
||
if ((regno & 0x1) == 0 && MUST_SAVE_REGISTER (regno+1))
|
||
{
|
||
if (gp_reg_size % 8 != 0)
|
||
gp_reg_size += 4;
|
||
gp_reg_size += 2 * UNITS_PER_WORD;
|
||
gmask |= 3 << regno;
|
||
regno++;
|
||
need_aligned_p = 1;
|
||
}
|
||
else
|
||
{
|
||
gp_reg_size += UNITS_PER_WORD;
|
||
gmask |= 1 << regno;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Calculate space needed for fp registers. */
|
||
for (regno = 32; regno <= 63; regno++)
|
||
{
|
||
if (regs_ever_live[regno] && !call_used_regs[regno])
|
||
{
|
||
fp_reg_size += UNITS_PER_WORD;
|
||
fmask |= 1 << (regno - 32);
|
||
}
|
||
}
|
||
|
||
if (gmask || fmask)
|
||
{
|
||
int n;
|
||
reg_offset = FIRST_PARM_OFFSET(0) + args_size;
|
||
/* Ensure save area is 8 byte aligned if we need it. */
|
||
n = reg_offset % 8;
|
||
if (need_aligned_p && n != 0)
|
||
{
|
||
total_size += 8 - n;
|
||
reg_offset += 8 - n;
|
||
}
|
||
total_size += gp_reg_size + fp_reg_size;
|
||
}
|
||
|
||
/* If we must allocate a stack frame at all, we must also allocate
|
||
room for register window spillage, so as to be binary compatible
|
||
with libraries and operating systems that do not use -mflat. */
|
||
if (total_size > 0)
|
||
total_size += extra_size;
|
||
else
|
||
extra_size = 0;
|
||
|
||
total_size = SPARC_STACK_ALIGN (total_size);
|
||
|
||
/* Save other computed information. */
|
||
current_frame_info.total_size = total_size;
|
||
current_frame_info.var_size = var_size;
|
||
current_frame_info.args_size = args_size;
|
||
current_frame_info.extra_size = extra_size;
|
||
current_frame_info.gp_reg_size = gp_reg_size;
|
||
current_frame_info.fp_reg_size = fp_reg_size;
|
||
current_frame_info.gmask = gmask;
|
||
current_frame_info.fmask = fmask;
|
||
current_frame_info.reg_offset = reg_offset;
|
||
current_frame_info.initialized = reload_completed;
|
||
|
||
/* Ok, we're done. */
|
||
return total_size;
|
||
}
|
||
|
||
/* Save/restore registers in GMASK and FMASK at register BASE_REG plus offset
|
||
OFFSET.
|
||
|
||
BASE_REG must be 8 byte aligned. This allows us to test OFFSET for
|
||
appropriate alignment and use DOUBLEWORD_OP when we can. We assume
|
||
[BASE_REG+OFFSET] will always be a valid address.
|
||
|
||
WORD_OP is either "st" for save, "ld" for restore.
|
||
DOUBLEWORD_OP is either "std" for save, "ldd" for restore. */
|
||
|
||
void
|
||
sparc_flat_save_restore (file, base_reg, offset, gmask, fmask, word_op,
|
||
doubleword_op, base_offset)
|
||
FILE *file;
|
||
char *base_reg;
|
||
unsigned int offset;
|
||
unsigned long gmask;
|
||
unsigned long fmask;
|
||
char *word_op;
|
||
char *doubleword_op;
|
||
unsigned long base_offset;
|
||
{
|
||
int regno;
|
||
|
||
if (gmask == 0 && fmask == 0)
|
||
return;
|
||
|
||
/* Save registers starting from high to low. We've already saved the
|
||
previous frame pointer and previous return address for the debugger's
|
||
sake. The debugger allows us to not need a nop in the epilog if at least
|
||
one register is reloaded in addition to return address. */
|
||
|
||
if (gmask)
|
||
{
|
||
for (regno = 1; regno <= 31; regno++)
|
||
{
|
||
if ((gmask & (1L << regno)) != 0)
|
||
{
|
||
if ((regno & 0x1) == 0 && ((gmask & (1L << (regno+1))) != 0))
|
||
{
|
||
/* We can save two registers in a row. If we're not at a
|
||
double word boundary, move to one.
|
||
sparc_flat_compute_frame_size ensures there's room to do
|
||
this. */
|
||
if (offset % 8 != 0)
|
||
offset += UNITS_PER_WORD;
|
||
|
||
if (word_op[0] == 's')
|
||
{
|
||
fprintf (file, "\t%s\t%s, [%s+%d]\n",
|
||
doubleword_op, reg_names[regno],
|
||
base_reg, offset);
|
||
if (dwarf2out_do_frame ())
|
||
{
|
||
char *l = dwarf2out_cfi_label ();
|
||
dwarf2out_reg_save (l, regno, offset + base_offset);
|
||
dwarf2out_reg_save
|
||
(l, regno+1, offset+base_offset + UNITS_PER_WORD);
|
||
}
|
||
}
|
||
else
|
||
fprintf (file, "\t%s\t[%s+%d], %s\n",
|
||
doubleword_op, base_reg, offset,
|
||
reg_names[regno]);
|
||
|
||
offset += 2 * UNITS_PER_WORD;
|
||
regno++;
|
||
}
|
||
else
|
||
{
|
||
if (word_op[0] == 's')
|
||
{
|
||
fprintf (file, "\t%s\t%s, [%s+%d]\n",
|
||
word_op, reg_names[regno],
|
||
base_reg, offset);
|
||
if (dwarf2out_do_frame ())
|
||
dwarf2out_reg_save ("", regno, offset + base_offset);
|
||
}
|
||
else
|
||
fprintf (file, "\t%s\t[%s+%d], %s\n",
|
||
word_op, base_reg, offset, reg_names[regno]);
|
||
|
||
offset += UNITS_PER_WORD;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (fmask)
|
||
{
|
||
for (regno = 32; regno <= 63; regno++)
|
||
{
|
||
if ((fmask & (1L << (regno - 32))) != 0)
|
||
{
|
||
if (word_op[0] == 's')
|
||
{
|
||
fprintf (file, "\t%s\t%s, [%s+%d]\n",
|
||
word_op, reg_names[regno],
|
||
base_reg, offset);
|
||
if (dwarf2out_do_frame ())
|
||
dwarf2out_reg_save ("", regno, offset + base_offset);
|
||
}
|
||
else
|
||
fprintf (file, "\t%s\t[%s+%d], %s\n",
|
||
word_op, base_reg, offset, reg_names[regno]);
|
||
|
||
offset += UNITS_PER_WORD;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Set up the stack and frame (if desired) for the function. */
|
||
|
||
void
|
||
sparc_flat_output_function_prologue (file, size)
|
||
FILE *file;
|
||
int size;
|
||
{
|
||
char *sp_str = reg_names[STACK_POINTER_REGNUM];
|
||
unsigned long gmask = current_frame_info.gmask;
|
||
|
||
/* This is only for the human reader. */
|
||
fprintf (file, "\t%s#PROLOGUE# 0\n", ASM_COMMENT_START);
|
||
fprintf (file, "\t%s# vars= %ld, regs= %d/%d, args= %d, extra= %ld\n",
|
||
ASM_COMMENT_START,
|
||
current_frame_info.var_size,
|
||
current_frame_info.gp_reg_size / 4,
|
||
current_frame_info.fp_reg_size / 4,
|
||
current_function_outgoing_args_size,
|
||
current_frame_info.extra_size);
|
||
|
||
size = SPARC_STACK_ALIGN (size);
|
||
size = (! current_frame_info.initialized
|
||
? sparc_flat_compute_frame_size (size)
|
||
: current_frame_info.total_size);
|
||
|
||
/* These cases shouldn't happen. Catch them now. */
|
||
if (size == 0 && (gmask || current_frame_info.fmask))
|
||
abort ();
|
||
|
||
/* Allocate our stack frame by decrementing %sp.
|
||
At present, the only algorithm gdb can use to determine if this is a
|
||
flat frame is if we always set %i7 if we set %sp. This can be optimized
|
||
in the future by putting in some sort of debugging information that says
|
||
this is a `flat' function. However, there is still the case of debugging
|
||
code without such debugging information (including cases where most fns
|
||
have such info, but there is one that doesn't). So, always do this now
|
||
so we don't get a lot of code out there that gdb can't handle.
|
||
If the frame pointer isn't needn't then that's ok - gdb won't be able to
|
||
distinguish us from a non-flat function but there won't (and shouldn't)
|
||
be any differences anyway. The return pc is saved (if necessary) right
|
||
after %i7 so gdb won't have to look too far to find it. */
|
||
if (size > 0)
|
||
{
|
||
unsigned int reg_offset = current_frame_info.reg_offset;
|
||
char *fp_str = reg_names[FRAME_POINTER_REGNUM];
|
||
const char *t1_str = "%g1";
|
||
|
||
/* Things get a little tricky if local variables take up more than ~4096
|
||
bytes and outgoing arguments take up more than ~4096 bytes. When that
|
||
happens, the register save area can't be accessed from either end of
|
||
the frame. Handle this by decrementing %sp to the start of the gp
|
||
register save area, save the regs, update %i7, and then set %sp to its
|
||
final value. Given that we only have one scratch register to play
|
||
with it is the cheapest solution, and it helps gdb out as it won't
|
||
slow down recognition of flat functions.
|
||
Don't change the order of insns emitted here without checking with
|
||
the gdb folk first. */
|
||
|
||
/* Is the entire register save area offsettable from %sp? */
|
||
if (reg_offset < 4096 - 64 * UNITS_PER_WORD)
|
||
{
|
||
if (size <= 4096)
|
||
{
|
||
fprintf (file, "\tadd\t%s, %d, %s\n",
|
||
sp_str, -size, sp_str);
|
||
if (gmask & FRAME_POINTER_MASK)
|
||
{
|
||
fprintf (file, "\tst\t%s, [%s+%d]\n",
|
||
fp_str, sp_str, reg_offset);
|
||
fprintf (file, "\tsub\t%s, %d, %s\t%s# set up frame pointer\n",
|
||
sp_str, -size, fp_str, ASM_COMMENT_START);
|
||
reg_offset += 4;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
fprintf (file, "\tset\t%d, %s\n\tsub\t%s, %s, %s\n",
|
||
size, t1_str, sp_str, t1_str, sp_str);
|
||
if (gmask & FRAME_POINTER_MASK)
|
||
{
|
||
fprintf (file, "\tst\t%s, [%s+%d]\n",
|
||
fp_str, sp_str, reg_offset);
|
||
fprintf (file, "\tadd\t%s, %s, %s\t%s# set up frame pointer\n",
|
||
sp_str, t1_str, fp_str, ASM_COMMENT_START);
|
||
reg_offset += 4;
|
||
}
|
||
}
|
||
if (dwarf2out_do_frame ())
|
||
{
|
||
char *l = dwarf2out_cfi_label ();
|
||
if (gmask & FRAME_POINTER_MASK)
|
||
{
|
||
dwarf2out_reg_save (l, FRAME_POINTER_REGNUM,
|
||
reg_offset - 4 - size);
|
||
dwarf2out_def_cfa (l, FRAME_POINTER_REGNUM, 0);
|
||
}
|
||
else
|
||
dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, size);
|
||
}
|
||
if (gmask & RETURN_ADDR_MASK)
|
||
{
|
||
fprintf (file, "\tst\t%s, [%s+%d]\n",
|
||
reg_names[RETURN_ADDR_REGNUM], sp_str, reg_offset);
|
||
if (dwarf2out_do_frame ())
|
||
dwarf2out_return_save ("", reg_offset - size);
|
||
reg_offset += 4;
|
||
}
|
||
sparc_flat_save_restore (file, sp_str, reg_offset,
|
||
gmask & ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK),
|
||
current_frame_info.fmask,
|
||
"st", "std", -size);
|
||
}
|
||
else
|
||
{
|
||
/* Subtract %sp in two steps, but make sure there is always a
|
||
64 byte register save area, and %sp is properly aligned. */
|
||
/* Amount to decrement %sp by, the first time. */
|
||
unsigned int size1 = ((size - reg_offset + 64) + 15) & -16;
|
||
/* Offset to register save area from %sp. */
|
||
unsigned int offset = size1 - (size - reg_offset);
|
||
|
||
if (size1 <= 4096)
|
||
{
|
||
fprintf (file, "\tadd\t%s, %d, %s\n",
|
||
sp_str, -size1, sp_str);
|
||
if (gmask & FRAME_POINTER_MASK)
|
||
{
|
||
fprintf (file, "\tst\t%s, [%s+%d]\n\tsub\t%s, %d, %s\t%s# set up frame pointer\n",
|
||
fp_str, sp_str, offset, sp_str, -size1, fp_str,
|
||
ASM_COMMENT_START);
|
||
offset += 4;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
fprintf (file, "\tset\t%d, %s\n\tsub\t%s, %s, %s\n",
|
||
size1, t1_str, sp_str, t1_str, sp_str);
|
||
if (gmask & FRAME_POINTER_MASK)
|
||
{
|
||
fprintf (file, "\tst\t%s, [%s+%d]\n\tadd\t%s, %s, %s\t%s# set up frame pointer\n",
|
||
fp_str, sp_str, offset, sp_str, t1_str, fp_str,
|
||
ASM_COMMENT_START);
|
||
offset += 4;
|
||
}
|
||
}
|
||
if (dwarf2out_do_frame ())
|
||
{
|
||
char *l = dwarf2out_cfi_label ();
|
||
if (gmask & FRAME_POINTER_MASK)
|
||
{
|
||
dwarf2out_reg_save (l, FRAME_POINTER_REGNUM,
|
||
offset - 4 - size1);
|
||
dwarf2out_def_cfa (l, FRAME_POINTER_REGNUM, 0);
|
||
}
|
||
else
|
||
dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, size1);
|
||
}
|
||
if (gmask & RETURN_ADDR_MASK)
|
||
{
|
||
fprintf (file, "\tst\t%s, [%s+%d]\n",
|
||
reg_names[RETURN_ADDR_REGNUM], sp_str, offset);
|
||
if (dwarf2out_do_frame ())
|
||
/* offset - size1 == reg_offset - size
|
||
if reg_offset were updated above like offset. */
|
||
dwarf2out_return_save ("", offset - size1);
|
||
offset += 4;
|
||
}
|
||
sparc_flat_save_restore (file, sp_str, offset,
|
||
gmask & ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK),
|
||
current_frame_info.fmask,
|
||
"st", "std", -size1);
|
||
fprintf (file, "\tset\t%d, %s\n\tsub\t%s, %s, %s\n",
|
||
size - size1, t1_str, sp_str, t1_str, sp_str);
|
||
if (dwarf2out_do_frame ())
|
||
if (! (gmask & FRAME_POINTER_MASK))
|
||
dwarf2out_def_cfa ("", STACK_POINTER_REGNUM, size);
|
||
}
|
||
}
|
||
|
||
fprintf (file, "\t%s#PROLOGUE# 1\n", ASM_COMMENT_START);
|
||
}
|
||
|
||
/* Do any necessary cleanup after a function to restore stack, frame,
|
||
and regs. */
|
||
|
||
void
|
||
sparc_flat_output_function_epilogue (file, size)
|
||
FILE *file;
|
||
int size;
|
||
{
|
||
rtx epilogue_delay = current_function_epilogue_delay_list;
|
||
int noepilogue = FALSE;
|
||
|
||
/* This is only for the human reader. */
|
||
fprintf (file, "\t%s#EPILOGUE#\n", ASM_COMMENT_START);
|
||
|
||
/* The epilogue does not depend on any registers, but the stack
|
||
registers, so we assume that if we have 1 pending nop, it can be
|
||
ignored, and 2 it must be filled (2 nops occur for integer
|
||
multiply and divide). */
|
||
|
||
size = SPARC_STACK_ALIGN (size);
|
||
size = (!current_frame_info.initialized
|
||
? sparc_flat_compute_frame_size (size)
|
||
: current_frame_info.total_size);
|
||
|
||
if (size == 0 && epilogue_delay == 0)
|
||
{
|
||
rtx insn = get_last_insn ();
|
||
|
||
/* If the last insn was a BARRIER, we don't have to write any code
|
||
because a jump (aka return) was put there. */
|
||
if (GET_CODE (insn) == NOTE)
|
||
insn = prev_nonnote_insn (insn);
|
||
if (insn && GET_CODE (insn) == BARRIER)
|
||
noepilogue = TRUE;
|
||
}
|
||
|
||
if (!noepilogue)
|
||
{
|
||
unsigned int reg_offset = current_frame_info.reg_offset;
|
||
unsigned int size1;
|
||
char *sp_str = reg_names[STACK_POINTER_REGNUM];
|
||
char *fp_str = reg_names[FRAME_POINTER_REGNUM];
|
||
const char *t1_str = "%g1";
|
||
|
||
/* In the reload sequence, we don't need to fill the load delay
|
||
slots for most of the loads, also see if we can fill the final
|
||
delay slot if not otherwise filled by the reload sequence. */
|
||
|
||
if (size > 4095)
|
||
fprintf (file, "\tset\t%d, %s\n", size, t1_str);
|
||
|
||
if (frame_pointer_needed)
|
||
{
|
||
if (size > 4095)
|
||
fprintf (file,"\tsub\t%s, %s, %s\t\t%s# sp not trusted here\n",
|
||
fp_str, t1_str, sp_str, ASM_COMMENT_START);
|
||
else
|
||
fprintf (file,"\tsub\t%s, %d, %s\t\t%s# sp not trusted here\n",
|
||
fp_str, size, sp_str, ASM_COMMENT_START);
|
||
}
|
||
|
||
/* Is the entire register save area offsettable from %sp? */
|
||
if (reg_offset < 4096 - 64 * UNITS_PER_WORD)
|
||
{
|
||
size1 = 0;
|
||
}
|
||
else
|
||
{
|
||
/* Restore %sp in two steps, but make sure there is always a
|
||
64 byte register save area, and %sp is properly aligned. */
|
||
/* Amount to increment %sp by, the first time. */
|
||
size1 = ((reg_offset - 64 - 16) + 15) & -16;
|
||
/* Offset to register save area from %sp. */
|
||
reg_offset = size1 - reg_offset;
|
||
|
||
fprintf (file, "\tset\t%d, %s\n\tadd\t%s, %s, %s\n",
|
||
size1, t1_str, sp_str, t1_str, sp_str);
|
||
}
|
||
|
||
/* We must restore the frame pointer and return address reg first
|
||
because they are treated specially by the prologue output code. */
|
||
if (current_frame_info.gmask & FRAME_POINTER_MASK)
|
||
{
|
||
fprintf (file, "\tld\t[%s+%d], %s\n",
|
||
sp_str, reg_offset, fp_str);
|
||
reg_offset += 4;
|
||
}
|
||
if (current_frame_info.gmask & RETURN_ADDR_MASK)
|
||
{
|
||
fprintf (file, "\tld\t[%s+%d], %s\n",
|
||
sp_str, reg_offset, reg_names[RETURN_ADDR_REGNUM]);
|
||
reg_offset += 4;
|
||
}
|
||
|
||
/* Restore any remaining saved registers. */
|
||
sparc_flat_save_restore (file, sp_str, reg_offset,
|
||
current_frame_info.gmask & ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK),
|
||
current_frame_info.fmask,
|
||
"ld", "ldd", 0);
|
||
|
||
/* If we had to increment %sp in two steps, record it so the second
|
||
restoration in the epilogue finishes up. */
|
||
if (size1 > 0)
|
||
{
|
||
size -= size1;
|
||
if (size > 4095)
|
||
fprintf (file, "\tset\t%d, %s\n",
|
||
size, t1_str);
|
||
}
|
||
|
||
if (current_function_returns_struct)
|
||
fprintf (file, "\tjmp\t%%o7+12\n");
|
||
else
|
||
fprintf (file, "\tretl\n");
|
||
|
||
/* If the only register saved is the return address, we need a
|
||
nop, unless we have an instruction to put into it. Otherwise
|
||
we don't since reloading multiple registers doesn't reference
|
||
the register being loaded. */
|
||
|
||
if (epilogue_delay)
|
||
{
|
||
if (size)
|
||
abort ();
|
||
final_scan_insn (XEXP (epilogue_delay, 0), file, 1, -2, 1);
|
||
}
|
||
|
||
else if (size > 4095)
|
||
fprintf (file, "\tadd\t%s, %s, %s\n", sp_str, t1_str, sp_str);
|
||
|
||
else if (size > 0)
|
||
fprintf (file, "\tadd\t%s, %d, %s\n", sp_str, size, sp_str);
|
||
|
||
else
|
||
fprintf (file, "\tnop\n");
|
||
}
|
||
|
||
/* Reset state info for each function. */
|
||
current_frame_info = zero_frame_info;
|
||
|
||
sparc_output_deferred_case_vectors ();
|
||
}
|
||
|
||
/* Define the number of delay slots needed for the function epilogue.
|
||
|
||
On the sparc, we need a slot if either no stack has been allocated,
|
||
or the only register saved is the return register. */
|
||
|
||
int
|
||
sparc_flat_epilogue_delay_slots ()
|
||
{
|
||
if (!current_frame_info.initialized)
|
||
(void) sparc_flat_compute_frame_size (get_frame_size ());
|
||
|
||
if (current_frame_info.total_size == 0)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return true is TRIAL is a valid insn for the epilogue delay slot.
|
||
Any single length instruction which doesn't reference the stack or frame
|
||
pointer is OK. */
|
||
|
||
int
|
||
sparc_flat_eligible_for_epilogue_delay (trial, slot)
|
||
rtx trial;
|
||
int slot ATTRIBUTE_UNUSED;
|
||
{
|
||
rtx pat = PATTERN (trial);
|
||
|
||
if (get_attr_length (trial) != 1)
|
||
return 0;
|
||
|
||
/* If %g0 is live, there are lots of things we can't handle.
|
||
Rather than trying to find them all now, let's punt and only
|
||
optimize things as necessary. */
|
||
if (TARGET_LIVE_G0)
|
||
return 0;
|
||
|
||
if (! reg_mentioned_p (stack_pointer_rtx, pat)
|
||
&& ! reg_mentioned_p (frame_pointer_rtx, pat))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Adjust the cost of a scheduling dependency. Return the new cost of
|
||
a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
|
||
|
||
static int
|
||
supersparc_adjust_cost (insn, link, dep_insn, cost)
|
||
rtx insn;
|
||
rtx link;
|
||
rtx dep_insn;
|
||
int cost;
|
||
{
|
||
enum attr_type insn_type;
|
||
|
||
if (! recog_memoized (insn))
|
||
return 0;
|
||
|
||
insn_type = get_attr_type (insn);
|
||
|
||
if (REG_NOTE_KIND (link) == 0)
|
||
{
|
||
/* Data dependency; DEP_INSN writes a register that INSN reads some
|
||
cycles later. */
|
||
|
||
/* if a load, then the dependence must be on the memory address;
|
||
add an extra "cycle". Note that the cost could be two cycles
|
||
if the reg was written late in an instruction group; we ca not tell
|
||
here. */
|
||
if (insn_type == TYPE_LOAD || insn_type == TYPE_FPLOAD)
|
||
return cost + 3;
|
||
|
||
/* Get the delay only if the address of the store is the dependence. */
|
||
if (insn_type == TYPE_STORE || insn_type == TYPE_FPSTORE)
|
||
{
|
||
rtx pat = PATTERN(insn);
|
||
rtx dep_pat = PATTERN (dep_insn);
|
||
|
||
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
|
||
return cost; /* This should not happen! */
|
||
|
||
/* The dependency between the two instructions was on the data that
|
||
is being stored. Assume that this implies that the address of the
|
||
store is not dependent. */
|
||
if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat)))
|
||
return cost;
|
||
|
||
return cost + 3; /* An approximation. */
|
||
}
|
||
|
||
/* A shift instruction cannot receive its data from an instruction
|
||
in the same cycle; add a one cycle penalty. */
|
||
if (insn_type == TYPE_SHIFT)
|
||
return cost + 3; /* Split before cascade into shift. */
|
||
}
|
||
else
|
||
{
|
||
/* Anti- or output- dependency; DEP_INSN reads/writes a register that
|
||
INSN writes some cycles later. */
|
||
|
||
/* These are only significant for the fpu unit; writing a fp reg before
|
||
the fpu has finished with it stalls the processor. */
|
||
|
||
/* Reusing an integer register causes no problems. */
|
||
if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT)
|
||
return 0;
|
||
}
|
||
|
||
return cost;
|
||
}
|
||
|
||
static int
|
||
hypersparc_adjust_cost (insn, link, dep_insn, cost)
|
||
rtx insn;
|
||
rtx link;
|
||
rtx dep_insn;
|
||
int cost;
|
||
{
|
||
enum attr_type insn_type, dep_type;
|
||
rtx pat = PATTERN(insn);
|
||
rtx dep_pat = PATTERN (dep_insn);
|
||
|
||
if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0)
|
||
return cost;
|
||
|
||
insn_type = get_attr_type (insn);
|
||
dep_type = get_attr_type (dep_insn);
|
||
|
||
switch (REG_NOTE_KIND (link))
|
||
{
|
||
case 0:
|
||
/* Data dependency; DEP_INSN writes a register that INSN reads some
|
||
cycles later. */
|
||
|
||
switch (insn_type)
|
||
{
|
||
case TYPE_STORE:
|
||
case TYPE_FPSTORE:
|
||
/* Get the delay iff the address of the store is the dependence. */
|
||
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
|
||
return cost;
|
||
|
||
if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat)))
|
||
return cost;
|
||
return cost + 3;
|
||
|
||
case TYPE_LOAD:
|
||
case TYPE_SLOAD:
|
||
case TYPE_FPLOAD:
|
||
/* If a load, then the dependence must be on the memory address. If
|
||
the addresses aren't equal, then it might be a false dependency */
|
||
if (dep_type == TYPE_STORE || dep_type == TYPE_FPSTORE)
|
||
{
|
||
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET
|
||
|| GET_CODE (SET_DEST (dep_pat)) != MEM
|
||
|| GET_CODE (SET_SRC (pat)) != MEM
|
||
|| ! rtx_equal_p (XEXP (SET_DEST (dep_pat), 0),
|
||
XEXP (SET_SRC (pat), 0)))
|
||
return cost + 2;
|
||
|
||
return cost + 8;
|
||
}
|
||
break;
|
||
|
||
case TYPE_BRANCH:
|
||
/* Compare to branch latency is 0. There is no benefit from
|
||
separating compare and branch. */
|
||
if (dep_type == TYPE_COMPARE)
|
||
return 0;
|
||
/* Floating point compare to branch latency is less than
|
||
compare to conditional move. */
|
||
if (dep_type == TYPE_FPCMP)
|
||
return cost - 1;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case REG_DEP_ANTI:
|
||
/* Anti-dependencies only penalize the fpu unit. */
|
||
if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT)
|
||
return 0;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return cost;
|
||
}
|
||
|
||
static int
|
||
ultrasparc_adjust_cost (insn, link, dep_insn, cost)
|
||
rtx insn;
|
||
rtx link;
|
||
rtx dep_insn;
|
||
int cost;
|
||
{
|
||
enum attr_type insn_type, dep_type;
|
||
rtx pat = PATTERN(insn);
|
||
rtx dep_pat = PATTERN (dep_insn);
|
||
|
||
if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0)
|
||
return cost;
|
||
|
||
insn_type = get_attr_type (insn);
|
||
dep_type = get_attr_type (dep_insn);
|
||
|
||
/* Nothing issues in parallel with integer multiplies, so
|
||
mark as zero cost since the scheduler can not do anything
|
||
about it. */
|
||
if (insn_type == TYPE_IMUL)
|
||
return 0;
|
||
|
||
#define SLOW_FP(dep_type) \
|
||
(dep_type == TYPE_FPSQRT || dep_type == TYPE_FPDIVS || dep_type == TYPE_FPDIVD)
|
||
|
||
switch (REG_NOTE_KIND (link))
|
||
{
|
||
case 0:
|
||
/* Data dependency; DEP_INSN writes a register that INSN reads some
|
||
cycles later. */
|
||
|
||
if (dep_type == TYPE_CMOVE)
|
||
{
|
||
/* Instructions that read the result of conditional moves cannot
|
||
be in the same group or the following group. */
|
||
return cost + 1;
|
||
}
|
||
|
||
switch (insn_type)
|
||
{
|
||
/* UltraSPARC can dual issue a store and an instruction setting
|
||
the value stored, except for divide and square root. */
|
||
case TYPE_FPSTORE:
|
||
if (! SLOW_FP (dep_type))
|
||
return 0;
|
||
return cost;
|
||
|
||
case TYPE_STORE:
|
||
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
|
||
return cost;
|
||
|
||
if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat)))
|
||
/* The dependency between the two instructions is on the data
|
||
that is being stored. Assume that the address of the store
|
||
is not also dependent. */
|
||
return 0;
|
||
return cost;
|
||
|
||
case TYPE_LOAD:
|
||
case TYPE_SLOAD:
|
||
case TYPE_FPLOAD:
|
||
/* A load does not return data until at least 11 cycles after
|
||
a store to the same location. 3 cycles are accounted for
|
||
in the load latency; add the other 8 here. */
|
||
if (dep_type == TYPE_STORE || dep_type == TYPE_FPSTORE)
|
||
{
|
||
/* If the addresses are not equal this may be a false
|
||
dependency because pointer aliasing could not be
|
||
determined. Add only 2 cycles in that case. 2 is
|
||
an arbitrary compromise between 8, which would cause
|
||
the scheduler to generate worse code elsewhere to
|
||
compensate for a dependency which might not really
|
||
exist, and 0. */
|
||
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET
|
||
|| GET_CODE (SET_SRC (pat)) != MEM
|
||
|| GET_CODE (SET_DEST (dep_pat)) != MEM
|
||
|| ! rtx_equal_p (XEXP (SET_SRC (pat), 0),
|
||
XEXP (SET_DEST (dep_pat), 0)))
|
||
return cost + 2;
|
||
|
||
return cost + 8;
|
||
}
|
||
return cost;
|
||
|
||
case TYPE_BRANCH:
|
||
/* Compare to branch latency is 0. There is no benefit from
|
||
separating compare and branch. */
|
||
if (dep_type == TYPE_COMPARE)
|
||
return 0;
|
||
/* Floating point compare to branch latency is less than
|
||
compare to conditional move. */
|
||
if (dep_type == TYPE_FPCMP)
|
||
return cost - 1;
|
||
return cost;
|
||
|
||
case TYPE_FPCMOVE:
|
||
/* FMOVR class instructions can not issue in the same cycle
|
||
or the cycle after an instruction which writes any
|
||
integer register. Model this as cost 2 for dependent
|
||
instructions. */
|
||
if ((dep_type == TYPE_IALU || dep_type == TYPE_UNARY
|
||
|| dep_type == TYPE_BINARY)
|
||
&& cost < 2)
|
||
return 2;
|
||
/* Otherwise check as for integer conditional moves. */
|
||
|
||
case TYPE_CMOVE:
|
||
/* Conditional moves involving integer registers wait until
|
||
3 cycles after loads return data. The interlock applies
|
||
to all loads, not just dependent loads, but that is hard
|
||
to model. */
|
||
if (dep_type == TYPE_LOAD || dep_type == TYPE_SLOAD)
|
||
return cost + 3;
|
||
return cost;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case REG_DEP_ANTI:
|
||
/* Divide and square root lock destination registers for full latency. */
|
||
if (! SLOW_FP (dep_type))
|
||
return 0;
|
||
break;
|
||
|
||
case REG_DEP_OUTPUT:
|
||
/* IEU and FPU instruction that have the same destination
|
||
register cannot be grouped together. */
|
||
return cost + 1;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Other costs not accounted for:
|
||
- Single precision floating point loads lock the other half of
|
||
the even/odd register pair.
|
||
- Several hazards associated with ldd/std are ignored because these
|
||
instructions are rarely generated for V9.
|
||
- The floating point pipeline can not have both a single and double
|
||
precision operation active at the same time. Format conversions
|
||
and graphics instructions are given honorary double precision status.
|
||
- call and jmpl are always the first instruction in a group. */
|
||
|
||
return cost;
|
||
|
||
#undef SLOW_FP
|
||
}
|
||
|
||
int
|
||
sparc_adjust_cost(insn, link, dep, cost)
|
||
rtx insn;
|
||
rtx link;
|
||
rtx dep;
|
||
int cost;
|
||
{
|
||
switch (sparc_cpu)
|
||
{
|
||
case PROCESSOR_SUPERSPARC:
|
||
cost = supersparc_adjust_cost (insn, link, dep, cost);
|
||
break;
|
||
case PROCESSOR_HYPERSPARC:
|
||
case PROCESSOR_SPARCLITE86X:
|
||
cost = hypersparc_adjust_cost (insn, link, dep, cost);
|
||
break;
|
||
case PROCESSOR_ULTRASPARC:
|
||
cost = ultrasparc_adjust_cost (insn, link, dep, cost);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
return cost;
|
||
}
|
||
|
||
/* This describes the state of the UltraSPARC pipeline during
|
||
instruction scheduling. */
|
||
|
||
#define TMASK(__x) ((unsigned)1 << ((int)(__x)))
|
||
#define UMASK(__x) ((unsigned)1 << ((int)(__x)))
|
||
|
||
enum ultra_code { NONE=0, /* no insn at all */
|
||
IEU0, /* shifts and conditional moves */
|
||
IEU1, /* condition code setting insns, calls+jumps */
|
||
IEUN, /* all other single cycle ieu insns */
|
||
LSU, /* loads and stores */
|
||
CTI, /* branches */
|
||
FPM, /* FPU pipeline 1, multiplies and divides */
|
||
FPA, /* FPU pipeline 2, all other operations */
|
||
SINGLE, /* single issue instructions */
|
||
NUM_ULTRA_CODES };
|
||
|
||
static const char *ultra_code_names[NUM_ULTRA_CODES] = {
|
||
"NONE", "IEU0", "IEU1", "IEUN", "LSU", "CTI",
|
||
"FPM", "FPA", "SINGLE" };
|
||
|
||
struct ultrasparc_pipeline_state {
|
||
/* The insns in this group. */
|
||
rtx group[4];
|
||
|
||
/* The code for each insn. */
|
||
enum ultra_code codes[4];
|
||
|
||
/* Which insns in this group have been committed by the
|
||
scheduler. This is how we determine how many more
|
||
can issue this cycle. */
|
||
char commit[4];
|
||
|
||
/* How many insns in this group. */
|
||
char group_size;
|
||
|
||
/* Mask of free slots still in this group. */
|
||
char free_slot_mask;
|
||
|
||
/* The slotter uses the following to determine what other
|
||
insn types can still make their way into this group. */
|
||
char contents [NUM_ULTRA_CODES];
|
||
char num_ieu_insns;
|
||
};
|
||
|
||
#define ULTRA_NUM_HIST 8
|
||
static struct ultrasparc_pipeline_state ultra_pipe_hist[ULTRA_NUM_HIST];
|
||
static int ultra_cur_hist;
|
||
static int ultra_cycles_elapsed;
|
||
|
||
#define ultra_pipe (ultra_pipe_hist[ultra_cur_hist])
|
||
|
||
/* Given TYPE_MASK compute the ultra_code it has. */
|
||
static enum ultra_code
|
||
ultra_code_from_mask (type_mask)
|
||
int type_mask;
|
||
{
|
||
if (type_mask & (TMASK (TYPE_SHIFT) | TMASK (TYPE_CMOVE)))
|
||
return IEU0;
|
||
else if (type_mask & (TMASK (TYPE_COMPARE) |
|
||
TMASK (TYPE_CALL) |
|
||
TMASK (TYPE_UNCOND_BRANCH)))
|
||
return IEU1;
|
||
else if (type_mask & (TMASK (TYPE_IALU) | TMASK (TYPE_BINARY) |
|
||
TMASK (TYPE_MOVE) | TMASK (TYPE_UNARY)))
|
||
return IEUN;
|
||
else if (type_mask & (TMASK (TYPE_LOAD) | TMASK (TYPE_SLOAD) |
|
||
TMASK (TYPE_STORE) | TMASK (TYPE_FPLOAD) |
|
||
TMASK (TYPE_FPSTORE)))
|
||
return LSU;
|
||
else if (type_mask & (TMASK (TYPE_FPMUL) | TMASK (TYPE_FPDIVS) |
|
||
TMASK (TYPE_FPDIVD) | TMASK (TYPE_FPSQRT)))
|
||
return FPM;
|
||
else if (type_mask & (TMASK (TYPE_FPMOVE) | TMASK (TYPE_FPCMOVE) |
|
||
TMASK (TYPE_FP) | TMASK (TYPE_FPCMP)))
|
||
return FPA;
|
||
else if (type_mask & TMASK (TYPE_BRANCH))
|
||
return CTI;
|
||
|
||
return SINGLE;
|
||
}
|
||
|
||
/* Check INSN (a conditional move) and make sure that it's
|
||
results are available at this cycle. Return 1 if the
|
||
results are in fact ready. */
|
||
static int
|
||
ultra_cmove_results_ready_p (insn)
|
||
rtx insn;
|
||
{
|
||
struct ultrasparc_pipeline_state *up;
|
||
int entry, slot;
|
||
|
||
/* If this got dispatched in the previous
|
||
group, the results are not ready. */
|
||
entry = (ultra_cur_hist - 1) % (ULTRA_NUM_HIST - 1);
|
||
up = &ultra_pipe_hist[entry];
|
||
slot = 4;
|
||
while (--slot >= 0)
|
||
if (up->group[slot] == insn)
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Walk backwards in pipeline history looking for FPU
|
||
operations which use a mode different than FPMODE and
|
||
will create a stall if an insn using FPMODE were to be
|
||
dispatched this cycle. */
|
||
static int
|
||
ultra_fpmode_conflict_exists (fpmode)
|
||
enum machine_mode fpmode;
|
||
{
|
||
int hist_ent;
|
||
int hist_lim;
|
||
|
||
hist_ent = (ultra_cur_hist - 1) % (ULTRA_NUM_HIST - 1);
|
||
if (ultra_cycles_elapsed < 4)
|
||
hist_lim = ultra_cycles_elapsed;
|
||
else
|
||
hist_lim = 4;
|
||
while (hist_lim > 0)
|
||
{
|
||
struct ultrasparc_pipeline_state *up = &ultra_pipe_hist[hist_ent];
|
||
int slot = 4;
|
||
|
||
while (--slot >= 0)
|
||
{
|
||
rtx insn = up->group[slot];
|
||
enum machine_mode this_mode;
|
||
rtx pat;
|
||
|
||
if (! insn
|
||
|| GET_CODE (insn) != INSN
|
||
|| (pat = PATTERN (insn)) == 0
|
||
|| GET_CODE (pat) != SET)
|
||
continue;
|
||
|
||
this_mode = GET_MODE (SET_DEST (pat));
|
||
if ((this_mode != SFmode
|
||
&& this_mode != DFmode)
|
||
|| this_mode == fpmode)
|
||
continue;
|
||
|
||
/* If it is not FMOV, FABS, FNEG, FDIV, or FSQRT then
|
||
we will get a stall. Loads and stores are independant
|
||
of these rules. */
|
||
if (GET_CODE (SET_SRC (pat)) != ABS
|
||
&& GET_CODE (SET_SRC (pat)) != NEG
|
||
&& ((TMASK (get_attr_type (insn)) &
|
||
(TMASK (TYPE_FPDIVS) | TMASK (TYPE_FPDIVD) |
|
||
TMASK (TYPE_FPMOVE) | TMASK (TYPE_FPSQRT) |
|
||
TMASK (TYPE_LOAD) | TMASK (TYPE_STORE))) == 0))
|
||
return 1;
|
||
}
|
||
hist_lim--;
|
||
hist_ent = (hist_ent - 1) % (ULTRA_NUM_HIST - 1);
|
||
}
|
||
|
||
/* No conflicts, safe to dispatch. */
|
||
return 0;
|
||
}
|
||
|
||
/* Find an instruction in LIST which has one of the
|
||
type attributes enumerated in TYPE_MASK. START
|
||
says where to begin the search.
|
||
|
||
NOTE: This scheme depends upon the fact that we
|
||
have less than 32 distinct type attributes. */
|
||
|
||
static int ultra_types_avail;
|
||
|
||
static rtx *
|
||
ultra_find_type (type_mask, list, start)
|
||
int type_mask;
|
||
rtx *list;
|
||
int start;
|
||
{
|
||
int i;
|
||
|
||
/* Short circuit if no such insn exists in the ready
|
||
at the moment. */
|
||
if ((type_mask & ultra_types_avail) == 0)
|
||
return 0;
|
||
|
||
for (i = start; i >= 0; i--)
|
||
{
|
||
rtx insn = list[i];
|
||
|
||
if (recog_memoized (insn) >= 0
|
||
&& (TMASK(get_attr_type (insn)) & type_mask))
|
||
{
|
||
enum machine_mode fpmode = SFmode;
|
||
rtx pat = 0;
|
||
int slot;
|
||
int check_depend = 0;
|
||
int check_fpmode_conflict = 0;
|
||
|
||
if (GET_CODE (insn) == INSN
|
||
&& (pat = PATTERN(insn)) != 0
|
||
&& GET_CODE (pat) == SET
|
||
&& !(type_mask & (TMASK (TYPE_STORE) |
|
||
TMASK (TYPE_FPSTORE))))
|
||
{
|
||
check_depend = 1;
|
||
if (GET_MODE (SET_DEST (pat)) == SFmode
|
||
|| GET_MODE (SET_DEST (pat)) == DFmode)
|
||
{
|
||
fpmode = GET_MODE (SET_DEST (pat));
|
||
check_fpmode_conflict = 1;
|
||
}
|
||
}
|
||
|
||
slot = 4;
|
||
while(--slot >= 0)
|
||
{
|
||
rtx slot_insn = ultra_pipe.group[slot];
|
||
rtx slot_pat;
|
||
|
||
/* Already issued, bad dependency, or FPU
|
||
mode conflict. */
|
||
if (slot_insn != 0
|
||
&& (slot_pat = PATTERN (slot_insn)) != 0
|
||
&& ((insn == slot_insn)
|
||
|| (check_depend == 1
|
||
&& GET_CODE (slot_insn) == INSN
|
||
&& GET_CODE (slot_pat) == SET
|
||
&& ((GET_CODE (SET_DEST (slot_pat)) == REG
|
||
&& GET_CODE (SET_SRC (pat)) == REG
|
||
&& REGNO (SET_DEST (slot_pat)) ==
|
||
REGNO (SET_SRC (pat)))
|
||
|| (GET_CODE (SET_DEST (slot_pat)) == SUBREG
|
||
&& GET_CODE (SET_SRC (pat)) == SUBREG
|
||
&& REGNO (SUBREG_REG (SET_DEST (slot_pat))) ==
|
||
REGNO (SUBREG_REG (SET_SRC (pat)))
|
||
&& SUBREG_WORD (SET_DEST (slot_pat)) ==
|
||
SUBREG_WORD (SET_SRC (pat)))))
|
||
|| (check_fpmode_conflict == 1
|
||
&& GET_CODE (slot_insn) == INSN
|
||
&& GET_CODE (slot_pat) == SET
|
||
&& (GET_MODE (SET_DEST (slot_pat)) == SFmode
|
||
|| GET_MODE (SET_DEST (slot_pat)) == DFmode)
|
||
&& GET_MODE (SET_DEST (slot_pat)) != fpmode)))
|
||
goto next;
|
||
}
|
||
|
||
/* Check for peculiar result availability and dispatch
|
||
interference situations. */
|
||
if (pat != 0
|
||
&& ultra_cycles_elapsed > 0)
|
||
{
|
||
rtx link;
|
||
|
||
for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
|
||
{
|
||
rtx link_insn = XEXP (link, 0);
|
||
if (GET_CODE (link_insn) == INSN
|
||
&& recog_memoized (link_insn) >= 0
|
||
&& (TMASK (get_attr_type (link_insn)) &
|
||
(TMASK (TYPE_CMOVE) | TMASK (TYPE_FPCMOVE)))
|
||
&& ! ultra_cmove_results_ready_p (link_insn))
|
||
goto next;
|
||
}
|
||
|
||
if (check_fpmode_conflict
|
||
&& ultra_fpmode_conflict_exists (fpmode))
|
||
goto next;
|
||
}
|
||
|
||
return &list[i];
|
||
}
|
||
next:
|
||
;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
ultra_build_types_avail (ready, n_ready)
|
||
rtx *ready;
|
||
int n_ready;
|
||
{
|
||
int i = n_ready - 1;
|
||
|
||
ultra_types_avail = 0;
|
||
while(i >= 0)
|
||
{
|
||
rtx insn = ready[i];
|
||
|
||
if (recog_memoized (insn) >= 0)
|
||
ultra_types_avail |= TMASK (get_attr_type (insn));
|
||
|
||
i -= 1;
|
||
}
|
||
}
|
||
|
||
/* Place insn pointed to my IP into the pipeline.
|
||
Make element THIS of READY be that insn if it
|
||
is not already. TYPE indicates the pipeline class
|
||
this insn falls into. */
|
||
static void
|
||
ultra_schedule_insn (ip, ready, this, type)
|
||
rtx *ip;
|
||
rtx *ready;
|
||
int this;
|
||
enum ultra_code type;
|
||
{
|
||
int pipe_slot;
|
||
char mask = ultra_pipe.free_slot_mask;
|
||
|
||
/* Obtain free slot. */
|
||
for (pipe_slot = 0; pipe_slot < 4; pipe_slot++)
|
||
if ((mask & (1 << pipe_slot)) != 0)
|
||
break;
|
||
if (pipe_slot == 4)
|
||
abort ();
|
||
|
||
/* In it goes, and it hasn't been committed yet. */
|
||
ultra_pipe.group[pipe_slot] = *ip;
|
||
ultra_pipe.codes[pipe_slot] = type;
|
||
ultra_pipe.contents[type] = 1;
|
||
if (UMASK (type) &
|
||
(UMASK (IEUN) | UMASK (IEU0) | UMASK (IEU1)))
|
||
ultra_pipe.num_ieu_insns += 1;
|
||
|
||
ultra_pipe.free_slot_mask = (mask & ~(1 << pipe_slot));
|
||
ultra_pipe.group_size += 1;
|
||
ultra_pipe.commit[pipe_slot] = 0;
|
||
|
||
/* Update ready list. */
|
||
if (ip != &ready[this])
|
||
{
|
||
rtx temp = *ip;
|
||
|
||
*ip = ready[this];
|
||
ready[this] = temp;
|
||
}
|
||
}
|
||
|
||
/* Advance to the next pipeline group. */
|
||
static void
|
||
ultra_flush_pipeline ()
|
||
{
|
||
ultra_cur_hist = (ultra_cur_hist + 1) % (ULTRA_NUM_HIST - 1);
|
||
ultra_cycles_elapsed += 1;
|
||
bzero ((char *) &ultra_pipe, sizeof ultra_pipe);
|
||
ultra_pipe.free_slot_mask = 0xf;
|
||
}
|
||
|
||
static int ultra_reorder_called_this_block;
|
||
|
||
/* Init our data structures for this current block. */
|
||
void
|
||
ultrasparc_sched_init (dump, sched_verbose)
|
||
FILE *dump ATTRIBUTE_UNUSED;
|
||
int sched_verbose ATTRIBUTE_UNUSED;
|
||
{
|
||
bzero ((char *) ultra_pipe_hist, sizeof ultra_pipe_hist);
|
||
ultra_cur_hist = 0;
|
||
ultra_cycles_elapsed = 0;
|
||
ultra_reorder_called_this_block = 0;
|
||
ultra_pipe.free_slot_mask = 0xf;
|
||
}
|
||
|
||
/* INSN has been scheduled, update pipeline commit state
|
||
and return how many instructions are still to be
|
||
scheduled in this group. */
|
||
int
|
||
ultrasparc_variable_issue (insn)
|
||
rtx insn;
|
||
{
|
||
struct ultrasparc_pipeline_state *up = &ultra_pipe;
|
||
int i, left_to_fire;
|
||
|
||
left_to_fire = 0;
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
if (up->group[i] == 0)
|
||
continue;
|
||
|
||
if (up->group[i] == insn)
|
||
{
|
||
up->commit[i] = 1;
|
||
}
|
||
else if (! up->commit[i])
|
||
left_to_fire++;
|
||
}
|
||
|
||
return left_to_fire;
|
||
}
|
||
|
||
/* In actual_hazard_this_instance, we may have yanked some
|
||
instructions from the ready list due to conflict cost
|
||
adjustments. If so, and such an insn was in our pipeline
|
||
group, remove it and update state. */
|
||
static void
|
||
ultra_rescan_pipeline_state (ready, n_ready)
|
||
rtx *ready;
|
||
int n_ready;
|
||
{
|
||
struct ultrasparc_pipeline_state *up = &ultra_pipe;
|
||
int i;
|
||
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
rtx insn = up->group[i];
|
||
int j;
|
||
|
||
if (! insn)
|
||
continue;
|
||
|
||
/* If it has been committed, then it was removed from
|
||
the ready list because it was actually scheduled,
|
||
and that is not the case we are searching for here. */
|
||
if (up->commit[i] != 0)
|
||
continue;
|
||
|
||
for (j = n_ready - 1; j >= 0; j--)
|
||
if (ready[j] == insn)
|
||
break;
|
||
|
||
/* If we didn't find it, toss it. */
|
||
if (j < 0)
|
||
{
|
||
enum ultra_code ucode = up->codes[i];
|
||
|
||
up->group[i] = 0;
|
||
up->codes[i] = NONE;
|
||
up->contents[ucode] = 0;
|
||
if (UMASK (ucode) &
|
||
(UMASK (IEUN) | UMASK (IEU0) | UMASK (IEU1)))
|
||
up->num_ieu_insns -= 1;
|
||
|
||
up->free_slot_mask |= (1 << i);
|
||
up->group_size -= 1;
|
||
up->commit[i] = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
ultrasparc_sched_reorder (dump, sched_verbose, ready, n_ready)
|
||
FILE *dump;
|
||
int sched_verbose;
|
||
rtx *ready;
|
||
int n_ready;
|
||
{
|
||
struct ultrasparc_pipeline_state *up = &ultra_pipe;
|
||
int i, this_insn;
|
||
|
||
/* We get called once unnecessarily per block of insns
|
||
scheduled. */
|
||
if (ultra_reorder_called_this_block == 0)
|
||
{
|
||
ultra_reorder_called_this_block = 1;
|
||
return;
|
||
}
|
||
|
||
if (sched_verbose)
|
||
{
|
||
int n;
|
||
|
||
fprintf (dump, "\n;;\tUltraSPARC Looking at [");
|
||
for (n = n_ready - 1; n >= 0; n--)
|
||
{
|
||
rtx insn = ready[n];
|
||
enum ultra_code ucode;
|
||
|
||
if (recog_memoized (insn) < 0)
|
||
continue;
|
||
ucode = ultra_code_from_mask (TMASK (get_attr_type (insn)));
|
||
if (n != 0)
|
||
fprintf (dump, "%s(%d) ",
|
||
ultra_code_names[ucode],
|
||
INSN_UID (insn));
|
||
else
|
||
fprintf (dump, "%s(%d)",
|
||
ultra_code_names[ucode],
|
||
INSN_UID (insn));
|
||
}
|
||
fprintf (dump, "]\n");
|
||
}
|
||
|
||
this_insn = n_ready - 1;
|
||
|
||
/* Skip over junk we don't understand. */
|
||
while ((this_insn >= 0)
|
||
&& recog_memoized (ready[this_insn]) < 0)
|
||
this_insn--;
|
||
|
||
ultra_build_types_avail (ready, this_insn + 1);
|
||
|
||
while (this_insn >= 0) {
|
||
int old_group_size = up->group_size;
|
||
|
||
if (up->group_size != 0)
|
||
{
|
||
int num_committed;
|
||
|
||
num_committed = (up->commit[0] + up->commit[1] +
|
||
up->commit[2] + up->commit[3]);
|
||
/* If nothing has been commited from our group, or all of
|
||
them have. Clear out the (current cycle's) pipeline
|
||
state and start afresh. */
|
||
if (num_committed == 0
|
||
|| num_committed == up->group_size)
|
||
{
|
||
ultra_flush_pipeline ();
|
||
up = &ultra_pipe;
|
||
old_group_size = 0;
|
||
}
|
||
else
|
||
{
|
||
/* OK, some ready list insns got requeued and thus removed
|
||
from the ready list. Account for this fact. */
|
||
ultra_rescan_pipeline_state (ready, n_ready);
|
||
|
||
/* Something "changed", make this look like a newly
|
||
formed group so the code at the end of the loop
|
||
knows that progress was in fact made. */
|
||
if (up->group_size != old_group_size)
|
||
old_group_size = 0;
|
||
}
|
||
}
|
||
|
||
if (up->group_size == 0)
|
||
{
|
||
/* If the pipeline is (still) empty and we have any single
|
||
group insns, get them out now as this is a good time. */
|
||
rtx *ip = ultra_find_type ((TMASK (TYPE_RETURN) | TMASK (TYPE_ADDRESS) |
|
||
TMASK (TYPE_IMUL) | TMASK (TYPE_CMOVE) |
|
||
TMASK (TYPE_MULTI) | TMASK (TYPE_MISC)),
|
||
ready, this_insn);
|
||
if (ip)
|
||
{
|
||
ultra_schedule_insn (ip, ready, this_insn, SINGLE);
|
||
break;
|
||
}
|
||
|
||
/* If we are not in the process of emptying out the pipe, try to
|
||
obtain an instruction which must be the first in it's group. */
|
||
ip = ultra_find_type ((TMASK (TYPE_CALL) |
|
||
TMASK (TYPE_CALL_NO_DELAY_SLOT) |
|
||
TMASK (TYPE_UNCOND_BRANCH)),
|
||
ready, this_insn);
|
||
if (ip)
|
||
{
|
||
ultra_schedule_insn (ip, ready, this_insn, IEU1);
|
||
this_insn--;
|
||
}
|
||
else if ((ip = ultra_find_type ((TMASK (TYPE_FPDIVS) |
|
||
TMASK (TYPE_FPDIVD) |
|
||
TMASK (TYPE_FPSQRT)),
|
||
ready, this_insn)) != 0)
|
||
{
|
||
ultra_schedule_insn (ip, ready, this_insn, FPM);
|
||
this_insn--;
|
||
}
|
||
}
|
||
|
||
/* Try to fill the integer pipeline. First, look for an IEU0 specific
|
||
operation. We can't do more IEU operations if the first 3 slots are
|
||
all full or we have dispatched two IEU insns already. */
|
||
if ((up->free_slot_mask & 0x7) != 0
|
||
&& up->num_ieu_insns < 2
|
||
&& up->contents[IEU0] == 0
|
||
&& up->contents[IEUN] == 0)
|
||
{
|
||
rtx *ip = ultra_find_type (TMASK(TYPE_SHIFT), ready, this_insn);
|
||
if (ip)
|
||
{
|
||
ultra_schedule_insn (ip, ready, this_insn, IEU0);
|
||
this_insn--;
|
||
}
|
||
}
|
||
|
||
/* If we can, try to find an IEU1 specific or an unnamed
|
||
IEU instruction. */
|
||
if ((up->free_slot_mask & 0x7) != 0
|
||
&& up->num_ieu_insns < 2)
|
||
{
|
||
rtx *ip = ultra_find_type ((TMASK (TYPE_IALU) | TMASK (TYPE_BINARY) |
|
||
TMASK (TYPE_MOVE) | TMASK (TYPE_UNARY) |
|
||
(up->contents[IEU1] == 0 ? TMASK (TYPE_COMPARE) : 0)),
|
||
ready, this_insn);
|
||
if (ip)
|
||
{
|
||
rtx insn = *ip;
|
||
|
||
ultra_schedule_insn (ip, ready, this_insn,
|
||
(!up->contents[IEU1]
|
||
&& get_attr_type (insn) == TYPE_COMPARE)
|
||
? IEU1 : IEUN);
|
||
this_insn--;
|
||
}
|
||
}
|
||
|
||
/* If only one IEU insn has been found, try to find another unnamed
|
||
IEU operation or an IEU1 specific one. */
|
||
if ((up->free_slot_mask & 0x7) != 0
|
||
&& up->num_ieu_insns < 2)
|
||
{
|
||
rtx *ip;
|
||
int tmask = (TMASK (TYPE_IALU) | TMASK (TYPE_BINARY) |
|
||
TMASK (TYPE_MOVE) | TMASK (TYPE_UNARY));
|
||
|
||
if (!up->contents[IEU1])
|
||
tmask |= TMASK (TYPE_COMPARE);
|
||
ip = ultra_find_type (tmask, ready, this_insn);
|
||
if (ip)
|
||
{
|
||
rtx insn = *ip;
|
||
|
||
ultra_schedule_insn (ip, ready, this_insn,
|
||
(!up->contents[IEU1]
|
||
&& get_attr_type (insn) == TYPE_COMPARE)
|
||
? IEU1 : IEUN);
|
||
this_insn--;
|
||
}
|
||
}
|
||
|
||
/* Try for a load or store, but such an insn can only be issued
|
||
if it is within' one of the first 3 slots. */
|
||
if ((up->free_slot_mask & 0x7) != 0
|
||
&& up->contents[LSU] == 0)
|
||
{
|
||
rtx *ip = ultra_find_type ((TMASK (TYPE_LOAD) | TMASK (TYPE_SLOAD) |
|
||
TMASK (TYPE_STORE) | TMASK (TYPE_FPLOAD) |
|
||
TMASK (TYPE_FPSTORE)), ready, this_insn);
|
||
if (ip)
|
||
{
|
||
ultra_schedule_insn (ip, ready, this_insn, LSU);
|
||
this_insn--;
|
||
}
|
||
}
|
||
|
||
/* Now find FPU operations, first FPM class. But not divisions or
|
||
square-roots because those will break the group up. Unlike all
|
||
the previous types, these can go in any slot. */
|
||
if (up->free_slot_mask != 0
|
||
&& up->contents[FPM] == 0)
|
||
{
|
||
rtx *ip = ultra_find_type (TMASK (TYPE_FPMUL), ready, this_insn);
|
||
if (ip)
|
||
{
|
||
ultra_schedule_insn (ip, ready, this_insn, FPM);
|
||
this_insn--;
|
||
}
|
||
}
|
||
|
||
/* Continue on with FPA class if we have not filled the group already. */
|
||
if (up->free_slot_mask != 0
|
||
&& up->contents[FPA] == 0)
|
||
{
|
||
rtx *ip = ultra_find_type ((TMASK (TYPE_FPMOVE) | TMASK (TYPE_FPCMOVE) |
|
||
TMASK (TYPE_FP) | TMASK (TYPE_FPCMP)),
|
||
ready, this_insn);
|
||
if (ip)
|
||
{
|
||
ultra_schedule_insn (ip, ready, this_insn, FPA);
|
||
this_insn--;
|
||
}
|
||
}
|
||
|
||
/* Finally, maybe stick a branch in here. */
|
||
if (up->free_slot_mask != 0
|
||
&& up->contents[CTI] == 0)
|
||
{
|
||
rtx *ip = ultra_find_type (TMASK (TYPE_BRANCH), ready, this_insn);
|
||
|
||
/* Try to slip in a branch only if it is one of the
|
||
next 2 in the ready list. */
|
||
if (ip && ((&ready[this_insn] - ip) < 2))
|
||
{
|
||
ultra_schedule_insn (ip, ready, this_insn, CTI);
|
||
this_insn--;
|
||
}
|
||
}
|
||
|
||
up->group_size = 0;
|
||
for (i = 0; i < 4; i++)
|
||
if ((up->free_slot_mask & (1 << i)) == 0)
|
||
up->group_size++;
|
||
|
||
/* See if we made any progress... */
|
||
if (old_group_size != up->group_size)
|
||
break;
|
||
|
||
/* Clean out the (current cycle's) pipeline state
|
||
and try once more. If we placed no instructions
|
||
into the pipeline at all, it means a real hard
|
||
conflict exists with some earlier issued instruction
|
||
so we must advance to the next cycle to clear it up. */
|
||
if (up->group_size == 0)
|
||
{
|
||
ultra_flush_pipeline ();
|
||
up = &ultra_pipe;
|
||
}
|
||
else
|
||
{
|
||
bzero ((char *) &ultra_pipe, sizeof ultra_pipe);
|
||
ultra_pipe.free_slot_mask = 0xf;
|
||
}
|
||
}
|
||
|
||
if (sched_verbose)
|
||
{
|
||
int n, gsize;
|
||
|
||
fprintf (dump, ";;\tUltraSPARC Launched [");
|
||
gsize = up->group_size;
|
||
for (n = 0; n < 4; n++)
|
||
{
|
||
rtx insn = up->group[n];
|
||
|
||
if (! insn)
|
||
continue;
|
||
|
||
gsize -= 1;
|
||
if (gsize != 0)
|
||
fprintf (dump, "%s(%d) ",
|
||
ultra_code_names[up->codes[n]],
|
||
INSN_UID (insn));
|
||
else
|
||
fprintf (dump, "%s(%d)",
|
||
ultra_code_names[up->codes[n]],
|
||
INSN_UID (insn));
|
||
}
|
||
fprintf (dump, "]\n");
|
||
}
|
||
}
|
||
|
||
int
|
||
sparc_issue_rate ()
|
||
{
|
||
switch (sparc_cpu)
|
||
{
|
||
default:
|
||
return 1;
|
||
case PROCESSOR_V9:
|
||
/* Assume V9 processors are capable of at least dual-issue. */
|
||
return 2;
|
||
case PROCESSOR_SUPERSPARC:
|
||
return 3;
|
||
case PROCESSOR_HYPERSPARC:
|
||
case PROCESSOR_SPARCLITE86X:
|
||
return 2;
|
||
case PROCESSOR_ULTRASPARC:
|
||
return 4;
|
||
}
|
||
}
|
||
|
||
static int
|
||
set_extends(x, insn)
|
||
rtx x, insn;
|
||
{
|
||
register rtx pat = PATTERN (insn);
|
||
|
||
switch (GET_CODE (SET_SRC (pat)))
|
||
{
|
||
/* Load and some shift instructions zero extend. */
|
||
case MEM:
|
||
case ZERO_EXTEND:
|
||
/* sethi clears the high bits */
|
||
case HIGH:
|
||
/* LO_SUM is used with sethi. sethi cleared the high
|
||
bits and the values used with lo_sum are positive */
|
||
case LO_SUM:
|
||
/* Store flag stores 0 or 1 */
|
||
case LT: case LTU:
|
||
case GT: case GTU:
|
||
case LE: case LEU:
|
||
case GE: case GEU:
|
||
case EQ:
|
||
case NE:
|
||
return 1;
|
||
case AND:
|
||
{
|
||
rtx op1 = XEXP (SET_SRC (pat), 1);
|
||
if (GET_CODE (op1) == CONST_INT)
|
||
return INTVAL (op1) >= 0;
|
||
if (GET_CODE (XEXP (SET_SRC (pat), 0)) == REG
|
||
&& sparc_check_64 (XEXP (SET_SRC (pat), 0), insn) == 1)
|
||
return 1;
|
||
if (GET_CODE (op1) == REG
|
||
&& sparc_check_64 ((op1), insn) == 1)
|
||
return 1;
|
||
}
|
||
case ASHIFT:
|
||
case LSHIFTRT:
|
||
return GET_MODE (SET_SRC (pat)) == SImode;
|
||
/* Positive integers leave the high bits zero. */
|
||
case CONST_DOUBLE:
|
||
return ! (CONST_DOUBLE_LOW (x) & 0x80000000);
|
||
case CONST_INT:
|
||
return ! (INTVAL (x) & 0x80000000);
|
||
case ASHIFTRT:
|
||
case SIGN_EXTEND:
|
||
return - (GET_MODE (SET_SRC (pat)) == SImode);
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* We _ought_ to have only one kind per function, but... */
|
||
static rtx sparc_addr_diff_list;
|
||
static rtx sparc_addr_list;
|
||
|
||
void
|
||
sparc_defer_case_vector (lab, vec, diff)
|
||
rtx lab, vec;
|
||
int diff;
|
||
{
|
||
vec = gen_rtx_EXPR_LIST (VOIDmode, lab, vec);
|
||
if (diff)
|
||
sparc_addr_diff_list
|
||
= gen_rtx_EXPR_LIST (VOIDmode, vec, sparc_addr_diff_list);
|
||
else
|
||
sparc_addr_list = gen_rtx_EXPR_LIST (VOIDmode, vec, sparc_addr_list);
|
||
}
|
||
|
||
static void
|
||
sparc_output_addr_vec (vec)
|
||
rtx vec;
|
||
{
|
||
rtx lab = XEXP (vec, 0), body = XEXP (vec, 1);
|
||
int idx, vlen = XVECLEN (body, 0);
|
||
|
||
#ifdef ASM_OUTPUT_ADDR_VEC_START
|
||
ASM_OUTPUT_ADDR_VEC_START (asm_out_file);
|
||
#endif
|
||
|
||
#ifdef ASM_OUTPUT_CASE_LABEL
|
||
ASM_OUTPUT_CASE_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab),
|
||
NEXT_INSN (lab));
|
||
#else
|
||
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab));
|
||
#endif
|
||
|
||
for (idx = 0; idx < vlen; idx++)
|
||
{
|
||
ASM_OUTPUT_ADDR_VEC_ELT
|
||
(asm_out_file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
|
||
}
|
||
|
||
#ifdef ASM_OUTPUT_ADDR_VEC_END
|
||
ASM_OUTPUT_ADDR_VEC_END (asm_out_file);
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
sparc_output_addr_diff_vec (vec)
|
||
rtx vec;
|
||
{
|
||
rtx lab = XEXP (vec, 0), body = XEXP (vec, 1);
|
||
rtx base = XEXP (XEXP (body, 0), 0);
|
||
int idx, vlen = XVECLEN (body, 1);
|
||
|
||
#ifdef ASM_OUTPUT_ADDR_VEC_START
|
||
ASM_OUTPUT_ADDR_VEC_START (asm_out_file);
|
||
#endif
|
||
|
||
#ifdef ASM_OUTPUT_CASE_LABEL
|
||
ASM_OUTPUT_CASE_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab),
|
||
NEXT_INSN (lab));
|
||
#else
|
||
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab));
|
||
#endif
|
||
|
||
for (idx = 0; idx < vlen; idx++)
|
||
{
|
||
ASM_OUTPUT_ADDR_DIFF_ELT
|
||
(asm_out_file,
|
||
body,
|
||
CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
|
||
CODE_LABEL_NUMBER (base));
|
||
}
|
||
|
||
#ifdef ASM_OUTPUT_ADDR_VEC_END
|
||
ASM_OUTPUT_ADDR_VEC_END (asm_out_file);
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
sparc_output_deferred_case_vectors ()
|
||
{
|
||
rtx t;
|
||
int align;
|
||
|
||
if (sparc_addr_list == NULL_RTX
|
||
&& sparc_addr_diff_list == NULL_RTX)
|
||
return;
|
||
|
||
/* Align to cache line in the function's code section. */
|
||
function_section (current_function_decl);
|
||
|
||
align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT);
|
||
if (align > 0)
|
||
ASM_OUTPUT_ALIGN (asm_out_file, align);
|
||
|
||
for (t = sparc_addr_list; t ; t = XEXP (t, 1))
|
||
sparc_output_addr_vec (XEXP (t, 0));
|
||
for (t = sparc_addr_diff_list; t ; t = XEXP (t, 1))
|
||
sparc_output_addr_diff_vec (XEXP (t, 0));
|
||
|
||
sparc_addr_list = sparc_addr_diff_list = NULL_RTX;
|
||
}
|
||
|
||
/* Return 0 if the high 32 bits of X (the low word of X, if DImode) are
|
||
unknown. Return 1 if the high bits are zero, -1 if the register is
|
||
sign extended. */
|
||
int
|
||
sparc_check_64 (x, insn)
|
||
rtx x, insn;
|
||
{
|
||
/* If a register is set only once it is safe to ignore insns this
|
||
code does not know how to handle. The loop will either recognize
|
||
the single set and return the correct value or fail to recognize
|
||
it and return 0. */
|
||
int set_once = 0;
|
||
|
||
if (GET_CODE (x) == REG
|
||
&& flag_expensive_optimizations
|
||
&& REG_N_SETS (REGNO (x)) == 1)
|
||
set_once = 1;
|
||
|
||
if (insn == 0)
|
||
{
|
||
if (set_once)
|
||
insn = get_last_insn_anywhere ();
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
while ((insn = PREV_INSN (insn)))
|
||
{
|
||
switch (GET_CODE (insn))
|
||
{
|
||
case JUMP_INSN:
|
||
case NOTE:
|
||
break;
|
||
case CODE_LABEL:
|
||
case CALL_INSN:
|
||
default:
|
||
if (! set_once)
|
||
return 0;
|
||
break;
|
||
case INSN:
|
||
{
|
||
rtx pat = PATTERN (insn);
|
||
if (GET_CODE (pat) != SET)
|
||
return 0;
|
||
if (rtx_equal_p (x, SET_DEST (pat)))
|
||
return set_extends (x, insn);
|
||
if (reg_overlap_mentioned_p (SET_DEST (pat), x))
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
char *
|
||
sparc_v8plus_shift (operands, insn, opcode)
|
||
rtx *operands;
|
||
rtx insn;
|
||
char *opcode;
|
||
{
|
||
static char asm_code[60];
|
||
|
||
if (GET_CODE (operands[3]) == SCRATCH)
|
||
operands[3] = operands[0];
|
||
if (GET_CODE (operands[1]) == CONST_INT)
|
||
{
|
||
output_asm_insn ("mov %1,%3", operands);
|
||
}
|
||
else
|
||
{
|
||
output_asm_insn ("sllx %H1,32,%3", operands);
|
||
if (sparc_check_64 (operands[1], insn) <= 0)
|
||
output_asm_insn ("srl %L1,0,%L1", operands);
|
||
output_asm_insn ("or %L1,%3,%3", operands);
|
||
}
|
||
|
||
strcpy(asm_code, opcode);
|
||
if (which_alternative != 2)
|
||
return strcat (asm_code, " %0,%2,%L0\n\tsrlx %L0,32,%H0");
|
||
else
|
||
return strcat (asm_code, " %3,%2,%3\n\tsrlx %3,32,%H0\n\tmov %3,%L0");
|
||
}
|
||
|
||
|
||
/* Return 1 if DEST and SRC reference only global and in registers. */
|
||
|
||
int
|
||
sparc_return_peephole_ok (dest, src)
|
||
rtx dest, src;
|
||
{
|
||
if (! TARGET_V9)
|
||
return 0;
|
||
if (current_function_uses_only_leaf_regs)
|
||
return 0;
|
||
if (GET_CODE (src) != CONST_INT
|
||
&& (GET_CODE (src) != REG || ! IN_OR_GLOBAL_P (src)))
|
||
return 0;
|
||
return IN_OR_GLOBAL_P (dest);
|
||
}
|
||
|
||
/* Output assembler code to FILE to increment profiler label # LABELNO
|
||
for profiling a function entry.
|
||
|
||
32 bit sparc uses %g2 as the STATIC_CHAIN_REGNUM which gets clobbered
|
||
during profiling so we need to save/restore it around the call to mcount.
|
||
We're guaranteed that a save has just been done, and we use the space
|
||
allocated for intreg/fpreg value passing. */
|
||
|
||
void
|
||
sparc_function_profiler (file, labelno)
|
||
FILE *file;
|
||
int labelno;
|
||
{
|
||
char buf[32];
|
||
ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
|
||
|
||
if (! TARGET_ARCH64)
|
||
fputs ("\tst\t%g2,[%fp-4]\n", file);
|
||
|
||
fputs ("\tsethi\t%hi(", file);
|
||
assemble_name (file, buf);
|
||
fputs ("),%o0\n", file);
|
||
|
||
fputs ("\tcall\t", file);
|
||
assemble_name (file, MCOUNT_FUNCTION);
|
||
putc ('\n', file);
|
||
|
||
fputs ("\t or\t%o0,%lo(", file);
|
||
assemble_name (file, buf);
|
||
fputs ("),%o0\n", file);
|
||
|
||
if (! TARGET_ARCH64)
|
||
fputs ("\tld\t[%fp-4],%g2\n", file);
|
||
}
|
||
|
||
|
||
/* The following macro shall output assembler code to FILE
|
||
to initialize basic-block profiling.
|
||
|
||
If profile_block_flag == 2
|
||
|
||
Output code to call the subroutine `__bb_init_trace_func'
|
||
and pass two parameters to it. The first parameter is
|
||
the address of a block allocated in the object module.
|
||
The second parameter is the number of the first basic block
|
||
of the function.
|
||
|
||
The name of the block is a local symbol made with this statement:
|
||
|
||
ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
|
||
|
||
Of course, since you are writing the definition of
|
||
`ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
|
||
can take a short cut in the definition of this macro and use the
|
||
name that you know will result.
|
||
|
||
The number of the first basic block of the function is
|
||
passed to the macro in BLOCK_OR_LABEL.
|
||
|
||
If described in a virtual assembler language the code to be
|
||
output looks like:
|
||
|
||
parameter1 <- LPBX0
|
||
parameter2 <- BLOCK_OR_LABEL
|
||
call __bb_init_trace_func
|
||
|
||
else if profile_block_flag != 0
|
||
|
||
Output code to call the subroutine `__bb_init_func'
|
||
and pass one single parameter to it, which is the same
|
||
as the first parameter to `__bb_init_trace_func'.
|
||
|
||
The first word of this parameter is a flag which will be nonzero if
|
||
the object module has already been initialized. So test this word
|
||
first, and do not call `__bb_init_func' if the flag is nonzero.
|
||
Note: When profile_block_flag == 2 the test need not be done
|
||
but `__bb_init_trace_func' *must* be called.
|
||
|
||
BLOCK_OR_LABEL may be used to generate a label number as a
|
||
branch destination in case `__bb_init_func' will not be called.
|
||
|
||
If described in a virtual assembler language the code to be
|
||
output looks like:
|
||
|
||
cmp (LPBX0),0
|
||
jne local_label
|
||
parameter1 <- LPBX0
|
||
call __bb_init_func
|
||
local_label:
|
||
|
||
*/
|
||
|
||
void
|
||
sparc_function_block_profiler(file, block_or_label)
|
||
FILE *file;
|
||
int block_or_label;
|
||
{
|
||
char LPBX[32];
|
||
ASM_GENERATE_INTERNAL_LABEL (LPBX, "LPBX", 0);
|
||
|
||
if (profile_block_flag == 2)
|
||
{
|
||
fputs ("\tsethi\t%hi(", file);
|
||
assemble_name (file, LPBX);
|
||
fputs ("),%o0\n", file);
|
||
|
||
fprintf (file, "\tsethi\t%%hi(%d),%%o1\n", block_or_label);
|
||
|
||
fputs ("\tor\t%o0,%lo(", file);
|
||
assemble_name (file, LPBX);
|
||
fputs ("),%o0\n", file);
|
||
|
||
fprintf (file, "\tcall\t%s__bb_init_trace_func\n", user_label_prefix);
|
||
|
||
fprintf (file, "\t or\t%%o1,%%lo(%d),%%o1\n", block_or_label);
|
||
}
|
||
else if (profile_block_flag != 0)
|
||
{
|
||
char LPBY[32];
|
||
ASM_GENERATE_INTERNAL_LABEL (LPBY, "LPBY", block_or_label);
|
||
|
||
fputs ("\tsethi\t%hi(", file);
|
||
assemble_name (file, LPBX);
|
||
fputs ("),%o0\n", file);
|
||
|
||
fputs ("\tld\t[%lo(", file);
|
||
assemble_name (file, LPBX);
|
||
fputs (")+%o0],%o1\n", file);
|
||
|
||
fputs ("\ttst\t%o1\n", file);
|
||
|
||
if (TARGET_V9)
|
||
{
|
||
fputs ("\tbne,pn\t%icc,", file);
|
||
assemble_name (file, LPBY);
|
||
putc ('\n', file);
|
||
}
|
||
else
|
||
{
|
||
fputs ("\tbne\t", file);
|
||
assemble_name (file, LPBY);
|
||
putc ('\n', file);
|
||
}
|
||
|
||
fputs ("\t or\t%o0,%lo(", file);
|
||
assemble_name (file, LPBX);
|
||
fputs ("),%o0\n", file);
|
||
|
||
fprintf (file, "\tcall\t%s__bb_init_func\n\t nop\n", user_label_prefix);
|
||
|
||
ASM_OUTPUT_INTERNAL_LABEL (file, "LPBY", block_or_label);
|
||
}
|
||
}
|
||
|
||
/* The following macro shall output assembler code to FILE
|
||
to increment a counter associated with basic block number BLOCKNO.
|
||
|
||
If profile_block_flag == 2
|
||
|
||
Output code to initialize the global structure `__bb' and
|
||
call the function `__bb_trace_func' which will increment the
|
||
counter.
|
||
|
||
`__bb' consists of two words. In the first word the number
|
||
of the basic block has to be stored. In the second word
|
||
the address of a block allocated in the object module
|
||
has to be stored.
|
||
|
||
The basic block number is given by BLOCKNO.
|
||
|
||
The address of the block is given by the label created with
|
||
|
||
ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
|
||
|
||
by FUNCTION_BLOCK_PROFILER.
|
||
|
||
Of course, since you are writing the definition of
|
||
`ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
|
||
can take a short cut in the definition of this macro and use the
|
||
name that you know will result.
|
||
|
||
If described in a virtual assembler language the code to be
|
||
output looks like:
|
||
|
||
move BLOCKNO -> (__bb)
|
||
move LPBX0 -> (__bb+4)
|
||
call __bb_trace_func
|
||
|
||
Note that function `__bb_trace_func' must not change the
|
||
machine state, especially the flag register. To grant
|
||
this, you must output code to save and restore registers
|
||
either in this macro or in the macros MACHINE_STATE_SAVE
|
||
and MACHINE_STATE_RESTORE. The last two macros will be
|
||
used in the function `__bb_trace_func', so you must make
|
||
sure that the function prologue does not change any
|
||
register prior to saving it with MACHINE_STATE_SAVE.
|
||
|
||
else if profile_block_flag != 0
|
||
|
||
Output code to increment the counter directly.
|
||
Basic blocks are numbered separately from zero within each
|
||
compiled object module. The count associated with block number
|
||
BLOCKNO is at index BLOCKNO in an array of words; the name of
|
||
this array is a local symbol made with this statement:
|
||
|
||
ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 2);
|
||
|
||
Of course, since you are writing the definition of
|
||
`ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
|
||
can take a short cut in the definition of this macro and use the
|
||
name that you know will result.
|
||
|
||
If described in a virtual assembler language, the code to be
|
||
output looks like:
|
||
|
||
inc (LPBX2+4*BLOCKNO)
|
||
|
||
*/
|
||
|
||
void
|
||
sparc_block_profiler(file, blockno)
|
||
FILE *file;
|
||
int blockno;
|
||
{
|
||
char LPBX[32];
|
||
|
||
if (profile_block_flag == 2)
|
||
{
|
||
ASM_GENERATE_INTERNAL_LABEL (LPBX, "LPBX", 0);
|
||
|
||
fprintf (file, "\tsethi\t%%hi(%s__bb),%%g1\n", user_label_prefix);
|
||
fprintf (file, "\tsethi\t%%hi(%d),%%g2\n", blockno);
|
||
fprintf (file, "\tor\t%%g1,%%lo(%s__bb),%%g1\n", user_label_prefix);
|
||
fprintf (file, "\tor\t%%g2,%%lo(%d),%%g2\n", blockno);
|
||
|
||
fputs ("\tst\t%g2,[%g1]\n", file);
|
||
|
||
fputs ("\tsethi\t%hi(", file);
|
||
assemble_name (file, LPBX);
|
||
fputs ("),%g2\n", file);
|
||
|
||
fputs ("\tor\t%g2,%lo(", file);
|
||
assemble_name (file, LPBX);
|
||
fputs ("),%g2\n", file);
|
||
|
||
fputs ("\tst\t%g2,[%g1+4]\n", file);
|
||
fputs ("\tmov\t%o7,%g2\n", file);
|
||
|
||
fprintf (file, "\tcall\t%s__bb_trace_func\n\t nop\n", user_label_prefix);
|
||
|
||
fputs ("\tmov\t%g2,%o7\n", file);
|
||
}
|
||
else if (profile_block_flag != 0)
|
||
{
|
||
ASM_GENERATE_INTERNAL_LABEL (LPBX, "LPBX", 2);
|
||
|
||
fputs ("\tsethi\t%hi(", file);
|
||
assemble_name (file, LPBX);
|
||
fprintf (file, "+%d),%%g1\n", blockno*4);
|
||
|
||
fputs ("\tld\t[%g1+%lo(", file);
|
||
assemble_name (file, LPBX);
|
||
fprintf (file, "+%d)],%%g2\n", blockno*4);
|
||
|
||
fputs ("\tadd\t%g2,1,%g2\n", file);
|
||
|
||
fputs ("\tst\t%g2,[%g1+%lo(", file);
|
||
assemble_name (file, LPBX);
|
||
fprintf (file, "+%d)]\n", blockno*4);
|
||
}
|
||
}
|
||
|
||
/* The following macro shall output assembler code to FILE
|
||
to indicate a return from function during basic-block profiling.
|
||
|
||
If profile_block_flag == 2:
|
||
|
||
Output assembler code to call function `__bb_trace_ret'.
|
||
|
||
Note that function `__bb_trace_ret' must not change the
|
||
machine state, especially the flag register. To grant
|
||
this, you must output code to save and restore registers
|
||
either in this macro or in the macros MACHINE_STATE_SAVE_RET
|
||
and MACHINE_STATE_RESTORE_RET. The last two macros will be
|
||
used in the function `__bb_trace_ret', so you must make
|
||
sure that the function prologue does not change any
|
||
register prior to saving it with MACHINE_STATE_SAVE_RET.
|
||
|
||
else if profile_block_flag != 0:
|
||
|
||
The macro will not be used, so it need not distinguish
|
||
these cases.
|
||
*/
|
||
|
||
void
|
||
sparc_function_block_profiler_exit(file)
|
||
FILE *file;
|
||
{
|
||
if (profile_block_flag == 2)
|
||
fprintf (file, "\tcall\t%s__bb_trace_ret\n\t nop\n", user_label_prefix);
|
||
else
|
||
abort ();
|
||
}
|