freebsd-dev/sys/ufs/ffs/ffs_softdep.c
Warner Losh 22dd705f1f Add BIO_SPEEDUP signalling to UFS
When we have a resource shortage in UFS, send down a BIO_SPEEDUP to
give the CAM I/O scheduler a heads up that we have a resource shortage
and that it should bias its decisions knowing that.

Reviewed by: kirk, kib
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D18351
2019-12-17 00:13:40 +00:00

14707 lines
418 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright 1998, 2000 Marshall Kirk McKusick.
* Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
* All rights reserved.
*
* The soft updates code is derived from the appendix of a University
* of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
* "Soft Updates: A Solution to the Metadata Update Problem in File
* Systems", CSE-TR-254-95, August 1995).
*
* Further information about soft updates can be obtained from:
*
* Marshall Kirk McKusick http://www.mckusick.com/softdep/
* 1614 Oxford Street mckusick@mckusick.com
* Berkeley, CA 94709-1608 +1-510-843-9542
* USA
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ffs.h"
#include "opt_quota.h"
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/kdb.h>
#include <sys/kthread.h>
#include <sys/ktr.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/namei.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/racct.h>
#include <sys/rwlock.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/vnode.h>
#include <sys/conf.h>
#include <ufs/ufs/dir.h>
#include <ufs/ufs/extattr.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/softdep.h>
#include <ufs/ffs/ffs_extern.h>
#include <ufs/ufs/ufs_extern.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <geom/geom.h>
#include <ddb/ddb.h>
#define KTR_SUJ 0 /* Define to KTR_SPARE. */
#ifndef SOFTUPDATES
int
softdep_flushfiles(oldmnt, flags, td)
struct mount *oldmnt;
int flags;
struct thread *td;
{
panic("softdep_flushfiles called");
}
int
softdep_mount(devvp, mp, fs, cred)
struct vnode *devvp;
struct mount *mp;
struct fs *fs;
struct ucred *cred;
{
return (0);
}
void
softdep_initialize()
{
return;
}
void
softdep_uninitialize()
{
return;
}
void
softdep_unmount(mp)
struct mount *mp;
{
panic("softdep_unmount called");
}
void
softdep_setup_sbupdate(ump, fs, bp)
struct ufsmount *ump;
struct fs *fs;
struct buf *bp;
{
panic("softdep_setup_sbupdate called");
}
void
softdep_setup_inomapdep(bp, ip, newinum, mode)
struct buf *bp;
struct inode *ip;
ino_t newinum;
int mode;
{
panic("softdep_setup_inomapdep called");
}
void
softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
struct buf *bp;
struct mount *mp;
ufs2_daddr_t newblkno;
int frags;
int oldfrags;
{
panic("softdep_setup_blkmapdep called");
}
void
softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
struct inode *ip;
ufs_lbn_t lbn;
ufs2_daddr_t newblkno;
ufs2_daddr_t oldblkno;
long newsize;
long oldsize;
struct buf *bp;
{
panic("softdep_setup_allocdirect called");
}
void
softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
struct inode *ip;
ufs_lbn_t lbn;
ufs2_daddr_t newblkno;
ufs2_daddr_t oldblkno;
long newsize;
long oldsize;
struct buf *bp;
{
panic("softdep_setup_allocext called");
}
void
softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
struct inode *ip;
ufs_lbn_t lbn;
struct buf *bp;
int ptrno;
ufs2_daddr_t newblkno;
ufs2_daddr_t oldblkno;
struct buf *nbp;
{
panic("softdep_setup_allocindir_page called");
}
void
softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
struct buf *nbp;
struct inode *ip;
struct buf *bp;
int ptrno;
ufs2_daddr_t newblkno;
{
panic("softdep_setup_allocindir_meta called");
}
void
softdep_journal_freeblocks(ip, cred, length, flags)
struct inode *ip;
struct ucred *cred;
off_t length;
int flags;
{
panic("softdep_journal_freeblocks called");
}
void
softdep_journal_fsync(ip)
struct inode *ip;
{
panic("softdep_journal_fsync called");
}
void
softdep_setup_freeblocks(ip, length, flags)
struct inode *ip;
off_t length;
int flags;
{
panic("softdep_setup_freeblocks called");
}
void
softdep_freefile(pvp, ino, mode)
struct vnode *pvp;
ino_t ino;
int mode;
{
panic("softdep_freefile called");
}
int
softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
struct buf *bp;
struct inode *dp;
off_t diroffset;
ino_t newinum;
struct buf *newdirbp;
int isnewblk;
{
panic("softdep_setup_directory_add called");
}
void
softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
struct buf *bp;
struct inode *dp;
caddr_t base;
caddr_t oldloc;
caddr_t newloc;
int entrysize;
{
panic("softdep_change_directoryentry_offset called");
}
void
softdep_setup_remove(bp, dp, ip, isrmdir)
struct buf *bp;
struct inode *dp;
struct inode *ip;
int isrmdir;
{
panic("softdep_setup_remove called");
}
void
softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
struct buf *bp;
struct inode *dp;
struct inode *ip;
ino_t newinum;
int isrmdir;
{
panic("softdep_setup_directory_change called");
}
void
softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
struct mount *mp;
struct buf *bp;
ufs2_daddr_t blkno;
int frags;
struct workhead *wkhd;
{
panic("%s called", __FUNCTION__);
}
void
softdep_setup_inofree(mp, bp, ino, wkhd)
struct mount *mp;
struct buf *bp;
ino_t ino;
struct workhead *wkhd;
{
panic("%s called", __FUNCTION__);
}
void
softdep_setup_unlink(dp, ip)
struct inode *dp;
struct inode *ip;
{
panic("%s called", __FUNCTION__);
}
void
softdep_setup_link(dp, ip)
struct inode *dp;
struct inode *ip;
{
panic("%s called", __FUNCTION__);
}
void
softdep_revert_link(dp, ip)
struct inode *dp;
struct inode *ip;
{
panic("%s called", __FUNCTION__);
}
void
softdep_setup_rmdir(dp, ip)
struct inode *dp;
struct inode *ip;
{
panic("%s called", __FUNCTION__);
}
void
softdep_revert_rmdir(dp, ip)
struct inode *dp;
struct inode *ip;
{
panic("%s called", __FUNCTION__);
}
void
softdep_setup_create(dp, ip)
struct inode *dp;
struct inode *ip;
{
panic("%s called", __FUNCTION__);
}
void
softdep_revert_create(dp, ip)
struct inode *dp;
struct inode *ip;
{
panic("%s called", __FUNCTION__);
}
void
softdep_setup_mkdir(dp, ip)
struct inode *dp;
struct inode *ip;
{
panic("%s called", __FUNCTION__);
}
void
softdep_revert_mkdir(dp, ip)
struct inode *dp;
struct inode *ip;
{
panic("%s called", __FUNCTION__);
}
void
softdep_setup_dotdot_link(dp, ip)
struct inode *dp;
struct inode *ip;
{
panic("%s called", __FUNCTION__);
}
int
softdep_prealloc(vp, waitok)
struct vnode *vp;
int waitok;
{
panic("%s called", __FUNCTION__);
}
int
softdep_journal_lookup(mp, vpp)
struct mount *mp;
struct vnode **vpp;
{
return (ENOENT);
}
void
softdep_change_linkcnt(ip)
struct inode *ip;
{
panic("softdep_change_linkcnt called");
}
void
softdep_load_inodeblock(ip)
struct inode *ip;
{
panic("softdep_load_inodeblock called");
}
void
softdep_update_inodeblock(ip, bp, waitfor)
struct inode *ip;
struct buf *bp;
int waitfor;
{
panic("softdep_update_inodeblock called");
}
int
softdep_fsync(vp)
struct vnode *vp; /* the "in_core" copy of the inode */
{
return (0);
}
void
softdep_fsync_mountdev(vp)
struct vnode *vp;
{
return;
}
int
softdep_flushworklist(oldmnt, countp, td)
struct mount *oldmnt;
int *countp;
struct thread *td;
{
*countp = 0;
return (0);
}
int
softdep_sync_metadata(struct vnode *vp)
{
panic("softdep_sync_metadata called");
}
int
softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
{
panic("softdep_sync_buf called");
}
int
softdep_slowdown(vp)
struct vnode *vp;
{
panic("softdep_slowdown called");
}
int
softdep_request_cleanup(fs, vp, cred, resource)
struct fs *fs;
struct vnode *vp;
struct ucred *cred;
int resource;
{
return (0);
}
int
softdep_check_suspend(struct mount *mp,
struct vnode *devvp,
int softdep_depcnt,
int softdep_accdepcnt,
int secondary_writes,
int secondary_accwrites)
{
struct bufobj *bo;
int error;
(void) softdep_depcnt,
(void) softdep_accdepcnt;
bo = &devvp->v_bufobj;
ASSERT_BO_WLOCKED(bo);
MNT_ILOCK(mp);
while (mp->mnt_secondary_writes != 0) {
BO_UNLOCK(bo);
msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
(PUSER - 1) | PDROP, "secwr", 0);
BO_LOCK(bo);
MNT_ILOCK(mp);
}
/*
* Reasons for needing more work before suspend:
* - Dirty buffers on devvp.
* - Secondary writes occurred after start of vnode sync loop
*/
error = 0;
if (bo->bo_numoutput > 0 ||
bo->bo_dirty.bv_cnt > 0 ||
secondary_writes != 0 ||
mp->mnt_secondary_writes != 0 ||
secondary_accwrites != mp->mnt_secondary_accwrites)
error = EAGAIN;
BO_UNLOCK(bo);
return (error);
}
void
softdep_get_depcounts(struct mount *mp,
int *softdepactivep,
int *softdepactiveaccp)
{
(void) mp;
*softdepactivep = 0;
*softdepactiveaccp = 0;
}
void
softdep_buf_append(bp, wkhd)
struct buf *bp;
struct workhead *wkhd;
{
panic("softdep_buf_appendwork called");
}
void
softdep_inode_append(ip, cred, wkhd)
struct inode *ip;
struct ucred *cred;
struct workhead *wkhd;
{
panic("softdep_inode_appendwork called");
}
void
softdep_freework(wkhd)
struct workhead *wkhd;
{
panic("softdep_freework called");
}
#else
FEATURE(softupdates, "FFS soft-updates support");
static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
"soft updates stats");
static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
"total dependencies allocated");
static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
"high use dependencies allocated");
static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
"current dependencies allocated");
static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
"current dependencies written");
unsigned long dep_current[D_LAST + 1];
unsigned long dep_highuse[D_LAST + 1];
unsigned long dep_total[D_LAST + 1];
unsigned long dep_write[D_LAST + 1];
#define SOFTDEP_TYPE(type, str, long) \
static MALLOC_DEFINE(M_ ## type, #str, long); \
SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \
&dep_total[D_ ## type], 0, ""); \
SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \
&dep_current[D_ ## type], 0, ""); \
SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \
&dep_highuse[D_ ## type], 0, ""); \
SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \
&dep_write[D_ ## type], 0, "");
SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
"Block or frag allocated from cyl group map");
SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
#define M_SOFTDEP_FLAGS (M_WAITOK)
/*
* translate from workitem type to memory type
* MUST match the defines above, such that memtype[D_XXX] == M_XXX
*/
static struct malloc_type *memtype[] = {
NULL,
M_PAGEDEP,
M_INODEDEP,
M_BMSAFEMAP,
M_NEWBLK,
M_ALLOCDIRECT,
M_INDIRDEP,
M_ALLOCINDIR,
M_FREEFRAG,
M_FREEBLKS,
M_FREEFILE,
M_DIRADD,
M_MKDIR,
M_DIRREM,
M_NEWDIRBLK,
M_FREEWORK,
M_FREEDEP,
M_JADDREF,
M_JREMREF,
M_JMVREF,
M_JNEWBLK,
M_JFREEBLK,
M_JFREEFRAG,
M_JSEG,
M_JSEGDEP,
M_SBDEP,
M_JTRUNC,
M_JFSYNC,
M_SENTINEL
};
#define DtoM(type) (memtype[type])
/*
* Names of malloc types.
*/
#define TYPENAME(type) \
((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \
memtype[type]->ks_shortdesc : "???")
/*
* End system adaptation definitions.
*/
#define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino)
#define DOT_OFFSET offsetof(struct dirtemplate, dot_ino)
/*
* Internal function prototypes.
*/
static void check_clear_deps(struct mount *);
static void softdep_error(char *, int);
static int softdep_process_worklist(struct mount *, int);
static int softdep_waitidle(struct mount *, int);
static void drain_output(struct vnode *);
static struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
static int check_inodedep_free(struct inodedep *);
static void clear_remove(struct mount *);
static void clear_inodedeps(struct mount *);
static void unlinked_inodedep(struct mount *, struct inodedep *);
static void clear_unlinked_inodedep(struct inodedep *);
static struct inodedep *first_unlinked_inodedep(struct ufsmount *);
static int flush_pagedep_deps(struct vnode *, struct mount *,
struct diraddhd *);
static int free_pagedep(struct pagedep *);
static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
static int flush_deplist(struct allocdirectlst *, int, int *);
static int sync_cgs(struct mount *, int);
static int handle_written_filepage(struct pagedep *, struct buf *, int);
static int handle_written_sbdep(struct sbdep *, struct buf *);
static void initiate_write_sbdep(struct sbdep *);
static void diradd_inode_written(struct diradd *, struct inodedep *);
static int handle_written_indirdep(struct indirdep *, struct buf *,
struct buf**, int);
static int handle_written_inodeblock(struct inodedep *, struct buf *, int);
static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
uint8_t *);
static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
static void handle_written_jaddref(struct jaddref *);
static void handle_written_jremref(struct jremref *);
static void handle_written_jseg(struct jseg *, struct buf *);
static void handle_written_jnewblk(struct jnewblk *);
static void handle_written_jblkdep(struct jblkdep *);
static void handle_written_jfreefrag(struct jfreefrag *);
static void complete_jseg(struct jseg *);
static void complete_jsegs(struct jseg *);
static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
static void jremref_write(struct jremref *, struct jseg *, uint8_t *);
static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
static inline void inoref_write(struct inoref *, struct jseg *,
struct jrefrec *);
static void handle_allocdirect_partdone(struct allocdirect *,
struct workhead *);
static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
struct workhead *);
static void indirdep_complete(struct indirdep *);
static int indirblk_lookup(struct mount *, ufs2_daddr_t);
static void indirblk_insert(struct freework *);
static void indirblk_remove(struct freework *);
static void handle_allocindir_partdone(struct allocindir *);
static void initiate_write_filepage(struct pagedep *, struct buf *);
static void initiate_write_indirdep(struct indirdep*, struct buf *);
static void handle_written_mkdir(struct mkdir *, int);
static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
uint8_t *);
static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
static void handle_workitem_freefile(struct freefile *);
static int handle_workitem_remove(struct dirrem *, int);
static struct dirrem *newdirrem(struct buf *, struct inode *,
struct inode *, int, struct dirrem **);
static struct indirdep *indirdep_lookup(struct mount *, struct inode *,
struct buf *);
static void cancel_indirdep(struct indirdep *, struct buf *,
struct freeblks *);
static void free_indirdep(struct indirdep *);
static void free_diradd(struct diradd *, struct workhead *);
static void merge_diradd(struct inodedep *, struct diradd *);
static void complete_diradd(struct diradd *);
static struct diradd *diradd_lookup(struct pagedep *, int);
static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
struct jremref *);
static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
struct jremref *);
static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
struct jremref *, struct jremref *);
static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
struct jremref *);
static void cancel_allocindir(struct allocindir *, struct buf *bp,
struct freeblks *, int);
static int setup_trunc_indir(struct freeblks *, struct inode *,
ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
static void complete_trunc_indir(struct freework *);
static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
int);
static void complete_mkdir(struct mkdir *);
static void free_newdirblk(struct newdirblk *);
static void free_jremref(struct jremref *);
static void free_jaddref(struct jaddref *);
static void free_jsegdep(struct jsegdep *);
static void free_jsegs(struct jblocks *);
static void rele_jseg(struct jseg *);
static void free_jseg(struct jseg *, struct jblocks *);
static void free_jnewblk(struct jnewblk *);
static void free_jblkdep(struct jblkdep *);
static void free_jfreefrag(struct jfreefrag *);
static void free_freedep(struct freedep *);
static void journal_jremref(struct dirrem *, struct jremref *,
struct inodedep *);
static void cancel_jnewblk(struct jnewblk *, struct workhead *);
static int cancel_jaddref(struct jaddref *, struct inodedep *,
struct workhead *);
static void cancel_jfreefrag(struct jfreefrag *);
static inline void setup_freedirect(struct freeblks *, struct inode *,
int, int);
static inline void setup_freeext(struct freeblks *, struct inode *, int, int);
static inline void setup_freeindir(struct freeblks *, struct inode *, int,
ufs_lbn_t, int);
static inline struct freeblks *newfreeblks(struct mount *, struct inode *);
static void freeblks_free(struct ufsmount *, struct freeblks *, int);
static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
int, int);
static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
static int cancel_pagedep(struct pagedep *, struct freeblks *, int);
static int deallocate_dependencies(struct buf *, struct freeblks *, int);
static void newblk_freefrag(struct newblk*);
static void free_newblk(struct newblk *);
static void cancel_allocdirect(struct allocdirectlst *,
struct allocdirect *, struct freeblks *);
static int check_inode_unwritten(struct inodedep *);
static int free_inodedep(struct inodedep *);
static void freework_freeblock(struct freework *, u_long);
static void freework_enqueue(struct freework *);
static int handle_workitem_freeblocks(struct freeblks *, int);
static int handle_complete_freeblocks(struct freeblks *, int);
static void handle_workitem_indirblk(struct freework *);
static void handle_written_freework(struct freework *);
static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
static struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
struct workhead *);
static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
struct inodedep *, struct allocindir *, ufs_lbn_t);
static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
ufs2_daddr_t, ufs_lbn_t);
static void handle_workitem_freefrag(struct freefrag *);
static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
ufs_lbn_t, u_long);
static void allocdirect_merge(struct allocdirectlst *,
struct allocdirect *, struct allocdirect *);
static struct freefrag *allocindir_merge(struct allocindir *,
struct allocindir *);
static int bmsafemap_find(struct bmsafemap_hashhead *, int,
struct bmsafemap **);
static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
int cg, struct bmsafemap *);
static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
struct newblk **);
static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
static int inodedep_find(struct inodedep_hashhead *, ino_t,
struct inodedep **);
static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
int, struct pagedep **);
static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
struct pagedep **);
static void pause_timer(void *);
static int request_cleanup(struct mount *, int);
static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *);
static void schedule_cleanup(struct mount *);
static void softdep_ast_cleanup_proc(struct thread *);
static struct ufsmount *softdep_bp_to_mp(struct buf *bp);
static int process_worklist_item(struct mount *, int, int);
static void process_removes(struct vnode *);
static void process_truncates(struct vnode *);
static void jwork_move(struct workhead *, struct workhead *);
static void jwork_insert(struct workhead *, struct jsegdep *);
static void add_to_worklist(struct worklist *, int);
static void wake_worklist(struct worklist *);
static void wait_worklist(struct worklist *, char *);
static void remove_from_worklist(struct worklist *);
static void softdep_flush(void *);
static void softdep_flushjournal(struct mount *);
static int softdep_speedup(struct ufsmount *);
static void worklist_speedup(struct mount *);
static int journal_mount(struct mount *, struct fs *, struct ucred *);
static void journal_unmount(struct ufsmount *);
static int journal_space(struct ufsmount *, int);
static void journal_suspend(struct ufsmount *);
static int journal_unsuspend(struct ufsmount *ump);
static void softdep_prelink(struct vnode *, struct vnode *);
static void add_to_journal(struct worklist *);
static void remove_from_journal(struct worklist *);
static bool softdep_excess_items(struct ufsmount *, int);
static void softdep_process_journal(struct mount *, struct worklist *, int);
static struct jremref *newjremref(struct dirrem *, struct inode *,
struct inode *ip, off_t, nlink_t);
static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
uint16_t);
static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
uint16_t);
static inline struct jsegdep *inoref_jseg(struct inoref *);
static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
ufs2_daddr_t, int);
static void adjust_newfreework(struct freeblks *, int);
static struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
static void move_newblock_dep(struct jaddref *, struct inodedep *);
static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
ufs2_daddr_t, long, ufs_lbn_t);
static struct freework *newfreework(struct ufsmount *, struct freeblks *,
struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
static int jwait(struct worklist *, int);
static struct inodedep *inodedep_lookup_ip(struct inode *);
static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
static struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
static void handle_jwork(struct workhead *);
static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
struct mkdir **);
static struct jblocks *jblocks_create(void);
static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
static void jblocks_free(struct jblocks *, struct mount *, int);
static void jblocks_destroy(struct jblocks *);
static void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
/*
* Exported softdep operations.
*/
static void softdep_disk_io_initiation(struct buf *);
static void softdep_disk_write_complete(struct buf *);
static void softdep_deallocate_dependencies(struct buf *);
static int softdep_count_dependencies(struct buf *bp, int);
/*
* Global lock over all of soft updates.
*/
static struct mtx lk;
MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF);
#define ACQUIRE_GBLLOCK(lk) mtx_lock(lk)
#define FREE_GBLLOCK(lk) mtx_unlock(lk)
#define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED)
/*
* Per-filesystem soft-updates locking.
*/
#define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock)
#define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock)
#define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock)
#define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock)
#define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \
RA_WLOCKED)
#define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock)
#define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock)
/*
* Worklist queue management.
* These routines require that the lock be held.
*/
#ifndef /* NOT */ INVARIANTS
#define WORKLIST_INSERT(head, item) do { \
(item)->wk_state |= ONWORKLIST; \
LIST_INSERT_HEAD(head, item, wk_list); \
} while (0)
#define WORKLIST_REMOVE(item) do { \
(item)->wk_state &= ~ONWORKLIST; \
LIST_REMOVE(item, wk_list); \
} while (0)
#define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT
#define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE
#else /* INVARIANTS */
static void worklist_insert(struct workhead *, struct worklist *, int,
const char *, int);
static void worklist_remove(struct worklist *, int, const char *, int);
#define WORKLIST_INSERT(head, item) \
worklist_insert(head, item, 1, __func__, __LINE__)
#define WORKLIST_INSERT_UNLOCKED(head, item)\
worklist_insert(head, item, 0, __func__, __LINE__)
#define WORKLIST_REMOVE(item)\
worklist_remove(item, 1, __func__, __LINE__)
#define WORKLIST_REMOVE_UNLOCKED(item)\
worklist_remove(item, 0, __func__, __LINE__)
static void
worklist_insert(head, item, locked, func, line)
struct workhead *head;
struct worklist *item;
int locked;
const char *func;
int line;
{
if (locked)
LOCK_OWNED(VFSTOUFS(item->wk_mp));
if (item->wk_state & ONWORKLIST)
panic("worklist_insert: %p %s(0x%X) already on list, "
"added in function %s at line %d",
item, TYPENAME(item->wk_type), item->wk_state,
item->wk_func, item->wk_line);
item->wk_state |= ONWORKLIST;
item->wk_func = func;
item->wk_line = line;
LIST_INSERT_HEAD(head, item, wk_list);
}
static void
worklist_remove(item, locked, func, line)
struct worklist *item;
int locked;
const char *func;
int line;
{
if (locked)
LOCK_OWNED(VFSTOUFS(item->wk_mp));
if ((item->wk_state & ONWORKLIST) == 0)
panic("worklist_remove: %p %s(0x%X) not on list, "
"removed in function %s at line %d",
item, TYPENAME(item->wk_type), item->wk_state,
item->wk_func, item->wk_line);
item->wk_state &= ~ONWORKLIST;
item->wk_func = func;
item->wk_line = line;
LIST_REMOVE(item, wk_list);
}
#endif /* INVARIANTS */
/*
* Merge two jsegdeps keeping only the oldest one as newer references
* can't be discarded until after older references.
*/
static inline struct jsegdep *
jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
{
struct jsegdep *swp;
if (two == NULL)
return (one);
if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
swp = one;
one = two;
two = swp;
}
WORKLIST_REMOVE(&two->jd_list);
free_jsegdep(two);
return (one);
}
/*
* If two freedeps are compatible free one to reduce list size.
*/
static inline struct freedep *
freedep_merge(struct freedep *one, struct freedep *two)
{
if (two == NULL)
return (one);
if (one->fd_freework == two->fd_freework) {
WORKLIST_REMOVE(&two->fd_list);
free_freedep(two);
}
return (one);
}
/*
* Move journal work from one list to another. Duplicate freedeps and
* jsegdeps are coalesced to keep the lists as small as possible.
*/
static void
jwork_move(dst, src)
struct workhead *dst;
struct workhead *src;
{
struct freedep *freedep;
struct jsegdep *jsegdep;
struct worklist *wkn;
struct worklist *wk;
KASSERT(dst != src,
("jwork_move: dst == src"));
freedep = NULL;
jsegdep = NULL;
LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
if (wk->wk_type == D_JSEGDEP)
jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
else if (wk->wk_type == D_FREEDEP)
freedep = freedep_merge(WK_FREEDEP(wk), freedep);
}
while ((wk = LIST_FIRST(src)) != NULL) {
WORKLIST_REMOVE(wk);
WORKLIST_INSERT(dst, wk);
if (wk->wk_type == D_JSEGDEP) {
jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
continue;
}
if (wk->wk_type == D_FREEDEP)
freedep = freedep_merge(WK_FREEDEP(wk), freedep);
}
}
static void
jwork_insert(dst, jsegdep)
struct workhead *dst;
struct jsegdep *jsegdep;
{
struct jsegdep *jsegdepn;
struct worklist *wk;
LIST_FOREACH(wk, dst, wk_list)
if (wk->wk_type == D_JSEGDEP)
break;
if (wk == NULL) {
WORKLIST_INSERT(dst, &jsegdep->jd_list);
return;
}
jsegdepn = WK_JSEGDEP(wk);
if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
WORKLIST_REMOVE(wk);
free_jsegdep(jsegdepn);
WORKLIST_INSERT(dst, &jsegdep->jd_list);
} else
free_jsegdep(jsegdep);
}
/*
* Routines for tracking and managing workitems.
*/
static void workitem_free(struct worklist *, int);
static void workitem_alloc(struct worklist *, int, struct mount *);
static void workitem_reassign(struct worklist *, int);
#define WORKITEM_FREE(item, type) \
workitem_free((struct worklist *)(item), (type))
#define WORKITEM_REASSIGN(item, type) \
workitem_reassign((struct worklist *)(item), (type))
static void
workitem_free(item, type)
struct worklist *item;
int type;
{
struct ufsmount *ump;
#ifdef INVARIANTS
if (item->wk_state & ONWORKLIST)
panic("workitem_free: %s(0x%X) still on list, "
"added in function %s at line %d",
TYPENAME(item->wk_type), item->wk_state,
item->wk_func, item->wk_line);
if (item->wk_type != type && type != D_NEWBLK)
panic("workitem_free: type mismatch %s != %s",
TYPENAME(item->wk_type), TYPENAME(type));
#endif
if (item->wk_state & IOWAITING)
wakeup(item);
ump = VFSTOUFS(item->wk_mp);
LOCK_OWNED(ump);
KASSERT(ump->softdep_deps > 0,
("workitem_free: %s: softdep_deps going negative",
ump->um_fs->fs_fsmnt));
if (--ump->softdep_deps == 0 && ump->softdep_req)
wakeup(&ump->softdep_deps);
KASSERT(dep_current[item->wk_type] > 0,
("workitem_free: %s: dep_current[%s] going negative",
ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
("workitem_free: %s: softdep_curdeps[%s] going negative",
ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
atomic_subtract_long(&dep_current[item->wk_type], 1);
ump->softdep_curdeps[item->wk_type] -= 1;
free(item, DtoM(type));
}
static void
workitem_alloc(item, type, mp)
struct worklist *item;
int type;
struct mount *mp;
{
struct ufsmount *ump;
item->wk_type = type;
item->wk_mp = mp;
item->wk_state = 0;
ump = VFSTOUFS(mp);
ACQUIRE_GBLLOCK(&lk);
dep_current[type]++;
if (dep_current[type] > dep_highuse[type])
dep_highuse[type] = dep_current[type];
dep_total[type]++;
FREE_GBLLOCK(&lk);
ACQUIRE_LOCK(ump);
ump->softdep_curdeps[type] += 1;
ump->softdep_deps++;
ump->softdep_accdeps++;
FREE_LOCK(ump);
}
static void
workitem_reassign(item, newtype)
struct worklist *item;
int newtype;
{
struct ufsmount *ump;
ump = VFSTOUFS(item->wk_mp);
LOCK_OWNED(ump);
KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
("workitem_reassign: %s: softdep_curdeps[%s] going negative",
VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
ump->softdep_curdeps[item->wk_type] -= 1;
ump->softdep_curdeps[newtype] += 1;
KASSERT(dep_current[item->wk_type] > 0,
("workitem_reassign: %s: dep_current[%s] going negative",
VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
ACQUIRE_GBLLOCK(&lk);
dep_current[newtype]++;
dep_current[item->wk_type]--;
if (dep_current[newtype] > dep_highuse[newtype])
dep_highuse[newtype] = dep_current[newtype];
dep_total[newtype]++;
FREE_GBLLOCK(&lk);
item->wk_type = newtype;
}
/*
* Workitem queue management
*/
static int max_softdeps; /* maximum number of structs before slowdown */
static int tickdelay = 2; /* number of ticks to pause during slowdown */
static int proc_waiting; /* tracks whether we have a timeout posted */
static int *stat_countp; /* statistic to count in proc_waiting timeout */
static struct callout softdep_callout;
static int req_clear_inodedeps; /* syncer process flush some inodedeps */
static int req_clear_remove; /* syncer process flush some freeblks */
static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
/*
* runtime statistics
*/
static int stat_flush_threads; /* number of softdep flushing threads */
static int stat_worklist_push; /* number of worklist cleanups */
static int stat_blk_limit_push; /* number of times block limit neared */
static int stat_ino_limit_push; /* number of times inode limit neared */
static int stat_blk_limit_hit; /* number of times block slowdown imposed */
static int stat_ino_limit_hit; /* number of times inode slowdown imposed */
static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */
static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */
static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */
static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */
static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */
static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */
static int stat_journal_min; /* Times hit journal min threshold */
static int stat_journal_low; /* Times hit journal low threshold */
static int stat_journal_wait; /* Times blocked in jwait(). */
static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */
static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */
static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */
static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */
static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
static int stat_cleanup_failures; /* Number of cleanup requests that failed */
static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
&max_softdeps, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
&tickdelay, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
&stat_flush_threads, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push,
CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,"");
SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push,
CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,"");
SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push,
CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,"");
SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit,
CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit,
CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit,
CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs,
CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap,
CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs,
CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry,
CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback,
CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback,
CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low,
CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min,
CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait,
CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage,
CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks,
CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode,
CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk,
CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests,
CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests,
CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay,
CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries,
CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures,
CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
&softdep_flushcache, 0, "");
SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
&stat_emptyjblocks, 0, "");
SYSCTL_DECL(_vfs_ffs);
/* Whether to recompute the summary at mount time */
static int compute_summary_at_mount = 0;
SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
&compute_summary_at_mount, 0, "Recompute summary at mount");
static int print_threads = 0;
SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
&print_threads, 0, "Notify flusher thread start/stop");
/* List of all filesystems mounted with soft updates */
static TAILQ_HEAD(, mount_softdeps) softdepmounts;
/*
* This function cleans the worklist for a filesystem.
* Each filesystem running with soft dependencies gets its own
* thread to run in this function. The thread is started up in
* softdep_mount and shutdown in softdep_unmount. They show up
* as part of the kernel "bufdaemon" process whose process
* entry is available in bufdaemonproc.
*/
static int searchfailed;
extern struct proc *bufdaemonproc;
static void
softdep_flush(addr)
void *addr;
{
struct mount *mp;
struct thread *td;
struct ufsmount *ump;
td = curthread;
td->td_pflags |= TDP_NORUNNINGBUF;
mp = (struct mount *)addr;
ump = VFSTOUFS(mp);
atomic_add_int(&stat_flush_threads, 1);
ACQUIRE_LOCK(ump);
ump->softdep_flags &= ~FLUSH_STARTING;
wakeup(&ump->softdep_flushtd);
FREE_LOCK(ump);
if (print_threads) {
if (stat_flush_threads == 1)
printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
bufdaemonproc->p_pid);
printf("Start thread %s\n", td->td_name);
}
for (;;) {
while (softdep_process_worklist(mp, 0) > 0 ||
(MOUNTEDSUJ(mp) &&
VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
kthread_suspend_check();
ACQUIRE_LOCK(ump);
if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
"sdflush", hz / 2);
ump->softdep_flags &= ~FLUSH_CLEANUP;
/*
* Check to see if we are done and need to exit.
*/
if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
FREE_LOCK(ump);
continue;
}
ump->softdep_flags &= ~FLUSH_EXIT;
FREE_LOCK(ump);
wakeup(&ump->softdep_flags);
if (print_threads)
printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups);
atomic_subtract_int(&stat_flush_threads, 1);
kthread_exit();
panic("kthread_exit failed\n");
}
}
static void
worklist_speedup(mp)
struct mount *mp;
{
struct ufsmount *ump;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
ump->softdep_flags |= FLUSH_CLEANUP;
wakeup(&ump->softdep_flushtd);
}
static int
softdep_speedup(ump)
struct ufsmount *ump;
{
struct ufsmount *altump;
struct mount_softdeps *sdp;
LOCK_OWNED(ump);
worklist_speedup(ump->um_mountp);
bd_speedup();
/*
* If we have global shortages, then we need other
* filesystems to help with the cleanup. Here we wakeup a
* flusher thread for a filesystem that is over its fair
* share of resources.
*/
if (req_clear_inodedeps || req_clear_remove) {
ACQUIRE_GBLLOCK(&lk);
TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
if ((altump = sdp->sd_ump) == ump)
continue;
if (((req_clear_inodedeps &&
altump->softdep_curdeps[D_INODEDEP] >
max_softdeps / stat_flush_threads) ||
(req_clear_remove &&
altump->softdep_curdeps[D_DIRREM] >
(max_softdeps / 2) / stat_flush_threads)) &&
TRY_ACQUIRE_LOCK(altump))
break;
}
if (sdp == NULL) {
searchfailed++;
FREE_GBLLOCK(&lk);
} else {
/*
* Move to the end of the list so we pick a
* different one on out next try.
*/
TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
FREE_GBLLOCK(&lk);
if ((altump->softdep_flags &
(FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
altump->softdep_flags |= FLUSH_CLEANUP;
altump->um_softdep->sd_cleanups++;
wakeup(&altump->softdep_flushtd);
FREE_LOCK(altump);
}
}
return (speedup_syncer());
}
/*
* Add an item to the end of the work queue.
* This routine requires that the lock be held.
* This is the only routine that adds items to the list.
* The following routine is the only one that removes items
* and does so in order from first to last.
*/
#define WK_HEAD 0x0001 /* Add to HEAD. */
#define WK_NODELAY 0x0002 /* Process immediately. */
static void
add_to_worklist(wk, flags)
struct worklist *wk;
int flags;
{
struct ufsmount *ump;
ump = VFSTOUFS(wk->wk_mp);
LOCK_OWNED(ump);
if (wk->wk_state & ONWORKLIST)
panic("add_to_worklist: %s(0x%X) already on list",
TYPENAME(wk->wk_type), wk->wk_state);
wk->wk_state |= ONWORKLIST;
if (ump->softdep_on_worklist == 0) {
LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
ump->softdep_worklist_tail = wk;
} else if (flags & WK_HEAD) {
LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
} else {
LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
ump->softdep_worklist_tail = wk;
}
ump->softdep_on_worklist += 1;
if (flags & WK_NODELAY)
worklist_speedup(wk->wk_mp);
}
/*
* Remove the item to be processed. If we are removing the last
* item on the list, we need to recalculate the tail pointer.
*/
static void
remove_from_worklist(wk)
struct worklist *wk;
{
struct ufsmount *ump;
ump = VFSTOUFS(wk->wk_mp);
if (ump->softdep_worklist_tail == wk)
ump->softdep_worklist_tail =
(struct worklist *)wk->wk_list.le_prev;
WORKLIST_REMOVE(wk);
ump->softdep_on_worklist -= 1;
}
static void
wake_worklist(wk)
struct worklist *wk;
{
if (wk->wk_state & IOWAITING) {
wk->wk_state &= ~IOWAITING;
wakeup(wk);
}
}
static void
wait_worklist(wk, wmesg)
struct worklist *wk;
char *wmesg;
{
struct ufsmount *ump;
ump = VFSTOUFS(wk->wk_mp);
wk->wk_state |= IOWAITING;
msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
}
/*
* Process that runs once per second to handle items in the background queue.
*
* Note that we ensure that everything is done in the order in which they
* appear in the queue. The code below depends on this property to ensure
* that blocks of a file are freed before the inode itself is freed. This
* ordering ensures that no new <vfsid, inum, lbn> triples will be generated
* until all the old ones have been purged from the dependency lists.
*/
static int
softdep_process_worklist(mp, full)
struct mount *mp;
int full;
{
int cnt, matchcnt;
struct ufsmount *ump;
long starttime;
KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
if (MOUNTEDSOFTDEP(mp) == 0)
return (0);
matchcnt = 0;
ump = VFSTOUFS(mp);
ACQUIRE_LOCK(ump);
starttime = time_second;
softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
check_clear_deps(mp);
while (ump->softdep_on_worklist > 0) {
if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
break;
else
matchcnt += cnt;
check_clear_deps(mp);
/*
* We do not generally want to stop for buffer space, but if
* we are really being a buffer hog, we will stop and wait.
*/
if (should_yield()) {
FREE_LOCK(ump);
kern_yield(PRI_USER);
bwillwrite();
ACQUIRE_LOCK(ump);
}
/*
* Never allow processing to run for more than one
* second. This gives the syncer thread the opportunity
* to pause if appropriate.
*/
if (!full && starttime != time_second)
break;
}
if (full == 0)
journal_unsuspend(ump);
FREE_LOCK(ump);
return (matchcnt);
}
/*
* Process all removes associated with a vnode if we are running out of
* journal space. Any other process which attempts to flush these will
* be unable as we have the vnodes locked.
*/
static void
process_removes(vp)
struct vnode *vp;
{
struct inodedep *inodedep;
struct dirrem *dirrem;
struct ufsmount *ump;
struct mount *mp;
ino_t inum;
mp = vp->v_mount;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
inum = VTOI(vp)->i_number;
for (;;) {
top:
if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
return;
LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
/*
* If another thread is trying to lock this vnode
* it will fail but we must wait for it to do so
* before we can proceed.
*/
if (dirrem->dm_state & INPROGRESS) {
wait_worklist(&dirrem->dm_list, "pwrwait");
goto top;
}
if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
(COMPLETE | ONWORKLIST))
break;
}
if (dirrem == NULL)
return;
remove_from_worklist(&dirrem->dm_list);
FREE_LOCK(ump);
if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
panic("process_removes: suspended filesystem");
handle_workitem_remove(dirrem, 0);
vn_finished_secondary_write(mp);
ACQUIRE_LOCK(ump);
}
}
/*
* Process all truncations associated with a vnode if we are running out
* of journal space. This is called when the vnode lock is already held
* and no other process can clear the truncation. This function returns
* a value greater than zero if it did any work.
*/
static void
process_truncates(vp)
struct vnode *vp;
{
struct inodedep *inodedep;
struct freeblks *freeblks;
struct ufsmount *ump;
struct mount *mp;
ino_t inum;
int cgwait;
mp = vp->v_mount;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
inum = VTOI(vp)->i_number;
for (;;) {
if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
return;
cgwait = 0;
TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
/* Journal entries not yet written. */
if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
jwait(&LIST_FIRST(
&freeblks->fb_jblkdephd)->jb_list,
MNT_WAIT);
break;
}
/* Another thread is executing this item. */
if (freeblks->fb_state & INPROGRESS) {
wait_worklist(&freeblks->fb_list, "ptrwait");
break;
}
/* Freeblks is waiting on a inode write. */
if ((freeblks->fb_state & COMPLETE) == 0) {
FREE_LOCK(ump);
ffs_update(vp, 1);
ACQUIRE_LOCK(ump);
break;
}
if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
(ALLCOMPLETE | ONWORKLIST)) {
remove_from_worklist(&freeblks->fb_list);
freeblks->fb_state |= INPROGRESS;
FREE_LOCK(ump);
if (vn_start_secondary_write(NULL, &mp,
V_NOWAIT))
panic("process_truncates: "
"suspended filesystem");
handle_workitem_freeblocks(freeblks, 0);
vn_finished_secondary_write(mp);
ACQUIRE_LOCK(ump);
break;
}
if (freeblks->fb_cgwait)
cgwait++;
}
if (cgwait) {
FREE_LOCK(ump);
sync_cgs(mp, MNT_WAIT);
ffs_sync_snap(mp, MNT_WAIT);
ACQUIRE_LOCK(ump);
continue;
}
if (freeblks == NULL)
break;
}
return;
}
/*
* Process one item on the worklist.
*/
static int
process_worklist_item(mp, target, flags)
struct mount *mp;
int target;
int flags;
{
struct worklist sentinel;
struct worklist *wk;
struct ufsmount *ump;
int matchcnt;
int error;
KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
/*
* If we are being called because of a process doing a
* copy-on-write, then it is not safe to write as we may
* recurse into the copy-on-write routine.
*/
if (curthread->td_pflags & TDP_COWINPROGRESS)
return (-1);
PHOLD(curproc); /* Don't let the stack go away. */
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
matchcnt = 0;
sentinel.wk_mp = NULL;
sentinel.wk_type = D_SENTINEL;
LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
wk = LIST_NEXT(&sentinel, wk_list)) {
if (wk->wk_type == D_SENTINEL) {
LIST_REMOVE(&sentinel, wk_list);
LIST_INSERT_AFTER(wk, &sentinel, wk_list);
continue;
}
if (wk->wk_state & INPROGRESS)
panic("process_worklist_item: %p already in progress.",
wk);
wk->wk_state |= INPROGRESS;
remove_from_worklist(wk);
FREE_LOCK(ump);
if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
panic("process_worklist_item: suspended filesystem");
switch (wk->wk_type) {
case D_DIRREM:
/* removal of a directory entry */
error = handle_workitem_remove(WK_DIRREM(wk), flags);
break;
case D_FREEBLKS:
/* releasing blocks and/or fragments from a file */
error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
flags);
break;
case D_FREEFRAG:
/* releasing a fragment when replaced as a file grows */
handle_workitem_freefrag(WK_FREEFRAG(wk));
error = 0;
break;
case D_FREEFILE:
/* releasing an inode when its link count drops to 0 */
handle_workitem_freefile(WK_FREEFILE(wk));
error = 0;
break;
default:
panic("%s_process_worklist: Unknown type %s",
"softdep", TYPENAME(wk->wk_type));
/* NOTREACHED */
}
vn_finished_secondary_write(mp);
ACQUIRE_LOCK(ump);
if (error == 0) {
if (++matchcnt == target)
break;
continue;
}
/*
* We have to retry the worklist item later. Wake up any
* waiters who may be able to complete it immediately and
* add the item back to the head so we don't try to execute
* it again.
*/
wk->wk_state &= ~INPROGRESS;
wake_worklist(wk);
add_to_worklist(wk, WK_HEAD);
}
/* Sentinal could've become the tail from remove_from_worklist. */
if (ump->softdep_worklist_tail == &sentinel)
ump->softdep_worklist_tail =
(struct worklist *)sentinel.wk_list.le_prev;
LIST_REMOVE(&sentinel, wk_list);
PRELE(curproc);
return (matchcnt);
}
/*
* Move dependencies from one buffer to another.
*/
int
softdep_move_dependencies(oldbp, newbp)
struct buf *oldbp;
struct buf *newbp;
{
struct worklist *wk, *wktail;
struct ufsmount *ump;
int dirty;
if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
return (0);
KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
("softdep_move_dependencies called on non-softdep filesystem"));
dirty = 0;
wktail = NULL;
ump = VFSTOUFS(wk->wk_mp);
ACQUIRE_LOCK(ump);
while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
LIST_REMOVE(wk, wk_list);
if (wk->wk_type == D_BMSAFEMAP &&
bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
dirty = 1;
if (wktail == NULL)
LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
else
LIST_INSERT_AFTER(wktail, wk, wk_list);
wktail = wk;
}
FREE_LOCK(ump);
return (dirty);
}
/*
* Purge the work list of all items associated with a particular mount point.
*/
int
softdep_flushworklist(oldmnt, countp, td)
struct mount *oldmnt;
int *countp;
struct thread *td;
{
struct vnode *devvp;
struct ufsmount *ump;
int count, error;
/*
* Alternately flush the block device associated with the mount
* point and process any dependencies that the flushing
* creates. We continue until no more worklist dependencies
* are found.
*/
*countp = 0;
error = 0;
ump = VFSTOUFS(oldmnt);
devvp = ump->um_devvp;
while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
*countp += count;
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
error = VOP_FSYNC(devvp, MNT_WAIT, td);
VOP_UNLOCK(devvp, 0);
if (error != 0)
break;
}
return (error);
}
#define SU_WAITIDLE_RETRIES 20
static int
softdep_waitidle(struct mount *mp, int flags __unused)
{
struct ufsmount *ump;
struct vnode *devvp;
struct thread *td;
int error, i;
ump = VFSTOUFS(mp);
devvp = ump->um_devvp;
td = curthread;
error = 0;
ACQUIRE_LOCK(ump);
for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
ump->softdep_req = 1;
KASSERT((flags & FORCECLOSE) == 0 ||
ump->softdep_on_worklist == 0,
("softdep_waitidle: work added after flush"));
msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
"softdeps", 10 * hz);
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
error = VOP_FSYNC(devvp, MNT_WAIT, td);
VOP_UNLOCK(devvp, 0);
ACQUIRE_LOCK(ump);
if (error != 0)
break;
}
ump->softdep_req = 0;
if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
error = EBUSY;
printf("softdep_waitidle: Failed to flush worklist for %p\n",
mp);
}
FREE_LOCK(ump);
return (error);
}
/*
* Flush all vnodes and worklist items associated with a specified mount point.
*/
int
softdep_flushfiles(oldmnt, flags, td)
struct mount *oldmnt;
int flags;
struct thread *td;
{
#ifdef QUOTA
struct ufsmount *ump;
int i;
#endif
int error, early, depcount, loopcnt, retry_flush_count, retry;
int morework;
KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
("softdep_flushfiles called on non-softdep filesystem"));
loopcnt = 10;
retry_flush_count = 3;
retry_flush:
error = 0;
/*
* Alternately flush the vnodes associated with the mount
* point and process any dependencies that the flushing
* creates. In theory, this loop can happen at most twice,
* but we give it a few extra just to be sure.
*/
for (; loopcnt > 0; loopcnt--) {
/*
* Do another flush in case any vnodes were brought in
* as part of the cleanup operations.
*/
early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
break;
if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
depcount == 0)
break;
}
/*
* If we are unmounting then it is an error to fail. If we
* are simply trying to downgrade to read-only, then filesystem
* activity can keep us busy forever, so we just fail with EBUSY.
*/
if (loopcnt == 0) {
if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
panic("softdep_flushfiles: looping");
error = EBUSY;
}
if (!error)
error = softdep_waitidle(oldmnt, flags);
if (!error) {
if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
retry = 0;
MNT_ILOCK(oldmnt);
morework = oldmnt->mnt_nvnodelistsize > 0;
#ifdef QUOTA
ump = VFSTOUFS(oldmnt);
UFS_LOCK(ump);
for (i = 0; i < MAXQUOTAS; i++) {
if (ump->um_quotas[i] != NULLVP)
morework = 1;
}
UFS_UNLOCK(ump);
#endif
if (morework) {
if (--retry_flush_count > 0) {
retry = 1;
loopcnt = 3;
} else
error = EBUSY;
}
MNT_IUNLOCK(oldmnt);
if (retry)
goto retry_flush;
}
}
return (error);
}
/*
* Structure hashing.
*
* There are four types of structures that can be looked up:
* 1) pagedep structures identified by mount point, inode number,
* and logical block.
* 2) inodedep structures identified by mount point and inode number.
* 3) newblk structures identified by mount point and
* physical block number.
* 4) bmsafemap structures identified by mount point and
* cylinder group number.
*
* The "pagedep" and "inodedep" dependency structures are hashed
* separately from the file blocks and inodes to which they correspond.
* This separation helps when the in-memory copy of an inode or
* file block must be replaced. It also obviates the need to access
* an inode or file page when simply updating (or de-allocating)
* dependency structures. Lookup of newblk structures is needed to
* find newly allocated blocks when trying to associate them with
* their allocdirect or allocindir structure.
*
* The lookup routines optionally create and hash a new instance when
* an existing entry is not found. The bmsafemap lookup routine always
* allocates a new structure if an existing one is not found.
*/
#define DEPALLOC 0x0001 /* allocate structure if lookup fails */
/*
* Structures and routines associated with pagedep caching.
*/
#define PAGEDEP_HASH(ump, inum, lbn) \
(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
static int
pagedep_find(pagedephd, ino, lbn, pagedeppp)
struct pagedep_hashhead *pagedephd;
ino_t ino;
ufs_lbn_t lbn;
struct pagedep **pagedeppp;
{
struct pagedep *pagedep;
LIST_FOREACH(pagedep, pagedephd, pd_hash) {
if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
*pagedeppp = pagedep;
return (1);
}
}
*pagedeppp = NULL;
return (0);
}
/*
* Look up a pagedep. Return 1 if found, 0 otherwise.
* If not found, allocate if DEPALLOC flag is passed.
* Found or allocated entry is returned in pagedeppp.
*/
static int
pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
struct mount *mp;
struct buf *bp;
ino_t ino;
ufs_lbn_t lbn;
int flags;
struct pagedep **pagedeppp;
{
struct pagedep *pagedep;
struct pagedep_hashhead *pagedephd;
struct worklist *wk;
struct ufsmount *ump;
int ret;
int i;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
if (bp) {
LIST_FOREACH(wk, &bp->b_dep, wk_list) {
if (wk->wk_type == D_PAGEDEP) {
*pagedeppp = WK_PAGEDEP(wk);
return (1);
}
}
}
pagedephd = PAGEDEP_HASH(ump, ino, lbn);
ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
if (ret) {
if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
return (1);
}
if ((flags & DEPALLOC) == 0)
return (0);
FREE_LOCK(ump);
pagedep = malloc(sizeof(struct pagedep),
M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
ACQUIRE_LOCK(ump);
ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
if (*pagedeppp) {
/*
* This should never happen since we only create pagedeps
* with the vnode lock held. Could be an assert.
*/
WORKITEM_FREE(pagedep, D_PAGEDEP);
return (ret);
}
pagedep->pd_ino = ino;
pagedep->pd_lbn = lbn;
LIST_INIT(&pagedep->pd_dirremhd);
LIST_INIT(&pagedep->pd_pendinghd);
for (i = 0; i < DAHASHSZ; i++)
LIST_INIT(&pagedep->pd_diraddhd[i]);
LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
*pagedeppp = pagedep;
return (0);
}
/*
* Structures and routines associated with inodedep caching.
*/
#define INODEDEP_HASH(ump, inum) \
(&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
static int
inodedep_find(inodedephd, inum, inodedeppp)
struct inodedep_hashhead *inodedephd;
ino_t inum;
struct inodedep **inodedeppp;
{
struct inodedep *inodedep;
LIST_FOREACH(inodedep, inodedephd, id_hash)
if (inum == inodedep->id_ino)
break;
if (inodedep) {
*inodedeppp = inodedep;
return (1);
}
*inodedeppp = NULL;
return (0);
}
/*
* Look up an inodedep. Return 1 if found, 0 if not found.
* If not found, allocate if DEPALLOC flag is passed.
* Found or allocated entry is returned in inodedeppp.
*/
static int
inodedep_lookup(mp, inum, flags, inodedeppp)
struct mount *mp;
ino_t inum;
int flags;
struct inodedep **inodedeppp;
{
struct inodedep *inodedep;
struct inodedep_hashhead *inodedephd;
struct ufsmount *ump;
struct fs *fs;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
fs = ump->um_fs;
inodedephd = INODEDEP_HASH(ump, inum);
if (inodedep_find(inodedephd, inum, inodedeppp))
return (1);
if ((flags & DEPALLOC) == 0)
return (0);
/*
* If the system is over its limit and our filesystem is
* responsible for more than our share of that usage and
* we are not in a rush, request some inodedep cleanup.
*/
if (softdep_excess_items(ump, D_INODEDEP))
schedule_cleanup(mp);
else
FREE_LOCK(ump);
inodedep = malloc(sizeof(struct inodedep),
M_INODEDEP, M_SOFTDEP_FLAGS);
workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
ACQUIRE_LOCK(ump);
if (inodedep_find(inodedephd, inum, inodedeppp)) {
WORKITEM_FREE(inodedep, D_INODEDEP);
return (1);
}
inodedep->id_fs = fs;
inodedep->id_ino = inum;
inodedep->id_state = ALLCOMPLETE;
inodedep->id_nlinkdelta = 0;
inodedep->id_savedino1 = NULL;
inodedep->id_savedsize = -1;
inodedep->id_savedextsize = -1;
inodedep->id_savednlink = -1;
inodedep->id_bmsafemap = NULL;
inodedep->id_mkdiradd = NULL;
LIST_INIT(&inodedep->id_dirremhd);
LIST_INIT(&inodedep->id_pendinghd);
LIST_INIT(&inodedep->id_inowait);
LIST_INIT(&inodedep->id_bufwait);
TAILQ_INIT(&inodedep->id_inoreflst);
TAILQ_INIT(&inodedep->id_inoupdt);
TAILQ_INIT(&inodedep->id_newinoupdt);
TAILQ_INIT(&inodedep->id_extupdt);
TAILQ_INIT(&inodedep->id_newextupdt);
TAILQ_INIT(&inodedep->id_freeblklst);
LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
*inodedeppp = inodedep;
return (0);
}
/*
* Structures and routines associated with newblk caching.
*/
#define NEWBLK_HASH(ump, inum) \
(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
static int
newblk_find(newblkhd, newblkno, flags, newblkpp)
struct newblk_hashhead *newblkhd;
ufs2_daddr_t newblkno;
int flags;
struct newblk **newblkpp;
{
struct newblk *newblk;
LIST_FOREACH(newblk, newblkhd, nb_hash) {
if (newblkno != newblk->nb_newblkno)
continue;
/*
* If we're creating a new dependency don't match those that
* have already been converted to allocdirects. This is for
* a frag extend.
*/
if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
continue;
break;
}
if (newblk) {
*newblkpp = newblk;
return (1);
}
*newblkpp = NULL;
return (0);
}
/*
* Look up a newblk. Return 1 if found, 0 if not found.
* If not found, allocate if DEPALLOC flag is passed.
* Found or allocated entry is returned in newblkpp.
*/
static int
newblk_lookup(mp, newblkno, flags, newblkpp)
struct mount *mp;
ufs2_daddr_t newblkno;
int flags;
struct newblk **newblkpp;
{
struct newblk *newblk;
struct newblk_hashhead *newblkhd;
struct ufsmount *ump;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
newblkhd = NEWBLK_HASH(ump, newblkno);
if (newblk_find(newblkhd, newblkno, flags, newblkpp))
return (1);
if ((flags & DEPALLOC) == 0)
return (0);
if (softdep_excess_items(ump, D_NEWBLK) ||
softdep_excess_items(ump, D_ALLOCDIRECT) ||
softdep_excess_items(ump, D_ALLOCINDIR))
schedule_cleanup(mp);
else
FREE_LOCK(ump);
newblk = malloc(sizeof(union allblk), M_NEWBLK,
M_SOFTDEP_FLAGS | M_ZERO);
workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
ACQUIRE_LOCK(ump);
if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
WORKITEM_FREE(newblk, D_NEWBLK);
return (1);
}
newblk->nb_freefrag = NULL;
LIST_INIT(&newblk->nb_indirdeps);
LIST_INIT(&newblk->nb_newdirblk);
LIST_INIT(&newblk->nb_jwork);
newblk->nb_state = ATTACHED;
newblk->nb_newblkno = newblkno;
LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
*newblkpp = newblk;
return (0);
}
/*
* Structures and routines associated with freed indirect block caching.
*/
#define INDIR_HASH(ump, blkno) \
(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
/*
* Lookup an indirect block in the indir hash table. The freework is
* removed and potentially freed. The caller must do a blocking journal
* write before writing to the blkno.
*/
static int
indirblk_lookup(mp, blkno)
struct mount *mp;
ufs2_daddr_t blkno;
{
struct freework *freework;
struct indir_hashhead *wkhd;
struct ufsmount *ump;
ump = VFSTOUFS(mp);
wkhd = INDIR_HASH(ump, blkno);
TAILQ_FOREACH(freework, wkhd, fw_next) {
if (freework->fw_blkno != blkno)
continue;
indirblk_remove(freework);
return (1);
}
return (0);
}
/*
* Insert an indirect block represented by freework into the indirblk
* hash table so that it may prevent the block from being re-used prior
* to the journal being written.
*/
static void
indirblk_insert(freework)
struct freework *freework;
{
struct jblocks *jblocks;
struct jseg *jseg;
struct ufsmount *ump;
ump = VFSTOUFS(freework->fw_list.wk_mp);
jblocks = ump->softdep_jblocks;
jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
if (jseg == NULL)
return;
LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
fw_next);
freework->fw_state &= ~DEPCOMPLETE;
}
static void
indirblk_remove(freework)
struct freework *freework;
{
struct ufsmount *ump;
ump = VFSTOUFS(freework->fw_list.wk_mp);
LIST_REMOVE(freework, fw_segs);
TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
freework->fw_state |= DEPCOMPLETE;
if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
WORKITEM_FREE(freework, D_FREEWORK);
}
/*
* Executed during filesystem system initialization before
* mounting any filesystems.
*/
void
softdep_initialize()
{
TAILQ_INIT(&softdepmounts);
#ifdef __LP64__
max_softdeps = desiredvnodes * 4;
#else
max_softdeps = desiredvnodes * 2;
#endif
/* initialise bioops hack */
bioops.io_start = softdep_disk_io_initiation;
bioops.io_complete = softdep_disk_write_complete;
bioops.io_deallocate = softdep_deallocate_dependencies;
bioops.io_countdeps = softdep_count_dependencies;
softdep_ast_cleanup = softdep_ast_cleanup_proc;
/* Initialize the callout with an mtx. */
callout_init_mtx(&softdep_callout, &lk, 0);
}
/*
* Executed after all filesystems have been unmounted during
* filesystem module unload.
*/
void
softdep_uninitialize()
{
/* clear bioops hack */
bioops.io_start = NULL;
bioops.io_complete = NULL;
bioops.io_deallocate = NULL;
bioops.io_countdeps = NULL;
softdep_ast_cleanup = NULL;
callout_drain(&softdep_callout);
}
/*
* Called at mount time to notify the dependency code that a
* filesystem wishes to use it.
*/
int
softdep_mount(devvp, mp, fs, cred)
struct vnode *devvp;
struct mount *mp;
struct fs *fs;
struct ucred *cred;
{
struct csum_total cstotal;
struct mount_softdeps *sdp;
struct ufsmount *ump;
struct cg *cgp;
struct buf *bp;
u_int cyl, i;
int error;
sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
M_WAITOK | M_ZERO);
MNT_ILOCK(mp);
mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
MNTK_SOFTDEP | MNTK_NOASYNC;
}
ump = VFSTOUFS(mp);
ump->um_softdep = sdp;
MNT_IUNLOCK(mp);
rw_init(LOCK_PTR(ump), "per-fs softdep");
sdp->sd_ump = ump;
LIST_INIT(&ump->softdep_workitem_pending);
LIST_INIT(&ump->softdep_journal_pending);
TAILQ_INIT(&ump->softdep_unlinked);
LIST_INIT(&ump->softdep_dirtycg);
ump->softdep_worklist_tail = NULL;
ump->softdep_on_worklist = 0;
ump->softdep_deps = 0;
LIST_INIT(&ump->softdep_mkdirlisthd);
ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
&ump->pagedep_hash_size);
ump->pagedep_nextclean = 0;
ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
&ump->inodedep_hash_size);
ump->inodedep_nextclean = 0;
ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK,
&ump->newblk_hash_size);
ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
&ump->bmsafemap_hash_size);
i = 1 << (ffs(desiredvnodes / 10) - 1);
ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
M_FREEWORK, M_WAITOK);
ump->indir_hash_size = i - 1;
for (i = 0; i <= ump->indir_hash_size; i++)
TAILQ_INIT(&ump->indir_hashtbl[i]);
ACQUIRE_GBLLOCK(&lk);
TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
FREE_GBLLOCK(&lk);
if ((fs->fs_flags & FS_SUJ) &&
(error = journal_mount(mp, fs, cred)) != 0) {
printf("Failed to start journal: %d\n", error);
softdep_unmount(mp);
return (error);
}
/*
* Start our flushing thread in the bufdaemon process.
*/
ACQUIRE_LOCK(ump);
ump->softdep_flags |= FLUSH_STARTING;
FREE_LOCK(ump);
kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
&ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
mp->mnt_stat.f_mntonname);
ACQUIRE_LOCK(ump);
while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
hz / 2);
}
FREE_LOCK(ump);
/*
* When doing soft updates, the counters in the
* superblock may have gotten out of sync. Recomputation
* can take a long time and can be deferred for background
* fsck. However, the old behavior of scanning the cylinder
* groups and recalculating them at mount time is available
* by setting vfs.ffs.compute_summary_at_mount to one.
*/
if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
return (0);
bzero(&cstotal, sizeof cstotal);
for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
fs->fs_cgsize, cred, &bp)) != 0) {
brelse(bp);
softdep_unmount(mp);
return (error);
}
cgp = (struct cg *)bp->b_data;
cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
fs->fs_cs(fs, cyl) = cgp->cg_cs;
brelse(bp);
}
#ifdef INVARIANTS
if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
#endif
bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
return (0);
}
void
softdep_unmount(mp)
struct mount *mp;
{
struct ufsmount *ump;
#ifdef INVARIANTS
int i;
#endif
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_unmount called on non-softdep filesystem"));
ump = VFSTOUFS(mp);
MNT_ILOCK(mp);
mp->mnt_flag &= ~MNT_SOFTDEP;
if (MOUNTEDSUJ(mp) == 0) {
MNT_IUNLOCK(mp);
} else {
mp->mnt_flag &= ~MNT_SUJ;
MNT_IUNLOCK(mp);
journal_unmount(ump);
}
/*
* Shut down our flushing thread. Check for NULL is if
* softdep_mount errors out before the thread has been created.
*/
if (ump->softdep_flushtd != NULL) {
ACQUIRE_LOCK(ump);
ump->softdep_flags |= FLUSH_EXIT;
wakeup(&ump->softdep_flushtd);
msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP,
"sdwait", 0);
KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
("Thread shutdown failed"));
}
/*
* Free up our resources.
*/
ACQUIRE_GBLLOCK(&lk);
TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next);
FREE_GBLLOCK(&lk);
rw_destroy(LOCK_PTR(ump));
hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
ump->bmsafemap_hash_size);
free(ump->indir_hashtbl, M_FREEWORK);
#ifdef INVARIANTS
for (i = 0; i <= D_LAST; i++)
KASSERT(ump->softdep_curdeps[i] == 0,
("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
TYPENAME(i), ump->softdep_curdeps[i]));
#endif
free(ump->um_softdep, M_MOUNTDATA);
}
static struct jblocks *
jblocks_create(void)
{
struct jblocks *jblocks;
jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
TAILQ_INIT(&jblocks->jb_segs);
jblocks->jb_avail = 10;
jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
M_JBLOCKS, M_WAITOK | M_ZERO);
return (jblocks);
}
static ufs2_daddr_t
jblocks_alloc(jblocks, bytes, actual)
struct jblocks *jblocks;
int bytes;
int *actual;
{
ufs2_daddr_t daddr;
struct jextent *jext;
int freecnt;
int blocks;
blocks = bytes / DEV_BSIZE;
jext = &jblocks->jb_extent[jblocks->jb_head];
freecnt = jext->je_blocks - jblocks->jb_off;
if (freecnt == 0) {
jblocks->jb_off = 0;
if (++jblocks->jb_head > jblocks->jb_used)
jblocks->jb_head = 0;
jext = &jblocks->jb_extent[jblocks->jb_head];
freecnt = jext->je_blocks;
}
if (freecnt > blocks)
freecnt = blocks;
*actual = freecnt * DEV_BSIZE;
daddr = jext->je_daddr + jblocks->jb_off;
jblocks->jb_off += freecnt;
jblocks->jb_free -= freecnt;
return (daddr);
}
static void
jblocks_free(jblocks, mp, bytes)
struct jblocks *jblocks;
struct mount *mp;
int bytes;
{
LOCK_OWNED(VFSTOUFS(mp));
jblocks->jb_free += bytes / DEV_BSIZE;
if (jblocks->jb_suspended)
worklist_speedup(mp);
wakeup(jblocks);
}
static void
jblocks_destroy(jblocks)
struct jblocks *jblocks;
{
if (jblocks->jb_extent)
free(jblocks->jb_extent, M_JBLOCKS);
free(jblocks, M_JBLOCKS);
}
static void
jblocks_add(jblocks, daddr, blocks)
struct jblocks *jblocks;
ufs2_daddr_t daddr;
int blocks;
{
struct jextent *jext;
jblocks->jb_blocks += blocks;
jblocks->jb_free += blocks;
jext = &jblocks->jb_extent[jblocks->jb_used];
/* Adding the first block. */
if (jext->je_daddr == 0) {
jext->je_daddr = daddr;
jext->je_blocks = blocks;
return;
}
/* Extending the last extent. */
if (jext->je_daddr + jext->je_blocks == daddr) {
jext->je_blocks += blocks;
return;
}
/* Adding a new extent. */
if (++jblocks->jb_used == jblocks->jb_avail) {
jblocks->jb_avail *= 2;
jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
M_JBLOCKS, M_WAITOK | M_ZERO);
memcpy(jext, jblocks->jb_extent,
sizeof(struct jextent) * jblocks->jb_used);
free(jblocks->jb_extent, M_JBLOCKS);
jblocks->jb_extent = jext;
}
jext = &jblocks->jb_extent[jblocks->jb_used];
jext->je_daddr = daddr;
jext->je_blocks = blocks;
return;
}
int
softdep_journal_lookup(mp, vpp)
struct mount *mp;
struct vnode **vpp;
{
struct componentname cnp;
struct vnode *dvp;
ino_t sujournal;
int error;
error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp);
if (error)
return (error);
bzero(&cnp, sizeof(cnp));
cnp.cn_nameiop = LOOKUP;
cnp.cn_flags = ISLASTCN;
cnp.cn_thread = curthread;
cnp.cn_cred = curthread->td_ucred;
cnp.cn_pnbuf = SUJ_FILE;
cnp.cn_nameptr = SUJ_FILE;
cnp.cn_namelen = strlen(SUJ_FILE);
error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
vput(dvp);
if (error != 0)
return (error);
error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
return (error);
}
/*
* Open and verify the journal file.
*/
static int
journal_mount(mp, fs, cred)
struct mount *mp;
struct fs *fs;
struct ucred *cred;
{
struct jblocks *jblocks;
struct ufsmount *ump;
struct vnode *vp;
struct inode *ip;
ufs2_daddr_t blkno;
int bcount;
int error;
int i;
ump = VFSTOUFS(mp);
ump->softdep_journal_tail = NULL;
ump->softdep_on_journal = 0;
ump->softdep_accdeps = 0;
ump->softdep_req = 0;
ump->softdep_jblocks = NULL;
error = softdep_journal_lookup(mp, &vp);
if (error != 0) {
printf("Failed to find journal. Use tunefs to create one\n");
return (error);
}
ip = VTOI(vp);
if (ip->i_size < SUJ_MIN) {
error = ENOSPC;
goto out;
}
bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */
jblocks = jblocks_create();
for (i = 0; i < bcount; i++) {
error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
if (error)
break;
jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
}
if (error) {
jblocks_destroy(jblocks);
goto out;
}
jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */
jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
ump->softdep_jblocks = jblocks;
out:
if (error == 0) {
MNT_ILOCK(mp);
mp->mnt_flag |= MNT_SUJ;
mp->mnt_flag &= ~MNT_SOFTDEP;
MNT_IUNLOCK(mp);
/*
* Only validate the journal contents if the
* filesystem is clean, otherwise we write the logs
* but they'll never be used. If the filesystem was
* still dirty when we mounted it the journal is
* invalid and a new journal can only be valid if it
* starts from a clean mount.
*/
if (fs->fs_clean) {
DIP_SET(ip, i_modrev, fs->fs_mtime);
ip->i_flags |= IN_MODIFIED;
ffs_update(vp, 1);
}
}
vput(vp);
return (error);
}
static void
journal_unmount(ump)
struct ufsmount *ump;
{
if (ump->softdep_jblocks)
jblocks_destroy(ump->softdep_jblocks);
ump->softdep_jblocks = NULL;
}
/*
* Called when a journal record is ready to be written. Space is allocated
* and the journal entry is created when the journal is flushed to stable
* store.
*/
static void
add_to_journal(wk)
struct worklist *wk;
{
struct ufsmount *ump;
ump = VFSTOUFS(wk->wk_mp);
LOCK_OWNED(ump);
if (wk->wk_state & ONWORKLIST)
panic("add_to_journal: %s(0x%X) already on list",
TYPENAME(wk->wk_type), wk->wk_state);
wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
if (LIST_EMPTY(&ump->softdep_journal_pending)) {
ump->softdep_jblocks->jb_age = ticks;
LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
} else
LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
ump->softdep_journal_tail = wk;
ump->softdep_on_journal += 1;
}
/*
* Remove an arbitrary item for the journal worklist maintain the tail
* pointer. This happens when a new operation obviates the need to
* journal an old operation.
*/
static void
remove_from_journal(wk)
struct worklist *wk;
{
struct ufsmount *ump;
ump = VFSTOUFS(wk->wk_mp);
LOCK_OWNED(ump);
#ifdef INVARIANTS
{
struct worklist *wkn;
LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
if (wkn == wk)
break;
if (wkn == NULL)
panic("remove_from_journal: %p is not in journal", wk);
}
#endif
/*
* We emulate a TAILQ to save space in most structures which do not
* require TAILQ semantics. Here we must update the tail position
* when removing the tail which is not the final entry. This works
* only if the worklist linkage are at the beginning of the structure.
*/
if (ump->softdep_journal_tail == wk)
ump->softdep_journal_tail =
(struct worklist *)wk->wk_list.le_prev;
WORKLIST_REMOVE(wk);
ump->softdep_on_journal -= 1;
}
/*
* Check for journal space as well as dependency limits so the prelink
* code can throttle both journaled and non-journaled filesystems.
* Threshold is 0 for low and 1 for min.
*/
static int
journal_space(ump, thresh)
struct ufsmount *ump;
int thresh;
{
struct jblocks *jblocks;
int limit, avail;
jblocks = ump->softdep_jblocks;
if (jblocks == NULL)
return (1);
/*
* We use a tighter restriction here to prevent request_cleanup()
* running in threads from running into locks we currently hold.
* We have to be over the limit and our filesystem has to be
* responsible for more than our share of that usage.
*/
limit = (max_softdeps / 10) * 9;
if (dep_current[D_INODEDEP] > limit &&
ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
return (0);
if (thresh)
thresh = jblocks->jb_min;
else
thresh = jblocks->jb_low;
avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
avail = jblocks->jb_free - avail;
return (avail > thresh);
}
static void
journal_suspend(ump)
struct ufsmount *ump;
{
struct jblocks *jblocks;
struct mount *mp;
bool set;
mp = UFSTOVFS(ump);
if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0)
return;
jblocks = ump->softdep_jblocks;
vfs_op_enter(mp);
set = false;
MNT_ILOCK(mp);
if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
stat_journal_min++;
mp->mnt_kern_flag |= MNTK_SUSPEND;
mp->mnt_susp_owner = ump->softdep_flushtd;
set = true;
}
jblocks->jb_suspended = 1;
MNT_IUNLOCK(mp);
if (!set)
vfs_op_exit(mp);
}
static int
journal_unsuspend(struct ufsmount *ump)
{
struct jblocks *jblocks;
struct mount *mp;
mp = UFSTOVFS(ump);
jblocks = ump->softdep_jblocks;
if (jblocks != NULL && jblocks->jb_suspended &&
journal_space(ump, jblocks->jb_min)) {
jblocks->jb_suspended = 0;
FREE_LOCK(ump);
mp->mnt_susp_owner = curthread;
vfs_write_resume(mp, 0);
ACQUIRE_LOCK(ump);
return (1);
}
return (0);
}
/*
* Called before any allocation function to be certain that there is
* sufficient space in the journal prior to creating any new records.
* Since in the case of block allocation we may have multiple locked
* buffers at the time of the actual allocation we can not block
* when the journal records are created. Doing so would create a deadlock
* if any of these buffers needed to be flushed to reclaim space. Instead
* we require a sufficiently large amount of available space such that
* each thread in the system could have passed this allocation check and
* still have sufficient free space. With 20% of a minimum journal size
* of 1MB we have 6553 records available.
*/
int
softdep_prealloc(vp, waitok)
struct vnode *vp;
int waitok;
{
struct ufsmount *ump;
KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
("softdep_prealloc called on non-softdep filesystem"));
/*
* Nothing to do if we are not running journaled soft updates.
* If we currently hold the snapshot lock, we must avoid
* handling other resources that could cause deadlock. Do not
* touch quotas vnode since it is typically recursed with
* other vnode locks held.
*/
if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
(vp->v_vflag & VV_SYSTEM) != 0)
return (0);
ump = VFSTOUFS(vp->v_mount);
ACQUIRE_LOCK(ump);
if (journal_space(ump, 0)) {
FREE_LOCK(ump);
return (0);
}
stat_journal_low++;
FREE_LOCK(ump);
if (waitok == MNT_NOWAIT)
return (ENOSPC);
/*
* Attempt to sync this vnode once to flush any journal
* work attached to it.
*/
if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
ffs_syncvnode(vp, waitok, 0);
ACQUIRE_LOCK(ump);
process_removes(vp);
process_truncates(vp);
if (journal_space(ump, 0) == 0) {
softdep_speedup(ump);
if (journal_space(ump, 1) == 0)
journal_suspend(ump);
}
FREE_LOCK(ump);
return (0);
}
/*
* Before adjusting a link count on a vnode verify that we have sufficient
* journal space. If not, process operations that depend on the currently
* locked pair of vnodes to try to flush space as the syncer, buf daemon,
* and softdep flush threads can not acquire these locks to reclaim space.
*/
static void
softdep_prelink(dvp, vp)
struct vnode *dvp;
struct vnode *vp;
{
struct ufsmount *ump;
ump = VFSTOUFS(dvp->v_mount);
LOCK_OWNED(ump);
/*
* Nothing to do if we have sufficient journal space.
* If we currently hold the snapshot lock, we must avoid
* handling other resources that could cause deadlock.
*/
if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
return;
stat_journal_low++;
FREE_LOCK(ump);
if (vp)
ffs_syncvnode(vp, MNT_NOWAIT, 0);
ffs_syncvnode(dvp, MNT_WAIT, 0);
ACQUIRE_LOCK(ump);
/* Process vp before dvp as it may create .. removes. */
if (vp) {
process_removes(vp);
process_truncates(vp);
}
process_removes(dvp);
process_truncates(dvp);
softdep_speedup(ump);
process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
if (journal_space(ump, 0) == 0) {
softdep_speedup(ump);
if (journal_space(ump, 1) == 0)
journal_suspend(ump);
}
}
static void
jseg_write(ump, jseg, data)
struct ufsmount *ump;
struct jseg *jseg;
uint8_t *data;
{
struct jsegrec *rec;
rec = (struct jsegrec *)data;
rec->jsr_seq = jseg->js_seq;
rec->jsr_oldest = jseg->js_oldseq;
rec->jsr_cnt = jseg->js_cnt;
rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
rec->jsr_crc = 0;
rec->jsr_time = ump->um_fs->fs_mtime;
}
static inline void
inoref_write(inoref, jseg, rec)
struct inoref *inoref;
struct jseg *jseg;
struct jrefrec *rec;
{
inoref->if_jsegdep->jd_seg = jseg;
rec->jr_ino = inoref->if_ino;
rec->jr_parent = inoref->if_parent;
rec->jr_nlink = inoref->if_nlink;
rec->jr_mode = inoref->if_mode;
rec->jr_diroff = inoref->if_diroff;
}
static void
jaddref_write(jaddref, jseg, data)
struct jaddref *jaddref;
struct jseg *jseg;
uint8_t *data;
{
struct jrefrec *rec;
rec = (struct jrefrec *)data;
rec->jr_op = JOP_ADDREF;
inoref_write(&jaddref->ja_ref, jseg, rec);
}
static void
jremref_write(jremref, jseg, data)
struct jremref *jremref;
struct jseg *jseg;
uint8_t *data;
{
struct jrefrec *rec;
rec = (struct jrefrec *)data;
rec->jr_op = JOP_REMREF;
inoref_write(&jremref->jr_ref, jseg, rec);
}
static void
jmvref_write(jmvref, jseg, data)
struct jmvref *jmvref;
struct jseg *jseg;
uint8_t *data;
{
struct jmvrec *rec;
rec = (struct jmvrec *)data;
rec->jm_op = JOP_MVREF;
rec->jm_ino = jmvref->jm_ino;
rec->jm_parent = jmvref->jm_parent;
rec->jm_oldoff = jmvref->jm_oldoff;
rec->jm_newoff = jmvref->jm_newoff;
}
static void
jnewblk_write(jnewblk, jseg, data)
struct jnewblk *jnewblk;
struct jseg *jseg;
uint8_t *data;
{
struct jblkrec *rec;
jnewblk->jn_jsegdep->jd_seg = jseg;
rec = (struct jblkrec *)data;
rec->jb_op = JOP_NEWBLK;
rec->jb_ino = jnewblk->jn_ino;
rec->jb_blkno = jnewblk->jn_blkno;
rec->jb_lbn = jnewblk->jn_lbn;
rec->jb_frags = jnewblk->jn_frags;
rec->jb_oldfrags = jnewblk->jn_oldfrags;
}
static void
jfreeblk_write(jfreeblk, jseg, data)
struct jfreeblk *jfreeblk;
struct jseg *jseg;
uint8_t *data;
{
struct jblkrec *rec;
jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
rec = (struct jblkrec *)data;
rec->jb_op = JOP_FREEBLK;
rec->jb_ino = jfreeblk->jf_ino;
rec->jb_blkno = jfreeblk->jf_blkno;
rec->jb_lbn = jfreeblk->jf_lbn;
rec->jb_frags = jfreeblk->jf_frags;
rec->jb_oldfrags = 0;
}
static void
jfreefrag_write(jfreefrag, jseg, data)
struct jfreefrag *jfreefrag;
struct jseg *jseg;
uint8_t *data;
{
struct jblkrec *rec;
jfreefrag->fr_jsegdep->jd_seg = jseg;
rec = (struct jblkrec *)data;
rec->jb_op = JOP_FREEBLK;
rec->jb_ino = jfreefrag->fr_ino;
rec->jb_blkno = jfreefrag->fr_blkno;
rec->jb_lbn = jfreefrag->fr_lbn;
rec->jb_frags = jfreefrag->fr_frags;
rec->jb_oldfrags = 0;
}
static void
jtrunc_write(jtrunc, jseg, data)
struct jtrunc *jtrunc;
struct jseg *jseg;
uint8_t *data;
{
struct jtrncrec *rec;
jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
rec = (struct jtrncrec *)data;
rec->jt_op = JOP_TRUNC;
rec->jt_ino = jtrunc->jt_ino;
rec->jt_size = jtrunc->jt_size;
rec->jt_extsize = jtrunc->jt_extsize;
}
static void
jfsync_write(jfsync, jseg, data)
struct jfsync *jfsync;
struct jseg *jseg;
uint8_t *data;
{
struct jtrncrec *rec;
rec = (struct jtrncrec *)data;
rec->jt_op = JOP_SYNC;
rec->jt_ino = jfsync->jfs_ino;
rec->jt_size = jfsync->jfs_size;
rec->jt_extsize = jfsync->jfs_extsize;
}
static void
softdep_flushjournal(mp)
struct mount *mp;
{
struct jblocks *jblocks;
struct ufsmount *ump;
if (MOUNTEDSUJ(mp) == 0)
return;
ump = VFSTOUFS(mp);
jblocks = ump->softdep_jblocks;
ACQUIRE_LOCK(ump);
while (ump->softdep_on_journal) {
jblocks->jb_needseg = 1;
softdep_process_journal(mp, NULL, MNT_WAIT);
}
FREE_LOCK(ump);
}
static void softdep_synchronize_completed(struct bio *);
static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
static void
softdep_synchronize_completed(bp)
struct bio *bp;
{
struct jseg *oldest;
struct jseg *jseg;
struct ufsmount *ump;
/*
* caller1 marks the last segment written before we issued the
* synchronize cache.
*/
jseg = bp->bio_caller1;
if (jseg == NULL) {
g_destroy_bio(bp);
return;
}
ump = VFSTOUFS(jseg->js_list.wk_mp);
ACQUIRE_LOCK(ump);
oldest = NULL;
/*
* Mark all the journal entries waiting on the synchronize cache
* as completed so they may continue on.
*/
while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
jseg->js_state |= COMPLETE;
oldest = jseg;
jseg = TAILQ_PREV(jseg, jseglst, js_next);
}
/*
* Restart deferred journal entry processing from the oldest
* completed jseg.
*/
if (oldest)
complete_jsegs(oldest);
FREE_LOCK(ump);
g_destroy_bio(bp);
}
/*
* Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
* barriers. The journal must be written prior to any blocks that depend
* on it and the journal can not be released until the blocks have be
* written. This code handles both barriers simultaneously.
*/
static void
softdep_synchronize(bp, ump, caller1)
struct bio *bp;
struct ufsmount *ump;
void *caller1;
{
bp->bio_cmd = BIO_FLUSH;
bp->bio_flags |= BIO_ORDERED;
bp->bio_data = NULL;
bp->bio_offset = ump->um_cp->provider->mediasize;
bp->bio_length = 0;
bp->bio_done = softdep_synchronize_completed;
bp->bio_caller1 = caller1;
g_io_request(bp, ump->um_cp);
}
/*
* Flush some journal records to disk.
*/
static void
softdep_process_journal(mp, needwk, flags)
struct mount *mp;
struct worklist *needwk;
int flags;
{
struct jblocks *jblocks;
struct ufsmount *ump;
struct worklist *wk;
struct jseg *jseg;
struct buf *bp;
struct bio *bio;
uint8_t *data;
struct fs *fs;
int shouldflush;
int segwritten;
int jrecmin; /* Minimum records per block. */
int jrecmax; /* Maximum records per block. */
int size;
int cnt;
int off;
int devbsize;
if (MOUNTEDSUJ(mp) == 0)
return;
shouldflush = softdep_flushcache;
bio = NULL;
jseg = NULL;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
fs = ump->um_fs;
jblocks = ump->softdep_jblocks;
devbsize = ump->um_devvp->v_bufobj.bo_bsize;
/*
* We write anywhere between a disk block and fs block. The upper
* bound is picked to prevent buffer cache fragmentation and limit
* processing time per I/O.
*/
jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
segwritten = 0;
for (;;) {
cnt = ump->softdep_on_journal;
/*
* Criteria for writing a segment:
* 1) We have a full block.
* 2) We're called from jwait() and haven't found the
* journal item yet.
* 3) Always write if needseg is set.
* 4) If we are called from process_worklist and have
* not yet written anything we write a partial block
* to enforce a 1 second maximum latency on journal
* entries.
*/
if (cnt < (jrecmax - 1) && needwk == NULL &&
jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
break;
cnt++;
/*
* Verify some free journal space. softdep_prealloc() should
* guarantee that we don't run out so this is indicative of
* a problem with the flow control. Try to recover
* gracefully in any event.
*/
while (jblocks->jb_free == 0) {
if (flags != MNT_WAIT)
break;
printf("softdep: Out of journal space!\n");
softdep_speedup(ump);
msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
}
FREE_LOCK(ump);
jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
workitem_alloc(&jseg->js_list, D_JSEG, mp);
LIST_INIT(&jseg->js_entries);
LIST_INIT(&jseg->js_indirs);
jseg->js_state = ATTACHED;
if (shouldflush == 0)
jseg->js_state |= COMPLETE;
else if (bio == NULL)
bio = g_alloc_bio();
jseg->js_jblocks = jblocks;
bp = geteblk(fs->fs_bsize, 0);
ACQUIRE_LOCK(ump);
/*
* If there was a race while we were allocating the block
* and jseg the entry we care about was likely written.
* We bail out in both the WAIT and NOWAIT case and assume
* the caller will loop if the entry it cares about is
* not written.
*/
cnt = ump->softdep_on_journal;
if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
bp->b_flags |= B_INVAL | B_NOCACHE;
WORKITEM_FREE(jseg, D_JSEG);
FREE_LOCK(ump);
brelse(bp);
ACQUIRE_LOCK(ump);
break;
}
/*
* Calculate the disk block size required for the available
* records rounded to the min size.
*/
if (cnt == 0)
size = devbsize;
else if (cnt < jrecmax)
size = howmany(cnt, jrecmin) * devbsize;
else
size = fs->fs_bsize;
/*
* Allocate a disk block for this journal data and account
* for truncation of the requested size if enough contiguous
* space was not available.
*/
bp->b_blkno = jblocks_alloc(jblocks, size, &size);
bp->b_lblkno = bp->b_blkno;
bp->b_offset = bp->b_blkno * DEV_BSIZE;
bp->b_bcount = size;
bp->b_flags &= ~B_INVAL;
bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
/*
* Initialize our jseg with cnt records. Assign the next
* sequence number to it and link it in-order.
*/
cnt = MIN(cnt, (size / devbsize) * jrecmin);
jseg->js_buf = bp;
jseg->js_cnt = cnt;
jseg->js_refs = cnt + 1; /* Self ref. */
jseg->js_size = size;
jseg->js_seq = jblocks->jb_nextseq++;
if (jblocks->jb_oldestseg == NULL)
jblocks->jb_oldestseg = jseg;
jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
if (jblocks->jb_writeseg == NULL)
jblocks->jb_writeseg = jseg;
/*
* Start filling in records from the pending list.
*/
data = bp->b_data;
off = 0;
/*
* Always put a header on the first block.
* XXX As with below, there might not be a chance to get
* into the loop. Ensure that something valid is written.
*/
jseg_write(ump, jseg, data);
off += JREC_SIZE;
data = bp->b_data + off;
/*
* XXX Something is wrong here. There's no work to do,
* but we need to perform and I/O and allow it to complete
* anyways.
*/
if (LIST_EMPTY(&ump->softdep_journal_pending))
stat_emptyjblocks++;
while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
!= NULL) {
if (cnt == 0)
break;
/* Place a segment header on every device block. */
if ((off % devbsize) == 0) {
jseg_write(ump, jseg, data);
off += JREC_SIZE;
data = bp->b_data + off;
}
if (wk == needwk)
needwk = NULL;
remove_from_journal(wk);
wk->wk_state |= INPROGRESS;
WORKLIST_INSERT(&jseg->js_entries, wk);
switch (wk->wk_type) {
case D_JADDREF:
jaddref_write(WK_JADDREF(wk), jseg, data);
break;
case D_JREMREF:
jremref_write(WK_JREMREF(wk), jseg, data);
break;
case D_JMVREF:
jmvref_write(WK_JMVREF(wk), jseg, data);
break;
case D_JNEWBLK:
jnewblk_write(WK_JNEWBLK(wk), jseg, data);
break;
case D_JFREEBLK:
jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
break;
case D_JFREEFRAG:
jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
break;
case D_JTRUNC:
jtrunc_write(WK_JTRUNC(wk), jseg, data);
break;
case D_JFSYNC:
jfsync_write(WK_JFSYNC(wk), jseg, data);
break;
default:
panic("process_journal: Unknown type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
off += JREC_SIZE;
data = bp->b_data + off;
cnt--;
}
/* Clear any remaining space so we don't leak kernel data */
if (size > off)
bzero(data, size - off);
/*
* Write this one buffer and continue.
*/
segwritten = 1;
jblocks->jb_needseg = 0;
WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
FREE_LOCK(ump);
pbgetvp(ump->um_devvp, bp);
/*
* We only do the blocking wait once we find the journal
* entry we're looking for.
*/
if (needwk == NULL && flags == MNT_WAIT)
bwrite(bp);
else
bawrite(bp);
ACQUIRE_LOCK(ump);
}
/*
* If we wrote a segment issue a synchronize cache so the journal
* is reflected on disk before the data is written. Since reclaiming
* journal space also requires writing a journal record this
* process also enforces a barrier before reclamation.
*/
if (segwritten && shouldflush) {
softdep_synchronize(bio, ump,
TAILQ_LAST(&jblocks->jb_segs, jseglst));
} else if (bio)
g_destroy_bio(bio);
/*
* If we've suspended the filesystem because we ran out of journal
* space either try to sync it here to make some progress or
* unsuspend it if we already have.
*/
if (flags == 0 && jblocks->jb_suspended) {
if (journal_unsuspend(ump))
return;
FREE_LOCK(ump);
VFS_SYNC(mp, MNT_NOWAIT);
ffs_sbupdate(ump, MNT_WAIT, 0);
ACQUIRE_LOCK(ump);
}
}
/*
* Complete a jseg, allowing all dependencies awaiting journal writes
* to proceed. Each journal dependency also attaches a jsegdep to dependent
* structures so that the journal segment can be freed to reclaim space.
*/
static void
complete_jseg(jseg)
struct jseg *jseg;
{
struct worklist *wk;
struct jmvref *jmvref;
#ifdef INVARIANTS
int i = 0;
#endif
while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
WORKLIST_REMOVE(wk);
wk->wk_state &= ~INPROGRESS;
wk->wk_state |= COMPLETE;
KASSERT(i++ < jseg->js_cnt,
("handle_written_jseg: overflow %d >= %d",
i - 1, jseg->js_cnt));
switch (wk->wk_type) {
case D_JADDREF:
handle_written_jaddref(WK_JADDREF(wk));
break;
case D_JREMREF:
handle_written_jremref(WK_JREMREF(wk));
break;
case D_JMVREF:
rele_jseg(jseg); /* No jsegdep. */
jmvref = WK_JMVREF(wk);
LIST_REMOVE(jmvref, jm_deps);
if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
free_pagedep(jmvref->jm_pagedep);
WORKITEM_FREE(jmvref, D_JMVREF);
break;
case D_JNEWBLK:
handle_written_jnewblk(WK_JNEWBLK(wk));
break;
case D_JFREEBLK:
handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
break;
case D_JTRUNC:
handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
break;
case D_JFSYNC:
rele_jseg(jseg); /* No jsegdep. */
WORKITEM_FREE(wk, D_JFSYNC);
break;
case D_JFREEFRAG:
handle_written_jfreefrag(WK_JFREEFRAG(wk));
break;
default:
panic("handle_written_jseg: Unknown type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
/* Release the self reference so the structure may be freed. */
rele_jseg(jseg);
}
/*
* Determine which jsegs are ready for completion processing. Waits for
* synchronize cache to complete as well as forcing in-order completion
* of journal entries.
*/
static void
complete_jsegs(jseg)
struct jseg *jseg;
{
struct jblocks *jblocks;
struct jseg *jsegn;
jblocks = jseg->js_jblocks;
/*
* Don't allow out of order completions. If this isn't the first
* block wait for it to write before we're done.
*/
if (jseg != jblocks->jb_writeseg)
return;
/* Iterate through available jsegs processing their entries. */
while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
jblocks->jb_oldestwrseq = jseg->js_oldseq;
jsegn = TAILQ_NEXT(jseg, js_next);
complete_jseg(jseg);
jseg = jsegn;
}
jblocks->jb_writeseg = jseg;
/*
* Attempt to free jsegs now that oldestwrseq may have advanced.
*/
free_jsegs(jblocks);
}
/*
* Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle
* the final completions.
*/
static void
handle_written_jseg(jseg, bp)
struct jseg *jseg;
struct buf *bp;
{
if (jseg->js_refs == 0)
panic("handle_written_jseg: No self-reference on %p", jseg);
jseg->js_state |= DEPCOMPLETE;
/*
* We'll never need this buffer again, set flags so it will be
* discarded.
*/
bp->b_flags |= B_INVAL | B_NOCACHE;
pbrelvp(bp);
complete_jsegs(jseg);
}
static inline struct jsegdep *
inoref_jseg(inoref)
struct inoref *inoref;
{
struct jsegdep *jsegdep;
jsegdep = inoref->if_jsegdep;
inoref->if_jsegdep = NULL;
return (jsegdep);
}
/*
* Called once a jremref has made it to stable store. The jremref is marked
* complete and we attempt to free it. Any pagedeps writes sleeping waiting
* for the jremref to complete will be awoken by free_jremref.
*/
static void
handle_written_jremref(jremref)
struct jremref *jremref;
{
struct inodedep *inodedep;
struct jsegdep *jsegdep;
struct dirrem *dirrem;
/* Grab the jsegdep. */
jsegdep = inoref_jseg(&jremref->jr_ref);
/*
* Remove us from the inoref list.
*/
if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
0, &inodedep) == 0)
panic("handle_written_jremref: Lost inodedep");
TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
/*
* Complete the dirrem.
*/
dirrem = jremref->jr_dirrem;
jremref->jr_dirrem = NULL;
LIST_REMOVE(jremref, jr_deps);
jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
jwork_insert(&dirrem->dm_jwork, jsegdep);
if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
(dirrem->dm_state & COMPLETE) != 0)
add_to_worklist(&dirrem->dm_list, 0);
free_jremref(jremref);
}
/*
* Called once a jaddref has made it to stable store. The dependency is
* marked complete and any dependent structures are added to the inode
* bufwait list to be completed as soon as it is written. If a bitmap write
* depends on this entry we move the inode into the inodedephd of the
* bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
*/
static void
handle_written_jaddref(jaddref)
struct jaddref *jaddref;
{
struct jsegdep *jsegdep;
struct inodedep *inodedep;
struct diradd *diradd;
struct mkdir *mkdir;
/* Grab the jsegdep. */
jsegdep = inoref_jseg(&jaddref->ja_ref);
mkdir = NULL;
diradd = NULL;
if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
0, &inodedep) == 0)
panic("handle_written_jaddref: Lost inodedep.");
if (jaddref->ja_diradd == NULL)
panic("handle_written_jaddref: No dependency");
if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
diradd = jaddref->ja_diradd;
WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
} else if (jaddref->ja_state & MKDIR_PARENT) {
mkdir = jaddref->ja_mkdir;
WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
} else if (jaddref->ja_state & MKDIR_BODY)
mkdir = jaddref->ja_mkdir;
else
panic("handle_written_jaddref: Unknown dependency %p",
jaddref->ja_diradd);
jaddref->ja_diradd = NULL; /* also clears ja_mkdir */
/*
* Remove us from the inode list.
*/
TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
/*
* The mkdir may be waiting on the jaddref to clear before freeing.
*/
if (mkdir) {
KASSERT(mkdir->md_list.wk_type == D_MKDIR,
("handle_written_jaddref: Incorrect type for mkdir %s",
TYPENAME(mkdir->md_list.wk_type)));
mkdir->md_jaddref = NULL;
diradd = mkdir->md_diradd;
mkdir->md_state |= DEPCOMPLETE;
complete_mkdir(mkdir);
}
jwork_insert(&diradd->da_jwork, jsegdep);
if (jaddref->ja_state & NEWBLOCK) {
inodedep->id_state |= ONDEPLIST;
LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
inodedep, id_deps);
}
free_jaddref(jaddref);
}
/*
* Called once a jnewblk journal is written. The allocdirect or allocindir
* is placed in the bmsafemap to await notification of a written bitmap. If
* the operation was canceled we add the segdep to the appropriate
* dependency to free the journal space once the canceling operation
* completes.
*/
static void
handle_written_jnewblk(jnewblk)
struct jnewblk *jnewblk;
{
struct bmsafemap *bmsafemap;
struct freefrag *freefrag;
struct freework *freework;
struct jsegdep *jsegdep;
struct newblk *newblk;
/* Grab the jsegdep. */
jsegdep = jnewblk->jn_jsegdep;
jnewblk->jn_jsegdep = NULL;
if (jnewblk->jn_dep == NULL)
panic("handle_written_jnewblk: No dependency for the segdep.");
switch (jnewblk->jn_dep->wk_type) {
case D_NEWBLK:
case D_ALLOCDIRECT:
case D_ALLOCINDIR:
/*
* Add the written block to the bmsafemap so it can
* be notified when the bitmap is on disk.
*/
newblk = WK_NEWBLK(jnewblk->jn_dep);
newblk->nb_jnewblk = NULL;
if ((newblk->nb_state & GOINGAWAY) == 0) {
bmsafemap = newblk->nb_bmsafemap;
newblk->nb_state |= ONDEPLIST;
LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
nb_deps);
}
jwork_insert(&newblk->nb_jwork, jsegdep);
break;
case D_FREEFRAG:
/*
* A newblock being removed by a freefrag when replaced by
* frag extension.
*/
freefrag = WK_FREEFRAG(jnewblk->jn_dep);
freefrag->ff_jdep = NULL;
jwork_insert(&freefrag->ff_jwork, jsegdep);
break;
case D_FREEWORK:
/*
* A direct block was removed by truncate.
*/
freework = WK_FREEWORK(jnewblk->jn_dep);
freework->fw_jnewblk = NULL;
jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
break;
default:
panic("handle_written_jnewblk: Unknown type %d.",
jnewblk->jn_dep->wk_type);
}
jnewblk->jn_dep = NULL;
free_jnewblk(jnewblk);
}
/*
* Cancel a jfreefrag that won't be needed, probably due to colliding with
* an in-flight allocation that has not yet been committed. Divorce us
* from the freefrag and mark it DEPCOMPLETE so that it may be added
* to the worklist.
*/
static void
cancel_jfreefrag(jfreefrag)
struct jfreefrag *jfreefrag;
{
struct freefrag *freefrag;
if (jfreefrag->fr_jsegdep) {
free_jsegdep(jfreefrag->fr_jsegdep);
jfreefrag->fr_jsegdep = NULL;
}
freefrag = jfreefrag->fr_freefrag;
jfreefrag->fr_freefrag = NULL;
free_jfreefrag(jfreefrag);
freefrag->ff_state |= DEPCOMPLETE;
CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
}
/*
* Free a jfreefrag when the parent freefrag is rendered obsolete.
*/
static void
free_jfreefrag(jfreefrag)
struct jfreefrag *jfreefrag;
{
if (jfreefrag->fr_state & INPROGRESS)
WORKLIST_REMOVE(&jfreefrag->fr_list);
else if (jfreefrag->fr_state & ONWORKLIST)
remove_from_journal(&jfreefrag->fr_list);
if (jfreefrag->fr_freefrag != NULL)
panic("free_jfreefrag: Still attached to a freefrag.");
WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
}
/*
* Called when the journal write for a jfreefrag completes. The parent
* freefrag is added to the worklist if this completes its dependencies.
*/
static void
handle_written_jfreefrag(jfreefrag)
struct jfreefrag *jfreefrag;
{
struct jsegdep *jsegdep;
struct freefrag *freefrag;
/* Grab the jsegdep. */
jsegdep = jfreefrag->fr_jsegdep;
jfreefrag->fr_jsegdep = NULL;
freefrag = jfreefrag->fr_freefrag;
if (freefrag == NULL)
panic("handle_written_jfreefrag: No freefrag.");
freefrag->ff_state |= DEPCOMPLETE;
freefrag->ff_jdep = NULL;
jwork_insert(&freefrag->ff_jwork, jsegdep);
if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
add_to_worklist(&freefrag->ff_list, 0);
jfreefrag->fr_freefrag = NULL;
free_jfreefrag(jfreefrag);
}
/*
* Called when the journal write for a jfreeblk completes. The jfreeblk
* is removed from the freeblks list of pending journal writes and the
* jsegdep is moved to the freeblks jwork to be completed when all blocks
* have been reclaimed.
*/
static void
handle_written_jblkdep(jblkdep)
struct jblkdep *jblkdep;
{
struct freeblks *freeblks;
struct jsegdep *jsegdep;
/* Grab the jsegdep. */
jsegdep = jblkdep->jb_jsegdep;
jblkdep->jb_jsegdep = NULL;
freeblks = jblkdep->jb_freeblks;
LIST_REMOVE(jblkdep, jb_deps);
jwork_insert(&freeblks->fb_jwork, jsegdep);
/*
* If the freeblks is all journaled, we can add it to the worklist.
*/
if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
(freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
add_to_worklist(&freeblks->fb_list, WK_NODELAY);
free_jblkdep(jblkdep);
}
static struct jsegdep *
newjsegdep(struct worklist *wk)
{
struct jsegdep *jsegdep;
jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
jsegdep->jd_seg = NULL;
return (jsegdep);
}
static struct jmvref *
newjmvref(dp, ino, oldoff, newoff)
struct inode *dp;
ino_t ino;
off_t oldoff;
off_t newoff;
{
struct jmvref *jmvref;
jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp));
jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
jmvref->jm_parent = dp->i_number;
jmvref->jm_ino = ino;
jmvref->jm_oldoff = oldoff;
jmvref->jm_newoff = newoff;
return (jmvref);
}
/*
* Allocate a new jremref that tracks the removal of ip from dp with the
* directory entry offset of diroff. Mark the entry as ATTACHED and
* DEPCOMPLETE as we have all the information required for the journal write
* and the directory has already been removed from the buffer. The caller
* is responsible for linking the jremref into the pagedep and adding it
* to the journal to write. The MKDIR_PARENT flag is set if we're doing
* a DOTDOT addition so handle_workitem_remove() can properly assign
* the jsegdep when we're done.
*/
static struct jremref *
newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
off_t diroff, nlink_t nlink)
{
struct jremref *jremref;
jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp));
jremref->jr_state = ATTACHED;
newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
nlink, ip->i_mode);
jremref->jr_dirrem = dirrem;
return (jremref);
}
static inline void
newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
nlink_t nlink, uint16_t mode)
{
inoref->if_jsegdep = newjsegdep(&inoref->if_list);
inoref->if_diroff = diroff;
inoref->if_ino = ino;
inoref->if_parent = parent;
inoref->if_nlink = nlink;
inoref->if_mode = mode;
}
/*
* Allocate a new jaddref to track the addition of ino to dp at diroff. The
* directory offset may not be known until later. The caller is responsible
* adding the entry to the journal when this information is available. nlink
* should be the link count prior to the addition and mode is only required
* to have the correct FMT.
*/
static struct jaddref *
newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
uint16_t mode)
{
struct jaddref *jaddref;
jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp));
jaddref->ja_state = ATTACHED;
jaddref->ja_mkdir = NULL;
newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
return (jaddref);
}
/*
* Create a new free dependency for a freework. The caller is responsible
* for adjusting the reference count when it has the lock held. The freedep
* will track an outstanding bitmap write that will ultimately clear the
* freework to continue.
*/
static struct freedep *
newfreedep(struct freework *freework)
{
struct freedep *freedep;
freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
freedep->fd_freework = freework;
return (freedep);
}
/*
* Free a freedep structure once the buffer it is linked to is written. If
* this is the last reference to the freework schedule it for completion.
*/
static void
free_freedep(freedep)
struct freedep *freedep;
{
struct freework *freework;
freework = freedep->fd_freework;
freework->fw_freeblks->fb_cgwait--;
if (--freework->fw_ref == 0)
freework_enqueue(freework);
WORKITEM_FREE(freedep, D_FREEDEP);
}
/*
* Allocate a new freework structure that may be a level in an indirect
* when parent is not NULL or a top level block when it is. The top level
* freework structures are allocated without the per-filesystem lock held
* and before the freeblks is visible outside of softdep_setup_freeblocks().
*/
static struct freework *
newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
struct ufsmount *ump;
struct freeblks *freeblks;
struct freework *parent;
ufs_lbn_t lbn;
ufs2_daddr_t nb;
int frags;
int off;
int journal;
{
struct freework *freework;
freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
freework->fw_state = ATTACHED;
freework->fw_jnewblk = NULL;
freework->fw_freeblks = freeblks;
freework->fw_parent = parent;
freework->fw_lbn = lbn;
freework->fw_blkno = nb;
freework->fw_frags = frags;
freework->fw_indir = NULL;
freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 ||
lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1;
freework->fw_start = freework->fw_off = off;
if (journal)
newjfreeblk(freeblks, lbn, nb, frags);
if (parent == NULL) {
ACQUIRE_LOCK(ump);
WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
freeblks->fb_ref++;
FREE_LOCK(ump);
}
return (freework);
}
/*
* Eliminate a jfreeblk for a block that does not need journaling.
*/
static void
cancel_jfreeblk(freeblks, blkno)
struct freeblks *freeblks;
ufs2_daddr_t blkno;
{
struct jfreeblk *jfreeblk;
struct jblkdep *jblkdep;
LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
if (jblkdep->jb_list.wk_type != D_JFREEBLK)
continue;
jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
if (jfreeblk->jf_blkno == blkno)
break;
}
if (jblkdep == NULL)
return;
CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
free_jsegdep(jblkdep->jb_jsegdep);
LIST_REMOVE(jblkdep, jb_deps);
WORKITEM_FREE(jfreeblk, D_JFREEBLK);
}
/*
* Allocate a new jfreeblk to journal top level block pointer when truncating
* a file. The caller must add this to the worklist when the per-filesystem
* lock is held.
*/
static struct jfreeblk *
newjfreeblk(freeblks, lbn, blkno, frags)
struct freeblks *freeblks;
ufs_lbn_t lbn;
ufs2_daddr_t blkno;
int frags;
{
struct jfreeblk *jfreeblk;
jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
freeblks->fb_list.wk_mp);
jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
jfreeblk->jf_dep.jb_freeblks = freeblks;
jfreeblk->jf_ino = freeblks->fb_inum;
jfreeblk->jf_lbn = lbn;
jfreeblk->jf_blkno = blkno;
jfreeblk->jf_frags = frags;
LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
return (jfreeblk);
}
/*
* The journal is only prepared to handle full-size block numbers, so we
* have to adjust the record to reflect the change to a full-size block.
* For example, suppose we have a block made up of fragments 8-15 and
* want to free its last two fragments. We are given a request that says:
* FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
* where frags are the number of fragments to free and oldfrags are the
* number of fragments to keep. To block align it, we have to change it to
* have a valid full-size blkno, so it becomes:
* FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
*/
static void
adjust_newfreework(freeblks, frag_offset)
struct freeblks *freeblks;
int frag_offset;
{
struct jfreeblk *jfreeblk;
KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
("adjust_newfreework: Missing freeblks dependency"));
jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
jfreeblk->jf_blkno -= frag_offset;
jfreeblk->jf_frags += frag_offset;
}
/*
* Allocate a new jtrunc to track a partial truncation.
*/
static struct jtrunc *
newjtrunc(freeblks, size, extsize)
struct freeblks *freeblks;
off_t size;
int extsize;
{
struct jtrunc *jtrunc;
jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
freeblks->fb_list.wk_mp);
jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
jtrunc->jt_dep.jb_freeblks = freeblks;
jtrunc->jt_ino = freeblks->fb_inum;
jtrunc->jt_size = size;
jtrunc->jt_extsize = extsize;
LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
return (jtrunc);
}
/*
* If we're canceling a new bitmap we have to search for another ref
* to move into the bmsafemap dep. This might be better expressed
* with another structure.
*/
static void
move_newblock_dep(jaddref, inodedep)
struct jaddref *jaddref;
struct inodedep *inodedep;
{
struct inoref *inoref;
struct jaddref *jaddrefn;
jaddrefn = NULL;
for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
inoref = TAILQ_NEXT(inoref, if_deps)) {
if ((jaddref->ja_state & NEWBLOCK) &&
inoref->if_list.wk_type == D_JADDREF) {
jaddrefn = (struct jaddref *)inoref;
break;
}
}
if (jaddrefn == NULL)
return;
jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
jaddrefn->ja_state |= jaddref->ja_state &
(ATTACHED | UNDONE | NEWBLOCK);
jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
jaddref->ja_state |= ATTACHED;
LIST_REMOVE(jaddref, ja_bmdeps);
LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
ja_bmdeps);
}
/*
* Cancel a jaddref either before it has been written or while it is being
* written. This happens when a link is removed before the add reaches
* the disk. The jaddref dependency is kept linked into the bmsafemap
* and inode to prevent the link count or bitmap from reaching the disk
* until handle_workitem_remove() re-adjusts the counts and bitmaps as
* required.
*
* Returns 1 if the canceled addref requires journaling of the remove and
* 0 otherwise.
*/
static int
cancel_jaddref(jaddref, inodedep, wkhd)
struct jaddref *jaddref;
struct inodedep *inodedep;
struct workhead *wkhd;
{
struct inoref *inoref;
struct jsegdep *jsegdep;
int needsj;
KASSERT((jaddref->ja_state & COMPLETE) == 0,
("cancel_jaddref: Canceling complete jaddref"));
if (jaddref->ja_state & (INPROGRESS | COMPLETE))
needsj = 1;
else
needsj = 0;
if (inodedep == NULL)
if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
0, &inodedep) == 0)
panic("cancel_jaddref: Lost inodedep");
/*
* We must adjust the nlink of any reference operation that follows
* us so that it is consistent with the in-memory reference. This
* ensures that inode nlink rollbacks always have the correct link.
*/
if (needsj == 0) {
for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
inoref = TAILQ_NEXT(inoref, if_deps)) {
if (inoref->if_state & GOINGAWAY)
break;
inoref->if_nlink--;
}
}
jsegdep = inoref_jseg(&jaddref->ja_ref);
if (jaddref->ja_state & NEWBLOCK)
move_newblock_dep(jaddref, inodedep);
wake_worklist(&jaddref->ja_list);
jaddref->ja_mkdir = NULL;
if (jaddref->ja_state & INPROGRESS) {
jaddref->ja_state &= ~INPROGRESS;
WORKLIST_REMOVE(&jaddref->ja_list);
jwork_insert(wkhd, jsegdep);
} else {
free_jsegdep(jsegdep);
if (jaddref->ja_state & DEPCOMPLETE)
remove_from_journal(&jaddref->ja_list);
}
jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
/*
* Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
* can arrange for them to be freed with the bitmap. Otherwise we
* no longer need this addref attached to the inoreflst and it
* will incorrectly adjust nlink if we leave it.
*/
if ((jaddref->ja_state & NEWBLOCK) == 0) {
TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
if_deps);
jaddref->ja_state |= COMPLETE;
free_jaddref(jaddref);
return (needsj);
}
/*
* Leave the head of the list for jsegdeps for fast merging.
*/
if (LIST_FIRST(wkhd) != NULL) {
jaddref->ja_state |= ONWORKLIST;
LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
} else
WORKLIST_INSERT(wkhd, &jaddref->ja_list);
return (needsj);
}
/*
* Attempt to free a jaddref structure when some work completes. This
* should only succeed once the entry is written and all dependencies have
* been notified.
*/
static void
free_jaddref(jaddref)
struct jaddref *jaddref;
{
if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
return;
if (jaddref->ja_ref.if_jsegdep)
panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
jaddref, jaddref->ja_state);
if (jaddref->ja_state & NEWBLOCK)
LIST_REMOVE(jaddref, ja_bmdeps);
if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
panic("free_jaddref: Bad state %p(0x%X)",
jaddref, jaddref->ja_state);
if (jaddref->ja_mkdir != NULL)
panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
WORKITEM_FREE(jaddref, D_JADDREF);
}
/*
* Free a jremref structure once it has been written or discarded.
*/
static void
free_jremref(jremref)
struct jremref *jremref;
{
if (jremref->jr_ref.if_jsegdep)
free_jsegdep(jremref->jr_ref.if_jsegdep);
if (jremref->jr_state & INPROGRESS)
panic("free_jremref: IO still pending");
WORKITEM_FREE(jremref, D_JREMREF);
}
/*
* Free a jnewblk structure.
*/
static void
free_jnewblk(jnewblk)
struct jnewblk *jnewblk;
{
if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
return;
LIST_REMOVE(jnewblk, jn_deps);
if (jnewblk->jn_dep != NULL)
panic("free_jnewblk: Dependency still attached.");
WORKITEM_FREE(jnewblk, D_JNEWBLK);
}
/*
* Cancel a jnewblk which has been been made redundant by frag extension.
*/
static void
cancel_jnewblk(jnewblk, wkhd)
struct jnewblk *jnewblk;
struct workhead *wkhd;
{
struct jsegdep *jsegdep;
CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
jsegdep = jnewblk->jn_jsegdep;
if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
panic("cancel_jnewblk: Invalid state");
jnewblk->jn_jsegdep = NULL;
jnewblk->jn_dep = NULL;
jnewblk->jn_state |= GOINGAWAY;
if (jnewblk->jn_state & INPROGRESS) {
jnewblk->jn_state &= ~INPROGRESS;
WORKLIST_REMOVE(&jnewblk->jn_list);
jwork_insert(wkhd, jsegdep);
} else {
free_jsegdep(jsegdep);
remove_from_journal(&jnewblk->jn_list);
}
wake_worklist(&jnewblk->jn_list);
WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
}
static void
free_jblkdep(jblkdep)
struct jblkdep *jblkdep;
{
if (jblkdep->jb_list.wk_type == D_JFREEBLK)
WORKITEM_FREE(jblkdep, D_JFREEBLK);
else if (jblkdep->jb_list.wk_type == D_JTRUNC)
WORKITEM_FREE(jblkdep, D_JTRUNC);
else
panic("free_jblkdep: Unexpected type %s",
TYPENAME(jblkdep->jb_list.wk_type));
}
/*
* Free a single jseg once it is no longer referenced in memory or on
* disk. Reclaim journal blocks and dependencies waiting for the segment
* to disappear.
*/
static void
free_jseg(jseg, jblocks)
struct jseg *jseg;
struct jblocks *jblocks;
{
struct freework *freework;
/*
* Free freework structures that were lingering to indicate freed
* indirect blocks that forced journal write ordering on reallocate.
*/
while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
indirblk_remove(freework);
if (jblocks->jb_oldestseg == jseg)
jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
KASSERT(LIST_EMPTY(&jseg->js_entries),
("free_jseg: Freed jseg has valid entries."));
WORKITEM_FREE(jseg, D_JSEG);
}
/*
* Free all jsegs that meet the criteria for being reclaimed and update
* oldestseg.
*/
static void
free_jsegs(jblocks)
struct jblocks *jblocks;
{
struct jseg *jseg;
/*
* Free only those jsegs which have none allocated before them to
* preserve the journal space ordering.
*/
while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
/*
* Only reclaim space when nothing depends on this journal
* set and another set has written that it is no longer
* valid.
*/
if (jseg->js_refs != 0) {
jblocks->jb_oldestseg = jseg;
return;
}
if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
break;
if (jseg->js_seq > jblocks->jb_oldestwrseq)
break;
/*
* We can free jsegs that didn't write entries when
* oldestwrseq == js_seq.
*/
if (jseg->js_seq == jblocks->jb_oldestwrseq &&
jseg->js_cnt != 0)
break;
free_jseg(jseg, jblocks);
}
/*
* If we exited the loop above we still must discover the
* oldest valid segment.
*/
if (jseg)
for (jseg = jblocks->jb_oldestseg; jseg != NULL;
jseg = TAILQ_NEXT(jseg, js_next))
if (jseg->js_refs != 0)
break;
jblocks->jb_oldestseg = jseg;
/*
* The journal has no valid records but some jsegs may still be
* waiting on oldestwrseq to advance. We force a small record
* out to permit these lingering records to be reclaimed.
*/
if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
jblocks->jb_needseg = 1;
}
/*
* Release one reference to a jseg and free it if the count reaches 0. This
* should eventually reclaim journal space as well.
*/
static void
rele_jseg(jseg)
struct jseg *jseg;
{
KASSERT(jseg->js_refs > 0,
("free_jseg: Invalid refcnt %d", jseg->js_refs));
if (--jseg->js_refs != 0)
return;
free_jsegs(jseg->js_jblocks);
}
/*
* Release a jsegdep and decrement the jseg count.
*/
static void
free_jsegdep(jsegdep)
struct jsegdep *jsegdep;
{
if (jsegdep->jd_seg)
rele_jseg(jsegdep->jd_seg);
WORKITEM_FREE(jsegdep, D_JSEGDEP);
}
/*
* Wait for a journal item to make it to disk. Initiate journal processing
* if required.
*/
static int
jwait(wk, waitfor)
struct worklist *wk;
int waitfor;
{
LOCK_OWNED(VFSTOUFS(wk->wk_mp));
/*
* Blocking journal waits cause slow synchronous behavior. Record
* stats on the frequency of these blocking operations.
*/
if (waitfor == MNT_WAIT) {
stat_journal_wait++;
switch (wk->wk_type) {
case D_JREMREF:
case D_JMVREF:
stat_jwait_filepage++;
break;
case D_JTRUNC:
case D_JFREEBLK:
stat_jwait_freeblks++;
break;
case D_JNEWBLK:
stat_jwait_newblk++;
break;
case D_JADDREF:
stat_jwait_inode++;
break;
default:
break;
}
}
/*
* If IO has not started we process the journal. We can't mark the
* worklist item as IOWAITING because we drop the lock while
* processing the journal and the worklist entry may be freed after
* this point. The caller may call back in and re-issue the request.
*/
if ((wk->wk_state & INPROGRESS) == 0) {
softdep_process_journal(wk->wk_mp, wk, waitfor);
if (waitfor != MNT_WAIT)
return (EBUSY);
return (0);
}
if (waitfor != MNT_WAIT)
return (EBUSY);
wait_worklist(wk, "jwait");
return (0);
}
/*
* Lookup an inodedep based on an inode pointer and set the nlinkdelta as
* appropriate. This is a convenience function to reduce duplicate code
* for the setup and revert functions below.
*/
static struct inodedep *
inodedep_lookup_ip(ip)
struct inode *ip;
{
struct inodedep *inodedep;
KASSERT(ip->i_nlink >= ip->i_effnlink,
("inodedep_lookup_ip: bad delta"));
(void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC,
&inodedep);
inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
return (inodedep);
}
/*
* Called prior to creating a new inode and linking it to a directory. The
* jaddref structure must already be allocated by softdep_setup_inomapdep
* and it is discovered here so we can initialize the mode and update
* nlinkdelta.
*/
void
softdep_setup_create(dp, ip)
struct inode *dp;
struct inode *ip;
{
struct inodedep *inodedep;
struct jaddref *jaddref;
struct vnode *dvp;
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
("softdep_setup_create called on non-softdep filesystem"));
KASSERT(ip->i_nlink == 1,
("softdep_setup_create: Invalid link count."));
dvp = ITOV(dp);
ACQUIRE_LOCK(ITOUMP(dp));
inodedep = inodedep_lookup_ip(ip);
if (DOINGSUJ(dvp)) {
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
inoreflst);
KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
("softdep_setup_create: No addref structure present."));
}
softdep_prelink(dvp, NULL);
FREE_LOCK(ITOUMP(dp));
}
/*
* Create a jaddref structure to track the addition of a DOTDOT link when
* we are reparenting an inode as part of a rename. This jaddref will be
* found by softdep_setup_directory_change. Adjusts nlinkdelta for
* non-journaling softdep.
*/
void
softdep_setup_dotdot_link(dp, ip)
struct inode *dp;
struct inode *ip;
{
struct inodedep *inodedep;
struct jaddref *jaddref;
struct vnode *dvp;
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
("softdep_setup_dotdot_link called on non-softdep filesystem"));
dvp = ITOV(dp);
jaddref = NULL;
/*
* We don't set MKDIR_PARENT as this is not tied to a mkdir and
* is used as a normal link would be.
*/
if (DOINGSUJ(dvp))
jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
dp->i_effnlink - 1, dp->i_mode);
ACQUIRE_LOCK(ITOUMP(dp));
inodedep = inodedep_lookup_ip(dp);
if (jaddref)
TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
if_deps);
softdep_prelink(dvp, ITOV(ip));
FREE_LOCK(ITOUMP(dp));
}
/*
* Create a jaddref structure to track a new link to an inode. The directory
* offset is not known until softdep_setup_directory_add or
* softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling
* softdep.
*/
void
softdep_setup_link(dp, ip)
struct inode *dp;
struct inode *ip;
{
struct inodedep *inodedep;
struct jaddref *jaddref;
struct vnode *dvp;
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
("softdep_setup_link called on non-softdep filesystem"));
dvp = ITOV(dp);
jaddref = NULL;
if (DOINGSUJ(dvp))
jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
ip->i_mode);
ACQUIRE_LOCK(ITOUMP(dp));
inodedep = inodedep_lookup_ip(ip);
if (jaddref)
TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
if_deps);
softdep_prelink(dvp, ITOV(ip));
FREE_LOCK(ITOUMP(dp));
}
/*
* Called to create the jaddref structures to track . and .. references as
* well as lookup and further initialize the incomplete jaddref created
* by softdep_setup_inomapdep when the inode was allocated. Adjusts
* nlinkdelta for non-journaling softdep.
*/
void
softdep_setup_mkdir(dp, ip)
struct inode *dp;
struct inode *ip;
{
struct inodedep *inodedep;
struct jaddref *dotdotaddref;
struct jaddref *dotaddref;
struct jaddref *jaddref;
struct vnode *dvp;
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
("softdep_setup_mkdir called on non-softdep filesystem"));
dvp = ITOV(dp);
dotaddref = dotdotaddref = NULL;
if (DOINGSUJ(dvp)) {
dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
ip->i_mode);
dotaddref->ja_state |= MKDIR_BODY;
dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
dp->i_effnlink - 1, dp->i_mode);
dotdotaddref->ja_state |= MKDIR_PARENT;
}
ACQUIRE_LOCK(ITOUMP(dp));
inodedep = inodedep_lookup_ip(ip);
if (DOINGSUJ(dvp)) {
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
inoreflst);
KASSERT(jaddref != NULL,
("softdep_setup_mkdir: No addref structure present."));
KASSERT(jaddref->ja_parent == dp->i_number,
("softdep_setup_mkdir: bad parent %ju",
(uintmax_t)jaddref->ja_parent));
TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
if_deps);
}
inodedep = inodedep_lookup_ip(dp);
if (DOINGSUJ(dvp))
TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
&dotdotaddref->ja_ref, if_deps);
softdep_prelink(ITOV(dp), NULL);
FREE_LOCK(ITOUMP(dp));
}
/*
* Called to track nlinkdelta of the inode and parent directories prior to
* unlinking a directory.
*/
void
softdep_setup_rmdir(dp, ip)
struct inode *dp;
struct inode *ip;
{
struct vnode *dvp;
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
("softdep_setup_rmdir called on non-softdep filesystem"));
dvp = ITOV(dp);
ACQUIRE_LOCK(ITOUMP(dp));
(void) inodedep_lookup_ip(ip);
(void) inodedep_lookup_ip(dp);
softdep_prelink(dvp, ITOV(ip));
FREE_LOCK(ITOUMP(dp));
}
/*
* Called to track nlinkdelta of the inode and parent directories prior to
* unlink.
*/
void
softdep_setup_unlink(dp, ip)
struct inode *dp;
struct inode *ip;
{
struct vnode *dvp;
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
("softdep_setup_unlink called on non-softdep filesystem"));
dvp = ITOV(dp);
ACQUIRE_LOCK(ITOUMP(dp));
(void) inodedep_lookup_ip(ip);
(void) inodedep_lookup_ip(dp);
softdep_prelink(dvp, ITOV(ip));
FREE_LOCK(ITOUMP(dp));
}
/*
* Called to release the journal structures created by a failed non-directory
* creation. Adjusts nlinkdelta for non-journaling softdep.
*/
void
softdep_revert_create(dp, ip)
struct inode *dp;
struct inode *ip;
{
struct inodedep *inodedep;
struct jaddref *jaddref;
struct vnode *dvp;
KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0,
("softdep_revert_create called on non-softdep filesystem"));
dvp = ITOV(dp);
ACQUIRE_LOCK(ITOUMP(dp));
inodedep = inodedep_lookup_ip(ip);
if (DOINGSUJ(dvp)) {
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
inoreflst);
KASSERT(jaddref->ja_parent == dp->i_number,
("softdep_revert_create: addref parent mismatch"));
cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
}
FREE_LOCK(ITOUMP(dp));
}
/*
* Called to release the journal structures created by a failed link
* addition. Adjusts nlinkdelta for non-journaling softdep.
*/
void
softdep_revert_link(dp, ip)
struct inode *dp;
struct inode *ip;
{
struct inodedep *inodedep;
struct jaddref *jaddref;
struct vnode *dvp;
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
("softdep_revert_link called on non-softdep filesystem"));
dvp = ITOV(dp);
ACQUIRE_LOCK(ITOUMP(dp));
inodedep = inodedep_lookup_ip(ip);
if (DOINGSUJ(dvp)) {
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
inoreflst);
KASSERT(jaddref->ja_parent == dp->i_number,
("softdep_revert_link: addref parent mismatch"));
cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
}
FREE_LOCK(ITOUMP(dp));
}
/*
* Called to release the journal structures created by a failed mkdir
* attempt. Adjusts nlinkdelta for non-journaling softdep.
*/
void
softdep_revert_mkdir(dp, ip)
struct inode *dp;
struct inode *ip;
{
struct inodedep *inodedep;
struct jaddref *jaddref;
struct jaddref *dotaddref;
struct vnode *dvp;
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
("softdep_revert_mkdir called on non-softdep filesystem"));
dvp = ITOV(dp);
ACQUIRE_LOCK(ITOUMP(dp));
inodedep = inodedep_lookup_ip(dp);
if (DOINGSUJ(dvp)) {
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
inoreflst);
KASSERT(jaddref->ja_parent == ip->i_number,
("softdep_revert_mkdir: dotdot addref parent mismatch"));
cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
}
inodedep = inodedep_lookup_ip(ip);
if (DOINGSUJ(dvp)) {
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
inoreflst);
KASSERT(jaddref->ja_parent == dp->i_number,
("softdep_revert_mkdir: addref parent mismatch"));
dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
inoreflst, if_deps);
cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
KASSERT(dotaddref->ja_parent == ip->i_number,
("softdep_revert_mkdir: dot addref parent mismatch"));
cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
}
FREE_LOCK(ITOUMP(dp));
}
/*
* Called to correct nlinkdelta after a failed rmdir.
*/
void
softdep_revert_rmdir(dp, ip)
struct inode *dp;
struct inode *ip;
{
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
("softdep_revert_rmdir called on non-softdep filesystem"));
ACQUIRE_LOCK(ITOUMP(dp));
(void) inodedep_lookup_ip(ip);
(void) inodedep_lookup_ip(dp);
FREE_LOCK(ITOUMP(dp));
}
/*
* Protecting the freemaps (or bitmaps).
*
* To eliminate the need to execute fsck before mounting a filesystem
* after a power failure, one must (conservatively) guarantee that the
* on-disk copy of the bitmaps never indicate that a live inode or block is
* free. So, when a block or inode is allocated, the bitmap should be
* updated (on disk) before any new pointers. When a block or inode is
* freed, the bitmap should not be updated until all pointers have been
* reset. The latter dependency is handled by the delayed de-allocation
* approach described below for block and inode de-allocation. The former
* dependency is handled by calling the following procedure when a block or
* inode is allocated. When an inode is allocated an "inodedep" is created
* with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
* Each "inodedep" is also inserted into the hash indexing structure so
* that any additional link additions can be made dependent on the inode
* allocation.
*
* The ufs filesystem maintains a number of free block counts (e.g., per
* cylinder group, per cylinder and per <cylinder, rotational position> pair)
* in addition to the bitmaps. These counts are used to improve efficiency
* during allocation and therefore must be consistent with the bitmaps.
* There is no convenient way to guarantee post-crash consistency of these
* counts with simple update ordering, for two main reasons: (1) The counts
* and bitmaps for a single cylinder group block are not in the same disk
* sector. If a disk write is interrupted (e.g., by power failure), one may
* be written and the other not. (2) Some of the counts are located in the
* superblock rather than the cylinder group block. So, we focus our soft
* updates implementation on protecting the bitmaps. When mounting a
* filesystem, we recompute the auxiliary counts from the bitmaps.
*/
/*
* Called just after updating the cylinder group block to allocate an inode.
*/
void
softdep_setup_inomapdep(bp, ip, newinum, mode)
struct buf *bp; /* buffer for cylgroup block with inode map */
struct inode *ip; /* inode related to allocation */
ino_t newinum; /* new inode number being allocated */
int mode;
{
struct inodedep *inodedep;
struct bmsafemap *bmsafemap;
struct jaddref *jaddref;
struct mount *mp;
struct fs *fs;
mp = ITOVFS(ip);
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_setup_inomapdep called on non-softdep filesystem"));
fs = VFSTOUFS(mp)->um_fs;
jaddref = NULL;
/*
* Allocate the journal reference add structure so that the bitmap
* can be dependent on it.
*/
if (MOUNTEDSUJ(mp)) {
jaddref = newjaddref(ip, newinum, 0, 0, mode);
jaddref->ja_state |= NEWBLOCK;
}
/*
* Create a dependency for the newly allocated inode.
* Panic if it already exists as something is seriously wrong.
* Otherwise add it to the dependency list for the buffer holding
* the cylinder group map from which it was allocated.
*
* We have to preallocate a bmsafemap entry in case it is needed
* in bmsafemap_lookup since once we allocate the inodedep, we
* have to finish initializing it before we can FREE_LOCK().
* By preallocating, we avoid FREE_LOCK() while doing a malloc
* in bmsafemap_lookup. We cannot call bmsafemap_lookup before
* creating the inodedep as it can be freed during the time
* that we FREE_LOCK() while allocating the inodedep. We must
* call workitem_alloc() before entering the locked section as
* it also acquires the lock and we must avoid trying doing so
* recursively.
*/
bmsafemap = malloc(sizeof(struct bmsafemap),
M_BMSAFEMAP, M_SOFTDEP_FLAGS);
workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
ACQUIRE_LOCK(ITOUMP(ip));
if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
panic("softdep_setup_inomapdep: dependency %p for new"
"inode already exists", inodedep);
bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
if (jaddref) {
LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
if_deps);
} else {
inodedep->id_state |= ONDEPLIST;
LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
}
inodedep->id_bmsafemap = bmsafemap;
inodedep->id_state &= ~DEPCOMPLETE;
FREE_LOCK(ITOUMP(ip));
}
/*
* Called just after updating the cylinder group block to
* allocate block or fragment.
*/
void
softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
struct buf *bp; /* buffer for cylgroup block with block map */
struct mount *mp; /* filesystem doing allocation */
ufs2_daddr_t newblkno; /* number of newly allocated block */
int frags; /* Number of fragments. */
int oldfrags; /* Previous number of fragments for extend. */
{
struct newblk *newblk;
struct bmsafemap *bmsafemap;
struct jnewblk *jnewblk;
struct ufsmount *ump;
struct fs *fs;
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_setup_blkmapdep called on non-softdep filesystem"));
ump = VFSTOUFS(mp);
fs = ump->um_fs;
jnewblk = NULL;
/*
* Create a dependency for the newly allocated block.
* Add it to the dependency list for the buffer holding
* the cylinder group map from which it was allocated.
*/
if (MOUNTEDSUJ(mp)) {
jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
jnewblk->jn_state = ATTACHED;
jnewblk->jn_blkno = newblkno;
jnewblk->jn_frags = frags;
jnewblk->jn_oldfrags = oldfrags;
#ifdef INVARIANTS
{
struct cg *cgp;
uint8_t *blksfree;
long bno;
int i;
cgp = (struct cg *)bp->b_data;
blksfree = cg_blksfree(cgp);
bno = dtogd(fs, jnewblk->jn_blkno);
for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
i++) {
if (isset(blksfree, bno + i))
panic("softdep_setup_blkmapdep: "
"free fragment %d from %d-%d "
"state 0x%X dep %p", i,
jnewblk->jn_oldfrags,
jnewblk->jn_frags,
jnewblk->jn_state,
jnewblk->jn_dep);
}
}
#endif
}
CTR3(KTR_SUJ,
"softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
newblkno, frags, oldfrags);
ACQUIRE_LOCK(ump);
if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
panic("softdep_setup_blkmapdep: found block");
newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
dtog(fs, newblkno), NULL);
if (jnewblk) {
jnewblk->jn_dep = (struct worklist *)newblk;
LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
} else {
newblk->nb_state |= ONDEPLIST;
LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
}
newblk->nb_bmsafemap = bmsafemap;
newblk->nb_jnewblk = jnewblk;
FREE_LOCK(ump);
}
#define BMSAFEMAP_HASH(ump, cg) \
(&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
static int
bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
struct bmsafemap_hashhead *bmsafemaphd;
int cg;
struct bmsafemap **bmsafemapp;
{
struct bmsafemap *bmsafemap;
LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
if (bmsafemap->sm_cg == cg)
break;
if (bmsafemap) {
*bmsafemapp = bmsafemap;
return (1);
}
*bmsafemapp = NULL;
return (0);
}
/*
* Find the bmsafemap associated with a cylinder group buffer.
* If none exists, create one. The buffer must be locked when
* this routine is called and this routine must be called with
* the softdep lock held. To avoid giving up the lock while
* allocating a new bmsafemap, a preallocated bmsafemap may be
* provided. If it is provided but not needed, it is freed.
*/
static struct bmsafemap *
bmsafemap_lookup(mp, bp, cg, newbmsafemap)
struct mount *mp;
struct buf *bp;
int cg;
struct bmsafemap *newbmsafemap;
{
struct bmsafemap_hashhead *bmsafemaphd;
struct bmsafemap *bmsafemap, *collision;
struct worklist *wk;
struct ufsmount *ump;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
LIST_FOREACH(wk, &bp->b_dep, wk_list) {
if (wk->wk_type == D_BMSAFEMAP) {
if (newbmsafemap)
WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
return (WK_BMSAFEMAP(wk));
}
}
bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
if (newbmsafemap)
WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
return (bmsafemap);
}
if (newbmsafemap) {
bmsafemap = newbmsafemap;
} else {
FREE_LOCK(ump);
bmsafemap = malloc(sizeof(struct bmsafemap),
M_BMSAFEMAP, M_SOFTDEP_FLAGS);
workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
ACQUIRE_LOCK(ump);
}
bmsafemap->sm_buf = bp;
LIST_INIT(&bmsafemap->sm_inodedephd);
LIST_INIT(&bmsafemap->sm_inodedepwr);
LIST_INIT(&bmsafemap->sm_newblkhd);
LIST_INIT(&bmsafemap->sm_newblkwr);
LIST_INIT(&bmsafemap->sm_jaddrefhd);
LIST_INIT(&bmsafemap->sm_jnewblkhd);
LIST_INIT(&bmsafemap->sm_freehd);
LIST_INIT(&bmsafemap->sm_freewr);
if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
return (collision);
}
bmsafemap->sm_cg = cg;
LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
return (bmsafemap);
}
/*
* Direct block allocation dependencies.
*
* When a new block is allocated, the corresponding disk locations must be
* initialized (with zeros or new data) before the on-disk inode points to
* them. Also, the freemap from which the block was allocated must be
* updated (on disk) before the inode's pointer. These two dependencies are
* independent of each other and are needed for all file blocks and indirect
* blocks that are pointed to directly by the inode. Just before the
* "in-core" version of the inode is updated with a newly allocated block
* number, a procedure (below) is called to setup allocation dependency
* structures. These structures are removed when the corresponding
* dependencies are satisfied or when the block allocation becomes obsolete
* (i.e., the file is deleted, the block is de-allocated, or the block is a
* fragment that gets upgraded). All of these cases are handled in
* procedures described later.
*
* When a file extension causes a fragment to be upgraded, either to a larger
* fragment or to a full block, the on-disk location may change (if the
* previous fragment could not simply be extended). In this case, the old
* fragment must be de-allocated, but not until after the inode's pointer has
* been updated. In most cases, this is handled by later procedures, which
* will construct a "freefrag" structure to be added to the workitem queue
* when the inode update is complete (or obsolete). The main exception to
* this is when an allocation occurs while a pending allocation dependency
* (for the same block pointer) remains. This case is handled in the main
* allocation dependency setup procedure by immediately freeing the
* unreferenced fragments.
*/
void
softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
struct inode *ip; /* inode to which block is being added */
ufs_lbn_t off; /* block pointer within inode */
ufs2_daddr_t newblkno; /* disk block number being added */
ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */
long newsize; /* size of new block */
long oldsize; /* size of new block */
struct buf *bp; /* bp for allocated block */
{
struct allocdirect *adp, *oldadp;
struct allocdirectlst *adphead;
struct freefrag *freefrag;
struct inodedep *inodedep;
struct pagedep *pagedep;
struct jnewblk *jnewblk;
struct newblk *newblk;
struct mount *mp;
ufs_lbn_t lbn;
lbn = bp->b_lblkno;
mp = ITOVFS(ip);
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_setup_allocdirect called on non-softdep filesystem"));
if (oldblkno && oldblkno != newblkno)
/*
* The usual case is that a smaller fragment that
* was just allocated has been replaced with a bigger
* fragment or a full-size block. If it is marked as
* B_DELWRI, the current contents have not been written
* to disk. It is possible that the block was written
* earlier, but very uncommon. If the block has never
* been written, there is no need to send a BIO_DELETE
* for it when it is freed. The gain from avoiding the
* TRIMs for the common case of unwritten blocks far
* exceeds the cost of the write amplification for the
* uncommon case of failing to send a TRIM for a block
* that had been written.
*/
freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
(bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
else
freefrag = NULL;
CTR6(KTR_SUJ,
"softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
"off %jd newsize %ld oldsize %d",
ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
ACQUIRE_LOCK(ITOUMP(ip));
if (off >= UFS_NDADDR) {
if (lbn > 0)
panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
lbn, off);
/* allocating an indirect block */
if (oldblkno != 0)
panic("softdep_setup_allocdirect: non-zero indir");
} else {
if (off != lbn)
panic("softdep_setup_allocdirect: lbn %jd != off %jd",
lbn, off);
/*
* Allocating a direct block.
*
* If we are allocating a directory block, then we must
* allocate an associated pagedep to track additions and
* deletions.
*/
if ((ip->i_mode & IFMT) == IFDIR)
pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
&pagedep);
}
if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
panic("softdep_setup_allocdirect: lost block");
KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
("softdep_setup_allocdirect: newblk already initialized"));
/*
* Convert the newblk to an allocdirect.
*/
WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
adp = (struct allocdirect *)newblk;
newblk->nb_freefrag = freefrag;
adp->ad_offset = off;
adp->ad_oldblkno = oldblkno;
adp->ad_newsize = newsize;
adp->ad_oldsize = oldsize;
/*
* Finish initializing the journal.
*/
if ((jnewblk = newblk->nb_jnewblk) != NULL) {
jnewblk->jn_ino = ip->i_number;
jnewblk->jn_lbn = lbn;
add_to_journal(&jnewblk->jn_list);
}
if (freefrag && freefrag->ff_jdep != NULL &&
freefrag->ff_jdep->wk_type == D_JFREEFRAG)
add_to_journal(freefrag->ff_jdep);
inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
adp->ad_inodedep = inodedep;
WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
/*
* The list of allocdirects must be kept in sorted and ascending
* order so that the rollback routines can quickly determine the
* first uncommitted block (the size of the file stored on disk
* ends at the end of the lowest committed fragment, or if there
* are no fragments, at the end of the highest committed block).
* Since files generally grow, the typical case is that the new
* block is to be added at the end of the list. We speed this
* special case by checking against the last allocdirect in the
* list before laboriously traversing the list looking for the
* insertion point.
*/
adphead = &inodedep->id_newinoupdt;
oldadp = TAILQ_LAST(adphead, allocdirectlst);
if (oldadp == NULL || oldadp->ad_offset <= off) {
/* insert at end of list */
TAILQ_INSERT_TAIL(adphead, adp, ad_next);
if (oldadp != NULL && oldadp->ad_offset == off)
allocdirect_merge(adphead, adp, oldadp);
FREE_LOCK(ITOUMP(ip));
return;
}
TAILQ_FOREACH(oldadp, adphead, ad_next) {
if (oldadp->ad_offset >= off)
break;
}
if (oldadp == NULL)
panic("softdep_setup_allocdirect: lost entry");
/* insert in middle of list */
TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
if (oldadp->ad_offset == off)
allocdirect_merge(adphead, adp, oldadp);
FREE_LOCK(ITOUMP(ip));
}
/*
* Merge a newer and older journal record to be stored either in a
* newblock or freefrag. This handles aggregating journal records for
* fragment allocation into a second record as well as replacing a
* journal free with an aborted journal allocation. A segment for the
* oldest record will be placed on wkhd if it has been written. If not
* the segment for the newer record will suffice.
*/
static struct worklist *
jnewblk_merge(new, old, wkhd)
struct worklist *new;
struct worklist *old;
struct workhead *wkhd;
{
struct jnewblk *njnewblk;
struct jnewblk *jnewblk;
/* Handle NULLs to simplify callers. */
if (new == NULL)
return (old);
if (old == NULL)
return (new);
/* Replace a jfreefrag with a jnewblk. */
if (new->wk_type == D_JFREEFRAG) {
if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
panic("jnewblk_merge: blkno mismatch: %p, %p",
old, new);
cancel_jfreefrag(WK_JFREEFRAG(new));
return (old);
}
if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
panic("jnewblk_merge: Bad type: old %d new %d\n",
old->wk_type, new->wk_type);
/*
* Handle merging of two jnewblk records that describe
* different sets of fragments in the same block.
*/
jnewblk = WK_JNEWBLK(old);
njnewblk = WK_JNEWBLK(new);
if (jnewblk->jn_blkno != njnewblk->jn_blkno)
panic("jnewblk_merge: Merging disparate blocks.");
/*
* The record may be rolled back in the cg.
*/
if (jnewblk->jn_state & UNDONE) {
jnewblk->jn_state &= ~UNDONE;
njnewblk->jn_state |= UNDONE;
njnewblk->jn_state &= ~ATTACHED;
}
/*
* We modify the newer addref and free the older so that if neither
* has been written the most up-to-date copy will be on disk. If
* both have been written but rolled back we only temporarily need
* one of them to fix the bits when the cg write completes.
*/
jnewblk->jn_state |= ATTACHED | COMPLETE;
njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
cancel_jnewblk(jnewblk, wkhd);
WORKLIST_REMOVE(&jnewblk->jn_list);
free_jnewblk(jnewblk);
return (new);
}
/*
* Replace an old allocdirect dependency with a newer one.
*/
static void
allocdirect_merge(adphead, newadp, oldadp)
struct allocdirectlst *adphead; /* head of list holding allocdirects */
struct allocdirect *newadp; /* allocdirect being added */
struct allocdirect *oldadp; /* existing allocdirect being checked */
{
struct worklist *wk;
struct freefrag *freefrag;
freefrag = NULL;
LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
newadp->ad_oldsize != oldadp->ad_newsize ||
newadp->ad_offset >= UFS_NDADDR)
panic("%s %jd != new %jd || old size %ld != new %ld",
"allocdirect_merge: old blkno",
(intmax_t)newadp->ad_oldblkno,
(intmax_t)oldadp->ad_newblkno,
newadp->ad_oldsize, oldadp->ad_newsize);
newadp->ad_oldblkno = oldadp->ad_oldblkno;
newadp->ad_oldsize = oldadp->ad_oldsize;
/*
* If the old dependency had a fragment to free or had never
* previously had a block allocated, then the new dependency
* can immediately post its freefrag and adopt the old freefrag.
* This action is done by swapping the freefrag dependencies.
* The new dependency gains the old one's freefrag, and the
* old one gets the new one and then immediately puts it on
* the worklist when it is freed by free_newblk. It is
* not possible to do this swap when the old dependency had a
* non-zero size but no previous fragment to free. This condition
* arises when the new block is an extension of the old block.
* Here, the first part of the fragment allocated to the new
* dependency is part of the block currently claimed on disk by
* the old dependency, so cannot legitimately be freed until the
* conditions for the new dependency are fulfilled.
*/
freefrag = newadp->ad_freefrag;
if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
newadp->ad_freefrag = oldadp->ad_freefrag;
oldadp->ad_freefrag = freefrag;
}
/*
* If we are tracking a new directory-block allocation,
* move it from the old allocdirect to the new allocdirect.
*/
if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
WORKLIST_REMOVE(wk);
if (!LIST_EMPTY(&oldadp->ad_newdirblk))
panic("allocdirect_merge: extra newdirblk");
WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
}
TAILQ_REMOVE(adphead, oldadp, ad_next);
/*
* We need to move any journal dependencies over to the freefrag
* that releases this block if it exists. Otherwise we are
* extending an existing block and we'll wait until that is
* complete to release the journal space and extend the
* new journal to cover this old space as well.
*/
if (freefrag == NULL) {
if (oldadp->ad_newblkno != newadp->ad_newblkno)
panic("allocdirect_merge: %jd != %jd",
oldadp->ad_newblkno, newadp->ad_newblkno);
newadp->ad_block.nb_jnewblk = (struct jnewblk *)
jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
&oldadp->ad_block.nb_jnewblk->jn_list,
&newadp->ad_block.nb_jwork);
oldadp->ad_block.nb_jnewblk = NULL;
cancel_newblk(&oldadp->ad_block, NULL,
&newadp->ad_block.nb_jwork);
} else {
wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
&freefrag->ff_list, &freefrag->ff_jwork);
freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
&freefrag->ff_jwork);
}
free_newblk(&oldadp->ad_block);
}
/*
* Allocate a jfreefrag structure to journal a single block free.
*/
static struct jfreefrag *
newjfreefrag(freefrag, ip, blkno, size, lbn)
struct freefrag *freefrag;
struct inode *ip;
ufs2_daddr_t blkno;
long size;
ufs_lbn_t lbn;
{
struct jfreefrag *jfreefrag;
struct fs *fs;
fs = ITOFS(ip);
jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
M_SOFTDEP_FLAGS);
workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip));
jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
jfreefrag->fr_ino = ip->i_number;
jfreefrag->fr_lbn = lbn;
jfreefrag->fr_blkno = blkno;
jfreefrag->fr_frags = numfrags(fs, size);
jfreefrag->fr_freefrag = freefrag;
return (jfreefrag);
}
/*
* Allocate a new freefrag structure.
*/
static struct freefrag *
newfreefrag(ip, blkno, size, lbn, key)
struct inode *ip;
ufs2_daddr_t blkno;
long size;
ufs_lbn_t lbn;
u_long key;
{
struct freefrag *freefrag;
struct ufsmount *ump;
struct fs *fs;
CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
ip->i_number, blkno, size, lbn);
ump = ITOUMP(ip);
fs = ump->um_fs;
if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
panic("newfreefrag: frag size");
freefrag = malloc(sizeof(struct freefrag),
M_FREEFRAG, M_SOFTDEP_FLAGS);
workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump));
freefrag->ff_state = ATTACHED;
LIST_INIT(&freefrag->ff_jwork);
freefrag->ff_inum = ip->i_number;
freefrag->ff_vtype = ITOV(ip)->v_type;
freefrag->ff_blkno = blkno;
freefrag->ff_fragsize = size;
freefrag->ff_key = key;
if (MOUNTEDSUJ(UFSTOVFS(ump))) {
freefrag->ff_jdep = (struct worklist *)
newjfreefrag(freefrag, ip, blkno, size, lbn);
} else {
freefrag->ff_state |= DEPCOMPLETE;
freefrag->ff_jdep = NULL;
}
return (freefrag);
}
/*
* This workitem de-allocates fragments that were replaced during
* file block allocation.
*/
static void
handle_workitem_freefrag(freefrag)
struct freefrag *freefrag;
{
struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
struct workhead wkhd;
CTR3(KTR_SUJ,
"handle_workitem_freefrag: ino %d blkno %jd size %ld",
freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
/*
* It would be illegal to add new completion items to the
* freefrag after it was schedule to be done so it must be
* safe to modify the list head here.
*/
LIST_INIT(&wkhd);
ACQUIRE_LOCK(ump);
LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
/*
* If the journal has not been written we must cancel it here.
*/
if (freefrag->ff_jdep) {
if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
panic("handle_workitem_freefrag: Unexpected type %d\n",
freefrag->ff_jdep->wk_type);
cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
}
FREE_LOCK(ump);
ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype,
&wkhd, freefrag->ff_key);
ACQUIRE_LOCK(ump);
WORKITEM_FREE(freefrag, D_FREEFRAG);
FREE_LOCK(ump);
}
/*
* Set up a dependency structure for an external attributes data block.
* This routine follows much of the structure of softdep_setup_allocdirect.
* See the description of softdep_setup_allocdirect above for details.
*/
void
softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
struct inode *ip;
ufs_lbn_t off;
ufs2_daddr_t newblkno;
ufs2_daddr_t oldblkno;
long newsize;
long oldsize;
struct buf *bp;
{
struct allocdirect *adp, *oldadp;
struct allocdirectlst *adphead;
struct freefrag *freefrag;
struct inodedep *inodedep;
struct jnewblk *jnewblk;
struct newblk *newblk;
struct mount *mp;
struct ufsmount *ump;
ufs_lbn_t lbn;
mp = ITOVFS(ip);
ump = VFSTOUFS(mp);
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_setup_allocext called on non-softdep filesystem"));
KASSERT(off < UFS_NXADDR,
("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off));
lbn = bp->b_lblkno;
if (oldblkno && oldblkno != newblkno)
/*
* The usual case is that a smaller fragment that
* was just allocated has been replaced with a bigger
* fragment or a full-size block. If it is marked as
* B_DELWRI, the current contents have not been written
* to disk. It is possible that the block was written
* earlier, but very uncommon. If the block has never
* been written, there is no need to send a BIO_DELETE
* for it when it is freed. The gain from avoiding the
* TRIMs for the common case of unwritten blocks far
* exceeds the cost of the write amplification for the
* uncommon case of failing to send a TRIM for a block
* that had been written.
*/
freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
(bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
else
freefrag = NULL;
ACQUIRE_LOCK(ump);
if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
panic("softdep_setup_allocext: lost block");
KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
("softdep_setup_allocext: newblk already initialized"));
/*
* Convert the newblk to an allocdirect.
*/
WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
adp = (struct allocdirect *)newblk;
newblk->nb_freefrag = freefrag;
adp->ad_offset = off;
adp->ad_oldblkno = oldblkno;
adp->ad_newsize = newsize;
adp->ad_oldsize = oldsize;
adp->ad_state |= EXTDATA;
/*
* Finish initializing the journal.
*/
if ((jnewblk = newblk->nb_jnewblk) != NULL) {
jnewblk->jn_ino = ip->i_number;
jnewblk->jn_lbn = lbn;
add_to_journal(&jnewblk->jn_list);
}
if (freefrag && freefrag->ff_jdep != NULL &&
freefrag->ff_jdep->wk_type == D_JFREEFRAG)
add_to_journal(freefrag->ff_jdep);
inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
adp->ad_inodedep = inodedep;
WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
/*
* The list of allocdirects must be kept in sorted and ascending
* order so that the rollback routines can quickly determine the
* first uncommitted block (the size of the file stored on disk
* ends at the end of the lowest committed fragment, or if there
* are no fragments, at the end of the highest committed block).
* Since files generally grow, the typical case is that the new
* block is to be added at the end of the list. We speed this
* special case by checking against the last allocdirect in the
* list before laboriously traversing the list looking for the
* insertion point.
*/
adphead = &inodedep->id_newextupdt;
oldadp = TAILQ_LAST(adphead, allocdirectlst);
if (oldadp == NULL || oldadp->ad_offset <= off) {
/* insert at end of list */
TAILQ_INSERT_TAIL(adphead, adp, ad_next);
if (oldadp != NULL && oldadp->ad_offset == off)
allocdirect_merge(adphead, adp, oldadp);
FREE_LOCK(ump);
return;
}
TAILQ_FOREACH(oldadp, adphead, ad_next) {
if (oldadp->ad_offset >= off)
break;
}
if (oldadp == NULL)
panic("softdep_setup_allocext: lost entry");
/* insert in middle of list */
TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
if (oldadp->ad_offset == off)
allocdirect_merge(adphead, adp, oldadp);
FREE_LOCK(ump);
}
/*
* Indirect block allocation dependencies.
*
* The same dependencies that exist for a direct block also exist when
* a new block is allocated and pointed to by an entry in a block of
* indirect pointers. The undo/redo states described above are also
* used here. Because an indirect block contains many pointers that
* may have dependencies, a second copy of the entire in-memory indirect
* block is kept. The buffer cache copy is always completely up-to-date.
* The second copy, which is used only as a source for disk writes,
* contains only the safe pointers (i.e., those that have no remaining
* update dependencies). The second copy is freed when all pointers
* are safe. The cache is not allowed to replace indirect blocks with
* pending update dependencies. If a buffer containing an indirect
* block with dependencies is written, these routines will mark it
* dirty again. It can only be successfully written once all the
* dependencies are removed. The ffs_fsync routine in conjunction with
* softdep_sync_metadata work together to get all the dependencies
* removed so that a file can be successfully written to disk. Three
* procedures are used when setting up indirect block pointer
* dependencies. The division is necessary because of the organization
* of the "balloc" routine and because of the distinction between file
* pages and file metadata blocks.
*/
/*
* Allocate a new allocindir structure.
*/
static struct allocindir *
newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
struct inode *ip; /* inode for file being extended */
int ptrno; /* offset of pointer in indirect block */
ufs2_daddr_t newblkno; /* disk block number being added */
ufs2_daddr_t oldblkno; /* previous block number, 0 if none */
ufs_lbn_t lbn;
{
struct newblk *newblk;
struct allocindir *aip;
struct freefrag *freefrag;
struct jnewblk *jnewblk;
if (oldblkno)
freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn,
SINGLETON_KEY);
else
freefrag = NULL;
ACQUIRE_LOCK(ITOUMP(ip));
if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0)
panic("new_allocindir: lost block");
KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
("newallocindir: newblk already initialized"));
WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
newblk->nb_freefrag = freefrag;
aip = (struct allocindir *)newblk;
aip->ai_offset = ptrno;
aip->ai_oldblkno = oldblkno;
aip->ai_lbn = lbn;
if ((jnewblk = newblk->nb_jnewblk) != NULL) {
jnewblk->jn_ino = ip->i_number;
jnewblk->jn_lbn = lbn;
add_to_journal(&jnewblk->jn_list);
}
if (freefrag && freefrag->ff_jdep != NULL &&
freefrag->ff_jdep->wk_type == D_JFREEFRAG)
add_to_journal(freefrag->ff_jdep);
return (aip);
}
/*
* Called just before setting an indirect block pointer
* to a newly allocated file page.
*/
void
softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
struct inode *ip; /* inode for file being extended */
ufs_lbn_t lbn; /* allocated block number within file */
struct buf *bp; /* buffer with indirect blk referencing page */
int ptrno; /* offset of pointer in indirect block */
ufs2_daddr_t newblkno; /* disk block number being added */
ufs2_daddr_t oldblkno; /* previous block number, 0 if none */
struct buf *nbp; /* buffer holding allocated page */
{
struct inodedep *inodedep;
struct freefrag *freefrag;
struct allocindir *aip;
struct pagedep *pagedep;
struct mount *mp;
struct ufsmount *ump;
mp = ITOVFS(ip);
ump = VFSTOUFS(mp);
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_setup_allocindir_page called on non-softdep filesystem"));
KASSERT(lbn == nbp->b_lblkno,
("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
lbn, bp->b_lblkno));
CTR4(KTR_SUJ,
"softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
"lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
/*
* If we are allocating a directory page, then we must
* allocate an associated pagedep to track additions and
* deletions.
*/
if ((ip->i_mode & IFMT) == IFDIR)
pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
FREE_LOCK(ump);
if (freefrag)
handle_workitem_freefrag(freefrag);
}
/*
* Called just before setting an indirect block pointer to a
* newly allocated indirect block.
*/
void
softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
struct buf *nbp; /* newly allocated indirect block */
struct inode *ip; /* inode for file being extended */
struct buf *bp; /* indirect block referencing allocated block */
int ptrno; /* offset of pointer in indirect block */
ufs2_daddr_t newblkno; /* disk block number being added */
{
struct inodedep *inodedep;
struct allocindir *aip;
struct ufsmount *ump;
ufs_lbn_t lbn;
ump = ITOUMP(ip);
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
("softdep_setup_allocindir_meta called on non-softdep filesystem"));
CTR3(KTR_SUJ,
"softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
ip->i_number, newblkno, ptrno);
lbn = nbp->b_lblkno;
ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
panic("softdep_setup_allocindir_meta: Block already existed");
FREE_LOCK(ump);
}
static void
indirdep_complete(indirdep)
struct indirdep *indirdep;
{
struct allocindir *aip;
LIST_REMOVE(indirdep, ir_next);
indirdep->ir_state |= DEPCOMPLETE;
while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
LIST_REMOVE(aip, ai_next);
free_newblk(&aip->ai_block);
}
/*
* If this indirdep is not attached to a buf it was simply waiting
* on completion to clear completehd. free_indirdep() asserts
* that nothing is dangling.
*/
if ((indirdep->ir_state & ONWORKLIST) == 0)
free_indirdep(indirdep);
}
static struct indirdep *
indirdep_lookup(mp, ip, bp)
struct mount *mp;
struct inode *ip;
struct buf *bp;
{
struct indirdep *indirdep, *newindirdep;
struct newblk *newblk;
struct ufsmount *ump;
struct worklist *wk;
struct fs *fs;
ufs2_daddr_t blkno;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
indirdep = NULL;
newindirdep = NULL;
fs = ump->um_fs;
for (;;) {
LIST_FOREACH(wk, &bp->b_dep, wk_list) {
if (wk->wk_type != D_INDIRDEP)
continue;
indirdep = WK_INDIRDEP(wk);
break;
}
/* Found on the buffer worklist, no new structure to free. */
if (indirdep != NULL && newindirdep == NULL)
return (indirdep);
if (indirdep != NULL && newindirdep != NULL)
panic("indirdep_lookup: simultaneous create");
/* None found on the buffer and a new structure is ready. */
if (indirdep == NULL && newindirdep != NULL)
break;
/* None found and no new structure available. */
FREE_LOCK(ump);
newindirdep = malloc(sizeof(struct indirdep),
M_INDIRDEP, M_SOFTDEP_FLAGS);
workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
newindirdep->ir_state = ATTACHED;
if (I_IS_UFS1(ip))
newindirdep->ir_state |= UFS1FMT;
TAILQ_INIT(&newindirdep->ir_trunc);
newindirdep->ir_saveddata = NULL;
LIST_INIT(&newindirdep->ir_deplisthd);
LIST_INIT(&newindirdep->ir_donehd);
LIST_INIT(&newindirdep->ir_writehd);
LIST_INIT(&newindirdep->ir_completehd);
if (bp->b_blkno == bp->b_lblkno) {
ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
NULL, NULL);
bp->b_blkno = blkno;
}
newindirdep->ir_freeblks = NULL;
newindirdep->ir_savebp =
getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
newindirdep->ir_bp = bp;
BUF_KERNPROC(newindirdep->ir_savebp);
bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
ACQUIRE_LOCK(ump);
}
indirdep = newindirdep;
WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
/*
* If the block is not yet allocated we don't set DEPCOMPLETE so
* that we don't free dependencies until the pointers are valid.
* This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
* than using the hash.
*/
if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
else
indirdep->ir_state |= DEPCOMPLETE;
return (indirdep);
}
/*
* Called to finish the allocation of the "aip" allocated
* by one of the two routines above.
*/
static struct freefrag *
setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
struct buf *bp; /* in-memory copy of the indirect block */
struct inode *ip; /* inode for file being extended */
struct inodedep *inodedep; /* Inodedep for ip */
struct allocindir *aip; /* allocindir allocated by the above routines */
ufs_lbn_t lbn; /* Logical block number for this block. */
{
struct fs *fs;
struct indirdep *indirdep;
struct allocindir *oldaip;
struct freefrag *freefrag;
struct mount *mp;
struct ufsmount *ump;
mp = ITOVFS(ip);
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
fs = ump->um_fs;
if (bp->b_lblkno >= 0)
panic("setup_allocindir_phase2: not indir blk");
KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
indirdep = indirdep_lookup(mp, ip, bp);
KASSERT(indirdep->ir_savebp != NULL,
("setup_allocindir_phase2 NULL ir_savebp"));
aip->ai_indirdep = indirdep;
/*
* Check for an unwritten dependency for this indirect offset. If
* there is, merge the old dependency into the new one. This happens
* as a result of reallocblk only.
*/
freefrag = NULL;
if (aip->ai_oldblkno != 0) {
LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
if (oldaip->ai_offset == aip->ai_offset) {
freefrag = allocindir_merge(aip, oldaip);
goto done;
}
}
LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
if (oldaip->ai_offset == aip->ai_offset) {
freefrag = allocindir_merge(aip, oldaip);
goto done;
}
}
}
done:
LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
return (freefrag);
}
/*
* Merge two allocindirs which refer to the same block. Move newblock
* dependencies and setup the freefrags appropriately.
*/
static struct freefrag *
allocindir_merge(aip, oldaip)
struct allocindir *aip;
struct allocindir *oldaip;
{
struct freefrag *freefrag;
struct worklist *wk;
if (oldaip->ai_newblkno != aip->ai_oldblkno)
panic("allocindir_merge: blkno");
aip->ai_oldblkno = oldaip->ai_oldblkno;
freefrag = aip->ai_freefrag;
aip->ai_freefrag = oldaip->ai_freefrag;
oldaip->ai_freefrag = NULL;
KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
/*
* If we are tracking a new directory-block allocation,
* move it from the old allocindir to the new allocindir.
*/
if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
WORKLIST_REMOVE(wk);
if (!LIST_EMPTY(&oldaip->ai_newdirblk))
panic("allocindir_merge: extra newdirblk");
WORKLIST_INSERT(&aip->ai_newdirblk, wk);
}
/*
* We can skip journaling for this freefrag and just complete
* any pending journal work for the allocindir that is being
* removed after the freefrag completes.
*/
if (freefrag->ff_jdep)
cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
LIST_REMOVE(oldaip, ai_next);
freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
&freefrag->ff_list, &freefrag->ff_jwork);
free_newblk(&oldaip->ai_block);
return (freefrag);
}
static inline void
setup_freedirect(freeblks, ip, i, needj)
struct freeblks *freeblks;
struct inode *ip;
int i;
int needj;
{
struct ufsmount *ump;
ufs2_daddr_t blkno;
int frags;
blkno = DIP(ip, i_db[i]);
if (blkno == 0)
return;
DIP_SET(ip, i_db[i], 0);
ump = ITOUMP(ip);
frags = sblksize(ump->um_fs, ip->i_size, i);
frags = numfrags(ump->um_fs, frags);
newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj);
}
static inline void
setup_freeext(freeblks, ip, i, needj)
struct freeblks *freeblks;
struct inode *ip;
int i;
int needj;
{
struct ufsmount *ump;
ufs2_daddr_t blkno;
int frags;
blkno = ip->i_din2->di_extb[i];
if (blkno == 0)
return;
ip->i_din2->di_extb[i] = 0;
ump = ITOUMP(ip);
frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i);
frags = numfrags(ump->um_fs, frags);
newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
}
static inline void
setup_freeindir(freeblks, ip, i, lbn, needj)
struct freeblks *freeblks;
struct inode *ip;
int i;
ufs_lbn_t lbn;
int needj;
{
struct ufsmount *ump;
ufs2_daddr_t blkno;
blkno = DIP(ip, i_ib[i]);
if (blkno == 0)
return;
DIP_SET(ip, i_ib[i], 0);
ump = ITOUMP(ip);
newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag,
0, needj);
}
static inline struct freeblks *
newfreeblks(mp, ip)
struct mount *mp;
struct inode *ip;
{
struct freeblks *freeblks;
freeblks = malloc(sizeof(struct freeblks),
M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
LIST_INIT(&freeblks->fb_jblkdephd);
LIST_INIT(&freeblks->fb_jwork);
freeblks->fb_ref = 0;
freeblks->fb_cgwait = 0;
freeblks->fb_state = ATTACHED;
freeblks->fb_uid = ip->i_uid;
freeblks->fb_inum = ip->i_number;
freeblks->fb_vtype = ITOV(ip)->v_type;
freeblks->fb_modrev = DIP(ip, i_modrev);
freeblks->fb_devvp = ITODEVVP(ip);
freeblks->fb_chkcnt = 0;
freeblks->fb_len = 0;
return (freeblks);
}
static void
trunc_indirdep(indirdep, freeblks, bp, off)
struct indirdep *indirdep;
struct freeblks *freeblks;
struct buf *bp;
int off;
{
struct allocindir *aip, *aipn;
/*
* The first set of allocindirs won't be in savedbp.
*/
LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
if (aip->ai_offset > off)
cancel_allocindir(aip, bp, freeblks, 1);
LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
if (aip->ai_offset > off)
cancel_allocindir(aip, bp, freeblks, 1);
/*
* These will exist in savedbp.
*/
LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
if (aip->ai_offset > off)
cancel_allocindir(aip, NULL, freeblks, 0);
LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
if (aip->ai_offset > off)
cancel_allocindir(aip, NULL, freeblks, 0);
}
/*
* Follow the chain of indirects down to lastlbn creating a freework
* structure for each. This will be used to start indir_trunc() at
* the right offset and create the journal records for the parrtial
* truncation. A second step will handle the truncated dependencies.
*/
static int
setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
struct freeblks *freeblks;
struct inode *ip;
ufs_lbn_t lbn;
ufs_lbn_t lastlbn;
ufs2_daddr_t blkno;
{
struct indirdep *indirdep;
struct indirdep *indirn;
struct freework *freework;
struct newblk *newblk;
struct mount *mp;
struct ufsmount *ump;
struct buf *bp;
uint8_t *start;
uint8_t *end;
ufs_lbn_t lbnadd;
int level;
int error;
int off;
freework = NULL;
if (blkno == 0)
return (0);
mp = freeblks->fb_list.wk_mp;
ump = VFSTOUFS(mp);
/*
* Here, calls to VOP_BMAP() will fail. However, we already have
* the on-disk address, so we just pass it to bread() instead of
* having bread() attempt to calculate it using VOP_BMAP().
*/
error = breadn_flags(ITOV(ip), lbn, blkptrtodb(ump, blkno),
(int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
if (error)
return (error);
level = lbn_level(lbn);
lbnadd = lbn_offset(ump->um_fs, level);
/*
* Compute the offset of the last block we want to keep. Store
* in the freework the first block we want to completely free.
*/
off = (lastlbn - -(lbn + level)) / lbnadd;
if (off + 1 == NINDIR(ump->um_fs))
goto nowork;
freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0);
/*
* Link the freework into the indirdep. This will prevent any new
* allocations from proceeding until we are finished with the
* truncate and the block is written.
*/
ACQUIRE_LOCK(ump);
indirdep = indirdep_lookup(mp, ip, bp);
if (indirdep->ir_freeblks)
panic("setup_trunc_indir: indirdep already truncated.");
TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
freework->fw_indir = indirdep;
/*
* Cancel any allocindirs that will not make it to disk.
* We have to do this for all copies of the indirdep that
* live on this newblk.
*/
if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0,
&newblk) == 0)
panic("setup_trunc_indir: lost block");
LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
trunc_indirdep(indirn, freeblks, bp, off);
} else
trunc_indirdep(indirdep, freeblks, bp, off);
FREE_LOCK(ump);
/*
* Creation is protected by the buf lock. The saveddata is only
* needed if a full truncation follows a partial truncation but it
* is difficult to allocate in that case so we fetch it anyway.
*/
if (indirdep->ir_saveddata == NULL)
indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
M_SOFTDEP_FLAGS);
nowork:
/* Fetch the blkno of the child and the zero start offset. */
if (I_IS_UFS1(ip)) {
blkno = ((ufs1_daddr_t *)bp->b_data)[off];
start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
} else {
blkno = ((ufs2_daddr_t *)bp->b_data)[off];
start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
}
if (freework) {
/* Zero the truncated pointers. */
end = bp->b_data + bp->b_bcount;
bzero(start, end - start);
bdwrite(bp);
} else
bqrelse(bp);
if (level == 0)
return (0);
lbn++; /* adjust level */
lbn -= (off * lbnadd);
return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
}
/*
* Complete the partial truncation of an indirect block setup by
* setup_trunc_indir(). This zeros the truncated pointers in the saved
* copy and writes them to disk before the freeblks is allowed to complete.
*/
static void
complete_trunc_indir(freework)
struct freework *freework;
{
struct freework *fwn;
struct indirdep *indirdep;
struct ufsmount *ump;
struct buf *bp;
uintptr_t start;
int count;
ump = VFSTOUFS(freework->fw_list.wk_mp);
LOCK_OWNED(ump);
indirdep = freework->fw_indir;
for (;;) {
bp = indirdep->ir_bp;
/* See if the block was discarded. */
if (bp == NULL)
break;
/* Inline part of getdirtybuf(). We dont want bremfree. */
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
break;
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
LOCK_PTR(ump)) == 0)
BUF_UNLOCK(bp);
ACQUIRE_LOCK(ump);
}
freework->fw_state |= DEPCOMPLETE;
TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
/*
* Zero the pointers in the saved copy.
*/
if (indirdep->ir_state & UFS1FMT)
start = sizeof(ufs1_daddr_t);
else
start = sizeof(ufs2_daddr_t);
start *= freework->fw_start;
count = indirdep->ir_savebp->b_bcount - start;
start += (uintptr_t)indirdep->ir_savebp->b_data;
bzero((char *)start, count);
/*
* We need to start the next truncation in the list if it has not
* been started yet.
*/
fwn = TAILQ_FIRST(&indirdep->ir_trunc);
if (fwn != NULL) {
if (fwn->fw_freeblks == indirdep->ir_freeblks)
TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
if ((fwn->fw_state & ONWORKLIST) == 0)
freework_enqueue(fwn);
}
/*
* If bp is NULL the block was fully truncated, restore
* the saved block list otherwise free it if it is no
* longer needed.
*/
if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
if (bp == NULL)
bcopy(indirdep->ir_saveddata,
indirdep->ir_savebp->b_data,
indirdep->ir_savebp->b_bcount);
free(indirdep->ir_saveddata, M_INDIRDEP);
indirdep->ir_saveddata = NULL;
}
/*
* When bp is NULL there is a full truncation pending. We
* must wait for this full truncation to be journaled before
* we can release this freework because the disk pointers will
* never be written as zero.
*/
if (bp == NULL) {
if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
handle_written_freework(freework);
else
WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
&freework->fw_list);
} else {
/* Complete when the real copy is written. */
WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
BUF_UNLOCK(bp);
}
}
/*
* Calculate the number of blocks we are going to release where datablocks
* is the current total and length is the new file size.
*/
static ufs2_daddr_t
blkcount(fs, datablocks, length)
struct fs *fs;
ufs2_daddr_t datablocks;
off_t length;
{
off_t totblks, numblks;
totblks = 0;
numblks = howmany(length, fs->fs_bsize);
if (numblks <= UFS_NDADDR) {
totblks = howmany(length, fs->fs_fsize);
goto out;
}
totblks = blkstofrags(fs, numblks);
numblks -= UFS_NDADDR;
/*
* Count all single, then double, then triple indirects required.
* Subtracting one indirects worth of blocks for each pass
* acknowledges one of each pointed to by the inode.
*/
for (;;) {
totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
numblks -= NINDIR(fs);
if (numblks <= 0)
break;
numblks = howmany(numblks, NINDIR(fs));
}
out:
totblks = fsbtodb(fs, totblks);
/*
* Handle sparse files. We can't reclaim more blocks than the inode
* references. We will correct it later in handle_complete_freeblks()
* when we know the real count.
*/
if (totblks > datablocks)
return (0);
return (datablocks - totblks);
}
/*
* Handle freeblocks for journaled softupdate filesystems.
*
* Contrary to normal softupdates, we must preserve the block pointers in
* indirects until their subordinates are free. This is to avoid journaling
* every block that is freed which may consume more space than the journal
* itself. The recovery program will see the free block journals at the
* base of the truncated area and traverse them to reclaim space. The
* pointers in the inode may be cleared immediately after the journal
* records are written because each direct and indirect pointer in the
* inode is recorded in a journal. This permits full truncation to proceed
* asynchronously. The write order is journal -> inode -> cgs -> indirects.
*
* The algorithm is as follows:
* 1) Traverse the in-memory state and create journal entries to release
* the relevant blocks and full indirect trees.
* 2) Traverse the indirect block chain adding partial truncation freework
* records to indirects in the path to lastlbn. The freework will
* prevent new allocation dependencies from being satisfied in this
* indirect until the truncation completes.
* 3) Read and lock the inode block, performing an update with the new size
* and pointers. This prevents truncated data from becoming valid on
* disk through step 4.
* 4) Reap unsatisfied dependencies that are beyond the truncated area,
* eliminate journal work for those records that do not require it.
* 5) Schedule the journal records to be written followed by the inode block.
* 6) Allocate any necessary frags for the end of file.
* 7) Zero any partially truncated blocks.
*
* From this truncation proceeds asynchronously using the freework and
* indir_trunc machinery. The file will not be extended again into a
* partially truncated indirect block until all work is completed but
* the normal dependency mechanism ensures that it is rolled back/forward
* as appropriate. Further truncation may occur without delay and is
* serialized in indir_trunc().
*/
void
softdep_journal_freeblocks(ip, cred, length, flags)
struct inode *ip; /* The inode whose length is to be reduced */
struct ucred *cred;
off_t length; /* The new length for the file */
int flags; /* IO_EXT and/or IO_NORMAL */
{
struct freeblks *freeblks, *fbn;
struct worklist *wk, *wkn;
struct inodedep *inodedep;
struct jblkdep *jblkdep;
struct allocdirect *adp, *adpn;
struct ufsmount *ump;
struct fs *fs;
struct buf *bp;
struct vnode *vp;
struct mount *mp;
ufs2_daddr_t extblocks, datablocks;
ufs_lbn_t tmpval, lbn, lastlbn;
int frags, lastoff, iboff, allocblock, needj, error, i;
ump = ITOUMP(ip);
mp = UFSTOVFS(ump);
fs = ump->um_fs;
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_journal_freeblocks called on non-softdep filesystem"));
vp = ITOV(ip);
needj = 1;
iboff = -1;
allocblock = 0;
extblocks = 0;
datablocks = 0;
frags = 0;
freeblks = newfreeblks(mp, ip);
ACQUIRE_LOCK(ump);
/*
* If we're truncating a removed file that will never be written
* we don't need to journal the block frees. The canceled journals
* for the allocations will suffice.
*/
inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
length == 0)
needj = 0;
CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
ip->i_number, length, needj);
FREE_LOCK(ump);
/*
* Calculate the lbn that we are truncating to. This results in -1
* if we're truncating the 0 bytes. So it is the last lbn we want
* to keep, not the first lbn we want to truncate.
*/
lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
lastoff = blkoff(fs, length);
/*
* Compute frags we are keeping in lastlbn. 0 means all.
*/
if (lastlbn >= 0 && lastlbn < UFS_NDADDR) {
frags = fragroundup(fs, lastoff);
/* adp offset of last valid allocdirect. */
iboff = lastlbn;
} else if (lastlbn > 0)
iboff = UFS_NDADDR;
if (fs->fs_magic == FS_UFS2_MAGIC)
extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
/*
* Handle normal data blocks and indirects. This section saves
* values used after the inode update to complete frag and indirect
* truncation.
*/
if ((flags & IO_NORMAL) != 0) {
/*
* Handle truncation of whole direct and indirect blocks.
*/
for (i = iboff + 1; i < UFS_NDADDR; i++)
setup_freedirect(freeblks, ip, i, needj);
for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
i < UFS_NIADDR;
i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
/* Release a whole indirect tree. */
if (lbn > lastlbn) {
setup_freeindir(freeblks, ip, i, -lbn -i,
needj);
continue;
}
iboff = i + UFS_NDADDR;
/*
* Traverse partially truncated indirect tree.
*/
if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
setup_trunc_indir(freeblks, ip, -lbn - i,
lastlbn, DIP(ip, i_ib[i]));
}
/*
* Handle partial truncation to a frag boundary.
*/
if (frags) {
ufs2_daddr_t blkno;
long oldfrags;
oldfrags = blksize(fs, ip, lastlbn);
blkno = DIP(ip, i_db[lastlbn]);
if (blkno && oldfrags != frags) {
oldfrags -= frags;
oldfrags = numfrags(fs, oldfrags);
blkno += numfrags(fs, frags);
newfreework(ump, freeblks, NULL, lastlbn,
blkno, oldfrags, 0, needj);
if (needj)
adjust_newfreework(freeblks,
numfrags(fs, frags));
} else if (blkno == 0)
allocblock = 1;
}
/*
* Add a journal record for partial truncate if we are
* handling indirect blocks. Non-indirects need no extra
* journaling.
*/
if (length != 0 && lastlbn >= UFS_NDADDR) {
ip->i_flag |= IN_TRUNCATED;
newjtrunc(freeblks, length, 0);
}
ip->i_size = length;
DIP_SET(ip, i_size, ip->i_size);
datablocks = DIP(ip, i_blocks) - extblocks;
if (length != 0)
datablocks = blkcount(fs, datablocks, length);
freeblks->fb_len = length;
}
if ((flags & IO_EXT) != 0) {
for (i = 0; i < UFS_NXADDR; i++)
setup_freeext(freeblks, ip, i, needj);
ip->i_din2->di_extsize = 0;
datablocks += extblocks;
}
#ifdef QUOTA
/* Reference the quotas in case the block count is wrong in the end. */
quotaref(vp, freeblks->fb_quota);
(void) chkdq(ip, -datablocks, NOCRED, FORCE);
#endif
freeblks->fb_chkcnt = -datablocks;
UFS_LOCK(ump);
fs->fs_pendingblocks += datablocks;
UFS_UNLOCK(ump);
DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
/*
* Handle truncation of incomplete alloc direct dependencies. We
* hold the inode block locked to prevent incomplete dependencies
* from reaching the disk while we are eliminating those that
* have been truncated. This is a partially inlined ffs_update().
*/
ufs_itimes(vp);
ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
(int)fs->fs_bsize, cred, &bp);
if (error) {
softdep_error("softdep_journal_freeblocks", error);
return;
}
if (bp->b_bufsize == fs->fs_bsize)
bp->b_flags |= B_CLUSTEROK;
softdep_update_inodeblock(ip, bp, 0);
if (ump->um_fstype == UFS1) {
*((struct ufs1_dinode *)bp->b_data +
ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
} else {
ffs_update_dinode_ckhash(fs, ip->i_din2);
*((struct ufs2_dinode *)bp->b_data +
ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
}
ACQUIRE_LOCK(ump);
(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
if ((inodedep->id_state & IOSTARTED) != 0)
panic("softdep_setup_freeblocks: inode busy");
/*
* Add the freeblks structure to the list of operations that
* must await the zero'ed inode being written to disk. If we
* still have a bitmap dependency (needj), then the inode
* has never been written to disk, so we can process the
* freeblks below once we have deleted the dependencies.
*/
if (needj)
WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
else
freeblks->fb_state |= COMPLETE;
if ((flags & IO_NORMAL) != 0) {
TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
if (adp->ad_offset > iboff)
cancel_allocdirect(&inodedep->id_inoupdt, adp,
freeblks);
/*
* Truncate the allocdirect. We could eliminate
* or modify journal records as well.
*/
else if (adp->ad_offset == iboff && frags)
adp->ad_newsize = frags;
}
}
if ((flags & IO_EXT) != 0)
while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
cancel_allocdirect(&inodedep->id_extupdt, adp,
freeblks);
/*
* Scan the bufwait list for newblock dependencies that will never
* make it to disk.
*/
LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
if (wk->wk_type != D_ALLOCDIRECT)
continue;
adp = WK_ALLOCDIRECT(wk);
if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
cancel_jfreeblk(freeblks, adp->ad_newblkno);
cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
}
}
/*
* Add journal work.
*/
LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
add_to_journal(&jblkdep->jb_list);
FREE_LOCK(ump);
bdwrite(bp);
/*
* Truncate dependency structures beyond length.
*/
trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
/*
* This is only set when we need to allocate a fragment because
* none existed at the end of a frag-sized file. It handles only
* allocating a new, zero filled block.
*/
if (allocblock) {
ip->i_size = length - lastoff;
DIP_SET(ip, i_size, ip->i_size);
error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
if (error != 0) {
softdep_error("softdep_journal_freeblks", error);
return;
}
ip->i_size = length;
DIP_SET(ip, i_size, length);
ip->i_flag |= IN_CHANGE | IN_UPDATE;
allocbuf(bp, frags);
ffs_update(vp, 0);
bawrite(bp);
} else if (lastoff != 0 && vp->v_type != VDIR) {
int size;
/*
* Zero the end of a truncated frag or block.
*/
size = sblksize(fs, length, lastlbn);
error = bread(vp, lastlbn, size, cred, &bp);
if (error) {
softdep_error("softdep_journal_freeblks", error);
return;
}
bzero((char *)bp->b_data + lastoff, size - lastoff);
bawrite(bp);
}
ACQUIRE_LOCK(ump);
inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
/*
* We zero earlier truncations so they don't erroneously
* update i_blocks.
*/
if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
fbn->fb_len = 0;
if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
LIST_EMPTY(&freeblks->fb_jblkdephd))
freeblks->fb_state |= INPROGRESS;
else
freeblks = NULL;
FREE_LOCK(ump);
if (freeblks)
handle_workitem_freeblocks(freeblks, 0);
trunc_pages(ip, length, extblocks, flags);
}
/*
* Flush a JOP_SYNC to the journal.
*/
void
softdep_journal_fsync(ip)
struct inode *ip;
{
struct jfsync *jfsync;
struct ufsmount *ump;
ump = ITOUMP(ip);
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
("softdep_journal_fsync called on non-softdep filesystem"));
if ((ip->i_flag & IN_TRUNCATED) == 0)
return;
ip->i_flag &= ~IN_TRUNCATED;
jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump));
jfsync->jfs_size = ip->i_size;
jfsync->jfs_ino = ip->i_number;
ACQUIRE_LOCK(ump);
add_to_journal(&jfsync->jfs_list);
jwait(&jfsync->jfs_list, MNT_WAIT);
FREE_LOCK(ump);
}
/*
* Block de-allocation dependencies.
*
* When blocks are de-allocated, the on-disk pointers must be nullified before
* the blocks are made available for use by other files. (The true
* requirement is that old pointers must be nullified before new on-disk
* pointers are set. We chose this slightly more stringent requirement to
* reduce complexity.) Our implementation handles this dependency by updating
* the inode (or indirect block) appropriately but delaying the actual block
* de-allocation (i.e., freemap and free space count manipulation) until
* after the updated versions reach stable storage. After the disk is
* updated, the blocks can be safely de-allocated whenever it is convenient.
* This implementation handles only the common case of reducing a file's
* length to zero. Other cases are handled by the conventional synchronous
* write approach.
*
* The ffs implementation with which we worked double-checks
* the state of the block pointers and file size as it reduces
* a file's length. Some of this code is replicated here in our
* soft updates implementation. The freeblks->fb_chkcnt field is
* used to transfer a part of this information to the procedure
* that eventually de-allocates the blocks.
*
* This routine should be called from the routine that shortens
* a file's length, before the inode's size or block pointers
* are modified. It will save the block pointer information for
* later release and zero the inode so that the calling routine
* can release it.
*/
void
softdep_setup_freeblocks(ip, length, flags)
struct inode *ip; /* The inode whose length is to be reduced */
off_t length; /* The new length for the file */
int flags; /* IO_EXT and/or IO_NORMAL */
{
struct ufs1_dinode *dp1;
struct ufs2_dinode *dp2;
struct freeblks *freeblks;
struct inodedep *inodedep;
struct allocdirect *adp;
struct ufsmount *ump;
struct buf *bp;
struct fs *fs;
ufs2_daddr_t extblocks, datablocks;
struct mount *mp;
int i, delay, error;
ufs_lbn_t tmpval;
ufs_lbn_t lbn;
ump = ITOUMP(ip);
mp = UFSTOVFS(ump);
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_setup_freeblocks called on non-softdep filesystem"));
CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
ip->i_number, length);
KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
fs = ump->um_fs;
if ((error = bread(ump->um_devvp,
fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
(int)fs->fs_bsize, NOCRED, &bp)) != 0) {
brelse(bp);
softdep_error("softdep_setup_freeblocks", error);
return;
}
freeblks = newfreeblks(mp, ip);
extblocks = 0;
datablocks = 0;
if (fs->fs_magic == FS_UFS2_MAGIC)
extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
if ((flags & IO_NORMAL) != 0) {
for (i = 0; i < UFS_NDADDR; i++)
setup_freedirect(freeblks, ip, i, 0);
for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
i < UFS_NIADDR;
i++, lbn += tmpval, tmpval *= NINDIR(fs))
setup_freeindir(freeblks, ip, i, -lbn -i, 0);
ip->i_size = 0;
DIP_SET(ip, i_size, 0);
datablocks = DIP(ip, i_blocks) - extblocks;
}
if ((flags & IO_EXT) != 0) {
for (i = 0; i < UFS_NXADDR; i++)
setup_freeext(freeblks, ip, i, 0);
ip->i_din2->di_extsize = 0;
datablocks += extblocks;
}
#ifdef QUOTA
/* Reference the quotas in case the block count is wrong in the end. */
quotaref(ITOV(ip), freeblks->fb_quota);
(void) chkdq(ip, -datablocks, NOCRED, FORCE);
#endif
freeblks->fb_chkcnt = -datablocks;
UFS_LOCK(ump);
fs->fs_pendingblocks += datablocks;
UFS_UNLOCK(ump);
DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
/*
* Push the zero'ed inode to its disk buffer so that we are free
* to delete its dependencies below. Once the dependencies are gone
* the buffer can be safely released.
*/
if (ump->um_fstype == UFS1) {
dp1 = ((struct ufs1_dinode *)bp->b_data +
ino_to_fsbo(fs, ip->i_number));
ip->i_din1->di_freelink = dp1->di_freelink;
*dp1 = *ip->i_din1;
} else {
dp2 = ((struct ufs2_dinode *)bp->b_data +
ino_to_fsbo(fs, ip->i_number));
ip->i_din2->di_freelink = dp2->di_freelink;
ffs_update_dinode_ckhash(fs, ip->i_din2);
*dp2 = *ip->i_din2;
}
/*
* Find and eliminate any inode dependencies.
*/
ACQUIRE_LOCK(ump);
(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
if ((inodedep->id_state & IOSTARTED) != 0)
panic("softdep_setup_freeblocks: inode busy");
/*
* Add the freeblks structure to the list of operations that
* must await the zero'ed inode being written to disk. If we
* still have a bitmap dependency (delay == 0), then the inode
* has never been written to disk, so we can process the
* freeblks below once we have deleted the dependencies.
*/
delay = (inodedep->id_state & DEPCOMPLETE);
if (delay)
WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
else
freeblks->fb_state |= COMPLETE;
/*
* Because the file length has been truncated to zero, any
* pending block allocation dependency structures associated
* with this inode are obsolete and can simply be de-allocated.
* We must first merge the two dependency lists to get rid of
* any duplicate freefrag structures, then purge the merged list.
* If we still have a bitmap dependency, then the inode has never
* been written to disk, so we can free any fragments without delay.
*/
if (flags & IO_NORMAL) {
merge_inode_lists(&inodedep->id_newinoupdt,
&inodedep->id_inoupdt);
while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
cancel_allocdirect(&inodedep->id_inoupdt, adp,
freeblks);
}
if (flags & IO_EXT) {
merge_inode_lists(&inodedep->id_newextupdt,
&inodedep->id_extupdt);
while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
cancel_allocdirect(&inodedep->id_extupdt, adp,
freeblks);
}
FREE_LOCK(ump);
bdwrite(bp);
trunc_dependencies(ip, freeblks, -1, 0, flags);
ACQUIRE_LOCK(ump);
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
(void) free_inodedep(inodedep);
freeblks->fb_state |= DEPCOMPLETE;
/*
* If the inode with zeroed block pointers is now on disk
* we can start freeing blocks.
*/
if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
freeblks->fb_state |= INPROGRESS;
else
freeblks = NULL;
FREE_LOCK(ump);
if (freeblks)
handle_workitem_freeblocks(freeblks, 0);
trunc_pages(ip, length, extblocks, flags);
}
/*
* Eliminate pages from the page cache that back parts of this inode and
* adjust the vnode pager's idea of our size. This prevents stale data
* from hanging around in the page cache.
*/
static void
trunc_pages(ip, length, extblocks, flags)
struct inode *ip;
off_t length;
ufs2_daddr_t extblocks;
int flags;
{
struct vnode *vp;
struct fs *fs;
ufs_lbn_t lbn;
off_t end, extend;
vp = ITOV(ip);
fs = ITOFS(ip);
extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
if ((flags & IO_EXT) != 0)
vn_pages_remove(vp, extend, 0);
if ((flags & IO_NORMAL) == 0)
return;
BO_LOCK(&vp->v_bufobj);
drain_output(vp);
BO_UNLOCK(&vp->v_bufobj);
/*
* The vnode pager eliminates file pages we eliminate indirects
* below.
*/
vnode_pager_setsize(vp, length);
/*
* Calculate the end based on the last indirect we want to keep. If
* the block extends into indirects we can just use the negative of
* its lbn. Doubles and triples exist at lower numbers so we must
* be careful not to remove those, if they exist. double and triple
* indirect lbns do not overlap with others so it is not important
* to verify how many levels are required.
*/
lbn = lblkno(fs, length);
if (lbn >= UFS_NDADDR) {
/* Calculate the virtual lbn of the triple indirect. */
lbn = -lbn - (UFS_NIADDR - 1);
end = OFF_TO_IDX(lblktosize(fs, lbn));
} else
end = extend;
vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
}
/*
* See if the buf bp is in the range eliminated by truncation.
*/
static int
trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
struct buf *bp;
int *blkoffp;
ufs_lbn_t lastlbn;
int lastoff;
int flags;
{
ufs_lbn_t lbn;
*blkoffp = 0;
/* Only match ext/normal blocks as appropriate. */
if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
return (0);
/* ALTDATA is always a full truncation. */
if ((bp->b_xflags & BX_ALTDATA) != 0)
return (1);
/* -1 is full truncation. */
if (lastlbn == -1)
return (1);
/*
* If this is a partial truncate we only want those
* blocks and indirect blocks that cover the range
* we're after.
*/
lbn = bp->b_lblkno;
if (lbn < 0)
lbn = -(lbn + lbn_level(lbn));
if (lbn < lastlbn)
return (0);
/* Here we only truncate lblkno if it's partial. */
if (lbn == lastlbn) {
if (lastoff == 0)
return (0);
*blkoffp = lastoff;
}
return (1);
}
/*
* Eliminate any dependencies that exist in memory beyond lblkno:off
*/
static void
trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
struct inode *ip;
struct freeblks *freeblks;
ufs_lbn_t lastlbn;
int lastoff;
int flags;
{
struct bufobj *bo;
struct vnode *vp;
struct buf *bp;
int blkoff;
/*
* We must wait for any I/O in progress to finish so that
* all potential buffers on the dirty list will be visible.
* Once they are all there, walk the list and get rid of
* any dependencies.
*/
vp = ITOV(ip);
bo = &vp->v_bufobj;
BO_LOCK(bo);
drain_output(vp);
TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
bp->b_vflags &= ~BV_SCANNED;
restart:
TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
if (bp->b_vflags & BV_SCANNED)
continue;
if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
bp->b_vflags |= BV_SCANNED;
continue;
}
KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
goto restart;
BO_UNLOCK(bo);
if (deallocate_dependencies(bp, freeblks, blkoff))
bqrelse(bp);
else
brelse(bp);
BO_LOCK(bo);
goto restart;
}
/*
* Now do the work of vtruncbuf while also matching indirect blocks.
*/
TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
bp->b_vflags &= ~BV_SCANNED;
cleanrestart:
TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
if (bp->b_vflags & BV_SCANNED)
continue;
if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
bp->b_vflags |= BV_SCANNED;
continue;
}
if (BUF_LOCK(bp,
LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
BO_LOCKPTR(bo)) == ENOLCK) {
BO_LOCK(bo);
goto cleanrestart;
}
bp->b_vflags |= BV_SCANNED;
bremfree(bp);
if (blkoff != 0) {
allocbuf(bp, blkoff);
bqrelse(bp);
} else {
bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
brelse(bp);
}
BO_LOCK(bo);
goto cleanrestart;
}
drain_output(vp);
BO_UNLOCK(bo);
}
static int
cancel_pagedep(pagedep, freeblks, blkoff)
struct pagedep *pagedep;
struct freeblks *freeblks;
int blkoff;
{
struct jremref *jremref;
struct jmvref *jmvref;
struct dirrem *dirrem, *tmp;
int i;
/*
* Copy any directory remove dependencies to the list
* to be processed after the freeblks proceeds. If
* directory entry never made it to disk they
* can be dumped directly onto the work list.
*/
LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
/* Skip this directory removal if it is intended to remain. */
if (dirrem->dm_offset < blkoff)
continue;
/*
* If there are any dirrems we wait for the journal write
* to complete and then restart the buf scan as the lock
* has been dropped.
*/
while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
jwait(&jremref->jr_list, MNT_WAIT);
return (ERESTART);
}
LIST_REMOVE(dirrem, dm_next);
dirrem->dm_dirinum = pagedep->pd_ino;
WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
}
while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
jwait(&jmvref->jm_list, MNT_WAIT);
return (ERESTART);
}
/*
* When we're partially truncating a pagedep we just want to flush
* journal entries and return. There can not be any adds in the
* truncated portion of the directory and newblk must remain if
* part of the block remains.
*/
if (blkoff != 0) {
struct diradd *dap;
LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
if (dap->da_offset > blkoff)
panic("cancel_pagedep: diradd %p off %d > %d",
dap, dap->da_offset, blkoff);
for (i = 0; i < DAHASHSZ; i++)
LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
if (dap->da_offset > blkoff)
panic("cancel_pagedep: diradd %p off %d > %d",
dap, dap->da_offset, blkoff);
return (0);
}
/*
* There should be no directory add dependencies present
* as the directory could not be truncated until all
* children were removed.
*/
KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
("deallocate_dependencies: pendinghd != NULL"));
for (i = 0; i < DAHASHSZ; i++)
KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
("deallocate_dependencies: diraddhd != NULL"));
if ((pagedep->pd_state & NEWBLOCK) != 0)
free_newdirblk(pagedep->pd_newdirblk);
if (free_pagedep(pagedep) == 0)
panic("Failed to free pagedep %p", pagedep);
return (0);
}
/*
* Reclaim any dependency structures from a buffer that is about to
* be reallocated to a new vnode. The buffer must be locked, thus,
* no I/O completion operations can occur while we are manipulating
* its associated dependencies. The mutex is held so that other I/O's
* associated with related dependencies do not occur.
*/
static int
deallocate_dependencies(bp, freeblks, off)
struct buf *bp;
struct freeblks *freeblks;
int off;
{
struct indirdep *indirdep;
struct pagedep *pagedep;
struct worklist *wk, *wkn;
struct ufsmount *ump;
ump = softdep_bp_to_mp(bp);
if (ump == NULL)
goto done;
ACQUIRE_LOCK(ump);
LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
switch (wk->wk_type) {
case D_INDIRDEP:
indirdep = WK_INDIRDEP(wk);
if (bp->b_lblkno >= 0 ||
bp->b_blkno != indirdep->ir_savebp->b_lblkno)
panic("deallocate_dependencies: not indir");
cancel_indirdep(indirdep, bp, freeblks);
continue;
case D_PAGEDEP:
pagedep = WK_PAGEDEP(wk);
if (cancel_pagedep(pagedep, freeblks, off)) {
FREE_LOCK(ump);
return (ERESTART);
}
continue;
case D_ALLOCINDIR:
/*
* Simply remove the allocindir, we'll find it via
* the indirdep where we can clear pointers if
* needed.
*/
WORKLIST_REMOVE(wk);
continue;
case D_FREEWORK:
/*
* A truncation is waiting for the zero'd pointers
* to be written. It can be freed when the freeblks
* is journaled.
*/
WORKLIST_REMOVE(wk);
wk->wk_state |= ONDEPLIST;
WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
break;
case D_ALLOCDIRECT:
if (off != 0)
continue;
/* FALLTHROUGH */
default:
panic("deallocate_dependencies: Unexpected type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
FREE_LOCK(ump);
done:
/*
* Don't throw away this buf, we were partially truncating and
* some deps may always remain.
*/
if (off) {
allocbuf(bp, off);
bp->b_vflags |= BV_SCANNED;
return (EBUSY);
}
bp->b_flags |= B_INVAL | B_NOCACHE;
return (0);
}
/*
* An allocdirect is being canceled due to a truncate. We must make sure
* the journal entry is released in concert with the blkfree that releases
* the storage. Completed journal entries must not be released until the
* space is no longer pointed to by the inode or in the bitmap.
*/
static void
cancel_allocdirect(adphead, adp, freeblks)
struct allocdirectlst *adphead;
struct allocdirect *adp;
struct freeblks *freeblks;
{
struct freework *freework;
struct newblk *newblk;
struct worklist *wk;
TAILQ_REMOVE(adphead, adp, ad_next);
newblk = (struct newblk *)adp;
freework = NULL;
/*
* Find the correct freework structure.
*/
LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
if (wk->wk_type != D_FREEWORK)
continue;
freework = WK_FREEWORK(wk);
if (freework->fw_blkno == newblk->nb_newblkno)
break;
}
if (freework == NULL)
panic("cancel_allocdirect: Freework not found");
/*
* If a newblk exists at all we still have the journal entry that
* initiated the allocation so we do not need to journal the free.
*/
cancel_jfreeblk(freeblks, freework->fw_blkno);
/*
* If the journal hasn't been written the jnewblk must be passed
* to the call to ffs_blkfree that reclaims the space. We accomplish
* this by linking the journal dependency into the freework to be
* freed when freework_freeblock() is called. If the journal has
* been written we can simply reclaim the journal space when the
* freeblks work is complete.
*/
freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
&freeblks->fb_jwork);
WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
}
/*
* Cancel a new block allocation. May be an indirect or direct block. We
* remove it from various lists and return any journal record that needs to
* be resolved by the caller.
*
* A special consideration is made for indirects which were never pointed
* at on disk and will never be found once this block is released.
*/
static struct jnewblk *
cancel_newblk(newblk, wk, wkhd)
struct newblk *newblk;
struct worklist *wk;
struct workhead *wkhd;
{
struct jnewblk *jnewblk;
CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
newblk->nb_state |= GOINGAWAY;
/*
* Previously we traversed the completedhd on each indirdep
* attached to this newblk to cancel them and gather journal
* work. Since we need only the oldest journal segment and
* the lowest point on the tree will always have the oldest
* journal segment we are free to release the segments
* of any subordinates and may leave the indirdep list to
* indirdep_complete() when this newblk is freed.
*/
if (newblk->nb_state & ONDEPLIST) {
newblk->nb_state &= ~ONDEPLIST;
LIST_REMOVE(newblk, nb_deps);
}
if (newblk->nb_state & ONWORKLIST)
WORKLIST_REMOVE(&newblk->nb_list);
/*
* If the journal entry hasn't been written we save a pointer to
* the dependency that frees it until it is written or the
* superseding operation completes.
*/
jnewblk = newblk->nb_jnewblk;
if (jnewblk != NULL && wk != NULL) {
newblk->nb_jnewblk = NULL;
jnewblk->jn_dep = wk;
}
if (!LIST_EMPTY(&newblk->nb_jwork))
jwork_move(wkhd, &newblk->nb_jwork);
/*
* When truncating we must free the newdirblk early to remove
* the pagedep from the hash before returning.
*/
if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
free_newdirblk(WK_NEWDIRBLK(wk));
if (!LIST_EMPTY(&newblk->nb_newdirblk))
panic("cancel_newblk: extra newdirblk");
return (jnewblk);
}
/*
* Schedule the freefrag associated with a newblk to be released once
* the pointers are written and the previous block is no longer needed.
*/
static void
newblk_freefrag(newblk)
struct newblk *newblk;
{
struct freefrag *freefrag;
if (newblk->nb_freefrag == NULL)
return;
freefrag = newblk->nb_freefrag;
newblk->nb_freefrag = NULL;
freefrag->ff_state |= COMPLETE;
if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
add_to_worklist(&freefrag->ff_list, 0);
}
/*
* Free a newblk. Generate a new freefrag work request if appropriate.
* This must be called after the inode pointer and any direct block pointers
* are valid or fully removed via truncate or frag extension.
*/
static void
free_newblk(newblk)
struct newblk *newblk;
{
struct indirdep *indirdep;
struct worklist *wk;
KASSERT(newblk->nb_jnewblk == NULL,
("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
("free_newblk: unclaimed newblk"));
LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
newblk_freefrag(newblk);
if (newblk->nb_state & ONDEPLIST)
LIST_REMOVE(newblk, nb_deps);
if (newblk->nb_state & ONWORKLIST)
WORKLIST_REMOVE(&newblk->nb_list);
LIST_REMOVE(newblk, nb_hash);
if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
free_newdirblk(WK_NEWDIRBLK(wk));
if (!LIST_EMPTY(&newblk->nb_newdirblk))
panic("free_newblk: extra newdirblk");
while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
indirdep_complete(indirdep);
handle_jwork(&newblk->nb_jwork);
WORKITEM_FREE(newblk, D_NEWBLK);
}
/*
* Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
*/
static void
free_newdirblk(newdirblk)
struct newdirblk *newdirblk;
{
struct pagedep *pagedep;
struct diradd *dap;
struct worklist *wk;
LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
WORKLIST_REMOVE(&newdirblk->db_list);
/*
* If the pagedep is still linked onto the directory buffer
* dependency chain, then some of the entries on the
* pd_pendinghd list may not be committed to disk yet. In
* this case, we will simply clear the NEWBLOCK flag and
* let the pd_pendinghd list be processed when the pagedep
* is next written. If the pagedep is no longer on the buffer
* dependency chain, then all the entries on the pd_pending
* list are committed to disk and we can free them here.
*/
pagedep = newdirblk->db_pagedep;
pagedep->pd_state &= ~NEWBLOCK;
if ((pagedep->pd_state & ONWORKLIST) == 0) {
while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
free_diradd(dap, NULL);
/*
* If no dependencies remain, the pagedep will be freed.
*/
free_pagedep(pagedep);
}
/* Should only ever be one item in the list. */
while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
WORKLIST_REMOVE(wk);
handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
}
WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
}
/*
* Prepare an inode to be freed. The actual free operation is not
* done until the zero'ed inode has been written to disk.
*/
void
softdep_freefile(pvp, ino, mode)
struct vnode *pvp;
ino_t ino;
int mode;
{
struct inode *ip = VTOI(pvp);
struct inodedep *inodedep;
struct freefile *freefile;
struct freeblks *freeblks;
struct ufsmount *ump;
ump = ITOUMP(ip);
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
("softdep_freefile called on non-softdep filesystem"));
/*
* This sets up the inode de-allocation dependency.
*/
freefile = malloc(sizeof(struct freefile),
M_FREEFILE, M_SOFTDEP_FLAGS);
workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
freefile->fx_mode = mode;
freefile->fx_oldinum = ino;
freefile->fx_devvp = ump->um_devvp;
LIST_INIT(&freefile->fx_jwork);
UFS_LOCK(ump);
ump->um_fs->fs_pendinginodes += 1;
UFS_UNLOCK(ump);
/*
* If the inodedep does not exist, then the zero'ed inode has
* been written to disk. If the allocated inode has never been
* written to disk, then the on-disk inode is zero'ed. In either
* case we can free the file immediately. If the journal was
* canceled before being written the inode will never make it to
* disk and we must send the canceled journal entrys to
* ffs_freefile() to be cleared in conjunction with the bitmap.
* Any blocks waiting on the inode to write can be safely freed
* here as it will never been written.
*/
ACQUIRE_LOCK(ump);
inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
if (inodedep) {
/*
* Clear out freeblks that no longer need to reference
* this inode.
*/
while ((freeblks =
TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
fb_next);
freeblks->fb_state &= ~ONDEPLIST;
}
/*
* Remove this inode from the unlinked list.
*/
if (inodedep->id_state & UNLINKED) {
/*
* Save the journal work to be freed with the bitmap
* before we clear UNLINKED. Otherwise it can be lost
* if the inode block is written.
*/
handle_bufwait(inodedep, &freefile->fx_jwork);
clear_unlinked_inodedep(inodedep);
/*
* Re-acquire inodedep as we've dropped the
* per-filesystem lock in clear_unlinked_inodedep().
*/
inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
}
}
if (inodedep == NULL || check_inode_unwritten(inodedep)) {
FREE_LOCK(ump);
handle_workitem_freefile(freefile);
return;
}
if ((inodedep->id_state & DEPCOMPLETE) == 0)
inodedep->id_state |= GOINGAWAY;
WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
FREE_LOCK(ump);
if (ip->i_number == ino)
ip->i_flag |= IN_MODIFIED;
}
/*
* Check to see if an inode has never been written to disk. If
* so free the inodedep and return success, otherwise return failure.
*
* If we still have a bitmap dependency, then the inode has never
* been written to disk. Drop the dependency as it is no longer
* necessary since the inode is being deallocated. We set the
* ALLCOMPLETE flags since the bitmap now properly shows that the
* inode is not allocated. Even if the inode is actively being
* written, it has been rolled back to its zero'ed state, so we
* are ensured that a zero inode is what is on the disk. For short
* lived files, this change will usually result in removing all the
* dependencies from the inode so that it can be freed immediately.
*/
static int
check_inode_unwritten(inodedep)
struct inodedep *inodedep;
{
LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
!LIST_EMPTY(&inodedep->id_dirremhd) ||
!LIST_EMPTY(&inodedep->id_pendinghd) ||
!LIST_EMPTY(&inodedep->id_bufwait) ||
!LIST_EMPTY(&inodedep->id_inowait) ||
!TAILQ_EMPTY(&inodedep->id_inoreflst) ||
!TAILQ_EMPTY(&inodedep->id_inoupdt) ||
!TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
!TAILQ_EMPTY(&inodedep->id_extupdt) ||
!TAILQ_EMPTY(&inodedep->id_newextupdt) ||
!TAILQ_EMPTY(&inodedep->id_freeblklst) ||
inodedep->id_mkdiradd != NULL ||
inodedep->id_nlinkdelta != 0)
return (0);
/*
* Another process might be in initiate_write_inodeblock_ufs[12]
* trying to allocate memory without holding "Softdep Lock".
*/
if ((inodedep->id_state & IOSTARTED) != 0 &&
inodedep->id_savedino1 == NULL)
return (0);
if (inodedep->id_state & ONDEPLIST)
LIST_REMOVE(inodedep, id_deps);
inodedep->id_state &= ~ONDEPLIST;
inodedep->id_state |= ALLCOMPLETE;
inodedep->id_bmsafemap = NULL;
if (inodedep->id_state & ONWORKLIST)
WORKLIST_REMOVE(&inodedep->id_list);
if (inodedep->id_savedino1 != NULL) {
free(inodedep->id_savedino1, M_SAVEDINO);
inodedep->id_savedino1 = NULL;
}
if (free_inodedep(inodedep) == 0)
panic("check_inode_unwritten: busy inode");
return (1);
}
static int
check_inodedep_free(inodedep)
struct inodedep *inodedep;
{
LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
!LIST_EMPTY(&inodedep->id_dirremhd) ||
!LIST_EMPTY(&inodedep->id_pendinghd) ||
!LIST_EMPTY(&inodedep->id_bufwait) ||
!LIST_EMPTY(&inodedep->id_inowait) ||
!TAILQ_EMPTY(&inodedep->id_inoreflst) ||
!TAILQ_EMPTY(&inodedep->id_inoupdt) ||
!TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
!TAILQ_EMPTY(&inodedep->id_extupdt) ||
!TAILQ_EMPTY(&inodedep->id_newextupdt) ||
!TAILQ_EMPTY(&inodedep->id_freeblklst) ||
inodedep->id_mkdiradd != NULL ||
inodedep->id_nlinkdelta != 0 ||
inodedep->id_savedino1 != NULL)
return (0);
return (1);
}
/*
* Try to free an inodedep structure. Return 1 if it could be freed.
*/
static int
free_inodedep(inodedep)
struct inodedep *inodedep;
{
LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
!check_inodedep_free(inodedep))
return (0);
if (inodedep->id_state & ONDEPLIST)
LIST_REMOVE(inodedep, id_deps);
LIST_REMOVE(inodedep, id_hash);
WORKITEM_FREE(inodedep, D_INODEDEP);
return (1);
}
/*
* Free the block referenced by a freework structure. The parent freeblks
* structure is released and completed when the final cg bitmap reaches
* the disk. This routine may be freeing a jnewblk which never made it to
* disk in which case we do not have to wait as the operation is undone
* in memory immediately.
*/
static void
freework_freeblock(freework, key)
struct freework *freework;
u_long key;
{
struct freeblks *freeblks;
struct jnewblk *jnewblk;
struct ufsmount *ump;
struct workhead wkhd;
struct fs *fs;
int bsize;
int needj;
ump = VFSTOUFS(freework->fw_list.wk_mp);
LOCK_OWNED(ump);
/*
* Handle partial truncate separately.
*/
if (freework->fw_indir) {
complete_trunc_indir(freework);
return;
}
freeblks = freework->fw_freeblks;
fs = ump->um_fs;
needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
bsize = lfragtosize(fs, freework->fw_frags);
LIST_INIT(&wkhd);
/*
* DEPCOMPLETE is cleared in indirblk_insert() if the block lives
* on the indirblk hashtable and prevents premature freeing.
*/
freework->fw_state |= DEPCOMPLETE;
/*
* SUJ needs to wait for the segment referencing freed indirect
* blocks to expire so that we know the checker will not confuse
* a re-allocated indirect block with its old contents.
*/
if (needj && freework->fw_lbn <= -UFS_NDADDR)
indirblk_insert(freework);
/*
* If we are canceling an existing jnewblk pass it to the free
* routine, otherwise pass the freeblk which will ultimately
* release the freeblks. If we're not journaling, we can just
* free the freeblks immediately.
*/
jnewblk = freework->fw_jnewblk;
if (jnewblk != NULL) {
cancel_jnewblk(jnewblk, &wkhd);
needj = 0;
} else if (needj) {
freework->fw_state |= DELAYEDFREE;
freeblks->fb_cgwait++;
WORKLIST_INSERT(&wkhd, &freework->fw_list);
}
FREE_LOCK(ump);
freeblks_free(ump, freeblks, btodb(bsize));
CTR4(KTR_SUJ,
"freework_freeblock: ino %jd blkno %jd lbn %jd size %d",
freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key);
ACQUIRE_LOCK(ump);
/*
* The jnewblk will be discarded and the bits in the map never
* made it to disk. We can immediately free the freeblk.
*/
if (needj == 0)
handle_written_freework(freework);
}
/*
* We enqueue freework items that need processing back on the freeblks and
* add the freeblks to the worklist. This makes it easier to find all work
* required to flush a truncation in process_truncates().
*/
static void
freework_enqueue(freework)
struct freework *freework;
{
struct freeblks *freeblks;
freeblks = freework->fw_freeblks;
if ((freework->fw_state & INPROGRESS) == 0)
WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
if ((freeblks->fb_state &
(ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
LIST_EMPTY(&freeblks->fb_jblkdephd))
add_to_worklist(&freeblks->fb_list, WK_NODELAY);
}
/*
* Start, continue, or finish the process of freeing an indirect block tree.
* The free operation may be paused at any point with fw_off containing the
* offset to restart from. This enables us to implement some flow control
* for large truncates which may fan out and generate a huge number of
* dependencies.
*/
static void
handle_workitem_indirblk(freework)
struct freework *freework;
{
struct freeblks *freeblks;
struct ufsmount *ump;
struct fs *fs;
freeblks = freework->fw_freeblks;
ump = VFSTOUFS(freeblks->fb_list.wk_mp);
fs = ump->um_fs;
if (freework->fw_state & DEPCOMPLETE) {
handle_written_freework(freework);
return;
}
if (freework->fw_off == NINDIR(fs)) {
freework_freeblock(freework, SINGLETON_KEY);
return;
}
freework->fw_state |= INPROGRESS;
FREE_LOCK(ump);
indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
freework->fw_lbn);
ACQUIRE_LOCK(ump);
}
/*
* Called when a freework structure attached to a cg buf is written. The
* ref on either the parent or the freeblks structure is released and
* the freeblks is added back to the worklist if there is more work to do.
*/
static void
handle_written_freework(freework)
struct freework *freework;
{
struct freeblks *freeblks;
struct freework *parent;
freeblks = freework->fw_freeblks;
parent = freework->fw_parent;
if (freework->fw_state & DELAYEDFREE)
freeblks->fb_cgwait--;
freework->fw_state |= COMPLETE;
if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
WORKITEM_FREE(freework, D_FREEWORK);
if (parent) {
if (--parent->fw_ref == 0)
freework_enqueue(parent);
return;
}
if (--freeblks->fb_ref != 0)
return;
if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
add_to_worklist(&freeblks->fb_list, WK_NODELAY);
}
/*
* This workitem routine performs the block de-allocation.
* The workitem is added to the pending list after the updated
* inode block has been written to disk. As mentioned above,
* checks regarding the number of blocks de-allocated (compared
* to the number of blocks allocated for the file) are also
* performed in this function.
*/
static int
handle_workitem_freeblocks(freeblks, flags)
struct freeblks *freeblks;
int flags;
{
struct freework *freework;
struct newblk *newblk;
struct allocindir *aip;
struct ufsmount *ump;
struct worklist *wk;
u_long key;
KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
("handle_workitem_freeblocks: Journal entries not written."));
ump = VFSTOUFS(freeblks->fb_list.wk_mp);
key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
ACQUIRE_LOCK(ump);
while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
WORKLIST_REMOVE(wk);
switch (wk->wk_type) {
case D_DIRREM:
wk->wk_state |= COMPLETE;
add_to_worklist(wk, 0);
continue;
case D_ALLOCDIRECT:
free_newblk(WK_NEWBLK(wk));
continue;
case D_ALLOCINDIR:
aip = WK_ALLOCINDIR(wk);
freework = NULL;
if (aip->ai_state & DELAYEDFREE) {
FREE_LOCK(ump);
freework = newfreework(ump, freeblks, NULL,
aip->ai_lbn, aip->ai_newblkno,
ump->um_fs->fs_frag, 0, 0);
ACQUIRE_LOCK(ump);
}
newblk = WK_NEWBLK(wk);
if (newblk->nb_jnewblk) {
freework->fw_jnewblk = newblk->nb_jnewblk;
newblk->nb_jnewblk->jn_dep = &freework->fw_list;
newblk->nb_jnewblk = NULL;
}
free_newblk(newblk);
continue;
case D_FREEWORK:
freework = WK_FREEWORK(wk);
if (freework->fw_lbn <= -UFS_NDADDR)
handle_workitem_indirblk(freework);
else
freework_freeblock(freework, key);
continue;
default:
panic("handle_workitem_freeblocks: Unknown type %s",
TYPENAME(wk->wk_type));
}
}
if (freeblks->fb_ref != 0) {
freeblks->fb_state &= ~INPROGRESS;
wake_worklist(&freeblks->fb_list);
freeblks = NULL;
}
FREE_LOCK(ump);
ffs_blkrelease_finish(ump, key);
if (freeblks)
return handle_complete_freeblocks(freeblks, flags);
return (0);
}
/*
* Handle completion of block free via truncate. This allows fs_pending
* to track the actual free block count more closely than if we only updated
* it at the end. We must be careful to handle cases where the block count
* on free was incorrect.
*/
static void
freeblks_free(ump, freeblks, blocks)
struct ufsmount *ump;
struct freeblks *freeblks;
int blocks;
{
struct fs *fs;
ufs2_daddr_t remain;
UFS_LOCK(ump);
remain = -freeblks->fb_chkcnt;
freeblks->fb_chkcnt += blocks;
if (remain > 0) {
if (remain < blocks)
blocks = remain;
fs = ump->um_fs;
fs->fs_pendingblocks -= blocks;
}
UFS_UNLOCK(ump);
}
/*
* Once all of the freework workitems are complete we can retire the
* freeblocks dependency and any journal work awaiting completion. This
* can not be called until all other dependencies are stable on disk.
*/
static int
handle_complete_freeblocks(freeblks, flags)
struct freeblks *freeblks;
int flags;
{
struct inodedep *inodedep;
struct inode *ip;
struct vnode *vp;
struct fs *fs;
struct ufsmount *ump;
ufs2_daddr_t spare;
ump = VFSTOUFS(freeblks->fb_list.wk_mp);
fs = ump->um_fs;
flags = LK_EXCLUSIVE | flags;
spare = freeblks->fb_chkcnt;
/*
* If we did not release the expected number of blocks we may have
* to adjust the inode block count here. Only do so if it wasn't
* a truncation to zero and the modrev still matches.
*/
if (spare && freeblks->fb_len != 0) {
if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
flags, &vp, FFSV_FORCEINSMQ) != 0)
return (EBUSY);
ip = VTOI(vp);
if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
ip->i_flag |= IN_CHANGE;
/*
* We must wait so this happens before the
* journal is reclaimed.
*/
ffs_update(vp, 1);
}
vput(vp);
}
if (spare < 0) {
UFS_LOCK(ump);
fs->fs_pendingblocks += spare;
UFS_UNLOCK(ump);
}
#ifdef QUOTA
/* Handle spare. */
if (spare)
quotaadj(freeblks->fb_quota, ump, -spare);
quotarele(freeblks->fb_quota);
#endif
ACQUIRE_LOCK(ump);
if (freeblks->fb_state & ONDEPLIST) {
inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
0, &inodedep);
TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
freeblks->fb_state &= ~ONDEPLIST;
if (TAILQ_EMPTY(&inodedep->id_freeblklst))
free_inodedep(inodedep);
}
/*
* All of the freeblock deps must be complete prior to this call
* so it's now safe to complete earlier outstanding journal entries.
*/
handle_jwork(&freeblks->fb_jwork);
WORKITEM_FREE(freeblks, D_FREEBLKS);
FREE_LOCK(ump);
return (0);
}
/*
* Release blocks associated with the freeblks and stored in the indirect
* block dbn. If level is greater than SINGLE, the block is an indirect block
* and recursive calls to indirtrunc must be used to cleanse other indirect
* blocks.
*
* This handles partial and complete truncation of blocks. Partial is noted
* with goingaway == 0. In this case the freework is completed after the
* zero'd indirects are written to disk. For full truncation the freework
* is completed after the block is freed.
*/
static void
indir_trunc(freework, dbn, lbn)
struct freework *freework;
ufs2_daddr_t dbn;
ufs_lbn_t lbn;
{
struct freework *nfreework;
struct workhead wkhd;
struct freeblks *freeblks;
struct buf *bp;
struct fs *fs;
struct indirdep *indirdep;
struct mount *mp;
struct ufsmount *ump;
ufs1_daddr_t *bap1;
ufs2_daddr_t nb, nnb, *bap2;
ufs_lbn_t lbnadd, nlbn;
u_long key;
int nblocks, ufs1fmt, freedblocks;
int goingaway, freedeps, needj, level, cnt, i;
freeblks = freework->fw_freeblks;
mp = freeblks->fb_list.wk_mp;
ump = VFSTOUFS(mp);
fs = ump->um_fs;
/*
* Get buffer of block pointers to be freed. There are three cases:
*
* 1) Partial truncate caches the indirdep pointer in the freework
* which provides us a back copy to the save bp which holds the
* pointers we want to clear. When this completes the zero
* pointers are written to the real copy.
* 2) The indirect is being completely truncated, cancel_indirdep()
* eliminated the real copy and placed the indirdep on the saved
* copy. The indirdep and buf are discarded when this completes.
* 3) The indirect was not in memory, we read a copy off of the disk
* using the devvp and drop and invalidate the buffer when we're
* done.
*/
goingaway = 1;
indirdep = NULL;
if (freework->fw_indir != NULL) {
goingaway = 0;
indirdep = freework->fw_indir;
bp = indirdep->ir_savebp;
if (bp == NULL || bp->b_blkno != dbn)
panic("indir_trunc: Bad saved buf %p blkno %jd",
bp, (intmax_t)dbn);
} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
/*
* The lock prevents the buf dep list from changing and
* indirects on devvp should only ever have one dependency.
*/
indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
panic("indir_trunc: Bad indirdep %p from buf %p",
indirdep, bp);
} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
NOCRED, &bp) != 0) {
brelse(bp);
return;
}
ACQUIRE_LOCK(ump);
/* Protects against a race with complete_trunc_indir(). */
freework->fw_state &= ~INPROGRESS;
/*
* If we have an indirdep we need to enforce the truncation order
* and discard it when it is complete.
*/
if (indirdep) {
if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
!TAILQ_EMPTY(&indirdep->ir_trunc)) {
/*
* Add the complete truncate to the list on the
* indirdep to enforce in-order processing.
*/
if (freework->fw_indir == NULL)
TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
freework, fw_next);
FREE_LOCK(ump);
return;
}
/*
* If we're goingaway, free the indirdep. Otherwise it will
* linger until the write completes.
*/
if (goingaway)
free_indirdep(indirdep);
}
FREE_LOCK(ump);
/* Initialize pointers depending on block size. */
if (ump->um_fstype == UFS1) {
bap1 = (ufs1_daddr_t *)bp->b_data;
nb = bap1[freework->fw_off];
ufs1fmt = 1;
bap2 = NULL;
} else {
bap2 = (ufs2_daddr_t *)bp->b_data;
nb = bap2[freework->fw_off];
ufs1fmt = 0;
bap1 = NULL;
}
level = lbn_level(lbn);
needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
lbnadd = lbn_offset(fs, level);
nblocks = btodb(fs->fs_bsize);
nfreework = freework;
freedeps = 0;
cnt = 0;
/*
* Reclaim blocks. Traverses into nested indirect levels and
* arranges for the current level to be freed when subordinates
* are free when journaling.
*/
key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb,
fs->fs_bsize) != 0)
nb = 0;
if (i != NINDIR(fs) - 1) {
if (ufs1fmt)
nnb = bap1[i+1];
else
nnb = bap2[i+1];
} else
nnb = 0;
if (nb == 0)
continue;
cnt++;
if (level != 0) {
nlbn = (lbn + 1) - (i * lbnadd);
if (needj != 0) {
nfreework = newfreework(ump, freeblks, freework,
nlbn, nb, fs->fs_frag, 0, 0);
freedeps++;
}
indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
} else {
struct freedep *freedep;
/*
* Attempt to aggregate freedep dependencies for
* all blocks being released to the same CG.
*/
LIST_INIT(&wkhd);
if (needj != 0 &&
(nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
freedep = newfreedep(freework);
WORKLIST_INSERT_UNLOCKED(&wkhd,
&freedep->fd_list);
freedeps++;
}
CTR3(KTR_SUJ,
"indir_trunc: ino %jd blkno %jd size %d",
freeblks->fb_inum, nb, fs->fs_bsize);
ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
fs->fs_bsize, freeblks->fb_inum,
freeblks->fb_vtype, &wkhd, key);
}
}
ffs_blkrelease_finish(ump, key);
if (goingaway) {
bp->b_flags |= B_INVAL | B_NOCACHE;
brelse(bp);
}
freedblocks = 0;
if (level == 0)
freedblocks = (nblocks * cnt);
if (needj == 0)
freedblocks += nblocks;
freeblks_free(ump, freeblks, freedblocks);
/*
* If we are journaling set up the ref counts and offset so this
* indirect can be completed when its children are free.
*/
if (needj) {
ACQUIRE_LOCK(ump);
freework->fw_off = i;
freework->fw_ref += freedeps;
freework->fw_ref -= NINDIR(fs) + 1;
if (level == 0)
freeblks->fb_cgwait += freedeps;
if (freework->fw_ref == 0)
freework_freeblock(freework, SINGLETON_KEY);
FREE_LOCK(ump);
return;
}
/*
* If we're not journaling we can free the indirect now.
*/
dbn = dbtofsb(fs, dbn);
CTR3(KTR_SUJ,
"indir_trunc 2: ino %jd blkno %jd size %d",
freeblks->fb_inum, dbn, fs->fs_bsize);
ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY);
/* Non SUJ softdep does single-threaded truncations. */
if (freework->fw_blkno == dbn) {
freework->fw_state |= ALLCOMPLETE;
ACQUIRE_LOCK(ump);
handle_written_freework(freework);
FREE_LOCK(ump);
}
return;
}
/*
* Cancel an allocindir when it is removed via truncation. When bp is not
* NULL the indirect never appeared on disk and is scheduled to be freed
* independently of the indir so we can more easily track journal work.
*/
static void
cancel_allocindir(aip, bp, freeblks, trunc)
struct allocindir *aip;
struct buf *bp;
struct freeblks *freeblks;
int trunc;
{
struct indirdep *indirdep;
struct freefrag *freefrag;
struct newblk *newblk;
newblk = (struct newblk *)aip;
LIST_REMOVE(aip, ai_next);
/*
* We must eliminate the pointer in bp if it must be freed on its
* own due to partial truncate or pending journal work.
*/
if (bp && (trunc || newblk->nb_jnewblk)) {
/*
* Clear the pointer and mark the aip to be freed
* directly if it never existed on disk.
*/
aip->ai_state |= DELAYEDFREE;
indirdep = aip->ai_indirdep;
if (indirdep->ir_state & UFS1FMT)
((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
else
((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
}
/*
* When truncating the previous pointer will be freed via
* savedbp. Eliminate the freefrag which would dup free.
*/
if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
newblk->nb_freefrag = NULL;
if (freefrag->ff_jdep)
cancel_jfreefrag(
WK_JFREEFRAG(freefrag->ff_jdep));
jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
WORKITEM_FREE(freefrag, D_FREEFRAG);
}
/*
* If the journal hasn't been written the jnewblk must be passed
* to the call to ffs_blkfree that reclaims the space. We accomplish
* this by leaving the journal dependency on the newblk to be freed
* when a freework is created in handle_workitem_freeblocks().
*/
cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
}
/*
* Create the mkdir dependencies for . and .. in a new directory. Link them
* in to a newdirblk so any subsequent additions are tracked properly. The
* caller is responsible for adding the mkdir1 dependency to the journal
* and updating id_mkdiradd. This function returns with the per-filesystem
* lock held.
*/
static struct mkdir *
setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
struct diradd *dap;
ino_t newinum;
ino_t dinum;
struct buf *newdirbp;
struct mkdir **mkdirp;
{
struct newblk *newblk;
struct pagedep *pagedep;
struct inodedep *inodedep;
struct newdirblk *newdirblk;
struct mkdir *mkdir1, *mkdir2;
struct worklist *wk;
struct jaddref *jaddref;
struct ufsmount *ump;
struct mount *mp;
mp = dap->da_list.wk_mp;
ump = VFSTOUFS(mp);
newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
M_SOFTDEP_FLAGS);
workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
LIST_INIT(&newdirblk->db_mkdir);
mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
mkdir1->md_state = ATTACHED | MKDIR_BODY;
mkdir1->md_diradd = dap;
mkdir1->md_jaddref = NULL;
mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
mkdir2->md_state = ATTACHED | MKDIR_PARENT;
mkdir2->md_diradd = dap;
mkdir2->md_jaddref = NULL;
if (MOUNTEDSUJ(mp) == 0) {
mkdir1->md_state |= DEPCOMPLETE;
mkdir2->md_state |= DEPCOMPLETE;
}
/*
* Dependency on "." and ".." being written to disk.
*/
mkdir1->md_buf = newdirbp;
ACQUIRE_LOCK(VFSTOUFS(mp));
LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
/*
* We must link the pagedep, allocdirect, and newdirblk for
* the initial file page so the pointer to the new directory
* is not written until the directory contents are live and
* any subsequent additions are not marked live until the
* block is reachable via the inode.
*/
if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
panic("setup_newdir: lost pagedep");
LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
if (wk->wk_type == D_ALLOCDIRECT)
break;
if (wk == NULL)
panic("setup_newdir: lost allocdirect");
if (pagedep->pd_state & NEWBLOCK)
panic("setup_newdir: NEWBLOCK already set");
newblk = WK_NEWBLK(wk);
pagedep->pd_state |= NEWBLOCK;
pagedep->pd_newdirblk = newdirblk;
newdirblk->db_pagedep = pagedep;
WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
/*
* Look up the inodedep for the parent directory so that we
* can link mkdir2 into the pending dotdot jaddref or
* the inode write if there is none. If the inode is
* ALLCOMPLETE and no jaddref is present all dependencies have
* been satisfied and mkdir2 can be freed.
*/
inodedep_lookup(mp, dinum, 0, &inodedep);
if (MOUNTEDSUJ(mp)) {
if (inodedep == NULL)
panic("setup_newdir: Lost parent.");
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
inoreflst);
KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
(jaddref->ja_state & MKDIR_PARENT),
("setup_newdir: bad dotdot jaddref %p", jaddref));
LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
mkdir2->md_jaddref = jaddref;
jaddref->ja_mkdir = mkdir2;
} else if (inodedep == NULL ||
(inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
dap->da_state &= ~MKDIR_PARENT;
WORKITEM_FREE(mkdir2, D_MKDIR);
mkdir2 = NULL;
} else {
LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
}
*mkdirp = mkdir2;
return (mkdir1);
}
/*
* Directory entry addition dependencies.
*
* When adding a new directory entry, the inode (with its incremented link
* count) must be written to disk before the directory entry's pointer to it.
* Also, if the inode is newly allocated, the corresponding freemap must be
* updated (on disk) before the directory entry's pointer. These requirements
* are met via undo/redo on the directory entry's pointer, which consists
* simply of the inode number.
*
* As directory entries are added and deleted, the free space within a
* directory block can become fragmented. The ufs filesystem will compact
* a fragmented directory block to make space for a new entry. When this
* occurs, the offsets of previously added entries change. Any "diradd"
* dependency structures corresponding to these entries must be updated with
* the new offsets.
*/
/*
* This routine is called after the in-memory inode's link
* count has been incremented, but before the directory entry's
* pointer to the inode has been set.
*/
int
softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
struct buf *bp; /* buffer containing directory block */
struct inode *dp; /* inode for directory */
off_t diroffset; /* offset of new entry in directory */
ino_t newinum; /* inode referenced by new directory entry */
struct buf *newdirbp; /* non-NULL => contents of new mkdir */
int isnewblk; /* entry is in a newly allocated block */
{
int offset; /* offset of new entry within directory block */
ufs_lbn_t lbn; /* block in directory containing new entry */
struct fs *fs;
struct diradd *dap;
struct newblk *newblk;
struct pagedep *pagedep;
struct inodedep *inodedep;
struct newdirblk *newdirblk;
struct mkdir *mkdir1, *mkdir2;
struct jaddref *jaddref;
struct ufsmount *ump;
struct mount *mp;
int isindir;
mp = ITOVFS(dp);
ump = VFSTOUFS(mp);
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_setup_directory_add called on non-softdep filesystem"));
/*
* Whiteouts have no dependencies.
*/
if (newinum == UFS_WINO) {
if (newdirbp != NULL)
bdwrite(newdirbp);
return (0);
}
jaddref = NULL;
mkdir1 = mkdir2 = NULL;
fs = ump->um_fs;
lbn = lblkno(fs, diroffset);
offset = blkoff(fs, diroffset);
dap = malloc(sizeof(struct diradd), M_DIRADD,
M_SOFTDEP_FLAGS|M_ZERO);
workitem_alloc(&dap->da_list, D_DIRADD, mp);
dap->da_offset = offset;
dap->da_newinum = newinum;
dap->da_state = ATTACHED;
LIST_INIT(&dap->da_jwork);
isindir = bp->b_lblkno >= UFS_NDADDR;
newdirblk = NULL;
if (isnewblk &&
(isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
newdirblk = malloc(sizeof(struct newdirblk),
M_NEWDIRBLK, M_SOFTDEP_FLAGS);
workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
LIST_INIT(&newdirblk->db_mkdir);
}
/*
* If we're creating a new directory setup the dependencies and set
* the dap state to wait for them. Otherwise it's COMPLETE and
* we can move on.
*/
if (newdirbp == NULL) {
dap->da_state |= DEPCOMPLETE;
ACQUIRE_LOCK(ump);
} else {
dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
&mkdir2);
}
/*
* Link into parent directory pagedep to await its being written.
*/
pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
#ifdef INVARIANTS
if (diradd_lookup(pagedep, offset) != NULL)
panic("softdep_setup_directory_add: %p already at off %d\n",
diradd_lookup(pagedep, offset), offset);
#endif
dap->da_pagedep = pagedep;
LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
da_pdlist);
inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
/*
* If we're journaling, link the diradd into the jaddref so it
* may be completed after the journal entry is written. Otherwise,
* link the diradd into its inodedep. If the inode is not yet
* written place it on the bufwait list, otherwise do the post-inode
* write processing to put it on the id_pendinghd list.
*/
if (MOUNTEDSUJ(mp)) {
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
inoreflst);
KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
("softdep_setup_directory_add: bad jaddref %p", jaddref));
jaddref->ja_diroff = diroffset;
jaddref->ja_diradd = dap;
add_to_journal(&jaddref->ja_list);
} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
diradd_inode_written(dap, inodedep);
else
WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
/*
* Add the journal entries for . and .. links now that the primary
* link is written.
*/
if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
inoreflst, if_deps);
KASSERT(jaddref != NULL &&
jaddref->ja_ino == jaddref->ja_parent &&
(jaddref->ja_state & MKDIR_BODY),
("softdep_setup_directory_add: bad dot jaddref %p",
jaddref));
mkdir1->md_jaddref = jaddref;
jaddref->ja_mkdir = mkdir1;
/*
* It is important that the dotdot journal entry
* is added prior to the dot entry since dot writes
* both the dot and dotdot links. These both must
* be added after the primary link for the journal
* to remain consistent.
*/
add_to_journal(&mkdir2->md_jaddref->ja_list);
add_to_journal(&jaddref->ja_list);
}
/*
* If we are adding a new directory remember this diradd so that if
* we rename it we can keep the dot and dotdot dependencies. If
* we are adding a new name for an inode that has a mkdiradd we
* must be in rename and we have to move the dot and dotdot
* dependencies to this new name. The old name is being orphaned
* soon.
*/
if (mkdir1 != NULL) {
if (inodedep->id_mkdiradd != NULL)
panic("softdep_setup_directory_add: Existing mkdir");
inodedep->id_mkdiradd = dap;
} else if (inodedep->id_mkdiradd)
merge_diradd(inodedep, dap);
if (newdirblk != NULL) {
/*
* There is nothing to do if we are already tracking
* this block.
*/
if ((pagedep->pd_state & NEWBLOCK) != 0) {
WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
FREE_LOCK(ump);
return (0);
}
if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
== 0)
panic("softdep_setup_directory_add: lost entry");
WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
pagedep->pd_state |= NEWBLOCK;
pagedep->pd_newdirblk = newdirblk;
newdirblk->db_pagedep = pagedep;
FREE_LOCK(ump);
/*
* If we extended into an indirect signal direnter to sync.
*/
if (isindir)
return (1);
return (0);
}
FREE_LOCK(ump);
return (0);
}
/*
* This procedure is called to change the offset of a directory
* entry when compacting a directory block which must be owned
* exclusively by the caller. Note that the actual entry movement
* must be done in this procedure to ensure that no I/O completions
* occur while the move is in progress.
*/
void
softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
struct buf *bp; /* Buffer holding directory block. */
struct inode *dp; /* inode for directory */
caddr_t base; /* address of dp->i_offset */
caddr_t oldloc; /* address of old directory location */
caddr_t newloc; /* address of new directory location */
int entrysize; /* size of directory entry */
{
int offset, oldoffset, newoffset;
struct pagedep *pagedep;
struct jmvref *jmvref;
struct diradd *dap;
struct direct *de;
struct mount *mp;
struct ufsmount *ump;
ufs_lbn_t lbn;
int flags;
mp = ITOVFS(dp);
ump = VFSTOUFS(mp);
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_change_directoryentry_offset called on "
"non-softdep filesystem"));
de = (struct direct *)oldloc;
jmvref = NULL;
flags = 0;
/*
* Moves are always journaled as it would be too complex to
* determine if any affected adds or removes are present in the
* journal.
*/
if (MOUNTEDSUJ(mp)) {
flags = DEPALLOC;
jmvref = newjmvref(dp, de->d_ino,
dp->i_offset + (oldloc - base),
dp->i_offset + (newloc - base));
}
lbn = lblkno(ump->um_fs, dp->i_offset);
offset = blkoff(ump->um_fs, dp->i_offset);
oldoffset = offset + (oldloc - base);
newoffset = offset + (newloc - base);
ACQUIRE_LOCK(ump);
if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
goto done;
dap = diradd_lookup(pagedep, oldoffset);
if (dap) {
dap->da_offset = newoffset;
newoffset = DIRADDHASH(newoffset);
oldoffset = DIRADDHASH(oldoffset);
if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
newoffset != oldoffset) {
LIST_REMOVE(dap, da_pdlist);
LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
dap, da_pdlist);
}
}
done:
if (jmvref) {
jmvref->jm_pagedep = pagedep;
LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
add_to_journal(&jmvref->jm_list);
}
bcopy(oldloc, newloc, entrysize);
FREE_LOCK(ump);
}
/*
* Move the mkdir dependencies and journal work from one diradd to another
* when renaming a directory. The new name must depend on the mkdir deps
* completing as the old name did. Directories can only have one valid link
* at a time so one must be canonical.
*/
static void
merge_diradd(inodedep, newdap)
struct inodedep *inodedep;
struct diradd *newdap;
{
struct diradd *olddap;
struct mkdir *mkdir, *nextmd;
struct ufsmount *ump;
short state;
olddap = inodedep->id_mkdiradd;
inodedep->id_mkdiradd = newdap;
if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
newdap->da_state &= ~DEPCOMPLETE;
ump = VFSTOUFS(inodedep->id_list.wk_mp);
for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
mkdir = nextmd) {
nextmd = LIST_NEXT(mkdir, md_mkdirs);
if (mkdir->md_diradd != olddap)
continue;
mkdir->md_diradd = newdap;
state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
newdap->da_state |= state;
olddap->da_state &= ~state;
if ((olddap->da_state &
(MKDIR_PARENT | MKDIR_BODY)) == 0)
break;
}
if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
panic("merge_diradd: unfound ref");
}
/*
* Any mkdir related journal items are not safe to be freed until
* the new name is stable.
*/
jwork_move(&newdap->da_jwork, &olddap->da_jwork);
olddap->da_state |= DEPCOMPLETE;
complete_diradd(olddap);
}
/*
* Move the diradd to the pending list when all diradd dependencies are
* complete.
*/
static void
complete_diradd(dap)
struct diradd *dap;
{
struct pagedep *pagedep;
if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
if (dap->da_state & DIRCHG)
pagedep = dap->da_previous->dm_pagedep;
else
pagedep = dap->da_pagedep;
LIST_REMOVE(dap, da_pdlist);
LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
}
}
/*
* Cancel a diradd when a dirrem overlaps with it. We must cancel the journal
* add entries and conditonally journal the remove.
*/
static void
cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
struct diradd *dap;
struct dirrem *dirrem;
struct jremref *jremref;
struct jremref *dotremref;
struct jremref *dotdotremref;
{
struct inodedep *inodedep;
struct jaddref *jaddref;
struct inoref *inoref;
struct ufsmount *ump;
struct mkdir *mkdir;
/*
* If no remove references were allocated we're on a non-journaled
* filesystem and can skip the cancel step.
*/
if (jremref == NULL) {
free_diradd(dap, NULL);
return;
}
/*
* Cancel the primary name an free it if it does not require
* journaling.
*/
if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
0, &inodedep) != 0) {
/* Abort the addref that reference this diradd. */
TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
if (inoref->if_list.wk_type != D_JADDREF)
continue;
jaddref = (struct jaddref *)inoref;
if (jaddref->ja_diradd != dap)
continue;
if (cancel_jaddref(jaddref, inodedep,
&dirrem->dm_jwork) == 0) {
free_jremref(jremref);
jremref = NULL;
}
break;
}
}
/*
* Cancel subordinate names and free them if they do not require
* journaling.
*/
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
ump = VFSTOUFS(dap->da_list.wk_mp);
LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
if (mkdir->md_diradd != dap)
continue;
if ((jaddref = mkdir->md_jaddref) == NULL)
continue;
mkdir->md_jaddref = NULL;
if (mkdir->md_state & MKDIR_PARENT) {
if (cancel_jaddref(jaddref, NULL,
&dirrem->dm_jwork) == 0) {
free_jremref(dotdotremref);
dotdotremref = NULL;
}
} else {
if (cancel_jaddref(jaddref, inodedep,
&dirrem->dm_jwork) == 0) {
free_jremref(dotremref);
dotremref = NULL;
}
}
}
}
if (jremref)
journal_jremref(dirrem, jremref, inodedep);
if (dotremref)
journal_jremref(dirrem, dotremref, inodedep);
if (dotdotremref)
journal_jremref(dirrem, dotdotremref, NULL);
jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
free_diradd(dap, &dirrem->dm_jwork);
}
/*
* Free a diradd dependency structure.
*/
static void
free_diradd(dap, wkhd)
struct diradd *dap;
struct workhead *wkhd;
{
struct dirrem *dirrem;
struct pagedep *pagedep;
struct inodedep *inodedep;
struct mkdir *mkdir, *nextmd;
struct ufsmount *ump;
ump = VFSTOUFS(dap->da_list.wk_mp);
LOCK_OWNED(ump);
LIST_REMOVE(dap, da_pdlist);
if (dap->da_state & ONWORKLIST)
WORKLIST_REMOVE(&dap->da_list);
if ((dap->da_state & DIRCHG) == 0) {
pagedep = dap->da_pagedep;
} else {
dirrem = dap->da_previous;
pagedep = dirrem->dm_pagedep;
dirrem->dm_dirinum = pagedep->pd_ino;
dirrem->dm_state |= COMPLETE;
if (LIST_EMPTY(&dirrem->dm_jremrefhd))
add_to_worklist(&dirrem->dm_list, 0);
}
if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
0, &inodedep) != 0)
if (inodedep->id_mkdiradd == dap)
inodedep->id_mkdiradd = NULL;
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
mkdir = nextmd) {
nextmd = LIST_NEXT(mkdir, md_mkdirs);
if (mkdir->md_diradd != dap)
continue;
dap->da_state &=
~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
LIST_REMOVE(mkdir, md_mkdirs);
if (mkdir->md_state & ONWORKLIST)
WORKLIST_REMOVE(&mkdir->md_list);
if (mkdir->md_jaddref != NULL)
panic("free_diradd: Unexpected jaddref");
WORKITEM_FREE(mkdir, D_MKDIR);
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
break;
}
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
panic("free_diradd: unfound ref");
}
if (inodedep)
free_inodedep(inodedep);
/*
* Free any journal segments waiting for the directory write.
*/
handle_jwork(&dap->da_jwork);
WORKITEM_FREE(dap, D_DIRADD);
}
/*
* Directory entry removal dependencies.
*
* When removing a directory entry, the entry's inode pointer must be
* zero'ed on disk before the corresponding inode's link count is decremented
* (possibly freeing the inode for re-use). This dependency is handled by
* updating the directory entry but delaying the inode count reduction until
* after the directory block has been written to disk. After this point, the
* inode count can be decremented whenever it is convenient.
*/
/*
* This routine should be called immediately after removing
* a directory entry. The inode's link count should not be
* decremented by the calling procedure -- the soft updates
* code will do this task when it is safe.
*/
void
softdep_setup_remove(bp, dp, ip, isrmdir)
struct buf *bp; /* buffer containing directory block */
struct inode *dp; /* inode for the directory being modified */
struct inode *ip; /* inode for directory entry being removed */
int isrmdir; /* indicates if doing RMDIR */
{
struct dirrem *dirrem, *prevdirrem;
struct inodedep *inodedep;
struct ufsmount *ump;
int direct;
ump = ITOUMP(ip);
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
("softdep_setup_remove called on non-softdep filesystem"));
/*
* Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want
* newdirrem() to setup the full directory remove which requires
* isrmdir > 1.
*/
dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
/*
* Add the dirrem to the inodedep's pending remove list for quick
* discovery later.
*/
if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0)
panic("softdep_setup_remove: Lost inodedep.");
KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
dirrem->dm_state |= ONDEPLIST;
LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
/*
* If the COMPLETE flag is clear, then there were no active
* entries and we want to roll back to a zeroed entry until
* the new inode is committed to disk. If the COMPLETE flag is
* set then we have deleted an entry that never made it to
* disk. If the entry we deleted resulted from a name change,
* then the old name still resides on disk. We cannot delete
* its inode (returned to us in prevdirrem) until the zeroed
* directory entry gets to disk. The new inode has never been
* referenced on the disk, so can be deleted immediately.
*/
if ((dirrem->dm_state & COMPLETE) == 0) {
LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
dm_next);
FREE_LOCK(ump);
} else {
if (prevdirrem != NULL)
LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
prevdirrem, dm_next);
dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
FREE_LOCK(ump);
if (direct)
handle_workitem_remove(dirrem, 0);
}
}
/*
* Check for an entry matching 'offset' on both the pd_dirraddhd list and the
* pd_pendinghd list of a pagedep.
*/
static struct diradd *
diradd_lookup(pagedep, offset)
struct pagedep *pagedep;
int offset;
{
struct diradd *dap;
LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
if (dap->da_offset == offset)
return (dap);
LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
if (dap->da_offset == offset)
return (dap);
return (NULL);
}
/*
* Search for a .. diradd dependency in a directory that is being removed.
* If the directory was renamed to a new parent we have a diradd rather
* than a mkdir for the .. entry. We need to cancel it now before
* it is found in truncate().
*/
static struct jremref *
cancel_diradd_dotdot(ip, dirrem, jremref)
struct inode *ip;
struct dirrem *dirrem;
struct jremref *jremref;
{
struct pagedep *pagedep;
struct diradd *dap;
struct worklist *wk;
if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0)
return (jremref);
dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
if (dap == NULL)
return (jremref);
cancel_diradd(dap, dirrem, jremref, NULL, NULL);
/*
* Mark any journal work as belonging to the parent so it is freed
* with the .. reference.
*/
LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
wk->wk_state |= MKDIR_PARENT;
return (NULL);
}
/*
* Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
* replace it with a dirrem/diradd pair as a result of re-parenting a
* directory. This ensures that we don't simultaneously have a mkdir and
* a diradd for the same .. entry.
*/
static struct jremref *
cancel_mkdir_dotdot(ip, dirrem, jremref)
struct inode *ip;
struct dirrem *dirrem;
struct jremref *jremref;
{
struct inodedep *inodedep;
struct jaddref *jaddref;
struct ufsmount *ump;
struct mkdir *mkdir;
struct diradd *dap;
struct mount *mp;
mp = ITOVFS(ip);
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
return (jremref);
dap = inodedep->id_mkdiradd;
if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
return (jremref);
ump = VFSTOUFS(inodedep->id_list.wk_mp);
for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
mkdir = LIST_NEXT(mkdir, md_mkdirs))
if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
break;
if (mkdir == NULL)
panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
if ((jaddref = mkdir->md_jaddref) != NULL) {
mkdir->md_jaddref = NULL;
jaddref->ja_state &= ~MKDIR_PARENT;
if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0)
panic("cancel_mkdir_dotdot: Lost parent inodedep");
if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
journal_jremref(dirrem, jremref, inodedep);
jremref = NULL;
}
}
if (mkdir->md_state & ONWORKLIST)
WORKLIST_REMOVE(&mkdir->md_list);
mkdir->md_state |= ALLCOMPLETE;
complete_mkdir(mkdir);
return (jremref);
}
static void
journal_jremref(dirrem, jremref, inodedep)
struct dirrem *dirrem;
struct jremref *jremref;
struct inodedep *inodedep;
{
if (inodedep == NULL)
if (inodedep_lookup(jremref->jr_list.wk_mp,
jremref->jr_ref.if_ino, 0, &inodedep) == 0)
panic("journal_jremref: Lost inodedep");
LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
add_to_journal(&jremref->jr_list);
}
static void
dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
struct dirrem *dirrem;
struct jremref *jremref;
struct jremref *dotremref;
struct jremref *dotdotremref;
{
struct inodedep *inodedep;
if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
&inodedep) == 0)
panic("dirrem_journal: Lost inodedep");
journal_jremref(dirrem, jremref, inodedep);
if (dotremref)
journal_jremref(dirrem, dotremref, inodedep);
if (dotdotremref)
journal_jremref(dirrem, dotdotremref, NULL);
}
/*
* Allocate a new dirrem if appropriate and return it along with
* its associated pagedep. Called without a lock, returns with lock.
*/
static struct dirrem *
newdirrem(bp, dp, ip, isrmdir, prevdirremp)
struct buf *bp; /* buffer containing directory block */
struct inode *dp; /* inode for the directory being modified */
struct inode *ip; /* inode for directory entry being removed */
int isrmdir; /* indicates if doing RMDIR */
struct dirrem **prevdirremp; /* previously referenced inode, if any */
{
int offset;
ufs_lbn_t lbn;
struct diradd *dap;
struct dirrem *dirrem;
struct pagedep *pagedep;
struct jremref *jremref;
struct jremref *dotremref;
struct jremref *dotdotremref;
struct vnode *dvp;
struct ufsmount *ump;
/*
* Whiteouts have no deletion dependencies.
*/
if (ip == NULL)
panic("newdirrem: whiteout");
dvp = ITOV(dp);
ump = ITOUMP(dp);
/*
* If the system is over its limit and our filesystem is
* responsible for more than our share of that usage and
* we are not a snapshot, request some inodedep cleanup.
* Limiting the number of dirrem structures will also limit
* the number of freefile and freeblks structures.
*/
ACQUIRE_LOCK(ump);
if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM))
schedule_cleanup(UFSTOVFS(ump));
else
FREE_LOCK(ump);
dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
M_ZERO);
workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
LIST_INIT(&dirrem->dm_jremrefhd);
LIST_INIT(&dirrem->dm_jwork);
dirrem->dm_state = isrmdir ? RMDIR : 0;
dirrem->dm_oldinum = ip->i_number;
*prevdirremp = NULL;
/*
* Allocate remove reference structures to track journal write
* dependencies. We will always have one for the link and
* when doing directories we will always have one more for dot.
* When renaming a directory we skip the dotdot link change so
* this is not needed.
*/
jremref = dotremref = dotdotremref = NULL;
if (DOINGSUJ(dvp)) {
if (isrmdir) {
jremref = newjremref(dirrem, dp, ip, dp->i_offset,
ip->i_effnlink + 2);
dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
ip->i_effnlink + 1);
dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
dp->i_effnlink + 1);
dotdotremref->jr_state |= MKDIR_PARENT;
} else
jremref = newjremref(dirrem, dp, ip, dp->i_offset,
ip->i_effnlink + 1);
}
ACQUIRE_LOCK(ump);
lbn = lblkno(ump->um_fs, dp->i_offset);
offset = blkoff(ump->um_fs, dp->i_offset);
pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC,
&pagedep);
dirrem->dm_pagedep = pagedep;
dirrem->dm_offset = offset;
/*
* If we're renaming a .. link to a new directory, cancel any
* existing MKDIR_PARENT mkdir. If it has already been canceled
* the jremref is preserved for any potential diradd in this
* location. This can not coincide with a rmdir.
*/
if (dp->i_offset == DOTDOT_OFFSET) {
if (isrmdir)
panic("newdirrem: .. directory change during remove?");
jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
}
/*
* If we're removing a directory search for the .. dependency now and
* cancel it. Any pending journal work will be added to the dirrem
* to be completed when the workitem remove completes.
*/
if (isrmdir)
dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
/*
* Check for a diradd dependency for the same directory entry.
* If present, then both dependencies become obsolete and can
* be de-allocated.
*/
dap = diradd_lookup(pagedep, offset);
if (dap == NULL) {
/*
* Link the jremref structures into the dirrem so they are
* written prior to the pagedep.
*/
if (jremref)
dirrem_journal(dirrem, jremref, dotremref,
dotdotremref);
return (dirrem);
}
/*
* Must be ATTACHED at this point.
*/
if ((dap->da_state & ATTACHED) == 0)
panic("newdirrem: not ATTACHED");
if (dap->da_newinum != ip->i_number)
panic("newdirrem: inum %ju should be %ju",
(uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
/*
* If we are deleting a changed name that never made it to disk,
* then return the dirrem describing the previous inode (which
* represents the inode currently referenced from this entry on disk).
*/
if ((dap->da_state & DIRCHG) != 0) {
*prevdirremp = dap->da_previous;
dap->da_state &= ~DIRCHG;
dap->da_pagedep = pagedep;
}
/*
* We are deleting an entry that never made it to disk.
* Mark it COMPLETE so we can delete its inode immediately.
*/
dirrem->dm_state |= COMPLETE;
cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
#ifdef INVARIANTS
if (isrmdir == 0) {
struct worklist *wk;
LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
}
#endif
return (dirrem);
}
/*
* Directory entry change dependencies.
*
* Changing an existing directory entry requires that an add operation
* be completed first followed by a deletion. The semantics for the addition
* are identical to the description of adding a new entry above except
* that the rollback is to the old inode number rather than zero. Once
* the addition dependency is completed, the removal is done as described
* in the removal routine above.
*/
/*
* This routine should be called immediately after changing
* a directory entry. The inode's link count should not be
* decremented by the calling procedure -- the soft updates
* code will perform this task when it is safe.
*/
void
softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
struct buf *bp; /* buffer containing directory block */
struct inode *dp; /* inode for the directory being modified */
struct inode *ip; /* inode for directory entry being removed */
ino_t newinum; /* new inode number for changed entry */
int isrmdir; /* indicates if doing RMDIR */
{
int offset;
struct diradd *dap = NULL;
struct dirrem *dirrem, *prevdirrem;
struct pagedep *pagedep;
struct inodedep *inodedep;
struct jaddref *jaddref;
struct mount *mp;
struct ufsmount *ump;
mp = ITOVFS(dp);
ump = VFSTOUFS(mp);
offset = blkoff(ump->um_fs, dp->i_offset);
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_setup_directory_change called on non-softdep filesystem"));
/*
* Whiteouts do not need diradd dependencies.
*/
if (newinum != UFS_WINO) {
dap = malloc(sizeof(struct diradd),
M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
workitem_alloc(&dap->da_list, D_DIRADD, mp);
dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
dap->da_offset = offset;
dap->da_newinum = newinum;
LIST_INIT(&dap->da_jwork);
}
/*
* Allocate a new dirrem and ACQUIRE_LOCK.
*/
dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
pagedep = dirrem->dm_pagedep;
/*
* The possible values for isrmdir:
* 0 - non-directory file rename
* 1 - directory rename within same directory
* inum - directory rename to new directory of given inode number
* When renaming to a new directory, we are both deleting and
* creating a new directory entry, so the link count on the new
* directory should not change. Thus we do not need the followup
* dirrem which is usually done in handle_workitem_remove. We set
* the DIRCHG flag to tell handle_workitem_remove to skip the
* followup dirrem.
*/
if (isrmdir > 1)
dirrem->dm_state |= DIRCHG;
/*
* Whiteouts have no additional dependencies,
* so just put the dirrem on the correct list.
*/
if (newinum == UFS_WINO) {
if ((dirrem->dm_state & COMPLETE) == 0) {
LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
dm_next);
} else {
dirrem->dm_dirinum = pagedep->pd_ino;
if (LIST_EMPTY(&dirrem->dm_jremrefhd))
add_to_worklist(&dirrem->dm_list, 0);
}
FREE_LOCK(ump);
return;
}
/*
* Add the dirrem to the inodedep's pending remove list for quick
* discovery later. A valid nlinkdelta ensures that this lookup
* will not fail.
*/
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
panic("softdep_setup_directory_change: Lost inodedep.");
dirrem->dm_state |= ONDEPLIST;
LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
/*
* If the COMPLETE flag is clear, then there were no active
* entries and we want to roll back to the previous inode until
* the new inode is committed to disk. If the COMPLETE flag is
* set, then we have deleted an entry that never made it to disk.
* If the entry we deleted resulted from a name change, then the old
* inode reference still resides on disk. Any rollback that we do
* needs to be to that old inode (returned to us in prevdirrem). If
* the entry we deleted resulted from a create, then there is
* no entry on the disk, so we want to roll back to zero rather
* than the uncommitted inode. In either of the COMPLETE cases we
* want to immediately free the unwritten and unreferenced inode.
*/
if ((dirrem->dm_state & COMPLETE) == 0) {
dap->da_previous = dirrem;
} else {
if (prevdirrem != NULL) {
dap->da_previous = prevdirrem;
} else {
dap->da_state &= ~DIRCHG;
dap->da_pagedep = pagedep;
}
dirrem->dm_dirinum = pagedep->pd_ino;
if (LIST_EMPTY(&dirrem->dm_jremrefhd))
add_to_worklist(&dirrem->dm_list, 0);
}
/*
* Lookup the jaddref for this journal entry. We must finish
* initializing it and make the diradd write dependent on it.
* If we're not journaling, put it on the id_bufwait list if the
* inode is not yet written. If it is written, do the post-inode
* write processing to put it on the id_pendinghd list.
*/
inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
if (MOUNTEDSUJ(mp)) {
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
inoreflst);
KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
("softdep_setup_directory_change: bad jaddref %p",
jaddref));
jaddref->ja_diroff = dp->i_offset;
jaddref->ja_diradd = dap;
LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
dap, da_pdlist);
add_to_journal(&jaddref->ja_list);
} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
dap->da_state |= COMPLETE;
LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
} else {
LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
dap, da_pdlist);
WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
}
/*
* If we're making a new name for a directory that has not been
* committed when need to move the dot and dotdot references to
* this new name.
*/
if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
merge_diradd(inodedep, dap);
FREE_LOCK(ump);
}
/*
* Called whenever the link count on an inode is changed.
* It creates an inode dependency so that the new reference(s)
* to the inode cannot be committed to disk until the updated
* inode has been written.
*/
void
softdep_change_linkcnt(ip)
struct inode *ip; /* the inode with the increased link count */
{
struct inodedep *inodedep;
struct ufsmount *ump;
ump = ITOUMP(ip);
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
("softdep_change_linkcnt called on non-softdep filesystem"));
ACQUIRE_LOCK(ump);
inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
if (ip->i_nlink < ip->i_effnlink)
panic("softdep_change_linkcnt: bad delta");
inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
FREE_LOCK(ump);
}
/*
* Attach a sbdep dependency to the superblock buf so that we can keep
* track of the head of the linked list of referenced but unlinked inodes.
*/
void
softdep_setup_sbupdate(ump, fs, bp)
struct ufsmount *ump;
struct fs *fs;
struct buf *bp;
{
struct sbdep *sbdep;
struct worklist *wk;
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
("softdep_setup_sbupdate called on non-softdep filesystem"));
LIST_FOREACH(wk, &bp->b_dep, wk_list)
if (wk->wk_type == D_SBDEP)
break;
if (wk != NULL)
return;
sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
sbdep->sb_fs = fs;
sbdep->sb_ump = ump;
ACQUIRE_LOCK(ump);
WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
FREE_LOCK(ump);
}
/*
* Return the first unlinked inodedep which is ready to be the head of the
* list. The inodedep and all those after it must have valid next pointers.
*/
static struct inodedep *
first_unlinked_inodedep(ump)
struct ufsmount *ump;
{
struct inodedep *inodedep;
struct inodedep *idp;
LOCK_OWNED(ump);
for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
inodedep; inodedep = idp) {
if ((inodedep->id_state & UNLINKNEXT) == 0)
return (NULL);
idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
break;
if ((inodedep->id_state & UNLINKPREV) == 0)
break;
}
return (inodedep);
}
/*
* Set the sujfree unlinked head pointer prior to writing a superblock.
*/
static void
initiate_write_sbdep(sbdep)
struct sbdep *sbdep;
{
struct inodedep *inodedep;
struct fs *bpfs;
struct fs *fs;
bpfs = sbdep->sb_fs;
fs = sbdep->sb_ump->um_fs;
inodedep = first_unlinked_inodedep(sbdep->sb_ump);
if (inodedep) {
fs->fs_sujfree = inodedep->id_ino;
inodedep->id_state |= UNLINKPREV;
} else
fs->fs_sujfree = 0;
bpfs->fs_sujfree = fs->fs_sujfree;
/*
* Because we have made changes to the superblock, we need to
* recompute its check-hash.
*/
bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
}
/*
* After a superblock is written determine whether it must be written again
* due to a changing unlinked list head.
*/
static int
handle_written_sbdep(sbdep, bp)
struct sbdep *sbdep;
struct buf *bp;
{
struct inodedep *inodedep;
struct fs *fs;
LOCK_OWNED(sbdep->sb_ump);
fs = sbdep->sb_fs;
/*
* If the superblock doesn't match the in-memory list start over.
*/
inodedep = first_unlinked_inodedep(sbdep->sb_ump);
if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
(inodedep == NULL && fs->fs_sujfree != 0)) {
bdirty(bp);
return (1);
}
WORKITEM_FREE(sbdep, D_SBDEP);
if (fs->fs_sujfree == 0)
return (0);
/*
* Now that we have a record of this inode in stable store allow it
* to be written to free up pending work. Inodes may see a lot of
* write activity after they are unlinked which we must not hold up.
*/
for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
inodedep, inodedep->id_state);
if (inodedep->id_state & UNLINKONLIST)
break;
inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
}
return (0);
}
/*
* Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
*/
static void
unlinked_inodedep(mp, inodedep)
struct mount *mp;
struct inodedep *inodedep;
{
struct ufsmount *ump;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
if (MOUNTEDSUJ(mp) == 0)
return;
ump->um_fs->fs_fmod = 1;
if (inodedep->id_state & UNLINKED)
panic("unlinked_inodedep: %p already unlinked\n", inodedep);
inodedep->id_state |= UNLINKED;
TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
}
/*
* Remove an inodedep from the unlinked inodedep list. This may require
* disk writes if the inode has made it that far.
*/
static void
clear_unlinked_inodedep(inodedep)
struct inodedep *inodedep;
{
struct ufs2_dinode *dip;
struct ufsmount *ump;
struct inodedep *idp;
struct inodedep *idn;
struct fs *fs, *bpfs;
struct buf *bp;
ino_t ino;
ino_t nino;
ino_t pino;
int error;
ump = VFSTOUFS(inodedep->id_list.wk_mp);
fs = ump->um_fs;
ino = inodedep->id_ino;
error = 0;
for (;;) {
LOCK_OWNED(ump);
KASSERT((inodedep->id_state & UNLINKED) != 0,
("clear_unlinked_inodedep: inodedep %p not unlinked",
inodedep));
/*
* If nothing has yet been written simply remove us from
* the in memory list and return. This is the most common
* case where handle_workitem_remove() loses the final
* reference.
*/
if ((inodedep->id_state & UNLINKLINKS) == 0)
break;
/*
* If we have a NEXT pointer and no PREV pointer we can simply
* clear NEXT's PREV and remove ourselves from the list. Be
* careful not to clear PREV if the superblock points at
* next as well.
*/
idn = TAILQ_NEXT(inodedep, id_unlinked);
if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
if (idn && fs->fs_sujfree != idn->id_ino)
idn->id_state &= ~UNLINKPREV;
break;
}
/*
* Here we have an inodedep which is actually linked into
* the list. We must remove it by forcing a write to the
* link before us, whether it be the superblock or an inode.
* Unfortunately the list may change while we're waiting
* on the buf lock for either resource so we must loop until
* we lock the right one. If both the superblock and an
* inode point to this inode we must clear the inode first
* followed by the superblock.
*/
idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
pino = 0;
if (idp && (idp->id_state & UNLINKNEXT))
pino = idp->id_ino;
FREE_LOCK(ump);
if (pino == 0) {
bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
(int)fs->fs_sbsize, 0, 0, 0);
} else {
error = bread(ump->um_devvp,
fsbtodb(fs, ino_to_fsba(fs, pino)),
(int)fs->fs_bsize, NOCRED, &bp);
if (error)
brelse(bp);
}
ACQUIRE_LOCK(ump);
if (error)
break;
/* If the list has changed restart the loop. */
idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
nino = 0;
if (idp && (idp->id_state & UNLINKNEXT))
nino = idp->id_ino;
if (nino != pino ||
(inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
FREE_LOCK(ump);
brelse(bp);
ACQUIRE_LOCK(ump);
continue;
}
nino = 0;
idn = TAILQ_NEXT(inodedep, id_unlinked);
if (idn)
nino = idn->id_ino;
/*
* Remove us from the in memory list. After this we cannot
* access the inodedep.
*/
KASSERT((inodedep->id_state & UNLINKED) != 0,
("clear_unlinked_inodedep: inodedep %p not unlinked",
inodedep));
inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
FREE_LOCK(ump);
/*
* The predecessor's next pointer is manually updated here
* so that the NEXT flag is never cleared for an element
* that is in the list.
*/
if (pino == 0) {
bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
bpfs = (struct fs *)bp->b_data;
ffs_oldfscompat_write(bpfs, ump);
softdep_setup_sbupdate(ump, bpfs, bp);
/*
* Because we may have made changes to the superblock,
* we need to recompute its check-hash.
*/
bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
} else if (fs->fs_magic == FS_UFS1_MAGIC) {
((struct ufs1_dinode *)bp->b_data +
ino_to_fsbo(fs, pino))->di_freelink = nino;
} else {
dip = (struct ufs2_dinode *)bp->b_data +
ino_to_fsbo(fs, pino);
dip->di_freelink = nino;
ffs_update_dinode_ckhash(fs, dip);
}
/*
* If the bwrite fails we have no recourse to recover. The
* filesystem is corrupted already.
*/
bwrite(bp);
ACQUIRE_LOCK(ump);
/*
* If the superblock pointer still needs to be cleared force
* a write here.
*/
if (fs->fs_sujfree == ino) {
FREE_LOCK(ump);
bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
(int)fs->fs_sbsize, 0, 0, 0);
bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
bpfs = (struct fs *)bp->b_data;
ffs_oldfscompat_write(bpfs, ump);
softdep_setup_sbupdate(ump, bpfs, bp);
/*
* Because we may have made changes to the superblock,
* we need to recompute its check-hash.
*/
bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
bwrite(bp);
ACQUIRE_LOCK(ump);
}
if (fs->fs_sujfree != ino)
return;
panic("clear_unlinked_inodedep: Failed to clear free head");
}
if (inodedep->id_ino == fs->fs_sujfree)
panic("clear_unlinked_inodedep: Freeing head of free list");
inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
return;
}
/*
* This workitem decrements the inode's link count.
* If the link count reaches zero, the file is removed.
*/
static int
handle_workitem_remove(dirrem, flags)
struct dirrem *dirrem;
int flags;
{
struct inodedep *inodedep;
struct workhead dotdotwk;
struct worklist *wk;
struct ufsmount *ump;
struct mount *mp;
struct vnode *vp;
struct inode *ip;
ino_t oldinum;
if (dirrem->dm_state & ONWORKLIST)
panic("handle_workitem_remove: dirrem %p still on worklist",
dirrem);
oldinum = dirrem->dm_oldinum;
mp = dirrem->dm_list.wk_mp;
ump = VFSTOUFS(mp);
flags |= LK_EXCLUSIVE;
if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
return (EBUSY);
ip = VTOI(vp);
ACQUIRE_LOCK(ump);
if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
panic("handle_workitem_remove: lost inodedep");
if (dirrem->dm_state & ONDEPLIST)
LIST_REMOVE(dirrem, dm_inonext);
KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
("handle_workitem_remove: Journal entries not written."));
/*
* Move all dependencies waiting on the remove to complete
* from the dirrem to the inode inowait list to be completed
* after the inode has been updated and written to disk. Any
* marked MKDIR_PARENT are saved to be completed when the .. ref
* is removed.
*/
LIST_INIT(&dotdotwk);
while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
WORKLIST_REMOVE(wk);
if (wk->wk_state & MKDIR_PARENT) {
wk->wk_state &= ~MKDIR_PARENT;
WORKLIST_INSERT(&dotdotwk, wk);
continue;
}
WORKLIST_INSERT(&inodedep->id_inowait, wk);
}
LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
/*
* Normal file deletion.
*/
if ((dirrem->dm_state & RMDIR) == 0) {
ip->i_nlink--;
KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino "
"%ju negative i_nlink %d", (intmax_t)ip->i_number,
ip->i_nlink));
DIP_SET(ip, i_nlink, ip->i_nlink);
ip->i_flag |= IN_CHANGE;
if (ip->i_nlink < ip->i_effnlink)
panic("handle_workitem_remove: bad file delta");
if (ip->i_nlink == 0)
unlinked_inodedep(mp, inodedep);
inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
("handle_workitem_remove: worklist not empty. %s",
TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
WORKITEM_FREE(dirrem, D_DIRREM);
FREE_LOCK(ump);
goto out;
}
/*
* Directory deletion. Decrement reference count for both the
* just deleted parent directory entry and the reference for ".".
* Arrange to have the reference count on the parent decremented
* to account for the loss of "..".
*/
ip->i_nlink -= 2;
KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino "
"%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink));
DIP_SET(ip, i_nlink, ip->i_nlink);
ip->i_flag |= IN_CHANGE;
if (ip->i_nlink < ip->i_effnlink)
panic("handle_workitem_remove: bad dir delta");
if (ip->i_nlink == 0)
unlinked_inodedep(mp, inodedep);
inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
/*
* Rename a directory to a new parent. Since, we are both deleting
* and creating a new directory entry, the link count on the new
* directory should not change. Thus we skip the followup dirrem.
*/
if (dirrem->dm_state & DIRCHG) {
KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
("handle_workitem_remove: DIRCHG and worklist not empty."));
WORKITEM_FREE(dirrem, D_DIRREM);
FREE_LOCK(ump);
goto out;
}
dirrem->dm_state = ONDEPLIST;
dirrem->dm_oldinum = dirrem->dm_dirinum;
/*
* Place the dirrem on the parent's diremhd list.
*/
if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
panic("handle_workitem_remove: lost dir inodedep");
LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
/*
* If the allocated inode has never been written to disk, then
* the on-disk inode is zero'ed and we can remove the file
* immediately. When journaling if the inode has been marked
* unlinked and not DEPCOMPLETE we know it can never be written.
*/
inodedep_lookup(mp, oldinum, 0, &inodedep);
if (inodedep == NULL ||
(inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
check_inode_unwritten(inodedep)) {
FREE_LOCK(ump);
vput(vp);
return handle_workitem_remove(dirrem, flags);
}
WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
FREE_LOCK(ump);
ip->i_flag |= IN_CHANGE;
out:
ffs_update(vp, 0);
vput(vp);
return (0);
}
/*
* Inode de-allocation dependencies.
*
* When an inode's link count is reduced to zero, it can be de-allocated. We
* found it convenient to postpone de-allocation until after the inode is
* written to disk with its new link count (zero). At this point, all of the
* on-disk inode's block pointers are nullified and, with careful dependency
* list ordering, all dependencies related to the inode will be satisfied and
* the corresponding dependency structures de-allocated. So, if/when the
* inode is reused, there will be no mixing of old dependencies with new
* ones. This artificial dependency is set up by the block de-allocation
* procedure above (softdep_setup_freeblocks) and completed by the
* following procedure.
*/
static void
handle_workitem_freefile(freefile)
struct freefile *freefile;
{
struct workhead wkhd;
struct fs *fs;
struct ufsmount *ump;
int error;
#ifdef INVARIANTS
struct inodedep *idp;
#endif
ump = VFSTOUFS(freefile->fx_list.wk_mp);
fs = ump->um_fs;
#ifdef INVARIANTS
ACQUIRE_LOCK(ump);
error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
FREE_LOCK(ump);
if (error)
panic("handle_workitem_freefile: inodedep %p survived", idp);
#endif
UFS_LOCK(ump);
fs->fs_pendinginodes -= 1;
UFS_UNLOCK(ump);
LIST_INIT(&wkhd);
LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
softdep_error("handle_workitem_freefile", error);
ACQUIRE_LOCK(ump);
WORKITEM_FREE(freefile, D_FREEFILE);
FREE_LOCK(ump);
}
/*
* Helper function which unlinks marker element from work list and returns
* the next element on the list.
*/
static __inline struct worklist *
markernext(struct worklist *marker)
{
struct worklist *next;
next = LIST_NEXT(marker, wk_list);
LIST_REMOVE(marker, wk_list);
return next;
}
/*
* Disk writes.
*
* The dependency structures constructed above are most actively used when file
* system blocks are written to disk. No constraints are placed on when a
* block can be written, but unsatisfied update dependencies are made safe by
* modifying (or replacing) the source memory for the duration of the disk
* write. When the disk write completes, the memory block is again brought
* up-to-date.
*
* In-core inode structure reclamation.
*
* Because there are a finite number of "in-core" inode structures, they are
* reused regularly. By transferring all inode-related dependencies to the
* in-memory inode block and indexing them separately (via "inodedep"s), we
* can allow "in-core" inode structures to be reused at any time and avoid
* any increase in contention.
*
* Called just before entering the device driver to initiate a new disk I/O.
* The buffer must be locked, thus, no I/O completion operations can occur
* while we are manipulating its associated dependencies.
*/
static void
softdep_disk_io_initiation(bp)
struct buf *bp; /* structure describing disk write to occur */
{
struct worklist *wk;
struct worklist marker;
struct inodedep *inodedep;
struct freeblks *freeblks;
struct jblkdep *jblkdep;
struct newblk *newblk;
struct ufsmount *ump;
/*
* We only care about write operations. There should never
* be dependencies for reads.
*/
if (bp->b_iocmd != BIO_WRITE)
panic("softdep_disk_io_initiation: not write");
if (bp->b_vflags & BV_BKGRDINPROG)
panic("softdep_disk_io_initiation: Writing buffer with "
"background write in progress: %p", bp);
ump = softdep_bp_to_mp(bp);
if (ump == NULL)
return;
marker.wk_type = D_LAST + 1; /* Not a normal workitem */
PHOLD(curproc); /* Don't swap out kernel stack */
ACQUIRE_LOCK(ump);
/*
* Do any necessary pre-I/O processing.
*/
for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
wk = markernext(&marker)) {
LIST_INSERT_AFTER(wk, &marker, wk_list);
switch (wk->wk_type) {
case D_PAGEDEP:
initiate_write_filepage(WK_PAGEDEP(wk), bp);
continue;
case D_INODEDEP:
inodedep = WK_INODEDEP(wk);
if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
initiate_write_inodeblock_ufs1(inodedep, bp);
else
initiate_write_inodeblock_ufs2(inodedep, bp);
continue;
case D_INDIRDEP:
initiate_write_indirdep(WK_INDIRDEP(wk), bp);
continue;
case D_BMSAFEMAP:
initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
continue;
case D_JSEG:
WK_JSEG(wk)->js_buf = NULL;
continue;
case D_FREEBLKS:
freeblks = WK_FREEBLKS(wk);
jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
/*
* We have to wait for the freeblks to be journaled
* before we can write an inodeblock with updated
* pointers. Be careful to arrange the marker so
* we revisit the freeblks if it's not removed by
* the first jwait().
*/
if (jblkdep != NULL) {
LIST_REMOVE(&marker, wk_list);
LIST_INSERT_BEFORE(wk, &marker, wk_list);
jwait(&jblkdep->jb_list, MNT_WAIT);
}
continue;
case D_ALLOCDIRECT:
case D_ALLOCINDIR:
/*
* We have to wait for the jnewblk to be journaled
* before we can write to a block if the contents
* may be confused with an earlier file's indirect
* at recovery time. Handle the marker as described
* above.
*/
newblk = WK_NEWBLK(wk);
if (newblk->nb_jnewblk != NULL &&
indirblk_lookup(newblk->nb_list.wk_mp,
newblk->nb_newblkno)) {
LIST_REMOVE(&marker, wk_list);
LIST_INSERT_BEFORE(wk, &marker, wk_list);
jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
}
continue;
case D_SBDEP:
initiate_write_sbdep(WK_SBDEP(wk));
continue;
case D_MKDIR:
case D_FREEWORK:
case D_FREEDEP:
case D_JSEGDEP:
continue;
default:
panic("handle_disk_io_initiation: Unexpected type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
FREE_LOCK(ump);
PRELE(curproc); /* Allow swapout of kernel stack */
}
/*
* Called from within the procedure above to deal with unsatisfied
* allocation dependencies in a directory. The buffer must be locked,
* thus, no I/O completion operations can occur while we are
* manipulating its associated dependencies.
*/
static void
initiate_write_filepage(pagedep, bp)
struct pagedep *pagedep;
struct buf *bp;
{
struct jremref *jremref;
struct jmvref *jmvref;
struct dirrem *dirrem;
struct diradd *dap;
struct direct *ep;
int i;
if (pagedep->pd_state & IOSTARTED) {
/*
* This can only happen if there is a driver that does not
* understand chaining. Here biodone will reissue the call
* to strategy for the incomplete buffers.
*/
printf("initiate_write_filepage: already started\n");
return;
}
pagedep->pd_state |= IOSTARTED;
/*
* Wait for all journal remove dependencies to hit the disk.
* We can not allow any potentially conflicting directory adds
* to be visible before removes and rollback is too difficult.
* The per-filesystem lock may be dropped and re-acquired, however
* we hold the buf locked so the dependency can not go away.
*/
LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
jwait(&jremref->jr_list, MNT_WAIT);
while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
jwait(&jmvref->jm_list, MNT_WAIT);
for (i = 0; i < DAHASHSZ; i++) {
LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
ep = (struct direct *)
((char *)bp->b_data + dap->da_offset);
if (ep->d_ino != dap->da_newinum)
panic("%s: dir inum %ju != new %ju",
"initiate_write_filepage",
(uintmax_t)ep->d_ino,
(uintmax_t)dap->da_newinum);
if (dap->da_state & DIRCHG)
ep->d_ino = dap->da_previous->dm_oldinum;
else
ep->d_ino = 0;
dap->da_state &= ~ATTACHED;
dap->da_state |= UNDONE;
}
}
}
/*
* Version of initiate_write_inodeblock that handles UFS1 dinodes.
* Note that any bug fixes made to this routine must be done in the
* version found below.
*
* Called from within the procedure above to deal with unsatisfied
* allocation dependencies in an inodeblock. The buffer must be
* locked, thus, no I/O completion operations can occur while we
* are manipulating its associated dependencies.
*/
static void
initiate_write_inodeblock_ufs1(inodedep, bp)
struct inodedep *inodedep;
struct buf *bp; /* The inode block */
{
struct allocdirect *adp, *lastadp;
struct ufs1_dinode *dp;
struct ufs1_dinode *sip;
struct inoref *inoref;
struct ufsmount *ump;
struct fs *fs;
ufs_lbn_t i;
#ifdef INVARIANTS
ufs_lbn_t prevlbn = 0;
#endif
int deplist;
if (inodedep->id_state & IOSTARTED)
panic("initiate_write_inodeblock_ufs1: already started");
inodedep->id_state |= IOSTARTED;
fs = inodedep->id_fs;
ump = VFSTOUFS(inodedep->id_list.wk_mp);
LOCK_OWNED(ump);
dp = (struct ufs1_dinode *)bp->b_data +
ino_to_fsbo(fs, inodedep->id_ino);
/*
* If we're on the unlinked list but have not yet written our
* next pointer initialize it here.
*/
if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
struct inodedep *inon;
inon = TAILQ_NEXT(inodedep, id_unlinked);
dp->di_freelink = inon ? inon->id_ino : 0;
}
/*
* If the bitmap is not yet written, then the allocated
* inode cannot be written to disk.
*/
if ((inodedep->id_state & DEPCOMPLETE) == 0) {
if (inodedep->id_savedino1 != NULL)
panic("initiate_write_inodeblock_ufs1: I/O underway");
FREE_LOCK(ump);
sip = malloc(sizeof(struct ufs1_dinode),
M_SAVEDINO, M_SOFTDEP_FLAGS);
ACQUIRE_LOCK(ump);
inodedep->id_savedino1 = sip;
*inodedep->id_savedino1 = *dp;
bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
dp->di_gen = inodedep->id_savedino1->di_gen;
dp->di_freelink = inodedep->id_savedino1->di_freelink;
return;
}
/*
* If no dependencies, then there is nothing to roll back.
*/
inodedep->id_savedsize = dp->di_size;
inodedep->id_savedextsize = 0;
inodedep->id_savednlink = dp->di_nlink;
if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
TAILQ_EMPTY(&inodedep->id_inoreflst))
return;
/*
* Revert the link count to that of the first unwritten journal entry.
*/
inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
if (inoref)
dp->di_nlink = inoref->if_nlink;
/*
* Set the dependencies to busy.
*/
for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
adp = TAILQ_NEXT(adp, ad_next)) {
#ifdef INVARIANTS
if (deplist != 0 && prevlbn >= adp->ad_offset)
panic("softdep_write_inodeblock: lbn order");
prevlbn = adp->ad_offset;
if (adp->ad_offset < UFS_NDADDR &&
dp->di_db[adp->ad_offset] != adp->ad_newblkno)
panic("initiate_write_inodeblock_ufs1: "
"direct pointer #%jd mismatch %d != %jd",
(intmax_t)adp->ad_offset,
dp->di_db[adp->ad_offset],
(intmax_t)adp->ad_newblkno);
if (adp->ad_offset >= UFS_NDADDR &&
dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
panic("initiate_write_inodeblock_ufs1: "
"indirect pointer #%jd mismatch %d != %jd",
(intmax_t)adp->ad_offset - UFS_NDADDR,
dp->di_ib[adp->ad_offset - UFS_NDADDR],
(intmax_t)adp->ad_newblkno);
deplist |= 1 << adp->ad_offset;
if ((adp->ad_state & ATTACHED) == 0)
panic("initiate_write_inodeblock_ufs1: "
"Unknown state 0x%x", adp->ad_state);
#endif /* INVARIANTS */
adp->ad_state &= ~ATTACHED;
adp->ad_state |= UNDONE;
}
/*
* The on-disk inode cannot claim to be any larger than the last
* fragment that has been written. Otherwise, the on-disk inode
* might have fragments that were not the last block in the file
* which would corrupt the filesystem.
*/
for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
if (adp->ad_offset >= UFS_NDADDR)
break;
dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
/* keep going until hitting a rollback to a frag */
if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
continue;
dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
#ifdef INVARIANTS
if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
panic("initiate_write_inodeblock_ufs1: "
"lost dep1");
#endif /* INVARIANTS */
dp->di_db[i] = 0;
}
for (i = 0; i < UFS_NIADDR; i++) {
#ifdef INVARIANTS
if (dp->di_ib[i] != 0 &&
(deplist & ((1 << UFS_NDADDR) << i)) == 0)
panic("initiate_write_inodeblock_ufs1: "
"lost dep2");
#endif /* INVARIANTS */
dp->di_ib[i] = 0;
}
return;
}
/*
* If we have zero'ed out the last allocated block of the file,
* roll back the size to the last currently allocated block.
* We know that this last allocated block is a full-sized as
* we already checked for fragments in the loop above.
*/
if (lastadp != NULL &&
dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
for (i = lastadp->ad_offset; i >= 0; i--)
if (dp->di_db[i] != 0)
break;
dp->di_size = (i + 1) * fs->fs_bsize;
}
/*
* The only dependencies are for indirect blocks.
*
* The file size for indirect block additions is not guaranteed.
* Such a guarantee would be non-trivial to achieve. The conventional
* synchronous write implementation also does not make this guarantee.
* Fsck should catch and fix discrepancies. Arguably, the file size
* can be over-estimated without destroying integrity when the file
* moves into the indirect blocks (i.e., is large). If we want to
* postpone fsck, we are stuck with this argument.
*/
for (; adp; adp = TAILQ_NEXT(adp, ad_next))
dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
}
/*
* Version of initiate_write_inodeblock that handles UFS2 dinodes.
* Note that any bug fixes made to this routine must be done in the
* version found above.
*
* Called from within the procedure above to deal with unsatisfied
* allocation dependencies in an inodeblock. The buffer must be
* locked, thus, no I/O completion operations can occur while we
* are manipulating its associated dependencies.
*/
static void
initiate_write_inodeblock_ufs2(inodedep, bp)
struct inodedep *inodedep;
struct buf *bp; /* The inode block */
{
struct allocdirect *adp, *lastadp;
struct ufs2_dinode *dp;
struct ufs2_dinode *sip;
struct inoref *inoref;
struct ufsmount *ump;
struct fs *fs;
ufs_lbn_t i;
#ifdef INVARIANTS
ufs_lbn_t prevlbn = 0;
#endif
int deplist;
if (inodedep->id_state & IOSTARTED)
panic("initiate_write_inodeblock_ufs2: already started");
inodedep->id_state |= IOSTARTED;
fs = inodedep->id_fs;
ump = VFSTOUFS(inodedep->id_list.wk_mp);
LOCK_OWNED(ump);
dp = (struct ufs2_dinode *)bp->b_data +
ino_to_fsbo(fs, inodedep->id_ino);
/*
* If we're on the unlinked list but have not yet written our
* next pointer initialize it here.
*/
if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
struct inodedep *inon;
inon = TAILQ_NEXT(inodedep, id_unlinked);
dp->di_freelink = inon ? inon->id_ino : 0;
ffs_update_dinode_ckhash(fs, dp);
}
/*
* If the bitmap is not yet written, then the allocated
* inode cannot be written to disk.
*/
if ((inodedep->id_state & DEPCOMPLETE) == 0) {
if (inodedep->id_savedino2 != NULL)
panic("initiate_write_inodeblock_ufs2: I/O underway");
FREE_LOCK(ump);
sip = malloc(sizeof(struct ufs2_dinode),
M_SAVEDINO, M_SOFTDEP_FLAGS);
ACQUIRE_LOCK(ump);
inodedep->id_savedino2 = sip;
*inodedep->id_savedino2 = *dp;
bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
dp->di_gen = inodedep->id_savedino2->di_gen;
dp->di_freelink = inodedep->id_savedino2->di_freelink;
return;
}
/*
* If no dependencies, then there is nothing to roll back.
*/
inodedep->id_savedsize = dp->di_size;
inodedep->id_savedextsize = dp->di_extsize;
inodedep->id_savednlink = dp->di_nlink;
if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
TAILQ_EMPTY(&inodedep->id_extupdt) &&
TAILQ_EMPTY(&inodedep->id_inoreflst))
return;
/*
* Revert the link count to that of the first unwritten journal entry.
*/
inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
if (inoref)
dp->di_nlink = inoref->if_nlink;
/*
* Set the ext data dependencies to busy.
*/
for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
adp = TAILQ_NEXT(adp, ad_next)) {
#ifdef INVARIANTS
if (deplist != 0 && prevlbn >= adp->ad_offset)
panic("initiate_write_inodeblock_ufs2: lbn order");
prevlbn = adp->ad_offset;
if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
panic("initiate_write_inodeblock_ufs2: "
"ext pointer #%jd mismatch %jd != %jd",
(intmax_t)adp->ad_offset,
(intmax_t)dp->di_extb[adp->ad_offset],
(intmax_t)adp->ad_newblkno);
deplist |= 1 << adp->ad_offset;
if ((adp->ad_state & ATTACHED) == 0)
panic("initiate_write_inodeblock_ufs2: Unknown "
"state 0x%x", adp->ad_state);
#endif /* INVARIANTS */
adp->ad_state &= ~ATTACHED;
adp->ad_state |= UNDONE;
}
/*
* The on-disk inode cannot claim to be any larger than the last
* fragment that has been written. Otherwise, the on-disk inode
* might have fragments that were not the last block in the ext
* data which would corrupt the filesystem.
*/
for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
/* keep going until hitting a rollback to a frag */
if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
continue;
dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) {
#ifdef INVARIANTS
if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
panic("initiate_write_inodeblock_ufs2: "
"lost dep1");
#endif /* INVARIANTS */
dp->di_extb[i] = 0;
}
lastadp = NULL;
break;
}
/*
* If we have zero'ed out the last allocated block of the ext
* data, roll back the size to the last currently allocated block.
* We know that this last allocated block is a full-sized as
* we already checked for fragments in the loop above.
*/
if (lastadp != NULL &&
dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
for (i = lastadp->ad_offset; i >= 0; i--)
if (dp->di_extb[i] != 0)
break;
dp->di_extsize = (i + 1) * fs->fs_bsize;
}
/*
* Set the file data dependencies to busy.
*/
for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
adp = TAILQ_NEXT(adp, ad_next)) {
#ifdef INVARIANTS
if (deplist != 0 && prevlbn >= adp->ad_offset)
panic("softdep_write_inodeblock: lbn order");
if ((adp->ad_state & ATTACHED) == 0)
panic("inodedep %p and adp %p not attached", inodedep, adp);
prevlbn = adp->ad_offset;
if (adp->ad_offset < UFS_NDADDR &&
dp->di_db[adp->ad_offset] != adp->ad_newblkno)
panic("initiate_write_inodeblock_ufs2: "
"direct pointer #%jd mismatch %jd != %jd",
(intmax_t)adp->ad_offset,
(intmax_t)dp->di_db[adp->ad_offset],
(intmax_t)adp->ad_newblkno);
if (adp->ad_offset >= UFS_NDADDR &&
dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
panic("initiate_write_inodeblock_ufs2: "
"indirect pointer #%jd mismatch %jd != %jd",
(intmax_t)adp->ad_offset - UFS_NDADDR,
(intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR],
(intmax_t)adp->ad_newblkno);
deplist |= 1 << adp->ad_offset;
if ((adp->ad_state & ATTACHED) == 0)
panic("initiate_write_inodeblock_ufs2: Unknown "
"state 0x%x", adp->ad_state);
#endif /* INVARIANTS */
adp->ad_state &= ~ATTACHED;
adp->ad_state |= UNDONE;
}
/*
* The on-disk inode cannot claim to be any larger than the last
* fragment that has been written. Otherwise, the on-disk inode
* might have fragments that were not the last block in the file
* which would corrupt the filesystem.
*/
for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
if (adp->ad_offset >= UFS_NDADDR)
break;
dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
/* keep going until hitting a rollback to a frag */
if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
continue;
dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
#ifdef INVARIANTS
if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
panic("initiate_write_inodeblock_ufs2: "
"lost dep2");
#endif /* INVARIANTS */
dp->di_db[i] = 0;
}
for (i = 0; i < UFS_NIADDR; i++) {
#ifdef INVARIANTS
if (dp->di_ib[i] != 0 &&
(deplist & ((1 << UFS_NDADDR) << i)) == 0)
panic("initiate_write_inodeblock_ufs2: "
"lost dep3");
#endif /* INVARIANTS */
dp->di_ib[i] = 0;
}
ffs_update_dinode_ckhash(fs, dp);
return;
}
/*
* If we have zero'ed out the last allocated block of the file,
* roll back the size to the last currently allocated block.
* We know that this last allocated block is a full-sized as
* we already checked for fragments in the loop above.
*/
if (lastadp != NULL &&
dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
for (i = lastadp->ad_offset; i >= 0; i--)
if (dp->di_db[i] != 0)
break;
dp->di_size = (i + 1) * fs->fs_bsize;
}
/*
* The only dependencies are for indirect blocks.
*
* The file size for indirect block additions is not guaranteed.
* Such a guarantee would be non-trivial to achieve. The conventional
* synchronous write implementation also does not make this guarantee.
* Fsck should catch and fix discrepancies. Arguably, the file size
* can be over-estimated without destroying integrity when the file
* moves into the indirect blocks (i.e., is large). If we want to
* postpone fsck, we are stuck with this argument.
*/
for (; adp; adp = TAILQ_NEXT(adp, ad_next))
dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
ffs_update_dinode_ckhash(fs, dp);
}
/*
* Cancel an indirdep as a result of truncation. Release all of the
* children allocindirs and place their journal work on the appropriate
* list.
*/
static void
cancel_indirdep(indirdep, bp, freeblks)
struct indirdep *indirdep;
struct buf *bp;
struct freeblks *freeblks;
{
struct allocindir *aip;
/*
* None of the indirect pointers will ever be visible,
* so they can simply be tossed. GOINGAWAY ensures
* that allocated pointers will be saved in the buffer
* cache until they are freed. Note that they will
* only be able to be found by their physical address
* since the inode mapping the logical address will
* be gone. The save buffer used for the safe copy
* was allocated in setup_allocindir_phase2 using
* the physical address so it could be used for this
* purpose. Hence we swap the safe copy with the real
* copy, allowing the safe copy to be freed and holding
* on to the real copy for later use in indir_trunc.
*/
if (indirdep->ir_state & GOINGAWAY)
panic("cancel_indirdep: already gone");
if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
indirdep->ir_state |= DEPCOMPLETE;
LIST_REMOVE(indirdep, ir_next);
}
indirdep->ir_state |= GOINGAWAY;
/*
* Pass in bp for blocks still have journal writes
* pending so we can cancel them on their own.
*/
while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
cancel_allocindir(aip, bp, freeblks, 0);
while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
cancel_allocindir(aip, NULL, freeblks, 0);
while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
cancel_allocindir(aip, NULL, freeblks, 0);
while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
cancel_allocindir(aip, NULL, freeblks, 0);
/*
* If there are pending partial truncations we need to keep the
* old block copy around until they complete. This is because
* the current b_data is not a perfect superset of the available
* blocks.
*/
if (TAILQ_EMPTY(&indirdep->ir_trunc))
bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
else
bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
WORKLIST_REMOVE(&indirdep->ir_list);
WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
indirdep->ir_bp = NULL;
indirdep->ir_freeblks = freeblks;
}
/*
* Free an indirdep once it no longer has new pointers to track.
*/
static void
free_indirdep(indirdep)
struct indirdep *indirdep;
{
KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
("free_indirdep: Indir trunc list not empty."));
KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
("free_indirdep: Complete head not empty."));
KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
("free_indirdep: write head not empty."));
KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
("free_indirdep: done head not empty."));
KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
("free_indirdep: deplist head not empty."));
KASSERT((indirdep->ir_state & DEPCOMPLETE),
("free_indirdep: %p still on newblk list.", indirdep));
KASSERT(indirdep->ir_saveddata == NULL,
("free_indirdep: %p still has saved data.", indirdep));
if (indirdep->ir_state & ONWORKLIST)
WORKLIST_REMOVE(&indirdep->ir_list);
WORKITEM_FREE(indirdep, D_INDIRDEP);
}
/*
* Called before a write to an indirdep. This routine is responsible for
* rolling back pointers to a safe state which includes only those
* allocindirs which have been completed.
*/
static void
initiate_write_indirdep(indirdep, bp)
struct indirdep *indirdep;
struct buf *bp;
{
struct ufsmount *ump;
indirdep->ir_state |= IOSTARTED;
if (indirdep->ir_state & GOINGAWAY)
panic("disk_io_initiation: indirdep gone");
/*
* If there are no remaining dependencies, this will be writing
* the real pointers.
*/
if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
TAILQ_EMPTY(&indirdep->ir_trunc))
return;
/*
* Replace up-to-date version with safe version.
*/
if (indirdep->ir_saveddata == NULL) {
ump = VFSTOUFS(indirdep->ir_list.wk_mp);
LOCK_OWNED(ump);
FREE_LOCK(ump);
indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
M_SOFTDEP_FLAGS);
ACQUIRE_LOCK(ump);
}
indirdep->ir_state &= ~ATTACHED;
indirdep->ir_state |= UNDONE;
bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
bcopy(indirdep->ir_savebp->b_data, bp->b_data,
bp->b_bcount);
}
/*
* Called when an inode has been cleared in a cg bitmap. This finally
* eliminates any canceled jaddrefs
*/
void
softdep_setup_inofree(mp, bp, ino, wkhd)
struct mount *mp;
struct buf *bp;
ino_t ino;
struct workhead *wkhd;
{
struct worklist *wk, *wkn;
struct inodedep *inodedep;
struct ufsmount *ump;
uint8_t *inosused;
struct cg *cgp;
struct fs *fs;
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_setup_inofree called on non-softdep filesystem"));
ump = VFSTOUFS(mp);
ACQUIRE_LOCK(ump);
fs = ump->um_fs;
cgp = (struct cg *)bp->b_data;
inosused = cg_inosused(cgp);
if (isset(inosused, ino % fs->fs_ipg))
panic("softdep_setup_inofree: inode %ju not freed.",
(uintmax_t)ino);
if (inodedep_lookup(mp, ino, 0, &inodedep))
panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
(uintmax_t)ino, inodedep);
if (wkhd) {
LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
if (wk->wk_type != D_JADDREF)
continue;
WORKLIST_REMOVE(wk);
/*
* We can free immediately even if the jaddref
* isn't attached in a background write as now
* the bitmaps are reconciled.
*/
wk->wk_state |= COMPLETE | ATTACHED;
free_jaddref(WK_JADDREF(wk));
}
jwork_move(&bp->b_dep, wkhd);
}
FREE_LOCK(ump);
}
/*
* Called via ffs_blkfree() after a set of frags has been cleared from a cg
* map. Any dependencies waiting for the write to clear are added to the
* buf's list and any jnewblks that are being canceled are discarded
* immediately.
*/
void
softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
struct mount *mp;
struct buf *bp;
ufs2_daddr_t blkno;
int frags;
struct workhead *wkhd;
{
struct bmsafemap *bmsafemap;
struct jnewblk *jnewblk;
struct ufsmount *ump;
struct worklist *wk;
struct fs *fs;
#ifdef INVARIANTS
uint8_t *blksfree;
struct cg *cgp;
ufs2_daddr_t jstart;
ufs2_daddr_t jend;
ufs2_daddr_t end;
long bno;
int i;
#endif
CTR3(KTR_SUJ,
"softdep_setup_blkfree: blkno %jd frags %d wk head %p",
blkno, frags, wkhd);
ump = VFSTOUFS(mp);
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
("softdep_setup_blkfree called on non-softdep filesystem"));
ACQUIRE_LOCK(ump);
/* Lookup the bmsafemap so we track when it is dirty. */
fs = ump->um_fs;
bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
/*
* Detach any jnewblks which have been canceled. They must linger
* until the bitmap is cleared again by ffs_blkfree() to prevent
* an unjournaled allocation from hitting the disk.
*/
if (wkhd) {
while ((wk = LIST_FIRST(wkhd)) != NULL) {
CTR2(KTR_SUJ,
"softdep_setup_blkfree: blkno %jd wk type %d",
blkno, wk->wk_type);
WORKLIST_REMOVE(wk);
if (wk->wk_type != D_JNEWBLK) {
WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
continue;
}
jnewblk = WK_JNEWBLK(wk);
KASSERT(jnewblk->jn_state & GOINGAWAY,
("softdep_setup_blkfree: jnewblk not canceled."));
#ifdef INVARIANTS
/*
* Assert that this block is free in the bitmap
* before we discard the jnewblk.
*/
cgp = (struct cg *)bp->b_data;
blksfree = cg_blksfree(cgp);
bno = dtogd(fs, jnewblk->jn_blkno);
for (i = jnewblk->jn_oldfrags;
i < jnewblk->jn_frags; i++) {
if (isset(blksfree, bno + i))
continue;
panic("softdep_setup_blkfree: not free");
}
#endif
/*
* Even if it's not attached we can free immediately
* as the new bitmap is correct.
*/
wk->wk_state |= COMPLETE | ATTACHED;
free_jnewblk(jnewblk);
}
}
#ifdef INVARIANTS
/*
* Assert that we are not freeing a block which has an outstanding
* allocation dependency.
*/
fs = VFSTOUFS(mp)->um_fs;
bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
end = blkno + frags;
LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
/*
* Don't match against blocks that will be freed when the
* background write is done.
*/
if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
(COMPLETE | DEPCOMPLETE))
continue;
jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
jend = jnewblk->jn_blkno + jnewblk->jn_frags;
if ((blkno >= jstart && blkno < jend) ||
(end > jstart && end <= jend)) {
printf("state 0x%X %jd - %d %d dep %p\n",
jnewblk->jn_state, jnewblk->jn_blkno,
jnewblk->jn_oldfrags, jnewblk->jn_frags,
jnewblk->jn_dep);
panic("softdep_setup_blkfree: "
"%jd-%jd(%d) overlaps with %jd-%jd",
blkno, end, frags, jstart, jend);
}
}
#endif
FREE_LOCK(ump);
}
/*
* Revert a block allocation when the journal record that describes it
* is not yet written.
*/
static int
jnewblk_rollback(jnewblk, fs, cgp, blksfree)
struct jnewblk *jnewblk;
struct fs *fs;
struct cg *cgp;
uint8_t *blksfree;
{
ufs1_daddr_t fragno;
long cgbno, bbase;
int frags, blk;
int i;
frags = 0;
cgbno = dtogd(fs, jnewblk->jn_blkno);
/*
* We have to test which frags need to be rolled back. We may
* be operating on a stale copy when doing background writes.
*/
for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
if (isclr(blksfree, cgbno + i))
frags++;
if (frags == 0)
return (0);
/*
* This is mostly ffs_blkfree() sans some validation and
* superblock updates.
*/
if (frags == fs->fs_frag) {
fragno = fragstoblks(fs, cgbno);
ffs_setblock(fs, blksfree, fragno);
ffs_clusteracct(fs, cgp, fragno, 1);
cgp->cg_cs.cs_nbfree++;
} else {
cgbno += jnewblk->jn_oldfrags;
bbase = cgbno - fragnum(fs, cgbno);
/* Decrement the old frags. */
blk = blkmap(fs, blksfree, bbase);
ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
/* Deallocate the fragment */
for (i = 0; i < frags; i++)
setbit(blksfree, cgbno + i);
cgp->cg_cs.cs_nffree += frags;
/* Add back in counts associated with the new frags */
blk = blkmap(fs, blksfree, bbase);
ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
/* If a complete block has been reassembled, account for it. */
fragno = fragstoblks(fs, bbase);
if (ffs_isblock(fs, blksfree, fragno)) {
cgp->cg_cs.cs_nffree -= fs->fs_frag;
ffs_clusteracct(fs, cgp, fragno, 1);
cgp->cg_cs.cs_nbfree++;
}
}
stat_jnewblk++;
jnewblk->jn_state &= ~ATTACHED;
jnewblk->jn_state |= UNDONE;
return (frags);
}
static void
initiate_write_bmsafemap(bmsafemap, bp)
struct bmsafemap *bmsafemap;
struct buf *bp; /* The cg block. */
{
struct jaddref *jaddref;
struct jnewblk *jnewblk;
uint8_t *inosused;
uint8_t *blksfree;
struct cg *cgp;
struct fs *fs;
ino_t ino;
/*
* If this is a background write, we did this at the time that
* the copy was made, so do not need to do it again.
*/
if (bmsafemap->sm_state & IOSTARTED)
return;
bmsafemap->sm_state |= IOSTARTED;
/*
* Clear any inode allocations which are pending journal writes.
*/
if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
cgp = (struct cg *)bp->b_data;
fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
inosused = cg_inosused(cgp);
LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
ino = jaddref->ja_ino % fs->fs_ipg;
if (isset(inosused, ino)) {
if ((jaddref->ja_mode & IFMT) == IFDIR)
cgp->cg_cs.cs_ndir--;
cgp->cg_cs.cs_nifree++;
clrbit(inosused, ino);
jaddref->ja_state &= ~ATTACHED;
jaddref->ja_state |= UNDONE;
stat_jaddref++;
} else
panic("initiate_write_bmsafemap: inode %ju "
"marked free", (uintmax_t)jaddref->ja_ino);
}
}
/*
* Clear any block allocations which are pending journal writes.
*/
if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
cgp = (struct cg *)bp->b_data;
fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
blksfree = cg_blksfree(cgp);
LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
continue;
panic("initiate_write_bmsafemap: block %jd "
"marked free", jnewblk->jn_blkno);
}
}
/*
* Move allocation lists to the written lists so they can be
* cleared once the block write is complete.
*/
LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
inodedep, id_deps);
LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
newblk, nb_deps);
LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
wk_list);
}
/*
* This routine is called during the completion interrupt
* service routine for a disk write (from the procedure called
* by the device driver to inform the filesystem caches of
* a request completion). It should be called early in this
* procedure, before the block is made available to other
* processes or other routines are called.
*
*/
static void
softdep_disk_write_complete(bp)
struct buf *bp; /* describes the completed disk write */
{
struct worklist *wk;
struct worklist *owk;
struct ufsmount *ump;
struct workhead reattach;
struct freeblks *freeblks;
struct buf *sbp;
ump = softdep_bp_to_mp(bp);
KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL,
("softdep_disk_write_complete: softdep_bp_to_mp returned NULL "
"with outstanding dependencies for buffer %p", bp));
if (ump == NULL)
return;
/*
* If an error occurred while doing the write, then the data
* has not hit the disk and the dependencies cannot be processed.
* But we do have to go through and roll forward any dependencies
* that were rolled back before the disk write.
*/
sbp = NULL;
ACQUIRE_LOCK(ump);
if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
LIST_FOREACH(wk, &bp->b_dep, wk_list) {
switch (wk->wk_type) {
case D_PAGEDEP:
handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
continue;
case D_INODEDEP:
handle_written_inodeblock(WK_INODEDEP(wk),
bp, 0);
continue;
case D_BMSAFEMAP:
handle_written_bmsafemap(WK_BMSAFEMAP(wk),
bp, 0);
continue;
case D_INDIRDEP:
handle_written_indirdep(WK_INDIRDEP(wk),
bp, &sbp, 0);
continue;
default:
/* nothing to roll forward */
continue;
}
}
FREE_LOCK(ump);
if (sbp)
brelse(sbp);
return;
}
LIST_INIT(&reattach);
/*
* Ump SU lock must not be released anywhere in this code segment.
*/
owk = NULL;
while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
WORKLIST_REMOVE(wk);
atomic_add_long(&dep_write[wk->wk_type], 1);
if (wk == owk)
panic("duplicate worklist: %p\n", wk);
owk = wk;
switch (wk->wk_type) {
case D_PAGEDEP:
if (handle_written_filepage(WK_PAGEDEP(wk), bp,
WRITESUCCEEDED))
WORKLIST_INSERT(&reattach, wk);
continue;
case D_INODEDEP:
if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
WRITESUCCEEDED))
WORKLIST_INSERT(&reattach, wk);
continue;
case D_BMSAFEMAP:
if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
WRITESUCCEEDED))
WORKLIST_INSERT(&reattach, wk);
continue;
case D_MKDIR:
handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
continue;
case D_ALLOCDIRECT:
wk->wk_state |= COMPLETE;
handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
continue;
case D_ALLOCINDIR:
wk->wk_state |= COMPLETE;
handle_allocindir_partdone(WK_ALLOCINDIR(wk));
continue;
case D_INDIRDEP:
if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
WRITESUCCEEDED))
WORKLIST_INSERT(&reattach, wk);
continue;
case D_FREEBLKS:
wk->wk_state |= COMPLETE;
freeblks = WK_FREEBLKS(wk);
if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
LIST_EMPTY(&freeblks->fb_jblkdephd))
add_to_worklist(wk, WK_NODELAY);
continue;
case D_FREEWORK:
handle_written_freework(WK_FREEWORK(wk));
break;
case D_JSEGDEP:
free_jsegdep(WK_JSEGDEP(wk));
continue;
case D_JSEG:
handle_written_jseg(WK_JSEG(wk), bp);
continue;
case D_SBDEP:
if (handle_written_sbdep(WK_SBDEP(wk), bp))
WORKLIST_INSERT(&reattach, wk);
continue;
case D_FREEDEP:
free_freedep(WK_FREEDEP(wk));
continue;
default:
panic("handle_disk_write_complete: Unknown type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
/*
* Reattach any requests that must be redone.
*/
while ((wk = LIST_FIRST(&reattach)) != NULL) {
WORKLIST_REMOVE(wk);
WORKLIST_INSERT(&bp->b_dep, wk);
}
FREE_LOCK(ump);
if (sbp)
brelse(sbp);
}
/*
* Called from within softdep_disk_write_complete above.
*/
static void
handle_allocdirect_partdone(adp, wkhd)
struct allocdirect *adp; /* the completed allocdirect */
struct workhead *wkhd; /* Work to do when inode is writtne. */
{
struct allocdirectlst *listhead;
struct allocdirect *listadp;
struct inodedep *inodedep;
long bsize;
LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp));
if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
return;
/*
* The on-disk inode cannot claim to be any larger than the last
* fragment that has been written. Otherwise, the on-disk inode
* might have fragments that were not the last block in the file
* which would corrupt the filesystem. Thus, we cannot free any
* allocdirects after one whose ad_oldblkno claims a fragment as
* these blocks must be rolled back to zero before writing the inode.
* We check the currently active set of allocdirects in id_inoupdt
* or id_extupdt as appropriate.
*/
inodedep = adp->ad_inodedep;
bsize = inodedep->id_fs->fs_bsize;
if (adp->ad_state & EXTDATA)
listhead = &inodedep->id_extupdt;
else
listhead = &inodedep->id_inoupdt;
TAILQ_FOREACH(listadp, listhead, ad_next) {
/* found our block */
if (listadp == adp)
break;
/* continue if ad_oldlbn is not a fragment */
if (listadp->ad_oldsize == 0 ||
listadp->ad_oldsize == bsize)
continue;
/* hit a fragment */
return;
}
/*
* If we have reached the end of the current list without
* finding the just finished dependency, then it must be
* on the future dependency list. Future dependencies cannot
* be freed until they are moved to the current list.
*/
if (listadp == NULL) {
#ifdef INVARIANTS
if (adp->ad_state & EXTDATA)
listhead = &inodedep->id_newextupdt;
else
listhead = &inodedep->id_newinoupdt;
TAILQ_FOREACH(listadp, listhead, ad_next)
/* found our block */
if (listadp == adp)
break;
if (listadp == NULL)
panic("handle_allocdirect_partdone: lost dep");
#endif /* INVARIANTS */
return;
}
/*
* If we have found the just finished dependency, then queue
* it along with anything that follows it that is complete.
* Since the pointer has not yet been written in the inode
* as the dependency prevents it, place the allocdirect on the
* bufwait list where it will be freed once the pointer is
* valid.
*/
if (wkhd == NULL)
wkhd = &inodedep->id_bufwait;
for (; adp; adp = listadp) {
listadp = TAILQ_NEXT(adp, ad_next);
if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
return;
TAILQ_REMOVE(listhead, adp, ad_next);
WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
}
}
/*
* Called from within softdep_disk_write_complete above. This routine
* completes successfully written allocindirs.
*/
static void
handle_allocindir_partdone(aip)
struct allocindir *aip; /* the completed allocindir */
{
struct indirdep *indirdep;
if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
return;
indirdep = aip->ai_indirdep;
LIST_REMOVE(aip, ai_next);
/*
* Don't set a pointer while the buffer is undergoing IO or while
* we have active truncations.
*/
if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
return;
}
if (indirdep->ir_state & UFS1FMT)
((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
aip->ai_newblkno;
else
((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
aip->ai_newblkno;
/*
* Await the pointer write before freeing the allocindir.
*/
LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
}
/*
* Release segments held on a jwork list.
*/
static void
handle_jwork(wkhd)
struct workhead *wkhd;
{
struct worklist *wk;
while ((wk = LIST_FIRST(wkhd)) != NULL) {
WORKLIST_REMOVE(wk);
switch (wk->wk_type) {
case D_JSEGDEP:
free_jsegdep(WK_JSEGDEP(wk));
continue;
case D_FREEDEP:
free_freedep(WK_FREEDEP(wk));
continue;
case D_FREEFRAG:
rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
WORKITEM_FREE(wk, D_FREEFRAG);
continue;
case D_FREEWORK:
handle_written_freework(WK_FREEWORK(wk));
continue;
default:
panic("handle_jwork: Unknown type %s\n",
TYPENAME(wk->wk_type));
}
}
}
/*
* Handle the bufwait list on an inode when it is safe to release items
* held there. This normally happens after an inode block is written but
* may be delayed and handled later if there are pending journal items that
* are not yet safe to be released.
*/
static struct freefile *
handle_bufwait(inodedep, refhd)
struct inodedep *inodedep;
struct workhead *refhd;
{
struct jaddref *jaddref;
struct freefile *freefile;
struct worklist *wk;
freefile = NULL;
while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
WORKLIST_REMOVE(wk);
switch (wk->wk_type) {
case D_FREEFILE:
/*
* We defer adding freefile to the worklist
* until all other additions have been made to
* ensure that it will be done after all the
* old blocks have been freed.
*/
if (freefile != NULL)
panic("handle_bufwait: freefile");
freefile = WK_FREEFILE(wk);
continue;
case D_MKDIR:
handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
continue;
case D_DIRADD:
diradd_inode_written(WK_DIRADD(wk), inodedep);
continue;
case D_FREEFRAG:
wk->wk_state |= COMPLETE;
if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
add_to_worklist(wk, 0);
continue;
case D_DIRREM:
wk->wk_state |= COMPLETE;
add_to_worklist(wk, 0);
continue;
case D_ALLOCDIRECT:
case D_ALLOCINDIR:
free_newblk(WK_NEWBLK(wk));
continue;
case D_JNEWBLK:
wk->wk_state |= COMPLETE;
free_jnewblk(WK_JNEWBLK(wk));
continue;
/*
* Save freed journal segments and add references on
* the supplied list which will delay their release
* until the cg bitmap is cleared on disk.
*/
case D_JSEGDEP:
if (refhd == NULL)
free_jsegdep(WK_JSEGDEP(wk));
else
WORKLIST_INSERT(refhd, wk);
continue;
case D_JADDREF:
jaddref = WK_JADDREF(wk);
TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
if_deps);
/*
* Transfer any jaddrefs to the list to be freed with
* the bitmap if we're handling a removed file.
*/
if (refhd == NULL) {
wk->wk_state |= COMPLETE;
free_jaddref(jaddref);
} else
WORKLIST_INSERT(refhd, wk);
continue;
default:
panic("handle_bufwait: Unknown type %p(%s)",
wk, TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
return (freefile);
}
/*
* Called from within softdep_disk_write_complete above to restore
* in-memory inode block contents to their most up-to-date state. Note
* that this routine is always called from interrupt level with further
* interrupts from this device blocked.
*
* If the write did not succeed, we will do all the roll-forward
* operations, but we will not take the actions that will allow its
* dependencies to be processed.
*/
static int
handle_written_inodeblock(inodedep, bp, flags)
struct inodedep *inodedep;
struct buf *bp; /* buffer containing the inode block */
int flags;
{
struct freefile *freefile;
struct allocdirect *adp, *nextadp;
struct ufs1_dinode *dp1 = NULL;
struct ufs2_dinode *dp2 = NULL;
struct workhead wkhd;
int hadchanges, fstype;
ino_t freelink;
LIST_INIT(&wkhd);
hadchanges = 0;
freefile = NULL;
if ((inodedep->id_state & IOSTARTED) == 0)
panic("handle_written_inodeblock: not started");
inodedep->id_state &= ~IOSTARTED;
if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
fstype = UFS1;
dp1 = (struct ufs1_dinode *)bp->b_data +
ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
freelink = dp1->di_freelink;
} else {
fstype = UFS2;
dp2 = (struct ufs2_dinode *)bp->b_data +
ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
freelink = dp2->di_freelink;
}
/*
* Leave this inodeblock dirty until it's in the list.
*/
if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
(flags & WRITESUCCEEDED)) {
struct inodedep *inon;
inon = TAILQ_NEXT(inodedep, id_unlinked);
if ((inon == NULL && freelink == 0) ||
(inon && inon->id_ino == freelink)) {
if (inon)
inon->id_state |= UNLINKPREV;
inodedep->id_state |= UNLINKNEXT;
}
hadchanges = 1;
}
/*
* If we had to rollback the inode allocation because of
* bitmaps being incomplete, then simply restore it.
* Keep the block dirty so that it will not be reclaimed until
* all associated dependencies have been cleared and the
* corresponding updates written to disk.
*/
if (inodedep->id_savedino1 != NULL) {
hadchanges = 1;
if (fstype == UFS1)
*dp1 = *inodedep->id_savedino1;
else
*dp2 = *inodedep->id_savedino2;
free(inodedep->id_savedino1, M_SAVEDINO);
inodedep->id_savedino1 = NULL;
if ((bp->b_flags & B_DELWRI) == 0)
stat_inode_bitmap++;
bdirty(bp);
/*
* If the inode is clear here and GOINGAWAY it will never
* be written. Process the bufwait and clear any pending
* work which may include the freefile.
*/
if (inodedep->id_state & GOINGAWAY)
goto bufwait;
return (1);
}
if (flags & WRITESUCCEEDED)
inodedep->id_state |= COMPLETE;
/*
* Roll forward anything that had to be rolled back before
* the inode could be updated.
*/
for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
nextadp = TAILQ_NEXT(adp, ad_next);
if (adp->ad_state & ATTACHED)
panic("handle_written_inodeblock: new entry");
if (fstype == UFS1) {
if (adp->ad_offset < UFS_NDADDR) {
if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
panic("%s %s #%jd mismatch %d != %jd",
"handle_written_inodeblock:",
"direct pointer",
(intmax_t)adp->ad_offset,
dp1->di_db[adp->ad_offset],
(intmax_t)adp->ad_oldblkno);
dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
} else {
if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] !=
0)
panic("%s: %s #%jd allocated as %d",
"handle_written_inodeblock",
"indirect pointer",
(intmax_t)adp->ad_offset -
UFS_NDADDR,
dp1->di_ib[adp->ad_offset -
UFS_NDADDR]);
dp1->di_ib[adp->ad_offset - UFS_NDADDR] =
adp->ad_newblkno;
}
} else {
if (adp->ad_offset < UFS_NDADDR) {
if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
panic("%s: %s #%jd %s %jd != %jd",
"handle_written_inodeblock",
"direct pointer",
(intmax_t)adp->ad_offset, "mismatch",
(intmax_t)dp2->di_db[adp->ad_offset],
(intmax_t)adp->ad_oldblkno);
dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
} else {
if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] !=
0)
panic("%s: %s #%jd allocated as %jd",
"handle_written_inodeblock",
"indirect pointer",
(intmax_t)adp->ad_offset -
UFS_NDADDR,
(intmax_t)
dp2->di_ib[adp->ad_offset -
UFS_NDADDR]);
dp2->di_ib[adp->ad_offset - UFS_NDADDR] =
adp->ad_newblkno;
}
}
adp->ad_state &= ~UNDONE;
adp->ad_state |= ATTACHED;
hadchanges = 1;
}
for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
nextadp = TAILQ_NEXT(adp, ad_next);
if (adp->ad_state & ATTACHED)
panic("handle_written_inodeblock: new entry");
if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
panic("%s: direct pointers #%jd %s %jd != %jd",
"handle_written_inodeblock",
(intmax_t)adp->ad_offset, "mismatch",
(intmax_t)dp2->di_extb[adp->ad_offset],
(intmax_t)adp->ad_oldblkno);
dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
adp->ad_state &= ~UNDONE;
adp->ad_state |= ATTACHED;
hadchanges = 1;
}
if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
stat_direct_blk_ptrs++;
/*
* Reset the file size to its most up-to-date value.
*/
if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
panic("handle_written_inodeblock: bad size");
if (inodedep->id_savednlink > UFS_LINK_MAX)
panic("handle_written_inodeblock: Invalid link count "
"%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink,
inodedep);
if (fstype == UFS1) {
if (dp1->di_nlink != inodedep->id_savednlink) {
dp1->di_nlink = inodedep->id_savednlink;
hadchanges = 1;
}
if (dp1->di_size != inodedep->id_savedsize) {
dp1->di_size = inodedep->id_savedsize;
hadchanges = 1;
}
} else {
if (dp2->di_nlink != inodedep->id_savednlink) {
dp2->di_nlink = inodedep->id_savednlink;
hadchanges = 1;
}
if (dp2->di_size != inodedep->id_savedsize) {
dp2->di_size = inodedep->id_savedsize;
hadchanges = 1;
}
if (dp2->di_extsize != inodedep->id_savedextsize) {
dp2->di_extsize = inodedep->id_savedextsize;
hadchanges = 1;
}
}
inodedep->id_savedsize = -1;
inodedep->id_savedextsize = -1;
inodedep->id_savednlink = -1;
/*
* If there were any rollbacks in the inode block, then it must be
* marked dirty so that its will eventually get written back in
* its correct form.
*/
if (hadchanges) {
if (fstype == UFS2)
ffs_update_dinode_ckhash(inodedep->id_fs, dp2);
bdirty(bp);
}
bufwait:
/*
* If the write did not succeed, we have done all the roll-forward
* operations, but we cannot take the actions that will allow its
* dependencies to be processed.
*/
if ((flags & WRITESUCCEEDED) == 0)
return (hadchanges);
/*
* Process any allocdirects that completed during the update.
*/
if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
handle_allocdirect_partdone(adp, &wkhd);
if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
handle_allocdirect_partdone(adp, &wkhd);
/*
* Process deallocations that were held pending until the
* inode had been written to disk. Freeing of the inode
* is delayed until after all blocks have been freed to
* avoid creation of new <vfsid, inum, lbn> triples
* before the old ones have been deleted. Completely
* unlinked inodes are not processed until the unlinked
* inode list is written or the last reference is removed.
*/
if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
freefile = handle_bufwait(inodedep, NULL);
if (freefile && !LIST_EMPTY(&wkhd)) {
WORKLIST_INSERT(&wkhd, &freefile->fx_list);
freefile = NULL;
}
}
/*
* Move rolled forward dependency completions to the bufwait list
* now that those that were already written have been processed.
*/
if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
panic("handle_written_inodeblock: bufwait but no changes");
jwork_move(&inodedep->id_bufwait, &wkhd);
if (freefile != NULL) {
/*
* If the inode is goingaway it was never written. Fake up
* the state here so free_inodedep() can succeed.
*/
if (inodedep->id_state & GOINGAWAY)
inodedep->id_state |= COMPLETE | DEPCOMPLETE;
if (free_inodedep(inodedep) == 0)
panic("handle_written_inodeblock: live inodedep %p",
inodedep);
add_to_worklist(&freefile->fx_list, 0);
return (0);
}
/*
* If no outstanding dependencies, free it.
*/
if (free_inodedep(inodedep) ||
(TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
LIST_FIRST(&inodedep->id_bufwait) == 0))
return (0);
return (hadchanges);
}
/*
* Perform needed roll-forwards and kick off any dependencies that
* can now be processed.
*
* If the write did not succeed, we will do all the roll-forward
* operations, but we will not take the actions that will allow its
* dependencies to be processed.
*/
static int
handle_written_indirdep(indirdep, bp, bpp, flags)
struct indirdep *indirdep;
struct buf *bp;
struct buf **bpp;
int flags;
{
struct allocindir *aip;
struct buf *sbp;
int chgs;
if (indirdep->ir_state & GOINGAWAY)
panic("handle_written_indirdep: indirdep gone");
if ((indirdep->ir_state & IOSTARTED) == 0)
panic("handle_written_indirdep: IO not started");
chgs = 0;
/*
* If there were rollbacks revert them here.
*/
if (indirdep->ir_saveddata) {
bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
free(indirdep->ir_saveddata, M_INDIRDEP);
indirdep->ir_saveddata = NULL;
}
chgs = 1;
}
indirdep->ir_state &= ~(UNDONE | IOSTARTED);
indirdep->ir_state |= ATTACHED;
/*
* If the write did not succeed, we have done all the roll-forward
* operations, but we cannot take the actions that will allow its
* dependencies to be processed.
*/
if ((flags & WRITESUCCEEDED) == 0) {
stat_indir_blk_ptrs++;
bdirty(bp);
return (1);
}
/*
* Move allocindirs with written pointers to the completehd if
* the indirdep's pointer is not yet written. Otherwise
* free them here.
*/
while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
LIST_REMOVE(aip, ai_next);
if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
ai_next);
newblk_freefrag(&aip->ai_block);
continue;
}
free_newblk(&aip->ai_block);
}
/*
* Move allocindirs that have finished dependency processing from
* the done list to the write list after updating the pointers.
*/
if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
handle_allocindir_partdone(aip);
if (aip == LIST_FIRST(&indirdep->ir_donehd))
panic("disk_write_complete: not gone");
chgs = 1;
}
}
/*
* Preserve the indirdep if there were any changes or if it is not
* yet valid on disk.
*/
if (chgs) {
stat_indir_blk_ptrs++;
bdirty(bp);
return (1);
}
/*
* If there were no changes we can discard the savedbp and detach
* ourselves from the buf. We are only carrying completed pointers
* in this case.
*/
sbp = indirdep->ir_savebp;
sbp->b_flags |= B_INVAL | B_NOCACHE;
indirdep->ir_savebp = NULL;
indirdep->ir_bp = NULL;
if (*bpp != NULL)
panic("handle_written_indirdep: bp already exists.");
*bpp = sbp;
/*
* The indirdep may not be freed until its parent points at it.
*/
if (indirdep->ir_state & DEPCOMPLETE)
free_indirdep(indirdep);
return (0);
}
/*
* Process a diradd entry after its dependent inode has been written.
*/
static void
diradd_inode_written(dap, inodedep)
struct diradd *dap;
struct inodedep *inodedep;
{
LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp));
dap->da_state |= COMPLETE;
complete_diradd(dap);
WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
}
/*
* Returns true if the bmsafemap will have rollbacks when written. Must only
* be called with the per-filesystem lock and the buf lock on the cg held.
*/
static int
bmsafemap_backgroundwrite(bmsafemap, bp)
struct bmsafemap *bmsafemap;
struct buf *bp;
{
int dirty;
LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
!LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
/*
* If we're initiating a background write we need to process the
* rollbacks as they exist now, not as they exist when IO starts.
* No other consumers will look at the contents of the shadowed
* buf so this is safe to do here.
*/
if (bp->b_xflags & BX_BKGRDMARKER)
initiate_write_bmsafemap(bmsafemap, bp);
return (dirty);
}
/*
* Re-apply an allocation when a cg write is complete.
*/
static int
jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
struct jnewblk *jnewblk;
struct fs *fs;
struct cg *cgp;
uint8_t *blksfree;
{
ufs1_daddr_t fragno;
ufs2_daddr_t blkno;
long cgbno, bbase;
int frags, blk;
int i;
frags = 0;
cgbno = dtogd(fs, jnewblk->jn_blkno);
for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
if (isclr(blksfree, cgbno + i))
panic("jnewblk_rollforward: re-allocated fragment");
frags++;
}
if (frags == fs->fs_frag) {
blkno = fragstoblks(fs, cgbno);
ffs_clrblock(fs, blksfree, (long)blkno);
ffs_clusteracct(fs, cgp, blkno, -1);
cgp->cg_cs.cs_nbfree--;
} else {
bbase = cgbno - fragnum(fs, cgbno);
cgbno += jnewblk->jn_oldfrags;
/* If a complete block had been reassembled, account for it. */
fragno = fragstoblks(fs, bbase);
if (ffs_isblock(fs, blksfree, fragno)) {
cgp->cg_cs.cs_nffree += fs->fs_frag;
ffs_clusteracct(fs, cgp, fragno, -1);
cgp->cg_cs.cs_nbfree--;
}
/* Decrement the old frags. */
blk = blkmap(fs, blksfree, bbase);
ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
/* Allocate the fragment */
for (i = 0; i < frags; i++)
clrbit(blksfree, cgbno + i);
cgp->cg_cs.cs_nffree -= frags;
/* Add back in counts associated with the new frags */
blk = blkmap(fs, blksfree, bbase);
ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
}
return (frags);
}
/*
* Complete a write to a bmsafemap structure. Roll forward any bitmap
* changes if it's not a background write. Set all written dependencies
* to DEPCOMPLETE and free the structure if possible.
*
* If the write did not succeed, we will do all the roll-forward
* operations, but we will not take the actions that will allow its
* dependencies to be processed.
*/
static int
handle_written_bmsafemap(bmsafemap, bp, flags)
struct bmsafemap *bmsafemap;
struct buf *bp;
int flags;
{
struct newblk *newblk;
struct inodedep *inodedep;
struct jaddref *jaddref, *jatmp;
struct jnewblk *jnewblk, *jntmp;
struct ufsmount *ump;
uint8_t *inosused;
uint8_t *blksfree;
struct cg *cgp;
struct fs *fs;
ino_t ino;
int foreground;
int chgs;
if ((bmsafemap->sm_state & IOSTARTED) == 0)
panic("handle_written_bmsafemap: Not started\n");
ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
chgs = 0;
bmsafemap->sm_state &= ~IOSTARTED;
foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
/*
* If write was successful, release journal work that was waiting
* on the write. Otherwise move the work back.
*/
if (flags & WRITESUCCEEDED)
handle_jwork(&bmsafemap->sm_freewr);
else
LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
worklist, wk_list);
/*
* Restore unwritten inode allocation pending jaddref writes.
*/
if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
cgp = (struct cg *)bp->b_data;
fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
inosused = cg_inosused(cgp);
LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
ja_bmdeps, jatmp) {
if ((jaddref->ja_state & UNDONE) == 0)
continue;
ino = jaddref->ja_ino % fs->fs_ipg;
if (isset(inosused, ino))
panic("handle_written_bmsafemap: "
"re-allocated inode");
/* Do the roll-forward only if it's a real copy. */
if (foreground) {
if ((jaddref->ja_mode & IFMT) == IFDIR)
cgp->cg_cs.cs_ndir++;
cgp->cg_cs.cs_nifree--;
setbit(inosused, ino);
chgs = 1;
}
jaddref->ja_state &= ~UNDONE;
jaddref->ja_state |= ATTACHED;
free_jaddref(jaddref);
}
}
/*
* Restore any block allocations which are pending journal writes.
*/
if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
cgp = (struct cg *)bp->b_data;
fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
blksfree = cg_blksfree(cgp);
LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
jntmp) {
if ((jnewblk->jn_state & UNDONE) == 0)
continue;
/* Do the roll-forward only if it's a real copy. */
if (foreground &&
jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
chgs = 1;
jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
jnewblk->jn_state |= ATTACHED;
free_jnewblk(jnewblk);
}
}
/*
* If the write did not succeed, we have done all the roll-forward
* operations, but we cannot take the actions that will allow its
* dependencies to be processed.
*/
if ((flags & WRITESUCCEEDED) == 0) {
LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
newblk, nb_deps);
LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
worklist, wk_list);
if (foreground)
bdirty(bp);
return (1);
}
while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
newblk->nb_state |= DEPCOMPLETE;
newblk->nb_state &= ~ONDEPLIST;
newblk->nb_bmsafemap = NULL;
LIST_REMOVE(newblk, nb_deps);
if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
handle_allocdirect_partdone(
WK_ALLOCDIRECT(&newblk->nb_list), NULL);
else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
handle_allocindir_partdone(
WK_ALLOCINDIR(&newblk->nb_list));
else if (newblk->nb_list.wk_type != D_NEWBLK)
panic("handle_written_bmsafemap: Unexpected type: %s",
TYPENAME(newblk->nb_list.wk_type));
}
while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
inodedep->id_state |= DEPCOMPLETE;
inodedep->id_state &= ~ONDEPLIST;
LIST_REMOVE(inodedep, id_deps);
inodedep->id_bmsafemap = NULL;
}
LIST_REMOVE(bmsafemap, sm_next);
if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
LIST_EMPTY(&bmsafemap->sm_freehd)) {
LIST_REMOVE(bmsafemap, sm_hash);
WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
return (0);
}
LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
if (foreground)
bdirty(bp);
return (1);
}
/*
* Try to free a mkdir dependency.
*/
static void
complete_mkdir(mkdir)
struct mkdir *mkdir;
{
struct diradd *dap;
if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
return;
LIST_REMOVE(mkdir, md_mkdirs);
dap = mkdir->md_diradd;
dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
dap->da_state |= DEPCOMPLETE;
complete_diradd(dap);
}
WORKITEM_FREE(mkdir, D_MKDIR);
}
/*
* Handle the completion of a mkdir dependency.
*/
static void
handle_written_mkdir(mkdir, type)
struct mkdir *mkdir;
int type;
{
if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
panic("handle_written_mkdir: bad type");
mkdir->md_state |= COMPLETE;
complete_mkdir(mkdir);
}
static int
free_pagedep(pagedep)
struct pagedep *pagedep;
{
int i;
if (pagedep->pd_state & NEWBLOCK)
return (0);
if (!LIST_EMPTY(&pagedep->pd_dirremhd))
return (0);
for (i = 0; i < DAHASHSZ; i++)
if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
return (0);
if (!LIST_EMPTY(&pagedep->pd_pendinghd))
return (0);
if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
return (0);
if (pagedep->pd_state & ONWORKLIST)
WORKLIST_REMOVE(&pagedep->pd_list);
LIST_REMOVE(pagedep, pd_hash);
WORKITEM_FREE(pagedep, D_PAGEDEP);
return (1);
}
/*
* Called from within softdep_disk_write_complete above.
* A write operation was just completed. Removed inodes can
* now be freed and associated block pointers may be committed.
* Note that this routine is always called from interrupt level
* with further interrupts from this device blocked.
*
* If the write did not succeed, we will do all the roll-forward
* operations, but we will not take the actions that will allow its
* dependencies to be processed.
*/
static int
handle_written_filepage(pagedep, bp, flags)
struct pagedep *pagedep;
struct buf *bp; /* buffer containing the written page */
int flags;
{
struct dirrem *dirrem;
struct diradd *dap, *nextdap;
struct direct *ep;
int i, chgs;
if ((pagedep->pd_state & IOSTARTED) == 0)
panic("handle_written_filepage: not started");
pagedep->pd_state &= ~IOSTARTED;
if ((flags & WRITESUCCEEDED) == 0)
goto rollforward;
/*
* Process any directory removals that have been committed.
*/
while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
LIST_REMOVE(dirrem, dm_next);
dirrem->dm_state |= COMPLETE;
dirrem->dm_dirinum = pagedep->pd_ino;
KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
("handle_written_filepage: Journal entries not written."));
add_to_worklist(&dirrem->dm_list, 0);
}
/*
* Free any directory additions that have been committed.
* If it is a newly allocated block, we have to wait until
* the on-disk directory inode claims the new block.
*/
if ((pagedep->pd_state & NEWBLOCK) == 0)
while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
free_diradd(dap, NULL);
rollforward:
/*
* Uncommitted directory entries must be restored.
*/
for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
dap = nextdap) {
nextdap = LIST_NEXT(dap, da_pdlist);
if (dap->da_state & ATTACHED)
panic("handle_written_filepage: attached");
ep = (struct direct *)
((char *)bp->b_data + dap->da_offset);
ep->d_ino = dap->da_newinum;
dap->da_state &= ~UNDONE;
dap->da_state |= ATTACHED;
chgs = 1;
/*
* If the inode referenced by the directory has
* been written out, then the dependency can be
* moved to the pending list.
*/
if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
LIST_REMOVE(dap, da_pdlist);
LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
da_pdlist);
}
}
}
/*
* If there were any rollbacks in the directory, then it must be
* marked dirty so that its will eventually get written back in
* its correct form.
*/
if (chgs || (flags & WRITESUCCEEDED) == 0) {
if ((bp->b_flags & B_DELWRI) == 0)
stat_dir_entry++;
bdirty(bp);
return (1);
}
/*
* If we are not waiting for a new directory block to be
* claimed by its inode, then the pagedep will be freed.
* Otherwise it will remain to track any new entries on
* the page in case they are fsync'ed.
*/
free_pagedep(pagedep);
return (0);
}
/*
* Writing back in-core inode structures.
*
* The filesystem only accesses an inode's contents when it occupies an
* "in-core" inode structure. These "in-core" structures are separate from
* the page frames used to cache inode blocks. Only the latter are
* transferred to/from the disk. So, when the updated contents of the
* "in-core" inode structure are copied to the corresponding in-memory inode
* block, the dependencies are also transferred. The following procedure is
* called when copying a dirty "in-core" inode to a cached inode block.
*/
/*
* Called when an inode is loaded from disk. If the effective link count
* differed from the actual link count when it was last flushed, then we
* need to ensure that the correct effective link count is put back.
*/
void
softdep_load_inodeblock(ip)
struct inode *ip; /* the "in_core" copy of the inode */
{
struct inodedep *inodedep;
struct ufsmount *ump;
ump = ITOUMP(ip);
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
("softdep_load_inodeblock called on non-softdep filesystem"));
/*
* Check for alternate nlink count.
*/
ip->i_effnlink = ip->i_nlink;
ACQUIRE_LOCK(ump);
if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) {
FREE_LOCK(ump);
return;
}
ip->i_effnlink -= inodedep->id_nlinkdelta;
KASSERT(ip->i_effnlink >= 0,
("softdep_load_inodeblock: negative i_effnlink"));
FREE_LOCK(ump);
}
/*
* This routine is called just before the "in-core" inode
* information is to be copied to the in-memory inode block.
* Recall that an inode block contains several inodes. If
* the force flag is set, then the dependencies will be
* cleared so that the update can always be made. Note that
* the buffer is locked when this routine is called, so we
* will never be in the middle of writing the inode block
* to disk.
*/
void
softdep_update_inodeblock(ip, bp, waitfor)
struct inode *ip; /* the "in_core" copy of the inode */
struct buf *bp; /* the buffer containing the inode block */
int waitfor; /* nonzero => update must be allowed */
{
struct inodedep *inodedep;
struct inoref *inoref;
struct ufsmount *ump;
struct worklist *wk;
struct mount *mp;
struct buf *ibp;
struct fs *fs;
int error;
ump = ITOUMP(ip);
mp = UFSTOVFS(ump);
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
("softdep_update_inodeblock called on non-softdep filesystem"));
fs = ump->um_fs;
/*
* Preserve the freelink that is on disk. clear_unlinked_inodedep()
* does not have access to the in-core ip so must write directly into
* the inode block buffer when setting freelink.
*/
if (fs->fs_magic == FS_UFS1_MAGIC)
DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
ino_to_fsbo(fs, ip->i_number))->di_freelink);
else
DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
ino_to_fsbo(fs, ip->i_number))->di_freelink);
/*
* If the effective link count is not equal to the actual link
* count, then we must track the difference in an inodedep while
* the inode is (potentially) tossed out of the cache. Otherwise,
* if there is no existing inodedep, then there are no dependencies
* to track.
*/
ACQUIRE_LOCK(ump);
again:
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
FREE_LOCK(ump);
if (ip->i_effnlink != ip->i_nlink)
panic("softdep_update_inodeblock: bad link count");
return;
}
if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
panic("softdep_update_inodeblock: bad delta");
/*
* If we're flushing all dependencies we must also move any waiting
* for journal writes onto the bufwait list prior to I/O.
*/
if (waitfor) {
TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
== DEPCOMPLETE) {
jwait(&inoref->if_list, MNT_WAIT);
goto again;
}
}
}
/*
* Changes have been initiated. Anything depending on these
* changes cannot occur until this inode has been written.
*/
inodedep->id_state &= ~COMPLETE;
if ((inodedep->id_state & ONWORKLIST) == 0)
WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
/*
* Any new dependencies associated with the incore inode must
* now be moved to the list associated with the buffer holding
* the in-memory copy of the inode. Once merged process any
* allocdirects that are completed by the merger.
*/
merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
NULL);
merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
if (!TAILQ_EMPTY(&inodedep->id_extupdt))
handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
NULL);
/*
* Now that the inode has been pushed into the buffer, the
* operations dependent on the inode being written to disk
* can be moved to the id_bufwait so that they will be
* processed when the buffer I/O completes.
*/
while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
WORKLIST_REMOVE(wk);
WORKLIST_INSERT(&inodedep->id_bufwait, wk);
}
/*
* Newly allocated inodes cannot be written until the bitmap
* that allocates them have been written (indicated by
* DEPCOMPLETE being set in id_state). If we are doing a
* forced sync (e.g., an fsync on a file), we force the bitmap
* to be written so that the update can be done.
*/
if (waitfor == 0) {
FREE_LOCK(ump);
return;
}
retry:
if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
FREE_LOCK(ump);
return;
}
ibp = inodedep->id_bmsafemap->sm_buf;
ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
if (ibp == NULL) {
/*
* If ibp came back as NULL, the dependency could have been
* freed while we slept. Look it up again, and check to see
* that it has completed.
*/
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
goto retry;
FREE_LOCK(ump);
return;
}
FREE_LOCK(ump);
if ((error = bwrite(ibp)) != 0)
softdep_error("softdep_update_inodeblock: bwrite", error);
}
/*
* Merge the a new inode dependency list (such as id_newinoupdt) into an
* old inode dependency list (such as id_inoupdt).
*/
static void
merge_inode_lists(newlisthead, oldlisthead)
struct allocdirectlst *newlisthead;
struct allocdirectlst *oldlisthead;
{
struct allocdirect *listadp, *newadp;
newadp = TAILQ_FIRST(newlisthead);
if (newadp != NULL)
LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp));
for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
if (listadp->ad_offset < newadp->ad_offset) {
listadp = TAILQ_NEXT(listadp, ad_next);
continue;
}
TAILQ_REMOVE(newlisthead, newadp, ad_next);
TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
if (listadp->ad_offset == newadp->ad_offset) {
allocdirect_merge(oldlisthead, newadp,
listadp);
listadp = newadp;
}
newadp = TAILQ_FIRST(newlisthead);
}
while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
TAILQ_REMOVE(newlisthead, newadp, ad_next);
TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
}
}
/*
* If we are doing an fsync, then we must ensure that any directory
* entries for the inode have been written after the inode gets to disk.
*/
int
softdep_fsync(vp)
struct vnode *vp; /* the "in_core" copy of the inode */
{
struct inodedep *inodedep;
struct pagedep *pagedep;
struct inoref *inoref;
struct ufsmount *ump;
struct worklist *wk;
struct diradd *dap;
struct mount *mp;
struct vnode *pvp;
struct inode *ip;
struct buf *bp;
struct fs *fs;
struct thread *td = curthread;
int error, flushparent, pagedep_new_block;
ino_t parentino;
ufs_lbn_t lbn;
ip = VTOI(vp);
mp = vp->v_mount;
ump = VFSTOUFS(mp);
fs = ump->um_fs;
if (MOUNTEDSOFTDEP(mp) == 0)
return (0);
ACQUIRE_LOCK(ump);
restart:
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
FREE_LOCK(ump);
return (0);
}
TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
== DEPCOMPLETE) {
jwait(&inoref->if_list, MNT_WAIT);
goto restart;
}
}
if (!LIST_EMPTY(&inodedep->id_inowait) ||
!TAILQ_EMPTY(&inodedep->id_extupdt) ||
!TAILQ_EMPTY(&inodedep->id_newextupdt) ||
!TAILQ_EMPTY(&inodedep->id_inoupdt) ||
!TAILQ_EMPTY(&inodedep->id_newinoupdt))
panic("softdep_fsync: pending ops %p", inodedep);
for (error = 0, flushparent = 0; ; ) {
if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
break;
if (wk->wk_type != D_DIRADD)
panic("softdep_fsync: Unexpected type %s",
TYPENAME(wk->wk_type));
dap = WK_DIRADD(wk);
/*
* Flush our parent if this directory entry has a MKDIR_PARENT
* dependency or is contained in a newly allocated block.
*/
if (dap->da_state & DIRCHG)
pagedep = dap->da_previous->dm_pagedep;
else
pagedep = dap->da_pagedep;
parentino = pagedep->pd_ino;
lbn = pagedep->pd_lbn;
if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
panic("softdep_fsync: dirty");
if ((dap->da_state & MKDIR_PARENT) ||
(pagedep->pd_state & NEWBLOCK))
flushparent = 1;
else
flushparent = 0;
/*
* If we are being fsync'ed as part of vgone'ing this vnode,
* then we will not be able to release and recover the
* vnode below, so we just have to give up on writing its
* directory entry out. It will eventually be written, just
* not now, but then the user was not asking to have it
* written, so we are not breaking any promises.
*/
if (VN_IS_DOOMED(vp))
break;
/*
* We prevent deadlock by always fetching inodes from the
* root, moving down the directory tree. Thus, when fetching
* our parent directory, we first try to get the lock. If
* that fails, we must unlock ourselves before requesting
* the lock on our parent. See the comment in ufs_lookup
* for details on possible races.
*/
FREE_LOCK(ump);
if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
FFSV_FORCEINSMQ)) {
/*
* Unmount cannot proceed after unlock because
* caller must have called vn_start_write().
*/
VOP_UNLOCK(vp, 0);
error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
&pvp, FFSV_FORCEINSMQ);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
if (VN_IS_DOOMED(vp)) {
if (error == 0)
vput(pvp);
error = ENOENT;
}
if (error != 0)
return (error);
}
/*
* All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
* that are contained in direct blocks will be resolved by
* doing a ffs_update. Pagedeps contained in indirect blocks
* may require a complete sync'ing of the directory. So, we
* try the cheap and fast ffs_update first, and if that fails,
* then we do the slower ffs_syncvnode of the directory.
*/
if (flushparent) {
int locked;
if ((error = ffs_update(pvp, 1)) != 0) {
vput(pvp);
return (error);
}
ACQUIRE_LOCK(ump);
locked = 1;
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
if (wk->wk_type != D_DIRADD)
panic("softdep_fsync: Unexpected type %s",
TYPENAME(wk->wk_type));
dap = WK_DIRADD(wk);
if (dap->da_state & DIRCHG)
pagedep = dap->da_previous->dm_pagedep;
else
pagedep = dap->da_pagedep;
pagedep_new_block = pagedep->pd_state & NEWBLOCK;
FREE_LOCK(ump);
locked = 0;
if (pagedep_new_block && (error =
ffs_syncvnode(pvp, MNT_WAIT, 0))) {
vput(pvp);
return (error);
}
}
}
if (locked)
FREE_LOCK(ump);
}
/*
* Flush directory page containing the inode's name.
*/
error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
&bp);
if (error == 0)
error = bwrite(bp);
else
brelse(bp);
vput(pvp);
if (error != 0)
return (error);
ACQUIRE_LOCK(ump);
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
break;
}
FREE_LOCK(ump);
return (0);
}
/*
* Flush all the dirty bitmaps associated with the block device
* before flushing the rest of the dirty blocks so as to reduce
* the number of dependencies that will have to be rolled back.
*
* XXX Unused?
*/
void
softdep_fsync_mountdev(vp)
struct vnode *vp;
{
struct buf *bp, *nbp;
struct worklist *wk;
struct bufobj *bo;
if (!vn_isdisk(vp, NULL))
panic("softdep_fsync_mountdev: vnode not a disk");
bo = &vp->v_bufobj;
restart:
BO_LOCK(bo);
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
/*
* If it is already scheduled, skip to the next buffer.
*/
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
continue;
if ((bp->b_flags & B_DELWRI) == 0)
panic("softdep_fsync_mountdev: not dirty");
/*
* We are only interested in bitmaps with outstanding
* dependencies.
*/
if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
wk->wk_type != D_BMSAFEMAP ||
(bp->b_vflags & BV_BKGRDINPROG)) {
BUF_UNLOCK(bp);
continue;
}
BO_UNLOCK(bo);
bremfree(bp);
(void) bawrite(bp);
goto restart;
}
drain_output(vp);
BO_UNLOCK(bo);
}
/*
* Sync all cylinder groups that were dirty at the time this function is
* called. Newly dirtied cgs will be inserted before the sentinel. This
* is used to flush freedep activity that may be holding up writes to a
* indirect block.
*/
static int
sync_cgs(mp, waitfor)
struct mount *mp;
int waitfor;
{
struct bmsafemap *bmsafemap;
struct bmsafemap *sentinel;
struct ufsmount *ump;
struct buf *bp;
int error;
sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
sentinel->sm_cg = -1;
ump = VFSTOUFS(mp);
error = 0;
ACQUIRE_LOCK(ump);
LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
bmsafemap = LIST_NEXT(sentinel, sm_next)) {
/* Skip sentinels and cgs with no work to release. */
if (bmsafemap->sm_cg == -1 ||
(LIST_EMPTY(&bmsafemap->sm_freehd) &&
LIST_EMPTY(&bmsafemap->sm_freewr))) {
LIST_REMOVE(sentinel, sm_next);
LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
continue;
}
/*
* If we don't get the lock and we're waiting try again, if
* not move on to the next buf and try to sync it.
*/
bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
if (bp == NULL && waitfor == MNT_WAIT)
continue;
LIST_REMOVE(sentinel, sm_next);
LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
if (bp == NULL)
continue;
FREE_LOCK(ump);
if (waitfor == MNT_NOWAIT)
bawrite(bp);
else
error = bwrite(bp);
ACQUIRE_LOCK(ump);
if (error)
break;
}
LIST_REMOVE(sentinel, sm_next);
FREE_LOCK(ump);
free(sentinel, M_BMSAFEMAP);
return (error);
}
/*
* This routine is called when we are trying to synchronously flush a
* file. This routine must eliminate any filesystem metadata dependencies
* so that the syncing routine can succeed.
*/
int
softdep_sync_metadata(struct vnode *vp)
{
struct inode *ip;
int error;
ip = VTOI(vp);
KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
("softdep_sync_metadata called on non-softdep filesystem"));
/*
* Ensure that any direct block dependencies have been cleared,
* truncations are started, and inode references are journaled.
*/
ACQUIRE_LOCK(VFSTOUFS(vp->v_mount));
/*
* Write all journal records to prevent rollbacks on devvp.
*/
if (vp->v_type == VCHR)
softdep_flushjournal(vp->v_mount);
error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
/*
* Ensure that all truncates are written so we won't find deps on
* indirect blocks.
*/
process_truncates(vp);
FREE_LOCK(VFSTOUFS(vp->v_mount));
return (error);
}
/*
* This routine is called when we are attempting to sync a buf with
* dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any
* other IO it can but returns EBUSY if the buffer is not yet able to
* be written. Dependencies which will not cause rollbacks will always
* return 0.
*/
int
softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
{
struct indirdep *indirdep;
struct pagedep *pagedep;
struct allocindir *aip;
struct newblk *newblk;
struct ufsmount *ump;
struct buf *nbp;
struct worklist *wk;
int i, error;
KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
("softdep_sync_buf called on non-softdep filesystem"));
/*
* For VCHR we just don't want to force flush any dependencies that
* will cause rollbacks.
*/
if (vp->v_type == VCHR) {
if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
return (EBUSY);
return (0);
}
ump = VFSTOUFS(vp->v_mount);
ACQUIRE_LOCK(ump);
/*
* As we hold the buffer locked, none of its dependencies
* will disappear.
*/
error = 0;
top:
LIST_FOREACH(wk, &bp->b_dep, wk_list) {
switch (wk->wk_type) {
case D_ALLOCDIRECT:
case D_ALLOCINDIR:
newblk = WK_NEWBLK(wk);
if (newblk->nb_jnewblk != NULL) {
if (waitfor == MNT_NOWAIT) {
error = EBUSY;
goto out_unlock;
}
jwait(&newblk->nb_jnewblk->jn_list, waitfor);
goto top;
}
if (newblk->nb_state & DEPCOMPLETE ||
waitfor == MNT_NOWAIT)
continue;
nbp = newblk->nb_bmsafemap->sm_buf;
nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
if (nbp == NULL)
goto top;
FREE_LOCK(ump);
if ((error = bwrite(nbp)) != 0)
goto out;
ACQUIRE_LOCK(ump);
continue;
case D_INDIRDEP:
indirdep = WK_INDIRDEP(wk);
if (waitfor == MNT_NOWAIT) {
if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
!LIST_EMPTY(&indirdep->ir_deplisthd)) {
error = EBUSY;
goto out_unlock;
}
}
if (!TAILQ_EMPTY(&indirdep->ir_trunc))
panic("softdep_sync_buf: truncation pending.");
restart:
LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
newblk = (struct newblk *)aip;
if (newblk->nb_jnewblk != NULL) {
jwait(&newblk->nb_jnewblk->jn_list,
waitfor);
goto restart;
}
if (newblk->nb_state & DEPCOMPLETE)
continue;
nbp = newblk->nb_bmsafemap->sm_buf;
nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
if (nbp == NULL)
goto restart;
FREE_LOCK(ump);
if ((error = bwrite(nbp)) != 0)
goto out;
ACQUIRE_LOCK(ump);
goto restart;
}
continue;
case D_PAGEDEP:
/*
* Only flush directory entries in synchronous passes.
*/
if (waitfor != MNT_WAIT) {
error = EBUSY;
goto out_unlock;
}
/*
* While syncing snapshots, we must allow recursive
* lookups.
*/
BUF_AREC(bp);
/*
* We are trying to sync a directory that may
* have dependencies on both its own metadata
* and/or dependencies on the inodes of any
* recently allocated files. We walk its diradd
* lists pushing out the associated inode.
*/
pagedep = WK_PAGEDEP(wk);
for (i = 0; i < DAHASHSZ; i++) {
if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
continue;
if ((error = flush_pagedep_deps(vp, wk->wk_mp,
&pagedep->pd_diraddhd[i]))) {
BUF_NOREC(bp);
goto out_unlock;
}
}
BUF_NOREC(bp);
continue;
case D_FREEWORK:
case D_FREEDEP:
case D_JSEGDEP:
case D_JNEWBLK:
continue;
default:
panic("softdep_sync_buf: Unknown type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
out_unlock:
FREE_LOCK(ump);
out:
return (error);
}
/*
* Flush the dependencies associated with an inodedep.
*/
static int
flush_inodedep_deps(vp, mp, ino)
struct vnode *vp;
struct mount *mp;
ino_t ino;
{
struct inodedep *inodedep;
struct inoref *inoref;
struct ufsmount *ump;
int error, waitfor;
/*
* This work is done in two passes. The first pass grabs most
* of the buffers and begins asynchronously writing them. The
* only way to wait for these asynchronous writes is to sleep
* on the filesystem vnode which may stay busy for a long time
* if the filesystem is active. So, instead, we make a second
* pass over the dependencies blocking on each write. In the
* usual case we will be blocking against a write that we
* initiated, so when it is done the dependency will have been
* resolved. Thus the second pass is expected to end quickly.
* We give a brief window at the top of the loop to allow
* any pending I/O to complete.
*/
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
for (error = 0, waitfor = MNT_NOWAIT; ; ) {
if (error)
return (error);
FREE_LOCK(ump);
ACQUIRE_LOCK(ump);
restart:
if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
return (0);
TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
== DEPCOMPLETE) {
jwait(&inoref->if_list, MNT_WAIT);
goto restart;
}
}
if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
continue;
/*
* If pass2, we are done, otherwise do pass 2.
*/
if (waitfor == MNT_WAIT)
break;
waitfor = MNT_WAIT;
}
/*
* Try freeing inodedep in case all dependencies have been removed.
*/
if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
(void) free_inodedep(inodedep);
return (0);
}
/*
* Flush an inode dependency list.
*/
static int
flush_deplist(listhead, waitfor, errorp)
struct allocdirectlst *listhead;
int waitfor;
int *errorp;
{
struct allocdirect *adp;
struct newblk *newblk;
struct ufsmount *ump;
struct buf *bp;
if ((adp = TAILQ_FIRST(listhead)) == NULL)
return (0);
ump = VFSTOUFS(adp->ad_list.wk_mp);
LOCK_OWNED(ump);
TAILQ_FOREACH(adp, listhead, ad_next) {
newblk = (struct newblk *)adp;
if (newblk->nb_jnewblk != NULL) {
jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
return (1);
}
if (newblk->nb_state & DEPCOMPLETE)
continue;
bp = newblk->nb_bmsafemap->sm_buf;
bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
if (bp == NULL) {
if (waitfor == MNT_NOWAIT)
continue;
return (1);
}
FREE_LOCK(ump);
if (waitfor == MNT_NOWAIT)
bawrite(bp);
else
*errorp = bwrite(bp);
ACQUIRE_LOCK(ump);
return (1);
}
return (0);
}
/*
* Flush dependencies associated with an allocdirect block.
*/
static int
flush_newblk_dep(vp, mp, lbn)
struct vnode *vp;
struct mount *mp;
ufs_lbn_t lbn;
{
struct newblk *newblk;
struct ufsmount *ump;
struct bufobj *bo;
struct inode *ip;
struct buf *bp;
ufs2_daddr_t blkno;
int error;
error = 0;
bo = &vp->v_bufobj;
ip = VTOI(vp);
blkno = DIP(ip, i_db[lbn]);
if (blkno == 0)
panic("flush_newblk_dep: Missing block");
ump = VFSTOUFS(mp);
ACQUIRE_LOCK(ump);
/*
* Loop until all dependencies related to this block are satisfied.
* We must be careful to restart after each sleep in case a write
* completes some part of this process for us.
*/
for (;;) {
if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
FREE_LOCK(ump);
break;
}
if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
panic("flush_newblk_dep: Bad newblk %p", newblk);
/*
* Flush the journal.
*/
if (newblk->nb_jnewblk != NULL) {
jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
continue;
}
/*
* Write the bitmap dependency.
*/
if ((newblk->nb_state & DEPCOMPLETE) == 0) {
bp = newblk->nb_bmsafemap->sm_buf;
bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
if (bp == NULL)
continue;
FREE_LOCK(ump);
error = bwrite(bp);
if (error)
break;
ACQUIRE_LOCK(ump);
continue;
}
/*
* Write the buffer.
*/
FREE_LOCK(ump);
BO_LOCK(bo);
bp = gbincore(bo, lbn);
if (bp != NULL) {
error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
LK_INTERLOCK, BO_LOCKPTR(bo));
if (error == ENOLCK) {
ACQUIRE_LOCK(ump);
error = 0;
continue; /* Slept, retry */
}
if (error != 0)
break; /* Failed */
if (bp->b_flags & B_DELWRI) {
bremfree(bp);
error = bwrite(bp);
if (error)
break;
} else
BUF_UNLOCK(bp);
} else
BO_UNLOCK(bo);
/*
* We have to wait for the direct pointers to
* point at the newdirblk before the dependency
* will go away.
*/
error = ffs_update(vp, 1);
if (error)
break;
ACQUIRE_LOCK(ump);
}
return (error);
}
/*
* Eliminate a pagedep dependency by flushing out all its diradd dependencies.
*/
static int
flush_pagedep_deps(pvp, mp, diraddhdp)
struct vnode *pvp;
struct mount *mp;
struct diraddhd *diraddhdp;
{
struct inodedep *inodedep;
struct inoref *inoref;
struct ufsmount *ump;
struct diradd *dap;
struct vnode *vp;
int error = 0;
struct buf *bp;
ino_t inum;
struct diraddhd unfinished;
LIST_INIT(&unfinished);
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
restart:
while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
/*
* Flush ourselves if this directory entry
* has a MKDIR_PARENT dependency.
*/
if (dap->da_state & MKDIR_PARENT) {
FREE_LOCK(ump);
if ((error = ffs_update(pvp, 1)) != 0)
break;
ACQUIRE_LOCK(ump);
/*
* If that cleared dependencies, go on to next.
*/
if (dap != LIST_FIRST(diraddhdp))
continue;
/*
* All MKDIR_PARENT dependencies and all the
* NEWBLOCK pagedeps that are contained in direct
* blocks were resolved by doing above ffs_update.
* Pagedeps contained in indirect blocks may
* require a complete sync'ing of the directory.
* We are in the midst of doing a complete sync,
* so if they are not resolved in this pass we
* defer them for now as they will be sync'ed by
* our caller shortly.
*/
LIST_REMOVE(dap, da_pdlist);
LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
continue;
}
/*
* A newly allocated directory must have its "." and
* ".." entries written out before its name can be
* committed in its parent.
*/
inum = dap->da_newinum;
if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
panic("flush_pagedep_deps: lost inode1");
/*
* Wait for any pending journal adds to complete so we don't
* cause rollbacks while syncing.
*/
TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
== DEPCOMPLETE) {
jwait(&inoref->if_list, MNT_WAIT);
goto restart;
}
}
if (dap->da_state & MKDIR_BODY) {
FREE_LOCK(ump);
if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
FFSV_FORCEINSMQ)))
break;
error = flush_newblk_dep(vp, mp, 0);
/*
* If we still have the dependency we might need to
* update the vnode to sync the new link count to
* disk.
*/
if (error == 0 && dap == LIST_FIRST(diraddhdp))
error = ffs_update(vp, 1);
vput(vp);
if (error != 0)
break;
ACQUIRE_LOCK(ump);
/*
* If that cleared dependencies, go on to next.
*/
if (dap != LIST_FIRST(diraddhdp))
continue;
if (dap->da_state & MKDIR_BODY) {
inodedep_lookup(UFSTOVFS(ump), inum, 0,
&inodedep);
panic("flush_pagedep_deps: MKDIR_BODY "
"inodedep %p dap %p vp %p",
inodedep, dap, vp);
}
}
/*
* Flush the inode on which the directory entry depends.
* Having accounted for MKDIR_PARENT and MKDIR_BODY above,
* the only remaining dependency is that the updated inode
* count must get pushed to disk. The inode has already
* been pushed into its inode buffer (via VOP_UPDATE) at
* the time of the reference count change. So we need only
* locate that buffer, ensure that there will be no rollback
* caused by a bitmap dependency, then write the inode buffer.
*/
retry:
if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
panic("flush_pagedep_deps: lost inode");
/*
* If the inode still has bitmap dependencies,
* push them to disk.
*/
if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
bp = inodedep->id_bmsafemap->sm_buf;
bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
if (bp == NULL)
goto retry;
FREE_LOCK(ump);
if ((error = bwrite(bp)) != 0)
break;
ACQUIRE_LOCK(ump);
if (dap != LIST_FIRST(diraddhdp))
continue;
}
/*
* If the inode is still sitting in a buffer waiting
* to be written or waiting for the link count to be
* adjusted update it here to flush it to disk.
*/
if (dap == LIST_FIRST(diraddhdp)) {
FREE_LOCK(ump);
if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
FFSV_FORCEINSMQ)))
break;
error = ffs_update(vp, 1);
vput(vp);
if (error)
break;
ACQUIRE_LOCK(ump);
}
/*
* If we have failed to get rid of all the dependencies
* then something is seriously wrong.
*/
if (dap == LIST_FIRST(diraddhdp)) {
inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
panic("flush_pagedep_deps: failed to flush "
"inodedep %p ino %ju dap %p",
inodedep, (uintmax_t)inum, dap);
}
}
if (error)
ACQUIRE_LOCK(ump);
while ((dap = LIST_FIRST(&unfinished)) != NULL) {
LIST_REMOVE(dap, da_pdlist);
LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
}
return (error);
}
/*
* A large burst of file addition or deletion activity can drive the
* memory load excessively high. First attempt to slow things down
* using the techniques below. If that fails, this routine requests
* the offending operations to fall back to running synchronously
* until the memory load returns to a reasonable level.
*/
int
softdep_slowdown(vp)
struct vnode *vp;
{
struct ufsmount *ump;
int jlow;
int max_softdeps_hard;
KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
("softdep_slowdown called on non-softdep filesystem"));
ump = VFSTOUFS(vp->v_mount);
ACQUIRE_LOCK(ump);
jlow = 0;
/*
* Check for journal space if needed.
*/
if (DOINGSUJ(vp)) {
if (journal_space(ump, 0) == 0)
jlow = 1;
}
/*
* If the system is under its limits and our filesystem is
* not responsible for more than our share of the usage and
* we are not low on journal space, then no need to slow down.
*/
max_softdeps_hard = max_softdeps * 11 / 10;
if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
dep_current[D_INODEDEP] < max_softdeps_hard &&
dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
ump->softdep_curdeps[D_DIRREM] <
(max_softdeps_hard / 2) / stat_flush_threads &&
ump->softdep_curdeps[D_INODEDEP] <
max_softdeps_hard / stat_flush_threads &&
ump->softdep_curdeps[D_INDIRDEP] <
(max_softdeps_hard / 1000) / stat_flush_threads &&
ump->softdep_curdeps[D_FREEBLKS] <
max_softdeps_hard / stat_flush_threads) {
FREE_LOCK(ump);
return (0);
}
/*
* If the journal is low or our filesystem is over its limit
* then speedup the cleanup.
*/
if (ump->softdep_curdeps[D_INDIRDEP] <
(max_softdeps_hard / 1000) / stat_flush_threads || jlow)
softdep_speedup(ump);
stat_sync_limit_hit += 1;
FREE_LOCK(ump);
/*
* We only slow down the rate at which new dependencies are
* generated if we are not using journaling. With journaling,
* the cleanup should always be sufficient to keep things
* under control.
*/
if (DOINGSUJ(vp))
return (0);
return (1);
}
/*
* Called by the allocation routines when they are about to fail
* in the hope that we can free up the requested resource (inodes
* or disk space).
*
* First check to see if the work list has anything on it. If it has,
* clean up entries until we successfully free the requested resource.
* Because this process holds inodes locked, we cannot handle any remove
* requests that might block on a locked inode as that could lead to
* deadlock. If the worklist yields none of the requested resource,
* start syncing out vnodes to free up the needed space.
*/
int
softdep_request_cleanup(fs, vp, cred, resource)
struct fs *fs;
struct vnode *vp;
struct ucred *cred;
int resource;
{
struct ufsmount *ump;
struct mount *mp;
long starttime;
size_t resid;
ufs2_daddr_t needed;
int error, failed_vnode;
/*
* If we are being called because of a process doing a
* copy-on-write, then it is not safe to process any
* worklist items as we will recurse into the copyonwrite
* routine. This will result in an incoherent snapshot.
* If the vnode that we hold is a snapshot, we must avoid
* handling other resources that could cause deadlock.
*/
if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
return (0);
if (resource == FLUSH_BLOCKS_WAIT)
stat_cleanup_blkrequests += 1;
else
stat_cleanup_inorequests += 1;
mp = vp->v_mount;
ump = VFSTOUFS(mp);
mtx_assert(UFS_MTX(ump), MA_OWNED);
UFS_UNLOCK(ump);
error = ffs_update(vp, 1);
if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
UFS_LOCK(ump);
return (0);
}
/*
* If we are in need of resources, start by cleaning up
* any block removals associated with our inode.
*/
ACQUIRE_LOCK(ump);
process_removes(vp);
process_truncates(vp);
FREE_LOCK(ump);
/*
* Now clean up at least as many resources as we will need.
*
* When requested to clean up inodes, the number that are needed
* is set by the number of simultaneous writers (mnt_writeopcount)
* plus a bit of slop (2) in case some more writers show up while
* we are cleaning.
*
* When requested to free up space, the amount of space that
* we need is enough blocks to allocate a full-sized segment
* (fs_contigsumsize). The number of such segments that will
* be needed is set by the number of simultaneous writers
* (mnt_writeopcount) plus a bit of slop (2) in case some more
* writers show up while we are cleaning.
*
* Additionally, if we are unpriviledged and allocating space,
* we need to ensure that we clean up enough blocks to get the
* needed number of blocks over the threshold of the minimum
* number of blocks required to be kept free by the filesystem
* (fs_minfree).
*/
if (resource == FLUSH_INODES_WAIT) {
needed = vfs_mount_fetch_counter(vp->v_mount,
MNT_COUNT_WRITEOPCOUNT) + 2;
} else if (resource == FLUSH_BLOCKS_WAIT) {
needed = (vfs_mount_fetch_counter(vp->v_mount,
MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize;
if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE))
needed += fragstoblks(fs,
roundup((fs->fs_dsize * fs->fs_minfree / 100) -
fs->fs_cstotal.cs_nffree, fs->fs_frag));
} else {
printf("softdep_request_cleanup: Unknown resource type %d\n",
resource);
UFS_LOCK(ump);
return (0);
}
starttime = time_second;
retry:
if (resource == FLUSH_BLOCKS_WAIT &&
fs->fs_cstotal.cs_nbfree <= needed)
g_io_speedup(needed * fs->fs_bsize, BIO_SPEEDUP_TRIM, &resid,
ump->um_cp);
if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
fs->fs_cstotal.cs_nbfree <= needed) ||
(resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
fs->fs_cstotal.cs_nifree <= needed)) {
ACQUIRE_LOCK(ump);
if (ump->softdep_on_worklist > 0 &&
process_worklist_item(UFSTOVFS(ump),
ump->softdep_on_worklist, LK_NOWAIT) != 0)
stat_worklist_push += 1;
FREE_LOCK(ump);
}
/*
* If we still need resources and there are no more worklist
* entries to process to obtain them, we have to start flushing
* the dirty vnodes to force the release of additional requests
* to the worklist that we can then process to reap addition
* resources. We walk the vnodes associated with the mount point
* until we get the needed worklist requests that we can reap.
*
* If there are several threads all needing to clean the same
* mount point, only one is allowed to walk the mount list.
* When several threads all try to walk the same mount list,
* they end up competing with each other and often end up in
* livelock. This approach ensures that forward progress is
* made at the cost of occational ENOSPC errors being returned
* that might otherwise have been avoided.
*/
error = 1;
if ((resource == FLUSH_BLOCKS_WAIT &&
fs->fs_cstotal.cs_nbfree <= needed) ||
(resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
fs->fs_cstotal.cs_nifree <= needed)) {
ACQUIRE_LOCK(ump);
if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) {
ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE;
FREE_LOCK(ump);
failed_vnode = softdep_request_cleanup_flush(mp, ump);
ACQUIRE_LOCK(ump);
ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE;
FREE_LOCK(ump);
if (ump->softdep_on_worklist > 0) {
stat_cleanup_retries += 1;
if (!failed_vnode)
goto retry;
}
} else {
FREE_LOCK(ump);
error = 0;
}
stat_cleanup_failures += 1;
}
if (time_second - starttime > stat_cleanup_high_delay)
stat_cleanup_high_delay = time_second - starttime;
UFS_LOCK(ump);
return (error);
}
/*
* Scan the vnodes for the specified mount point flushing out any
* vnodes that can be locked without waiting. Finally, try to flush
* the device associated with the mount point if it can be locked
* without waiting.
*
* We return 0 if we were able to lock every vnode in our scan.
* If we had to skip one or more vnodes, we return 1.
*/
static int
softdep_request_cleanup_flush(mp, ump)
struct mount *mp;
struct ufsmount *ump;
{
struct thread *td;
struct vnode *lvp, *mvp;
int failed_vnode;
failed_vnode = 0;
td = curthread;
MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
VI_UNLOCK(lvp);
continue;
}
if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
td) != 0) {
failed_vnode = 1;
continue;
}
if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */
vput(lvp);
continue;
}
(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
vput(lvp);
}
lvp = ump->um_devvp;
if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
VOP_FSYNC(lvp, MNT_NOWAIT, td);
VOP_UNLOCK(lvp, 0);
}
return (failed_vnode);
}
static bool
softdep_excess_items(struct ufsmount *ump, int item)
{
KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
return (dep_current[item] > max_softdeps &&
ump->softdep_curdeps[item] > max_softdeps /
stat_flush_threads);
}
static void
schedule_cleanup(struct mount *mp)
{
struct ufsmount *ump;
struct thread *td;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
FREE_LOCK(ump);
td = curthread;
if ((td->td_pflags & TDP_KTHREAD) != 0 &&
(td->td_proc->p_flag2 & P2_AST_SU) == 0) {
/*
* No ast is delivered to kernel threads, so nobody
* would deref the mp. Some kernel threads
* explicitely check for AST, e.g. NFS daemon does
* this in the serving loop.
*/
return;
}
if (td->td_su != NULL)
vfs_rel(td->td_su);
vfs_ref(mp);
td->td_su = mp;
thread_lock(td);
td->td_flags |= TDF_ASTPENDING;
thread_unlock(td);
}
static void
softdep_ast_cleanup_proc(struct thread *td)
{
struct mount *mp;
struct ufsmount *ump;
int error;
bool req;
while ((mp = td->td_su) != NULL) {
td->td_su = NULL;
error = vfs_busy(mp, MBF_NOWAIT);
vfs_rel(mp);
if (error != 0)
return;
if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
ump = VFSTOUFS(mp);
for (;;) {
req = false;
ACQUIRE_LOCK(ump);
if (softdep_excess_items(ump, D_INODEDEP)) {
req = true;
request_cleanup(mp, FLUSH_INODES);
}
if (softdep_excess_items(ump, D_DIRREM)) {
req = true;
request_cleanup(mp, FLUSH_BLOCKS);
}
FREE_LOCK(ump);
if (softdep_excess_items(ump, D_NEWBLK) ||
softdep_excess_items(ump, D_ALLOCDIRECT) ||
softdep_excess_items(ump, D_ALLOCINDIR)) {
error = vn_start_write(NULL, &mp,
V_WAIT);
if (error == 0) {
req = true;
VFS_SYNC(mp, MNT_WAIT);
vn_finished_write(mp);
}
}
if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
break;
}
}
vfs_unbusy(mp);
}
if ((mp = td->td_su) != NULL) {
td->td_su = NULL;
vfs_rel(mp);
}
}
/*
* If memory utilization has gotten too high, deliberately slow things
* down and speed up the I/O processing.
*/
static int
request_cleanup(mp, resource)
struct mount *mp;
int resource;
{
struct thread *td = curthread;
struct ufsmount *ump;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
/*
* We never hold up the filesystem syncer or buf daemon.
*/
if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
return (0);
/*
* First check to see if the work list has gotten backlogged.
* If it has, co-opt this process to help clean up two entries.
* Because this process may hold inodes locked, we cannot
* handle any remove requests that might block on a locked
* inode as that could lead to deadlock. We set TDP_SOFTDEP
* to avoid recursively processing the worklist.
*/
if (ump->softdep_on_worklist > max_softdeps / 10) {
td->td_pflags |= TDP_SOFTDEP;
process_worklist_item(mp, 2, LK_NOWAIT);
td->td_pflags &= ~TDP_SOFTDEP;
stat_worklist_push += 2;
return(1);
}
/*
* Next, we attempt to speed up the syncer process. If that
* is successful, then we allow the process to continue.
*/
if (softdep_speedup(ump) &&
resource != FLUSH_BLOCKS_WAIT &&
resource != FLUSH_INODES_WAIT)
return(0);
/*
* If we are resource constrained on inode dependencies, try
* flushing some dirty inodes. Otherwise, we are constrained
* by file deletions, so try accelerating flushes of directories
* with removal dependencies. We would like to do the cleanup
* here, but we probably hold an inode locked at this point and
* that might deadlock against one that we try to clean. So,
* the best that we can do is request the syncer daemon to do
* the cleanup for us.
*/
switch (resource) {
case FLUSH_INODES:
case FLUSH_INODES_WAIT:
ACQUIRE_GBLLOCK(&lk);
stat_ino_limit_push += 1;
req_clear_inodedeps += 1;
FREE_GBLLOCK(&lk);
stat_countp = &stat_ino_limit_hit;
break;
case FLUSH_BLOCKS:
case FLUSH_BLOCKS_WAIT:
ACQUIRE_GBLLOCK(&lk);
stat_blk_limit_push += 1;
req_clear_remove += 1;
FREE_GBLLOCK(&lk);
stat_countp = &stat_blk_limit_hit;
break;
default:
panic("request_cleanup: unknown type");
}
/*
* Hopefully the syncer daemon will catch up and awaken us.
* We wait at most tickdelay before proceeding in any case.
*/
ACQUIRE_GBLLOCK(&lk);
FREE_LOCK(ump);
proc_waiting += 1;
if (callout_pending(&softdep_callout) == FALSE)
callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
pause_timer, 0);
if ((td->td_pflags & TDP_KTHREAD) == 0)
msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
proc_waiting -= 1;
FREE_GBLLOCK(&lk);
ACQUIRE_LOCK(ump);
return (1);
}
/*
* Awaken processes pausing in request_cleanup and clear proc_waiting
* to indicate that there is no longer a timer running. Pause_timer
* will be called with the global softdep mutex (&lk) locked.
*/
static void
pause_timer(arg)
void *arg;
{
GBLLOCK_OWNED(&lk);
/*
* The callout_ API has acquired mtx and will hold it around this
* function call.
*/
*stat_countp += proc_waiting;
wakeup(&proc_waiting);
}
/*
* If requested, try removing inode or removal dependencies.
*/
static void
check_clear_deps(mp)
struct mount *mp;
{
size_t resid;
/*
* Tell the lower layers that any TRIM or WRITE transactions
* that have been delayed for performance reasons should
* proceed to help alleviate the shortage faster.
*/
g_io_speedup(0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE, &resid,
VFSTOUFS(mp)->um_cp);
/*
* If we are suspended, it may be because of our using
* too many inodedeps, so help clear them out.
*/
if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended)
clear_inodedeps(mp);
/*
* General requests for cleanup of backed up dependencies
*/
ACQUIRE_GBLLOCK(&lk);
if (req_clear_inodedeps) {
req_clear_inodedeps -= 1;
FREE_GBLLOCK(&lk);
clear_inodedeps(mp);
ACQUIRE_GBLLOCK(&lk);
wakeup(&proc_waiting);
}
if (req_clear_remove) {
req_clear_remove -= 1;
FREE_GBLLOCK(&lk);
clear_remove(mp);
ACQUIRE_GBLLOCK(&lk);
wakeup(&proc_waiting);
}
FREE_GBLLOCK(&lk);
}
/*
* Flush out a directory with at least one removal dependency in an effort to
* reduce the number of dirrem, freefile, and freeblks dependency structures.
*/
static void
clear_remove(mp)
struct mount *mp;
{
struct pagedep_hashhead *pagedephd;
struct pagedep *pagedep;
struct ufsmount *ump;
struct vnode *vp;
struct bufobj *bo;
int error, cnt;
ino_t ino;
ump = VFSTOUFS(mp);
LOCK_OWNED(ump);
for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
if (ump->pagedep_nextclean > ump->pagedep_hash_size)
ump->pagedep_nextclean = 0;
LIST_FOREACH(pagedep, pagedephd, pd_hash) {
if (LIST_EMPTY(&pagedep->pd_dirremhd))
continue;
ino = pagedep->pd_ino;
if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
continue;
FREE_LOCK(ump);
/*
* Let unmount clear deps
*/
error = vfs_busy(mp, MBF_NOWAIT);
if (error != 0)
goto finish_write;
error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
FFSV_FORCEINSMQ);
vfs_unbusy(mp);
if (error != 0) {
softdep_error("clear_remove: vget", error);
goto finish_write;
}
if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
softdep_error("clear_remove: fsync", error);
bo = &vp->v_bufobj;
BO_LOCK(bo);
drain_output(vp);
BO_UNLOCK(bo);
vput(vp);
finish_write:
vn_finished_write(mp);
ACQUIRE_LOCK(ump);
return;
}
}
}
/*
* Clear out a block of dirty inodes in an effort to reduce
* the number of inodedep dependency structures.
*/
static void
clear_inodedeps(mp)
struct mount *mp;
{
struct inodedep_hashhead *inodedephd;
struct inodedep *inodedep;
struct ufsmount *ump;
struct vnode *vp;
struct fs *fs;
int error, cnt;
ino_t firstino, lastino, ino;
ump = VFSTOUFS(mp);
fs = ump->um_fs;
LOCK_OWNED(ump);
/*
* Pick a random inode dependency to be cleared.
* We will then gather up all the inodes in its block
* that have dependencies and flush them out.
*/
for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
if (ump->inodedep_nextclean > ump->inodedep_hash_size)
ump->inodedep_nextclean = 0;
if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
break;
}
if (inodedep == NULL)
return;
/*
* Find the last inode in the block with dependencies.
*/
firstino = rounddown2(inodedep->id_ino, INOPB(fs));
for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
break;
/*
* Asynchronously push all but the last inode with dependencies.
* Synchronously push the last inode with dependencies to ensure
* that the inode block gets written to free up the inodedeps.
*/
for (ino = firstino; ino <= lastino; ino++) {
if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
continue;
if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
continue;
FREE_LOCK(ump);
error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
if (error != 0) {
vn_finished_write(mp);
ACQUIRE_LOCK(ump);
return;
}
if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
FFSV_FORCEINSMQ)) != 0) {
softdep_error("clear_inodedeps: vget", error);
vfs_unbusy(mp);
vn_finished_write(mp);
ACQUIRE_LOCK(ump);
return;
}
vfs_unbusy(mp);
if (ino == lastino) {
if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
softdep_error("clear_inodedeps: fsync1", error);
} else {
if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
softdep_error("clear_inodedeps: fsync2", error);
BO_LOCK(&vp->v_bufobj);
drain_output(vp);
BO_UNLOCK(&vp->v_bufobj);
}
vput(vp);
vn_finished_write(mp);
ACQUIRE_LOCK(ump);
}
}
void
softdep_buf_append(bp, wkhd)
struct buf *bp;
struct workhead *wkhd;
{
struct worklist *wk;
struct ufsmount *ump;
if ((wk = LIST_FIRST(wkhd)) == NULL)
return;
KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
("softdep_buf_append called on non-softdep filesystem"));
ump = VFSTOUFS(wk->wk_mp);
ACQUIRE_LOCK(ump);
while ((wk = LIST_FIRST(wkhd)) != NULL) {
WORKLIST_REMOVE(wk);
WORKLIST_INSERT(&bp->b_dep, wk);
}
FREE_LOCK(ump);
}
void
softdep_inode_append(ip, cred, wkhd)
struct inode *ip;
struct ucred *cred;
struct workhead *wkhd;
{
struct buf *bp;
struct fs *fs;
struct ufsmount *ump;
int error;
ump = ITOUMP(ip);
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
("softdep_inode_append called on non-softdep filesystem"));
fs = ump->um_fs;
error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
(int)fs->fs_bsize, cred, &bp);
if (error) {
bqrelse(bp);
softdep_freework(wkhd);
return;
}
softdep_buf_append(bp, wkhd);
bqrelse(bp);
}
void
softdep_freework(wkhd)
struct workhead *wkhd;
{
struct worklist *wk;
struct ufsmount *ump;
if ((wk = LIST_FIRST(wkhd)) == NULL)
return;
KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
("softdep_freework called on non-softdep filesystem"));
ump = VFSTOUFS(wk->wk_mp);
ACQUIRE_LOCK(ump);
handle_jwork(wkhd);
FREE_LOCK(ump);
}
static struct ufsmount *
softdep_bp_to_mp(bp)
struct buf *bp;
{
struct mount *mp;
struct vnode *vp;
if (LIST_EMPTY(&bp->b_dep))
return (NULL);
vp = bp->b_vp;
KASSERT(vp != NULL,
("%s, buffer with dependencies lacks vnode", __func__));
/*
* The ump mount point is stable after we get a correct
* pointer, since bp is locked and this prevents unmount from
* proceeding. But to get to it, we cannot dereference bp->b_dep
* head wk_mp, because we do not yet own SU ump lock and
* workitem might be freed while dereferenced.
*/
retry:
switch (vp->v_type) {
case VCHR:
VI_LOCK(vp);
mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL;
VI_UNLOCK(vp);
if (mp == NULL)
goto retry;
break;
case VREG:
case VDIR:
case VLNK:
case VFIFO:
case VSOCK:
mp = vp->v_mount;
break;
case VBLK:
vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n");
/* FALLTHROUGH */
case VNON:
case VBAD:
case VMARKER:
mp = NULL;
break;
default:
vn_printf(vp, "unknown vnode type");
mp = NULL;
break;
}
return (VFSTOUFS(mp));
}
/*
* Function to determine if the buffer has outstanding dependencies
* that will cause a roll-back if the buffer is written. If wantcount
* is set, return number of dependencies, otherwise just yes or no.
*/
static int
softdep_count_dependencies(bp, wantcount)
struct buf *bp;
int wantcount;
{
struct worklist *wk;
struct ufsmount *ump;
struct bmsafemap *bmsafemap;
struct freework *freework;
struct inodedep *inodedep;
struct indirdep *indirdep;
struct freeblks *freeblks;
struct allocindir *aip;
struct pagedep *pagedep;
struct dirrem *dirrem;
struct newblk *newblk;
struct mkdir *mkdir;
struct diradd *dap;
int i, retval;
ump = softdep_bp_to_mp(bp);
if (ump == NULL)
return (0);
retval = 0;
ACQUIRE_LOCK(ump);
LIST_FOREACH(wk, &bp->b_dep, wk_list) {
switch (wk->wk_type) {
case D_INODEDEP:
inodedep = WK_INODEDEP(wk);
if ((inodedep->id_state & DEPCOMPLETE) == 0) {
/* bitmap allocation dependency */
retval += 1;
if (!wantcount)
goto out;
}
if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
/* direct block pointer dependency */
retval += 1;
if (!wantcount)
goto out;
}
if (TAILQ_FIRST(&inodedep->id_extupdt)) {
/* direct block pointer dependency */
retval += 1;
if (!wantcount)
goto out;
}
if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
/* Add reference dependency. */
retval += 1;
if (!wantcount)
goto out;
}
continue;
case D_INDIRDEP:
indirdep = WK_INDIRDEP(wk);
TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
/* indirect truncation dependency */
retval += 1;
if (!wantcount)
goto out;
}
LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
/* indirect block pointer dependency */
retval += 1;
if (!wantcount)
goto out;
}
continue;
case D_PAGEDEP:
pagedep = WK_PAGEDEP(wk);
LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
/* Journal remove ref dependency. */
retval += 1;
if (!wantcount)
goto out;
}
}
for (i = 0; i < DAHASHSZ; i++) {
LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
/* directory entry dependency */
retval += 1;
if (!wantcount)
goto out;
}
}
continue;
case D_BMSAFEMAP:
bmsafemap = WK_BMSAFEMAP(wk);
if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
/* Add reference dependency. */
retval += 1;
if (!wantcount)
goto out;
}
if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
/* Allocate block dependency. */
retval += 1;
if (!wantcount)
goto out;
}
continue;
case D_FREEBLKS:
freeblks = WK_FREEBLKS(wk);
if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
/* Freeblk journal dependency. */
retval += 1;
if (!wantcount)
goto out;
}
continue;
case D_ALLOCDIRECT:
case D_ALLOCINDIR:
newblk = WK_NEWBLK(wk);
if (newblk->nb_jnewblk) {
/* Journal allocate dependency. */
retval += 1;
if (!wantcount)
goto out;
}
continue;
case D_MKDIR:
mkdir = WK_MKDIR(wk);
if (mkdir->md_jaddref) {
/* Journal reference dependency. */
retval += 1;
if (!wantcount)
goto out;
}
continue;
case D_FREEWORK:
case D_FREEDEP:
case D_JSEGDEP:
case D_JSEG:
case D_SBDEP:
/* never a dependency on these blocks */
continue;
default:
panic("softdep_count_dependencies: Unexpected type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
out:
FREE_LOCK(ump);
return (retval);
}
/*
* Acquire exclusive access to a buffer.
* Must be called with a locked mtx parameter.
* Return acquired buffer or NULL on failure.
*/
static struct buf *
getdirtybuf(bp, lock, waitfor)
struct buf *bp;
struct rwlock *lock;
int waitfor;
{
int error;
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
if (waitfor != MNT_WAIT)
return (NULL);
error = BUF_LOCK(bp,
LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
/*
* Even if we successfully acquire bp here, we have dropped
* lock, which may violates our guarantee.
*/
if (error == 0)
BUF_UNLOCK(bp);
else if (error != ENOLCK)
panic("getdirtybuf: inconsistent lock: %d", error);
rw_wlock(lock);
return (NULL);
}
if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
rw_wunlock(lock);
BO_LOCK(bp->b_bufobj);
BUF_UNLOCK(bp);
if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
bp->b_vflags |= BV_BKGRDWAIT;
msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
PRIBIO | PDROP, "getbuf", 0);
} else
BO_UNLOCK(bp->b_bufobj);
rw_wlock(lock);
return (NULL);
}
BUF_UNLOCK(bp);
if (waitfor != MNT_WAIT)
return (NULL);
#ifdef DEBUG_VFS_LOCKS
if (bp->b_vp->v_type != VCHR)
ASSERT_BO_WLOCKED(bp->b_bufobj);
#endif
bp->b_vflags |= BV_BKGRDWAIT;
rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
return (NULL);
}
if ((bp->b_flags & B_DELWRI) == 0) {
BUF_UNLOCK(bp);
return (NULL);
}
bremfree(bp);
return (bp);
}
/*
* Check if it is safe to suspend the file system now. On entry,
* the vnode interlock for devvp should be held. Return 0 with
* the mount interlock held if the file system can be suspended now,
* otherwise return EAGAIN with the mount interlock held.
*/
int
softdep_check_suspend(struct mount *mp,
struct vnode *devvp,
int softdep_depcnt,
int softdep_accdepcnt,
int secondary_writes,
int secondary_accwrites)
{
struct bufobj *bo;
struct ufsmount *ump;
struct inodedep *inodedep;
int error, unlinked;
bo = &devvp->v_bufobj;
ASSERT_BO_WLOCKED(bo);
/*
* If we are not running with soft updates, then we need only
* deal with secondary writes as we try to suspend.
*/
if (MOUNTEDSOFTDEP(mp) == 0) {
MNT_ILOCK(mp);
while (mp->mnt_secondary_writes != 0) {
BO_UNLOCK(bo);
msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
(PUSER - 1) | PDROP, "secwr", 0);
BO_LOCK(bo);
MNT_ILOCK(mp);
}
/*
* Reasons for needing more work before suspend:
* - Dirty buffers on devvp.
* - Secondary writes occurred after start of vnode sync loop
*/
error = 0;
if (bo->bo_numoutput > 0 ||
bo->bo_dirty.bv_cnt > 0 ||
secondary_writes != 0 ||
mp->mnt_secondary_writes != 0 ||
secondary_accwrites != mp->mnt_secondary_accwrites)
error = EAGAIN;
BO_UNLOCK(bo);
return (error);
}
/*
* If we are running with soft updates, then we need to coordinate
* with them as we try to suspend.
*/
ump = VFSTOUFS(mp);
for (;;) {
if (!TRY_ACQUIRE_LOCK(ump)) {
BO_UNLOCK(bo);
ACQUIRE_LOCK(ump);
FREE_LOCK(ump);
BO_LOCK(bo);
continue;
}
MNT_ILOCK(mp);
if (mp->mnt_secondary_writes != 0) {
FREE_LOCK(ump);
BO_UNLOCK(bo);
msleep(&mp->mnt_secondary_writes,
MNT_MTX(mp),
(PUSER - 1) | PDROP, "secwr", 0);
BO_LOCK(bo);
continue;
}
break;
}
unlinked = 0;
if (MOUNTEDSUJ(mp)) {
for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
inodedep != NULL;
inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
UNLINKONLIST) ||
!check_inodedep_free(inodedep))
continue;
unlinked++;
}
}
/*
* Reasons for needing more work before suspend:
* - Dirty buffers on devvp.
* - Softdep activity occurred after start of vnode sync loop
* - Secondary writes occurred after start of vnode sync loop
*/
error = 0;
if (bo->bo_numoutput > 0 ||
bo->bo_dirty.bv_cnt > 0 ||
softdep_depcnt != unlinked ||
ump->softdep_deps != unlinked ||
softdep_accdepcnt != ump->softdep_accdeps ||
secondary_writes != 0 ||
mp->mnt_secondary_writes != 0 ||
secondary_accwrites != mp->mnt_secondary_accwrites)
error = EAGAIN;
FREE_LOCK(ump);
BO_UNLOCK(bo);
return (error);
}
/*
* Get the number of dependency structures for the file system, both
* the current number and the total number allocated. These will
* later be used to detect that softdep processing has occurred.
*/
void
softdep_get_depcounts(struct mount *mp,
int *softdep_depsp,
int *softdep_accdepsp)
{
struct ufsmount *ump;
if (MOUNTEDSOFTDEP(mp) == 0) {
*softdep_depsp = 0;
*softdep_accdepsp = 0;
return;
}
ump = VFSTOUFS(mp);
ACQUIRE_LOCK(ump);
*softdep_depsp = ump->softdep_deps;
*softdep_accdepsp = ump->softdep_accdeps;
FREE_LOCK(ump);
}
/*
* Wait for pending output on a vnode to complete.
*/
static void
drain_output(vp)
struct vnode *vp;
{
ASSERT_VOP_LOCKED(vp, "drain_output");
(void)bufobj_wwait(&vp->v_bufobj, 0, 0);
}
/*
* Called whenever a buffer that is being invalidated or reallocated
* contains dependencies. This should only happen if an I/O error has
* occurred. The routine is called with the buffer locked.
*/
static void
softdep_deallocate_dependencies(bp)
struct buf *bp;
{
if ((bp->b_ioflags & BIO_ERROR) == 0)
panic("softdep_deallocate_dependencies: dangling deps");
if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
else
printf("softdep_deallocate_dependencies: "
"got error %d while accessing filesystem\n", bp->b_error);
if (bp->b_error != ENXIO)
panic("softdep_deallocate_dependencies: unrecovered I/O error");
}
/*
* Function to handle asynchronous write errors in the filesystem.
*/
static void
softdep_error(func, error)
char *func;
int error;
{
/* XXX should do something better! */
printf("%s: got error %d while accessing filesystem\n", func, error);
}
#ifdef DDB
/* exported to ffs_vfsops.c */
extern void db_print_ffs(struct ufsmount *ump);
void
db_print_ffs(struct ufsmount *ump)
{
db_printf("mp %p (%s) devvp %p\n", ump->um_mountp,
ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp);
db_printf(" fs %p su_wl %d su_deps %d su_req %d\n",
ump->um_fs, ump->softdep_on_worklist,
ump->softdep_deps, ump->softdep_req);
}
static void
worklist_print(struct worklist *wk, int verbose)
{
if (!verbose) {
db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk,
(u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS);
return;
}
db_printf("worklist: %p type %s state 0x%b next %p\n ", wk,
TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS,
LIST_NEXT(wk, wk_list));
db_print_ffs(VFSTOUFS(wk->wk_mp));
}
static void
inodedep_print(struct inodedep *inodedep, int verbose)
{
worklist_print(&inodedep->id_list, 0);
db_printf(" fs %p ino %jd inoblk %jd delta %jd nlink %jd\n",
inodedep->id_fs,
(intmax_t)inodedep->id_ino,
(intmax_t)fsbtodb(inodedep->id_fs,
ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
(intmax_t)inodedep->id_nlinkdelta,
(intmax_t)inodedep->id_savednlink);
if (verbose == 0)
return;
db_printf(" bmsafemap %p, mkdiradd %p, inoreflst %p\n",
inodedep->id_bmsafemap,
inodedep->id_mkdiradd,
TAILQ_FIRST(&inodedep->id_inoreflst));
db_printf(" dirremhd %p, pendinghd %p, bufwait %p\n",
LIST_FIRST(&inodedep->id_dirremhd),
LIST_FIRST(&inodedep->id_pendinghd),
LIST_FIRST(&inodedep->id_bufwait));
db_printf(" inowait %p, inoupdt %p, newinoupdt %p\n",
LIST_FIRST(&inodedep->id_inowait),
TAILQ_FIRST(&inodedep->id_inoupdt),
TAILQ_FIRST(&inodedep->id_newinoupdt));
db_printf(" extupdt %p, newextupdt %p, freeblklst %p\n",
TAILQ_FIRST(&inodedep->id_extupdt),
TAILQ_FIRST(&inodedep->id_newextupdt),
TAILQ_FIRST(&inodedep->id_freeblklst));
db_printf(" saveino %p, savedsize %jd, savedextsize %jd\n",
inodedep->id_savedino1,
(intmax_t)inodedep->id_savedsize,
(intmax_t)inodedep->id_savedextsize);
}
static void
newblk_print(struct newblk *nbp)
{
worklist_print(&nbp->nb_list, 0);
db_printf(" newblkno %jd\n", (intmax_t)nbp->nb_newblkno);
db_printf(" jnewblk %p, bmsafemap %p, freefrag %p\n",
&nbp->nb_jnewblk,
&nbp->nb_bmsafemap,
&nbp->nb_freefrag);
db_printf(" indirdeps %p, newdirblk %p, jwork %p\n",
LIST_FIRST(&nbp->nb_indirdeps),
LIST_FIRST(&nbp->nb_newdirblk),
LIST_FIRST(&nbp->nb_jwork));
}
static void
allocdirect_print(struct allocdirect *adp)
{
newblk_print(&adp->ad_block);
db_printf(" oldblkno %jd, oldsize %ld, newsize %ld\n",
adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize);
db_printf(" offset %d, inodedep %p\n",
adp->ad_offset, adp->ad_inodedep);
}
static void
allocindir_print(struct allocindir *aip)
{
newblk_print(&aip->ai_block);
db_printf(" oldblkno %jd, lbn %jd\n",
(intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn);
db_printf(" offset %d, indirdep %p\n",
aip->ai_offset, aip->ai_indirdep);
}
static void
mkdir_print(struct mkdir *mkdir)
{
worklist_print(&mkdir->md_list, 0);
db_printf(" diradd %p, jaddref %p, buf %p\n",
mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf);
}
DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep)
{
if (have_addr == 0) {
db_printf("inodedep address required\n");
return;
}
inodedep_print((struct inodedep*)addr, 1);
}
DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps)
{
struct inodedep_hashhead *inodedephd;
struct inodedep *inodedep;
struct ufsmount *ump;
int cnt;
if (have_addr == 0) {
db_printf("ufsmount address required\n");
return;
}
ump = (struct ufsmount *)addr;
for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
inodedephd = &ump->inodedep_hashtbl[cnt];
LIST_FOREACH(inodedep, inodedephd, id_hash) {
inodedep_print(inodedep, 0);
}
}
}
DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist)
{
if (have_addr == 0) {
db_printf("worklist address required\n");
return;
}
worklist_print((struct worklist *)addr, 1);
}
DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead)
{
struct worklist *wk;
struct workhead *wkhd;
if (have_addr == 0) {
db_printf("worklist address required "
"(for example value in bp->b_dep)\n");
return;
}
/*
* We often do not have the address of the worklist head but
* instead a pointer to its first entry (e.g., we have the
* contents of bp->b_dep rather than &bp->b_dep). But the back
* pointer of bp->b_dep will point at the head of the list, so
* we cheat and use that instead. If we are in the middle of
* a list we will still get the same result, so nothing
* unexpected will result.
*/
wk = (struct worklist *)addr;
if (wk == NULL)
return;
wkhd = (struct workhead *)wk->wk_list.le_prev;
LIST_FOREACH(wk, wkhd, wk_list) {
switch(wk->wk_type) {
case D_INODEDEP:
inodedep_print(WK_INODEDEP(wk), 0);
continue;
case D_ALLOCDIRECT:
allocdirect_print(WK_ALLOCDIRECT(wk));
continue;
case D_ALLOCINDIR:
allocindir_print(WK_ALLOCINDIR(wk));
continue;
case D_MKDIR:
mkdir_print(WK_MKDIR(wk));
continue;
default:
worklist_print(wk, 0);
continue;
}
}
}
DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir)
{
if (have_addr == 0) {
db_printf("mkdir address required\n");
return;
}
mkdir_print((struct mkdir *)addr);
}
DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list)
{
struct mkdirlist *mkdirlisthd;
struct mkdir *mkdir;
if (have_addr == 0) {
db_printf("mkdir listhead address required\n");
return;
}
mkdirlisthd = (struct mkdirlist *)addr;
LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
mkdir_print(mkdir);
if (mkdir->md_diradd != NULL) {
db_printf(" ");
worklist_print(&mkdir->md_diradd->da_list, 0);
}
if (mkdir->md_jaddref != NULL) {
db_printf(" ");
worklist_print(&mkdir->md_jaddref->ja_list, 0);
}
}
}
DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect)
{
if (have_addr == 0) {
db_printf("allocdirect address required\n");
return;
}
allocdirect_print((struct allocdirect *)addr);
}
DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir)
{
if (have_addr == 0) {
db_printf("allocindir address required\n");
return;
}
allocindir_print((struct allocindir *)addr);
}
#endif /* DDB */
#endif /* SOFTUPDATES */