47e2650ea4
This is a simplistic approach which encrypts each TLS record in two separate passes: one to generate the MAC and a second to encrypt. This supports TLS 1.0 connections with implicit IVs as well as TLS 1.1+ with explicit IVs. Reviewed by: gallatin Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D26730
737 lines
20 KiB
C
737 lines
20 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*
|
|
* Copyright (c) 2019 Netflix Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/counter.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktls.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/module.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/uio.h>
|
|
#include <opencrypto/cryptodev.h>
|
|
|
|
struct ocf_session {
|
|
crypto_session_t sid;
|
|
crypto_session_t mac_sid;
|
|
int mac_len;
|
|
struct mtx lock;
|
|
bool implicit_iv;
|
|
|
|
/* Only used for TLS 1.0 with the implicit IV. */
|
|
#ifdef INVARIANTS
|
|
bool in_progress;
|
|
uint64_t next_seqno;
|
|
#endif
|
|
char iv[AES_BLOCK_LEN];
|
|
};
|
|
|
|
struct ocf_operation {
|
|
struct ocf_session *os;
|
|
bool done;
|
|
};
|
|
|
|
static MALLOC_DEFINE(M_KTLS_OCF, "ktls_ocf", "OCF KTLS");
|
|
|
|
SYSCTL_DECL(_kern_ipc_tls);
|
|
SYSCTL_DECL(_kern_ipc_tls_stats);
|
|
|
|
static SYSCTL_NODE(_kern_ipc_tls_stats, OID_AUTO, ocf,
|
|
CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
|
|
"Kernel TLS offload via OCF stats");
|
|
|
|
static counter_u64_t ocf_tls10_cbc_crypts;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, tls10_cbc_crypts,
|
|
CTLFLAG_RD, &ocf_tls10_cbc_crypts,
|
|
"Total number of OCF TLS 1.0 CBC encryption operations");
|
|
|
|
static counter_u64_t ocf_tls11_cbc_crypts;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, tls11_cbc_crypts,
|
|
CTLFLAG_RD, &ocf_tls11_cbc_crypts,
|
|
"Total number of OCF TLS 1.1/1.2 CBC encryption operations");
|
|
|
|
static counter_u64_t ocf_tls12_gcm_crypts;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, tls12_gcm_crypts,
|
|
CTLFLAG_RD, &ocf_tls12_gcm_crypts,
|
|
"Total number of OCF TLS 1.2 GCM encryption operations");
|
|
|
|
static counter_u64_t ocf_tls13_gcm_crypts;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, tls13_gcm_crypts,
|
|
CTLFLAG_RD, &ocf_tls13_gcm_crypts,
|
|
"Total number of OCF TLS 1.3 GCM encryption operations");
|
|
|
|
static counter_u64_t ocf_inplace;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, inplace,
|
|
CTLFLAG_RD, &ocf_inplace,
|
|
"Total number of OCF in-place operations");
|
|
|
|
static counter_u64_t ocf_separate_output;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, separate_output,
|
|
CTLFLAG_RD, &ocf_separate_output,
|
|
"Total number of OCF operations with a separate output buffer");
|
|
|
|
static counter_u64_t ocf_retries;
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, retries, CTLFLAG_RD,
|
|
&ocf_retries,
|
|
"Number of OCF encryption operation retries");
|
|
|
|
static int
|
|
ktls_ocf_callback(struct cryptop *crp)
|
|
{
|
|
struct ocf_operation *oo;
|
|
|
|
oo = crp->crp_opaque;
|
|
mtx_lock(&oo->os->lock);
|
|
oo->done = true;
|
|
mtx_unlock(&oo->os->lock);
|
|
wakeup(oo);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ktls_ocf_dispatch(struct ocf_session *os, struct cryptop *crp)
|
|
{
|
|
struct ocf_operation oo;
|
|
int error;
|
|
|
|
oo.os = os;
|
|
oo.done = false;
|
|
|
|
crp->crp_opaque = &oo;
|
|
crp->crp_callback = ktls_ocf_callback;
|
|
for (;;) {
|
|
error = crypto_dispatch(crp);
|
|
if (error)
|
|
break;
|
|
|
|
mtx_lock(&os->lock);
|
|
while (!oo.done)
|
|
mtx_sleep(&oo, &os->lock, 0, "ocfktls", 0);
|
|
mtx_unlock(&os->lock);
|
|
|
|
if (crp->crp_etype != EAGAIN) {
|
|
error = crp->crp_etype;
|
|
break;
|
|
}
|
|
|
|
crp->crp_etype = 0;
|
|
crp->crp_flags &= ~CRYPTO_F_DONE;
|
|
oo.done = false;
|
|
counter_u64_add(ocf_retries, 1);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
ktls_ocf_tls_cbc_encrypt(struct ktls_session *tls,
|
|
const struct tls_record_layer *hdr, uint8_t *trailer, struct iovec *iniov,
|
|
struct iovec *outiov, int iovcnt, uint64_t seqno,
|
|
uint8_t record_type __unused)
|
|
{
|
|
struct uio uio, out_uio;
|
|
struct tls_mac_data ad;
|
|
struct cryptop crp;
|
|
struct ocf_session *os;
|
|
struct iovec iov[iovcnt + 2];
|
|
struct iovec out_iov[iovcnt + 1];
|
|
int i, error;
|
|
uint16_t tls_comp_len;
|
|
uint8_t pad;
|
|
bool inplace;
|
|
|
|
os = tls->cipher;
|
|
|
|
#ifdef INVARIANTS
|
|
if (os->implicit_iv) {
|
|
mtx_lock(&os->lock);
|
|
KASSERT(!os->in_progress,
|
|
("concurrent implicit IV encryptions"));
|
|
if (os->next_seqno != seqno) {
|
|
printf("KTLS CBC: TLS records out of order. "
|
|
"Expected %ju, got %ju\n",
|
|
(uintmax_t)os->next_seqno, (uintmax_t)seqno);
|
|
mtx_unlock(&os->lock);
|
|
return (EINVAL);
|
|
}
|
|
os->in_progress = true;
|
|
mtx_unlock(&os->lock);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Compute the payload length.
|
|
*
|
|
* XXX: This could be easily computed O(1) from the mbuf
|
|
* fields, but we don't have those accessible here. Can
|
|
* at least compute inplace as well while we are here.
|
|
*/
|
|
tls_comp_len = 0;
|
|
inplace = true;
|
|
for (i = 0; i < iovcnt; i++) {
|
|
tls_comp_len += iniov[i].iov_len;
|
|
if (iniov[i].iov_base != outiov[i].iov_base)
|
|
inplace = false;
|
|
}
|
|
|
|
/* Initialize the AAD. */
|
|
ad.seq = htobe64(seqno);
|
|
ad.type = hdr->tls_type;
|
|
ad.tls_vmajor = hdr->tls_vmajor;
|
|
ad.tls_vminor = hdr->tls_vminor;
|
|
ad.tls_length = htons(tls_comp_len);
|
|
|
|
/* First, compute the MAC. */
|
|
iov[0].iov_base = &ad;
|
|
iov[0].iov_len = sizeof(ad);
|
|
memcpy(&iov[1], iniov, sizeof(*iniov) * iovcnt);
|
|
iov[iovcnt + 1].iov_base = trailer;
|
|
iov[iovcnt + 1].iov_len = os->mac_len;
|
|
uio.uio_iov = iov;
|
|
uio.uio_iovcnt = iovcnt + 2;
|
|
uio.uio_offset = 0;
|
|
uio.uio_segflg = UIO_SYSSPACE;
|
|
uio.uio_td = curthread;
|
|
uio.uio_resid = sizeof(ad) + tls_comp_len + os->mac_len;
|
|
|
|
crypto_initreq(&crp, os->mac_sid);
|
|
crp.crp_payload_start = 0;
|
|
crp.crp_payload_length = sizeof(ad) + tls_comp_len;
|
|
crp.crp_digest_start = crp.crp_payload_length;
|
|
crp.crp_op = CRYPTO_OP_COMPUTE_DIGEST;
|
|
crp.crp_flags = CRYPTO_F_CBIMM;
|
|
crypto_use_uio(&crp, &uio);
|
|
error = ktls_ocf_dispatch(os, &crp);
|
|
|
|
crypto_destroyreq(&crp);
|
|
if (error) {
|
|
#ifdef INVARIANTS
|
|
if (os->implicit_iv) {
|
|
mtx_lock(&os->lock);
|
|
os->in_progress = false;
|
|
mtx_unlock(&os->lock);
|
|
}
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
/* Second, add the padding. */
|
|
pad = (unsigned)(AES_BLOCK_LEN - (tls_comp_len + os->mac_len + 1)) %
|
|
AES_BLOCK_LEN;
|
|
for (i = 0; i < pad + 1; i++)
|
|
trailer[os->mac_len + i] = pad;
|
|
|
|
/* Finally, encrypt the record. */
|
|
|
|
/*
|
|
* Don't recopy the input iovec, instead just adjust the
|
|
* trailer length and skip over the AAD vector in the uio.
|
|
*/
|
|
iov[iovcnt + 1].iov_len += pad + 1;
|
|
uio.uio_iov = iov + 1;
|
|
uio.uio_iovcnt = iovcnt + 1;
|
|
uio.uio_resid = tls_comp_len + iov[iovcnt + 1].iov_len;
|
|
KASSERT(uio.uio_resid % AES_BLOCK_LEN == 0,
|
|
("invalid encryption size"));
|
|
|
|
crypto_initreq(&crp, os->sid);
|
|
crp.crp_payload_start = 0;
|
|
crp.crp_payload_length = uio.uio_resid;
|
|
crp.crp_op = CRYPTO_OP_ENCRYPT;
|
|
crp.crp_flags = CRYPTO_F_CBIMM | CRYPTO_F_IV_SEPARATE;
|
|
if (os->implicit_iv)
|
|
memcpy(crp.crp_iv, os->iv, AES_BLOCK_LEN);
|
|
else
|
|
memcpy(crp.crp_iv, hdr + 1, AES_BLOCK_LEN);
|
|
crypto_use_uio(&crp, &uio);
|
|
if (!inplace) {
|
|
memcpy(out_iov, outiov, sizeof(*iniov) * iovcnt);
|
|
out_iov[iovcnt] = iov[iovcnt + 1];
|
|
out_uio.uio_iov = out_iov;
|
|
out_uio.uio_iovcnt = iovcnt + 1;
|
|
out_uio.uio_offset = 0;
|
|
out_uio.uio_segflg = UIO_SYSSPACE;
|
|
out_uio.uio_td = curthread;
|
|
out_uio.uio_resid = uio.uio_resid;
|
|
crypto_use_output_uio(&crp, &out_uio);
|
|
}
|
|
|
|
if (os->implicit_iv)
|
|
counter_u64_add(ocf_tls10_cbc_crypts, 1);
|
|
else
|
|
counter_u64_add(ocf_tls11_cbc_crypts, 1);
|
|
if (inplace)
|
|
counter_u64_add(ocf_inplace, 1);
|
|
else
|
|
counter_u64_add(ocf_separate_output, 1);
|
|
error = ktls_ocf_dispatch(os, &crp);
|
|
|
|
crypto_destroyreq(&crp);
|
|
|
|
if (os->implicit_iv) {
|
|
KASSERT(os->mac_len + pad + 1 >= AES_BLOCK_LEN,
|
|
("trailer too short to read IV"));
|
|
memcpy(os->iv, trailer + os->mac_len + pad + 1 - AES_BLOCK_LEN,
|
|
AES_BLOCK_LEN);
|
|
#ifdef INVARIANTS
|
|
mtx_lock(&os->lock);
|
|
os->next_seqno = seqno + 1;
|
|
os->in_progress = false;
|
|
mtx_unlock(&os->lock);
|
|
#endif
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
ktls_ocf_tls12_gcm_encrypt(struct ktls_session *tls,
|
|
const struct tls_record_layer *hdr, uint8_t *trailer, struct iovec *iniov,
|
|
struct iovec *outiov, int iovcnt, uint64_t seqno,
|
|
uint8_t record_type __unused)
|
|
{
|
|
struct uio uio, out_uio, *tag_uio;
|
|
struct tls_aead_data ad;
|
|
struct cryptop crp;
|
|
struct ocf_session *os;
|
|
struct iovec iov[iovcnt + 1];
|
|
int i, error;
|
|
uint16_t tls_comp_len;
|
|
bool inplace;
|
|
|
|
os = tls->cipher;
|
|
|
|
uio.uio_iov = iniov;
|
|
uio.uio_iovcnt = iovcnt;
|
|
uio.uio_offset = 0;
|
|
uio.uio_segflg = UIO_SYSSPACE;
|
|
uio.uio_td = curthread;
|
|
|
|
out_uio.uio_iov = outiov;
|
|
out_uio.uio_iovcnt = iovcnt;
|
|
out_uio.uio_offset = 0;
|
|
out_uio.uio_segflg = UIO_SYSSPACE;
|
|
out_uio.uio_td = curthread;
|
|
|
|
crypto_initreq(&crp, os->sid);
|
|
|
|
/* Setup the IV. */
|
|
memcpy(crp.crp_iv, tls->params.iv, TLS_AEAD_GCM_LEN);
|
|
memcpy(crp.crp_iv + TLS_AEAD_GCM_LEN, hdr + 1, sizeof(uint64_t));
|
|
|
|
/* Setup the AAD. */
|
|
tls_comp_len = ntohs(hdr->tls_length) -
|
|
(AES_GMAC_HASH_LEN + sizeof(uint64_t));
|
|
ad.seq = htobe64(seqno);
|
|
ad.type = hdr->tls_type;
|
|
ad.tls_vmajor = hdr->tls_vmajor;
|
|
ad.tls_vminor = hdr->tls_vminor;
|
|
ad.tls_length = htons(tls_comp_len);
|
|
crp.crp_aad = &ad;
|
|
crp.crp_aad_length = sizeof(ad);
|
|
|
|
/* Compute payload length and determine if encryption is in place. */
|
|
inplace = true;
|
|
crp.crp_payload_start = 0;
|
|
for (i = 0; i < iovcnt; i++) {
|
|
if (iniov[i].iov_base != outiov[i].iov_base)
|
|
inplace = false;
|
|
crp.crp_payload_length += iniov[i].iov_len;
|
|
}
|
|
uio.uio_resid = crp.crp_payload_length;
|
|
out_uio.uio_resid = crp.crp_payload_length;
|
|
|
|
if (inplace)
|
|
tag_uio = &uio;
|
|
else
|
|
tag_uio = &out_uio;
|
|
|
|
/* Duplicate iovec and append vector for tag. */
|
|
memcpy(iov, tag_uio->uio_iov, iovcnt * sizeof(struct iovec));
|
|
iov[iovcnt].iov_base = trailer;
|
|
iov[iovcnt].iov_len = AES_GMAC_HASH_LEN;
|
|
tag_uio->uio_iov = iov;
|
|
tag_uio->uio_iovcnt++;
|
|
crp.crp_digest_start = tag_uio->uio_resid;
|
|
tag_uio->uio_resid += AES_GMAC_HASH_LEN;
|
|
|
|
crp.crp_op = CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST;
|
|
crp.crp_flags = CRYPTO_F_CBIMM | CRYPTO_F_IV_SEPARATE;
|
|
crypto_use_uio(&crp, &uio);
|
|
if (!inplace)
|
|
crypto_use_output_uio(&crp, &out_uio);
|
|
|
|
counter_u64_add(ocf_tls12_gcm_crypts, 1);
|
|
if (inplace)
|
|
counter_u64_add(ocf_inplace, 1);
|
|
else
|
|
counter_u64_add(ocf_separate_output, 1);
|
|
error = ktls_ocf_dispatch(os, &crp);
|
|
|
|
crypto_destroyreq(&crp);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
ktls_ocf_tls12_gcm_decrypt(struct ktls_session *tls,
|
|
const struct tls_record_layer *hdr, struct mbuf *m, uint64_t seqno,
|
|
int *trailer_len)
|
|
{
|
|
struct tls_aead_data ad;
|
|
struct cryptop crp;
|
|
struct ocf_session *os;
|
|
struct ocf_operation oo;
|
|
int error;
|
|
uint16_t tls_comp_len;
|
|
|
|
os = tls->cipher;
|
|
|
|
oo.os = os;
|
|
oo.done = false;
|
|
|
|
crypto_initreq(&crp, os->sid);
|
|
|
|
/* Setup the IV. */
|
|
memcpy(crp.crp_iv, tls->params.iv, TLS_AEAD_GCM_LEN);
|
|
memcpy(crp.crp_iv + TLS_AEAD_GCM_LEN, hdr + 1, sizeof(uint64_t));
|
|
|
|
/* Setup the AAD. */
|
|
tls_comp_len = ntohs(hdr->tls_length) -
|
|
(AES_GMAC_HASH_LEN + sizeof(uint64_t));
|
|
ad.seq = htobe64(seqno);
|
|
ad.type = hdr->tls_type;
|
|
ad.tls_vmajor = hdr->tls_vmajor;
|
|
ad.tls_vminor = hdr->tls_vminor;
|
|
ad.tls_length = htons(tls_comp_len);
|
|
crp.crp_aad = &ad;
|
|
crp.crp_aad_length = sizeof(ad);
|
|
|
|
crp.crp_payload_start = tls->params.tls_hlen;
|
|
crp.crp_payload_length = tls_comp_len;
|
|
crp.crp_digest_start = crp.crp_payload_start + crp.crp_payload_length;
|
|
|
|
crp.crp_op = CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST;
|
|
crp.crp_flags = CRYPTO_F_CBIMM | CRYPTO_F_IV_SEPARATE;
|
|
crypto_use_mbuf(&crp, m);
|
|
|
|
counter_u64_add(ocf_tls12_gcm_crypts, 1);
|
|
error = ktls_ocf_dispatch(os, &crp);
|
|
|
|
crypto_destroyreq(&crp);
|
|
*trailer_len = AES_GMAC_HASH_LEN;
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
ktls_ocf_tls13_gcm_encrypt(struct ktls_session *tls,
|
|
const struct tls_record_layer *hdr, uint8_t *trailer, struct iovec *iniov,
|
|
struct iovec *outiov, int iovcnt, uint64_t seqno, uint8_t record_type)
|
|
{
|
|
struct uio uio, out_uio;
|
|
struct tls_aead_data_13 ad;
|
|
char nonce[12];
|
|
struct cryptop crp;
|
|
struct ocf_session *os;
|
|
struct iovec iov[iovcnt + 1], out_iov[iovcnt + 1];
|
|
int i, error;
|
|
bool inplace;
|
|
|
|
os = tls->cipher;
|
|
|
|
crypto_initreq(&crp, os->sid);
|
|
|
|
/* Setup the nonce. */
|
|
memcpy(nonce, tls->params.iv, tls->params.iv_len);
|
|
*(uint64_t *)(nonce + 4) ^= htobe64(seqno);
|
|
|
|
/* Setup the AAD. */
|
|
ad.type = hdr->tls_type;
|
|
ad.tls_vmajor = hdr->tls_vmajor;
|
|
ad.tls_vminor = hdr->tls_vminor;
|
|
ad.tls_length = hdr->tls_length;
|
|
crp.crp_aad = &ad;
|
|
crp.crp_aad_length = sizeof(ad);
|
|
|
|
/* Compute payload length and determine if encryption is in place. */
|
|
inplace = true;
|
|
crp.crp_payload_start = 0;
|
|
for (i = 0; i < iovcnt; i++) {
|
|
if (iniov[i].iov_base != outiov[i].iov_base)
|
|
inplace = false;
|
|
crp.crp_payload_length += iniov[i].iov_len;
|
|
}
|
|
|
|
/* Store the record type as the first byte of the trailer. */
|
|
trailer[0] = record_type;
|
|
crp.crp_payload_length++;
|
|
crp.crp_digest_start = crp.crp_payload_length;
|
|
|
|
/*
|
|
* Duplicate the input iov to append the trailer. Always
|
|
* include the full trailer as input to get the record_type
|
|
* even if only the first byte is used.
|
|
*/
|
|
memcpy(iov, iniov, iovcnt * sizeof(*iov));
|
|
iov[iovcnt].iov_base = trailer;
|
|
iov[iovcnt].iov_len = AES_GMAC_HASH_LEN + 1;
|
|
uio.uio_iov = iov;
|
|
uio.uio_iovcnt = iovcnt + 1;
|
|
uio.uio_offset = 0;
|
|
uio.uio_resid = crp.crp_payload_length + AES_GMAC_HASH_LEN;
|
|
uio.uio_segflg = UIO_SYSSPACE;
|
|
uio.uio_td = curthread;
|
|
crypto_use_uio(&crp, &uio);
|
|
|
|
if (!inplace) {
|
|
/* Duplicate the output iov to append the trailer. */
|
|
memcpy(out_iov, outiov, iovcnt * sizeof(*out_iov));
|
|
out_iov[iovcnt] = iov[iovcnt];
|
|
|
|
out_uio.uio_iov = out_iov;
|
|
out_uio.uio_iovcnt = iovcnt + 1;
|
|
out_uio.uio_offset = 0;
|
|
out_uio.uio_resid = crp.crp_payload_length +
|
|
AES_GMAC_HASH_LEN;
|
|
out_uio.uio_segflg = UIO_SYSSPACE;
|
|
out_uio.uio_td = curthread;
|
|
crypto_use_output_uio(&crp, &out_uio);
|
|
}
|
|
|
|
crp.crp_op = CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST;
|
|
crp.crp_flags = CRYPTO_F_CBIMM | CRYPTO_F_IV_SEPARATE;
|
|
|
|
memcpy(crp.crp_iv, nonce, sizeof(nonce));
|
|
|
|
counter_u64_add(ocf_tls13_gcm_crypts, 1);
|
|
if (inplace)
|
|
counter_u64_add(ocf_inplace, 1);
|
|
else
|
|
counter_u64_add(ocf_separate_output, 1);
|
|
error = ktls_ocf_dispatch(os, &crp);
|
|
|
|
crypto_destroyreq(&crp);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
ktls_ocf_free(struct ktls_session *tls)
|
|
{
|
|
struct ocf_session *os;
|
|
|
|
os = tls->cipher;
|
|
crypto_freesession(os->sid);
|
|
mtx_destroy(&os->lock);
|
|
zfree(os, M_KTLS_OCF);
|
|
}
|
|
|
|
static int
|
|
ktls_ocf_try(struct socket *so, struct ktls_session *tls, int direction)
|
|
{
|
|
struct crypto_session_params csp, mac_csp;
|
|
struct ocf_session *os;
|
|
int error, mac_len;
|
|
|
|
memset(&csp, 0, sizeof(csp));
|
|
memset(&mac_csp, 0, sizeof(mac_csp));
|
|
mac_csp.csp_mode = CSP_MODE_NONE;
|
|
mac_len = 0;
|
|
|
|
switch (tls->params.cipher_algorithm) {
|
|
case CRYPTO_AES_NIST_GCM_16:
|
|
switch (tls->params.cipher_key_len) {
|
|
case 128 / 8:
|
|
case 256 / 8:
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* Only TLS 1.2 and 1.3 are supported. */
|
|
if (tls->params.tls_vmajor != TLS_MAJOR_VER_ONE ||
|
|
tls->params.tls_vminor < TLS_MINOR_VER_TWO ||
|
|
tls->params.tls_vminor > TLS_MINOR_VER_THREE)
|
|
return (EPROTONOSUPPORT);
|
|
|
|
/* TLS 1.3 is not yet supported for receive. */
|
|
if (direction == KTLS_RX &&
|
|
tls->params.tls_vminor == TLS_MINOR_VER_THREE)
|
|
return (EPROTONOSUPPORT);
|
|
|
|
csp.csp_flags |= CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD;
|
|
csp.csp_mode = CSP_MODE_AEAD;
|
|
csp.csp_cipher_alg = CRYPTO_AES_NIST_GCM_16;
|
|
csp.csp_cipher_key = tls->params.cipher_key;
|
|
csp.csp_cipher_klen = tls->params.cipher_key_len;
|
|
csp.csp_ivlen = AES_GCM_IV_LEN;
|
|
break;
|
|
case CRYPTO_AES_CBC:
|
|
switch (tls->params.cipher_key_len) {
|
|
case 128 / 8:
|
|
case 256 / 8:
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
switch (tls->params.auth_algorithm) {
|
|
case CRYPTO_SHA1_HMAC:
|
|
mac_len = SHA1_HASH_LEN;
|
|
break;
|
|
case CRYPTO_SHA2_256_HMAC:
|
|
mac_len = SHA2_256_HASH_LEN;
|
|
break;
|
|
case CRYPTO_SHA2_384_HMAC:
|
|
mac_len = SHA2_384_HASH_LEN;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* Only TLS 1.0-1.2 are supported. */
|
|
if (tls->params.tls_vmajor != TLS_MAJOR_VER_ONE ||
|
|
tls->params.tls_vminor < TLS_MINOR_VER_ZERO ||
|
|
tls->params.tls_vminor > TLS_MINOR_VER_TWO)
|
|
return (EPROTONOSUPPORT);
|
|
|
|
/* AES-CBC is not supported for receive. */
|
|
if (direction == KTLS_RX)
|
|
return (EPROTONOSUPPORT);
|
|
|
|
csp.csp_flags |= CSP_F_SEPARATE_OUTPUT;
|
|
csp.csp_mode = CSP_MODE_CIPHER;
|
|
csp.csp_cipher_alg = CRYPTO_AES_CBC;
|
|
csp.csp_cipher_key = tls->params.cipher_key;
|
|
csp.csp_cipher_klen = tls->params.cipher_key_len;
|
|
csp.csp_ivlen = AES_BLOCK_LEN;
|
|
|
|
mac_csp.csp_flags |= CSP_F_SEPARATE_OUTPUT;
|
|
mac_csp.csp_mode = CSP_MODE_DIGEST;
|
|
mac_csp.csp_auth_alg = tls->params.auth_algorithm;
|
|
mac_csp.csp_auth_key = tls->params.auth_key;
|
|
mac_csp.csp_auth_klen = tls->params.auth_key_len;
|
|
break;
|
|
default:
|
|
return (EPROTONOSUPPORT);
|
|
}
|
|
|
|
os = malloc(sizeof(*os), M_KTLS_OCF, M_NOWAIT | M_ZERO);
|
|
if (os == NULL)
|
|
return (ENOMEM);
|
|
|
|
error = crypto_newsession(&os->sid, &csp,
|
|
CRYPTO_FLAG_HARDWARE | CRYPTO_FLAG_SOFTWARE);
|
|
if (error) {
|
|
free(os, M_KTLS_OCF);
|
|
return (error);
|
|
}
|
|
|
|
if (mac_csp.csp_mode != CSP_MODE_NONE) {
|
|
error = crypto_newsession(&os->mac_sid, &mac_csp,
|
|
CRYPTO_FLAG_HARDWARE | CRYPTO_FLAG_SOFTWARE);
|
|
if (error) {
|
|
crypto_freesession(os->sid);
|
|
free(os, M_KTLS_OCF);
|
|
return (error);
|
|
}
|
|
os->mac_len = mac_len;
|
|
}
|
|
|
|
mtx_init(&os->lock, "ktls_ocf", NULL, MTX_DEF);
|
|
tls->cipher = os;
|
|
if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16) {
|
|
if (direction == KTLS_TX) {
|
|
if (tls->params.tls_vminor == TLS_MINOR_VER_THREE)
|
|
tls->sw_encrypt = ktls_ocf_tls13_gcm_encrypt;
|
|
else
|
|
tls->sw_encrypt = ktls_ocf_tls12_gcm_encrypt;
|
|
} else {
|
|
tls->sw_decrypt = ktls_ocf_tls12_gcm_decrypt;
|
|
}
|
|
} else {
|
|
tls->sw_encrypt = ktls_ocf_tls_cbc_encrypt;
|
|
if (tls->params.tls_vminor == TLS_MINOR_VER_ZERO) {
|
|
os->implicit_iv = true;
|
|
memcpy(os->iv, tls->params.iv, AES_BLOCK_LEN);
|
|
}
|
|
}
|
|
tls->free = ktls_ocf_free;
|
|
return (0);
|
|
}
|
|
|
|
struct ktls_crypto_backend ocf_backend = {
|
|
.name = "OCF",
|
|
.prio = 5,
|
|
.api_version = KTLS_API_VERSION,
|
|
.try = ktls_ocf_try,
|
|
};
|
|
|
|
static int
|
|
ktls_ocf_modevent(module_t mod, int what, void *arg)
|
|
{
|
|
int error;
|
|
|
|
switch (what) {
|
|
case MOD_LOAD:
|
|
ocf_tls10_cbc_crypts = counter_u64_alloc(M_WAITOK);
|
|
ocf_tls11_cbc_crypts = counter_u64_alloc(M_WAITOK);
|
|
ocf_tls12_gcm_crypts = counter_u64_alloc(M_WAITOK);
|
|
ocf_tls13_gcm_crypts = counter_u64_alloc(M_WAITOK);
|
|
ocf_inplace = counter_u64_alloc(M_WAITOK);
|
|
ocf_separate_output = counter_u64_alloc(M_WAITOK);
|
|
ocf_retries = counter_u64_alloc(M_WAITOK);
|
|
return (ktls_crypto_backend_register(&ocf_backend));
|
|
case MOD_UNLOAD:
|
|
error = ktls_crypto_backend_deregister(&ocf_backend);
|
|
if (error)
|
|
return (error);
|
|
counter_u64_free(ocf_tls10_cbc_crypts);
|
|
counter_u64_free(ocf_tls11_cbc_crypts);
|
|
counter_u64_free(ocf_tls12_gcm_crypts);
|
|
counter_u64_free(ocf_tls13_gcm_crypts);
|
|
counter_u64_free(ocf_inplace);
|
|
counter_u64_free(ocf_separate_output);
|
|
counter_u64_free(ocf_retries);
|
|
return (0);
|
|
default:
|
|
return (EOPNOTSUPP);
|
|
}
|
|
}
|
|
|
|
static moduledata_t ktls_ocf_moduledata = {
|
|
"ktls_ocf",
|
|
ktls_ocf_modevent,
|
|
NULL
|
|
};
|
|
|
|
DECLARE_MODULE(ktls_ocf, ktls_ocf_moduledata, SI_SUB_PROTO_END, SI_ORDER_ANY);
|