freebsd-dev/sys/kern/subr_bus_dma.c
John Baldwin 9c0e3d3a53 Add support for optional separate output buffers to in-kernel crypto.
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer.  Using a separate output buffer avoids this copy.

- Create a new 'struct crypto_buffer' describing a crypto buffer
  containing a type and type-specific fields.  crp_ilen is gone,
  instead buffers that use a flat kernel buffer have a cb_buf_len
  field for their length.  The length of other buffer types is
  inferred from the backing store (e.g. uio_resid for a uio).
  Requests now have two such structures: crp_buf for the input buffer,
  and crp_obuf for the output buffer.

- Consumers now use helper functions (crypto_use_*,
  e.g. crypto_use_mbuf()) to configure the input buffer.  If an output
  buffer is not configured, the request still modifies the input
  buffer in-place.  A consumer uses a second set of helper functions
  (crypto_use_output_*) to configure an output buffer.

- Consumers must request support for separate output buffers when
  creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
  only permitted to queue a request with a separate output buffer on
  sessions with this flag set.  Existing drivers already reject
  sessions with unknown flags, so this permits drivers to be modified
  to support this extension without requiring all drivers to change.

- Several data-related functions now have matching versions that
  operate on an explicit buffer (e.g. crypto_apply_buf,
  crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).

- Most of the existing data-related functions operate on the input
  buffer.  However crypto_copyback always writes to the output buffer
  if a request uses a separate output buffer.

- For the regions in input/output buffers, the following conventions
  are followed:
  - AAD and IV are always present in input only and their
    fields are offsets into the input buffer.
  - payload is always present in both buffers.  If a request uses a
    separate output buffer, it must set a new crp_payload_start_output
    field to the offset of the payload in the output buffer.
  - digest is in the input buffer for verify operations, and in the
    output buffer for compute operations.  crp_digest_start is relative
    to the appropriate buffer.

- Add a crypto buffer cursor abstraction.  This is a more general form
  of some bits in the cryptosoft driver that tried to always use uio's.
  However, compared to the original code, this avoids rewalking the uio
  iovec array for requests with multiple vectors.  It also avoids
  allocate an iovec array for mbufs and populating it by instead walking
  the mbuf chain directly.

- Update the cryptosoft(4) driver to support separate output buffers
  making use of the cursor abstraction.

Sponsored by:	Netflix
Differential Revision:	https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00

698 lines
17 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2012 EMC Corp.
* All rights reserved.
*
* Copyright (c) 1997, 1998 Justin T. Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_bus.h"
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/callout.h>
#include <sys/ktr.h>
#include <sys/mbuf.h>
#include <sys/memdesc.h>
#include <sys/proc.h>
#include <sys/uio.h>
#include <vm/vm.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/pmap.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <opencrypto/cryptodev.h>
#include <machine/bus.h>
/*
* Load up data starting at offset within a region specified by a
* list of virtual address ranges until either length or the region
* are exhausted.
*/
static int
_bus_dmamap_load_vlist(bus_dma_tag_t dmat, bus_dmamap_t map,
bus_dma_segment_t *list, int sglist_cnt, struct pmap *pmap, int *nsegs,
int flags, size_t offset, size_t length)
{
int error;
error = 0;
for (; sglist_cnt > 0 && length != 0; sglist_cnt--, list++) {
char *addr;
size_t ds_len;
KASSERT((offset < list->ds_len),
("Invalid mid-segment offset"));
addr = (char *)(uintptr_t)list->ds_addr + offset;
ds_len = list->ds_len - offset;
offset = 0;
if (ds_len > length)
ds_len = length;
length -= ds_len;
KASSERT((ds_len != 0), ("Segment length is zero"));
error = _bus_dmamap_load_buffer(dmat, map, addr, ds_len, pmap,
flags, NULL, nsegs);
if (error)
break;
}
return (error);
}
/*
* Load a list of physical addresses.
*/
static int
_bus_dmamap_load_plist(bus_dma_tag_t dmat, bus_dmamap_t map,
bus_dma_segment_t *list, int sglist_cnt, int *nsegs, int flags)
{
int error;
error = 0;
for (; sglist_cnt > 0; sglist_cnt--, list++) {
error = _bus_dmamap_load_phys(dmat, map,
(vm_paddr_t)list->ds_addr, list->ds_len, flags, NULL,
nsegs);
if (error)
break;
}
return (error);
}
/*
* Load an unmapped mbuf
*/
static int
_bus_dmamap_load_mbuf_epg(bus_dma_tag_t dmat, bus_dmamap_t map,
struct mbuf *m, bus_dma_segment_t *segs, int *nsegs, int flags)
{
int error, i, off, len, pglen, pgoff, seglen, segoff;
M_ASSERTEXTPG(m);
len = m->m_len;
error = 0;
/* Skip over any data removed from the front. */
off = mtod(m, vm_offset_t);
if (m->m_epg_hdrlen != 0) {
if (off >= m->m_epg_hdrlen) {
off -= m->m_epg_hdrlen;
} else {
seglen = m->m_epg_hdrlen - off;
segoff = off;
seglen = min(seglen, len);
off = 0;
len -= seglen;
error = _bus_dmamap_load_buffer(dmat, map,
&m->m_epg_hdr[segoff], seglen, kernel_pmap,
flags, segs, nsegs);
}
}
pgoff = m->m_epg_1st_off;
for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) {
pglen = m_epg_pagelen(m, i, pgoff);
if (off >= pglen) {
off -= pglen;
pgoff = 0;
continue;
}
seglen = pglen - off;
segoff = pgoff + off;
off = 0;
seglen = min(seglen, len);
len -= seglen;
error = _bus_dmamap_load_phys(dmat, map,
m->m_epg_pa[i] + segoff, seglen, flags, segs, nsegs);
pgoff = 0;
};
if (len != 0 && error == 0) {
KASSERT((off + len) <= m->m_epg_trllen,
("off + len > trail (%d + %d > %d)", off, len,
m->m_epg_trllen));
error = _bus_dmamap_load_buffer(dmat, map,
&m->m_epg_trail[off], len, kernel_pmap, flags, segs,
nsegs);
}
return (error);
}
/*
* Load an mbuf chain.
*/
static int
_bus_dmamap_load_mbuf_sg(bus_dma_tag_t dmat, bus_dmamap_t map,
struct mbuf *m0, bus_dma_segment_t *segs, int *nsegs, int flags)
{
struct mbuf *m;
int error;
error = 0;
for (m = m0; m != NULL && error == 0; m = m->m_next) {
if (m->m_len > 0) {
if ((m->m_flags & M_EXTPG) != 0)
error = _bus_dmamap_load_mbuf_epg(dmat,
map, m, segs, nsegs, flags);
else
error = _bus_dmamap_load_buffer(dmat, map,
m->m_data, m->m_len, kernel_pmap,
flags | BUS_DMA_LOAD_MBUF, segs, nsegs);
}
}
CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d",
__func__, dmat, flags, error, *nsegs);
return (error);
}
/*
* Load from block io.
*/
static int
_bus_dmamap_load_bio(bus_dma_tag_t dmat, bus_dmamap_t map, struct bio *bio,
int *nsegs, int flags)
{
if ((bio->bio_flags & BIO_VLIST) != 0) {
bus_dma_segment_t *segs = (bus_dma_segment_t *)bio->bio_data;
return (_bus_dmamap_load_vlist(dmat, map, segs, bio->bio_ma_n,
kernel_pmap, nsegs, flags, bio->bio_ma_offset,
bio->bio_bcount));
}
if ((bio->bio_flags & BIO_UNMAPPED) != 0)
return (_bus_dmamap_load_ma(dmat, map, bio->bio_ma,
bio->bio_bcount, bio->bio_ma_offset, flags, NULL, nsegs));
return (_bus_dmamap_load_buffer(dmat, map, bio->bio_data,
bio->bio_bcount, kernel_pmap, flags, NULL, nsegs));
}
int
bus_dmamap_load_ma_triv(bus_dma_tag_t dmat, bus_dmamap_t map,
struct vm_page **ma, bus_size_t tlen, int ma_offs, int flags,
bus_dma_segment_t *segs, int *segp)
{
vm_paddr_t paddr;
bus_size_t len;
int error, i;
error = 0;
for (i = 0; tlen > 0; i++, tlen -= len) {
len = min(PAGE_SIZE - ma_offs, tlen);
paddr = VM_PAGE_TO_PHYS(ma[i]) + ma_offs;
error = _bus_dmamap_load_phys(dmat, map, paddr, len,
flags, segs, segp);
if (error != 0)
break;
ma_offs = 0;
}
return (error);
}
/*
* Load a cam control block.
*/
static int
_bus_dmamap_load_ccb(bus_dma_tag_t dmat, bus_dmamap_t map, union ccb *ccb,
int *nsegs, int flags)
{
struct ccb_hdr *ccb_h;
void *data_ptr;
int error;
uint32_t dxfer_len;
uint16_t sglist_cnt;
error = 0;
ccb_h = &ccb->ccb_h;
switch (ccb_h->func_code) {
case XPT_SCSI_IO: {
struct ccb_scsiio *csio;
csio = &ccb->csio;
data_ptr = csio->data_ptr;
dxfer_len = csio->dxfer_len;
sglist_cnt = csio->sglist_cnt;
break;
}
case XPT_CONT_TARGET_IO: {
struct ccb_scsiio *ctio;
ctio = &ccb->ctio;
data_ptr = ctio->data_ptr;
dxfer_len = ctio->dxfer_len;
sglist_cnt = ctio->sglist_cnt;
break;
}
case XPT_ATA_IO: {
struct ccb_ataio *ataio;
ataio = &ccb->ataio;
data_ptr = ataio->data_ptr;
dxfer_len = ataio->dxfer_len;
sglist_cnt = 0;
break;
}
case XPT_NVME_IO:
case XPT_NVME_ADMIN: {
struct ccb_nvmeio *nvmeio;
nvmeio = &ccb->nvmeio;
data_ptr = nvmeio->data_ptr;
dxfer_len = nvmeio->dxfer_len;
sglist_cnt = nvmeio->sglist_cnt;
break;
}
default:
panic("_bus_dmamap_load_ccb: Unsupported func code %d",
ccb_h->func_code);
}
switch ((ccb_h->flags & CAM_DATA_MASK)) {
case CAM_DATA_VADDR:
error = _bus_dmamap_load_buffer(dmat, map, data_ptr, dxfer_len,
kernel_pmap, flags, NULL, nsegs);
break;
case CAM_DATA_PADDR:
error = _bus_dmamap_load_phys(dmat, map,
(vm_paddr_t)(uintptr_t)data_ptr, dxfer_len, flags, NULL,
nsegs);
break;
case CAM_DATA_SG:
error = _bus_dmamap_load_vlist(dmat, map,
(bus_dma_segment_t *)data_ptr, sglist_cnt, kernel_pmap,
nsegs, flags, 0, dxfer_len);
break;
case CAM_DATA_SG_PADDR:
error = _bus_dmamap_load_plist(dmat, map,
(bus_dma_segment_t *)data_ptr, sglist_cnt, nsegs, flags);
break;
case CAM_DATA_BIO:
error = _bus_dmamap_load_bio(dmat, map, (struct bio *)data_ptr,
nsegs, flags);
break;
default:
panic("_bus_dmamap_load_ccb: flags 0x%X unimplemented",
ccb_h->flags);
}
return (error);
}
/*
* Load a uio.
*/
static int
_bus_dmamap_load_uio(bus_dma_tag_t dmat, bus_dmamap_t map, struct uio *uio,
int *nsegs, int flags)
{
bus_size_t resid;
bus_size_t minlen;
struct iovec *iov;
pmap_t pmap;
caddr_t addr;
int error, i;
if (uio->uio_segflg == UIO_USERSPACE) {
KASSERT(uio->uio_td != NULL,
("bus_dmamap_load_uio: USERSPACE but no proc"));
pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
} else
pmap = kernel_pmap;
resid = uio->uio_resid;
iov = uio->uio_iov;
error = 0;
for (i = 0; i < uio->uio_iovcnt && resid != 0 && !error; i++) {
/*
* Now at the first iovec to load. Load each iovec
* until we have exhausted the residual count.
*/
addr = (caddr_t) iov[i].iov_base;
minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
if (minlen > 0) {
error = _bus_dmamap_load_buffer(dmat, map, addr,
minlen, pmap, flags, NULL, nsegs);
resid -= minlen;
}
}
return (error);
}
/*
* Map the buffer buf into bus space using the dmamap map.
*/
int
bus_dmamap_load(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf,
bus_size_t buflen, bus_dmamap_callback_t *callback,
void *callback_arg, int flags)
{
bus_dma_segment_t *segs;
struct memdesc mem;
int error;
int nsegs;
if ((flags & BUS_DMA_NOWAIT) == 0) {
mem = memdesc_vaddr(buf, buflen);
_bus_dmamap_waitok(dmat, map, &mem, callback, callback_arg);
}
nsegs = -1;
error = _bus_dmamap_load_buffer(dmat, map, buf, buflen, kernel_pmap,
flags, NULL, &nsegs);
nsegs++;
CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d",
__func__, dmat, flags, error, nsegs);
if (error == EINPROGRESS)
return (error);
segs = _bus_dmamap_complete(dmat, map, NULL, nsegs, error);
if (error)
(*callback)(callback_arg, segs, 0, error);
else
(*callback)(callback_arg, segs, nsegs, 0);
/*
* Return ENOMEM to the caller so that it can pass it up the stack.
* This error only happens when NOWAIT is set, so deferral is disabled.
*/
if (error == ENOMEM)
return (error);
return (0);
}
int
bus_dmamap_load_mbuf(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *m0,
bus_dmamap_callback2_t *callback, void *callback_arg, int flags)
{
bus_dma_segment_t *segs;
int nsegs, error;
M_ASSERTPKTHDR(m0);
flags |= BUS_DMA_NOWAIT;
nsegs = -1;
error = _bus_dmamap_load_mbuf_sg(dmat, map, m0, NULL, &nsegs, flags);
++nsegs;
segs = _bus_dmamap_complete(dmat, map, NULL, nsegs, error);
if (error)
(*callback)(callback_arg, segs, 0, 0, error);
else
(*callback)(callback_arg, segs, nsegs, m0->m_pkthdr.len, error);
CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d",
__func__, dmat, flags, error, nsegs);
return (error);
}
int
bus_dmamap_load_mbuf_sg(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *m0,
bus_dma_segment_t *segs, int *nsegs, int flags)
{
int error;
flags |= BUS_DMA_NOWAIT;
*nsegs = -1;
error = _bus_dmamap_load_mbuf_sg(dmat, map, m0, segs, nsegs, flags);
++*nsegs;
_bus_dmamap_complete(dmat, map, segs, *nsegs, error);
return (error);
}
int
bus_dmamap_load_uio(bus_dma_tag_t dmat, bus_dmamap_t map, struct uio *uio,
bus_dmamap_callback2_t *callback, void *callback_arg, int flags)
{
bus_dma_segment_t *segs;
int nsegs, error;
flags |= BUS_DMA_NOWAIT;
nsegs = -1;
error = _bus_dmamap_load_uio(dmat, map, uio, &nsegs, flags);
nsegs++;
segs = _bus_dmamap_complete(dmat, map, NULL, nsegs, error);
if (error)
(*callback)(callback_arg, segs, 0, 0, error);
else
(*callback)(callback_arg, segs, nsegs, uio->uio_resid, error);
CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d",
__func__, dmat, flags, error, nsegs);
return (error);
}
int
bus_dmamap_load_ccb(bus_dma_tag_t dmat, bus_dmamap_t map, union ccb *ccb,
bus_dmamap_callback_t *callback, void *callback_arg,
int flags)
{
bus_dma_segment_t *segs;
struct ccb_hdr *ccb_h;
struct memdesc mem;
int error;
int nsegs;
ccb_h = &ccb->ccb_h;
if ((ccb_h->flags & CAM_DIR_MASK) == CAM_DIR_NONE) {
callback(callback_arg, NULL, 0, 0);
return (0);
}
if ((flags & BUS_DMA_NOWAIT) == 0) {
mem = memdesc_ccb(ccb);
_bus_dmamap_waitok(dmat, map, &mem, callback, callback_arg);
}
nsegs = -1;
error = _bus_dmamap_load_ccb(dmat, map, ccb, &nsegs, flags);
nsegs++;
CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d",
__func__, dmat, flags, error, nsegs);
if (error == EINPROGRESS)
return (error);
segs = _bus_dmamap_complete(dmat, map, NULL, nsegs, error);
if (error)
(*callback)(callback_arg, segs, 0, error);
else
(*callback)(callback_arg, segs, nsegs, error);
/*
* Return ENOMEM to the caller so that it can pass it up the stack.
* This error only happens when NOWAIT is set, so deferral is disabled.
*/
if (error == ENOMEM)
return (error);
return (0);
}
int
bus_dmamap_load_bio(bus_dma_tag_t dmat, bus_dmamap_t map, struct bio *bio,
bus_dmamap_callback_t *callback, void *callback_arg,
int flags)
{
bus_dma_segment_t *segs;
struct memdesc mem;
int error;
int nsegs;
if ((flags & BUS_DMA_NOWAIT) == 0) {
mem = memdesc_bio(bio);
_bus_dmamap_waitok(dmat, map, &mem, callback, callback_arg);
}
nsegs = -1;
error = _bus_dmamap_load_bio(dmat, map, bio, &nsegs, flags);
nsegs++;
CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d",
__func__, dmat, flags, error, nsegs);
if (error == EINPROGRESS)
return (error);
segs = _bus_dmamap_complete(dmat, map, NULL, nsegs, error);
if (error)
(*callback)(callback_arg, segs, 0, error);
else
(*callback)(callback_arg, segs, nsegs, error);
/*
* Return ENOMEM to the caller so that it can pass it up the stack.
* This error only happens when NOWAIT is set, so deferral is disabled.
*/
if (error == ENOMEM)
return (error);
return (0);
}
int
bus_dmamap_load_mem(bus_dma_tag_t dmat, bus_dmamap_t map,
struct memdesc *mem, bus_dmamap_callback_t *callback,
void *callback_arg, int flags)
{
bus_dma_segment_t *segs;
int error;
int nsegs;
if ((flags & BUS_DMA_NOWAIT) == 0)
_bus_dmamap_waitok(dmat, map, mem, callback, callback_arg);
nsegs = -1;
error = 0;
switch (mem->md_type) {
case MEMDESC_VADDR:
error = _bus_dmamap_load_buffer(dmat, map, mem->u.md_vaddr,
mem->md_opaque, kernel_pmap, flags, NULL, &nsegs);
break;
case MEMDESC_PADDR:
error = _bus_dmamap_load_phys(dmat, map, mem->u.md_paddr,
mem->md_opaque, flags, NULL, &nsegs);
break;
case MEMDESC_VLIST:
error = _bus_dmamap_load_vlist(dmat, map, mem->u.md_list,
mem->md_opaque, kernel_pmap, &nsegs, flags, 0, SIZE_T_MAX);
break;
case MEMDESC_PLIST:
error = _bus_dmamap_load_plist(dmat, map, mem->u.md_list,
mem->md_opaque, &nsegs, flags);
break;
case MEMDESC_BIO:
error = _bus_dmamap_load_bio(dmat, map, mem->u.md_bio,
&nsegs, flags);
break;
case MEMDESC_UIO:
error = _bus_dmamap_load_uio(dmat, map, mem->u.md_uio,
&nsegs, flags);
break;
case MEMDESC_MBUF:
error = _bus_dmamap_load_mbuf_sg(dmat, map, mem->u.md_mbuf,
NULL, &nsegs, flags);
break;
case MEMDESC_CCB:
error = _bus_dmamap_load_ccb(dmat, map, mem->u.md_ccb, &nsegs,
flags);
break;
}
nsegs++;
CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d",
__func__, dmat, flags, error, nsegs);
if (error == EINPROGRESS)
return (error);
segs = _bus_dmamap_complete(dmat, map, NULL, nsegs, error);
if (error)
(*callback)(callback_arg, segs, 0, error);
else
(*callback)(callback_arg, segs, nsegs, 0);
/*
* Return ENOMEM to the caller so that it can pass it up the stack.
* This error only happens when NOWAIT is set, so deferral is disabled.
*/
if (error == ENOMEM)
return (error);
return (0);
}
int
bus_dmamap_load_crp_buffer(bus_dma_tag_t dmat, bus_dmamap_t map,
struct crypto_buffer *cb, bus_dmamap_callback_t *callback,
void *callback_arg, int flags)
{
bus_dma_segment_t *segs;
int error;
int nsegs;
flags |= BUS_DMA_NOWAIT;
nsegs = -1;
error = 0;
switch (cb->cb_type) {
case CRYPTO_BUF_CONTIG:
error = _bus_dmamap_load_buffer(dmat, map, cb->cb_buf,
cb->cb_buf_len, kernel_pmap, flags, NULL, &nsegs);
break;
case CRYPTO_BUF_MBUF:
error = _bus_dmamap_load_mbuf_sg(dmat, map, cb->cb_mbuf,
NULL, &nsegs, flags);
break;
case CRYPTO_BUF_UIO:
error = _bus_dmamap_load_uio(dmat, map, cb->cb_uio, &nsegs,
flags);
break;
default:
error = EINVAL;
}
nsegs++;
CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d",
__func__, dmat, flags, error, nsegs);
if (error == EINPROGRESS)
return (error);
segs = _bus_dmamap_complete(dmat, map, NULL, nsegs, error);
if (error)
(*callback)(callback_arg, segs, 0, error);
else
(*callback)(callback_arg, segs, nsegs, 0);
/*
* Return ENOMEM to the caller so that it can pass it up the stack.
* This error only happens when NOWAIT is set, so deferral is disabled.
*/
if (error == ENOMEM)
return (error);
return (0);
}
int
bus_dmamap_load_crp(bus_dma_tag_t dmat, bus_dmamap_t map, struct cryptop *crp,
bus_dmamap_callback_t *callback, void *callback_arg, int flags)
{
return (bus_dmamap_load_crp_buffer(dmat, map, &crp->crp_buf, callback,
callback_arg, flags));
}