freebsd-dev/module/zfs/dmu_send.c
Tom Caputi 9b8407638d Send / Recv Fixes following b52563
This patch fixes several issues discovered after
the encryption patch was merged:

* Fixed a bug where encrypted datasets could attempt
  to receive embedded data records.

* Fixed a bug where dirty records created by the recv
  code wasn't properly setting the dr_raw flag.

* Fixed a typo where a dmu_tx_commit() was changed to
  dmu_tx_abort()

* Fixed a few error handling bugs unrelated to the
  encryption patch in dmu_recv_stream()

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #6512 
Closes #6524 
Closes #6545
2017-08-23 16:54:24 -07:00

4014 lines
115 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2011, 2015 by Delphix. All rights reserved.
* Copyright (c) 2014, Joyent, Inc. All rights reserved.
* Copyright 2014 HybridCluster. All rights reserved.
* Copyright 2016 RackTop Systems.
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
*/
#include <sys/dmu.h>
#include <sys/dmu_impl.h>
#include <sys/dmu_tx.h>
#include <sys/dbuf.h>
#include <sys/dnode.h>
#include <sys/zfs_context.h>
#include <sys/dmu_objset.h>
#include <sys/dmu_traverse.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_synctask.h>
#include <sys/spa_impl.h>
#include <sys/zfs_ioctl.h>
#include <sys/zap.h>
#include <sys/zio_checksum.h>
#include <sys/zfs_znode.h>
#include <zfs_fletcher.h>
#include <sys/avl.h>
#include <sys/ddt.h>
#include <sys/zfs_onexit.h>
#include <sys/dmu_send.h>
#include <sys/dsl_destroy.h>
#include <sys/blkptr.h>
#include <sys/dsl_bookmark.h>
#include <sys/zfeature.h>
#include <sys/bqueue.h>
#include <sys/zvol.h>
#include <sys/policy.h>
/* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
int zfs_send_corrupt_data = B_FALSE;
int zfs_send_queue_length = 16 * 1024 * 1024;
int zfs_recv_queue_length = 16 * 1024 * 1024;
/* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
int zfs_send_set_freerecords_bit = B_TRUE;
static char *dmu_recv_tag = "dmu_recv_tag";
const char *recv_clone_name = "%recv";
#define BP_SPAN(datablkszsec, indblkshift, level) \
(((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \
(level) * (indblkshift - SPA_BLKPTRSHIFT)))
static void byteswap_record(dmu_replay_record_t *drr);
struct send_thread_arg {
bqueue_t q;
dsl_dataset_t *ds; /* Dataset to traverse */
uint64_t fromtxg; /* Traverse from this txg */
int flags; /* flags to pass to traverse_dataset */
int error_code;
boolean_t cancel;
zbookmark_phys_t resume;
};
struct send_block_record {
boolean_t eos_marker; /* Marks the end of the stream */
blkptr_t bp;
zbookmark_phys_t zb;
uint8_t indblkshift;
uint16_t datablkszsec;
bqueue_node_t ln;
};
typedef struct dump_bytes_io {
dmu_sendarg_t *dbi_dsp;
void *dbi_buf;
int dbi_len;
} dump_bytes_io_t;
static void
dump_bytes_cb(void *arg)
{
dump_bytes_io_t *dbi = (dump_bytes_io_t *)arg;
dmu_sendarg_t *dsp = dbi->dbi_dsp;
dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os);
ssize_t resid; /* have to get resid to get detailed errno */
/*
* The code does not rely on len being a multiple of 8. We keep
* this assertion because of the corresponding assertion in
* receive_read(). Keeping this assertion ensures that we do not
* inadvertently break backwards compatibility (causing the assertion
* in receive_read() to trigger on old software). Newer feature flags
* (such as raw send) may break this assertion since they were
* introduced after the requirement was made obsolete.
*/
ASSERT(dbi->dbi_len % 8 == 0 ||
(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp,
(caddr_t)dbi->dbi_buf, dbi->dbi_len,
0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid);
mutex_enter(&ds->ds_sendstream_lock);
*dsp->dsa_off += dbi->dbi_len;
mutex_exit(&ds->ds_sendstream_lock);
}
static int
dump_bytes(dmu_sendarg_t *dsp, void *buf, int len)
{
dump_bytes_io_t dbi;
dbi.dbi_dsp = dsp;
dbi.dbi_buf = buf;
dbi.dbi_len = len;
#if defined(HAVE_LARGE_STACKS)
dump_bytes_cb(&dbi);
#else
/*
* The vn_rdwr() call is performed in a taskq to ensure that there is
* always enough stack space to write safely to the target filesystem.
* The ZIO_TYPE_FREE threads are used because there can be a lot of
* them and they are used in vdev_file.c for a similar purpose.
*/
spa_taskq_dispatch_sync(dmu_objset_spa(dsp->dsa_os), ZIO_TYPE_FREE,
ZIO_TASKQ_ISSUE, dump_bytes_cb, &dbi, TQ_SLEEP);
#endif /* HAVE_LARGE_STACKS */
return (dsp->dsa_err);
}
/*
* For all record types except BEGIN, fill in the checksum (overlaid in
* drr_u.drr_checksum.drr_checksum). The checksum verifies everything
* up to the start of the checksum itself.
*/
static int
dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len)
{
ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
(void) fletcher_4_incremental_native(dsp->dsa_drr,
offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
&dsp->dsa_zc);
if (dsp->dsa_drr->drr_type == DRR_BEGIN) {
dsp->dsa_sent_begin = B_TRUE;
} else {
ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u.
drr_checksum.drr_checksum));
dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc;
}
if (dsp->dsa_drr->drr_type == DRR_END) {
dsp->dsa_sent_end = B_TRUE;
}
(void) fletcher_4_incremental_native(&dsp->dsa_drr->
drr_u.drr_checksum.drr_checksum,
sizeof (zio_cksum_t), &dsp->dsa_zc);
if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0)
return (SET_ERROR(EINTR));
if (payload_len != 0) {
(void) fletcher_4_incremental_native(payload, payload_len,
&dsp->dsa_zc);
if (dump_bytes(dsp, payload, payload_len) != 0)
return (SET_ERROR(EINTR));
}
return (0);
}
/*
* Fill in the drr_free struct, or perform aggregation if the previous record is
* also a free record, and the two are adjacent.
*
* Note that we send free records even for a full send, because we want to be
* able to receive a full send as a clone, which requires a list of all the free
* and freeobject records that were generated on the source.
*/
static int
dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
uint64_t length)
{
struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free);
/*
* When we receive a free record, dbuf_free_range() assumes
* that the receiving system doesn't have any dbufs in the range
* being freed. This is always true because there is a one-record
* constraint: we only send one WRITE record for any given
* object,offset. We know that the one-record constraint is
* true because we always send data in increasing order by
* object,offset.
*
* If the increasing-order constraint ever changes, we should find
* another way to assert that the one-record constraint is still
* satisfied.
*/
ASSERT(object > dsp->dsa_last_data_object ||
(object == dsp->dsa_last_data_object &&
offset > dsp->dsa_last_data_offset));
if (length != -1ULL && offset + length < offset)
length = -1ULL;
/*
* If there is a pending op, but it's not PENDING_FREE, push it out,
* since free block aggregation can only be done for blocks of the
* same type (i.e., DRR_FREE records can only be aggregated with
* other DRR_FREE records. DRR_FREEOBJECTS records can only be
* aggregated with other DRR_FREEOBJECTS records.
*/
if (dsp->dsa_pending_op != PENDING_NONE &&
dsp->dsa_pending_op != PENDING_FREE) {
if (dump_record(dsp, NULL, 0) != 0)
return (SET_ERROR(EINTR));
dsp->dsa_pending_op = PENDING_NONE;
}
if (dsp->dsa_pending_op == PENDING_FREE) {
/*
* There should never be a PENDING_FREE if length is -1
* (because dump_dnode is the only place where this
* function is called with a -1, and only after flushing
* any pending record).
*/
ASSERT(length != -1ULL);
/*
* Check to see whether this free block can be aggregated
* with pending one.
*/
if (drrf->drr_object == object && drrf->drr_offset +
drrf->drr_length == offset) {
drrf->drr_length += length;
return (0);
} else {
/* not a continuation. Push out pending record */
if (dump_record(dsp, NULL, 0) != 0)
return (SET_ERROR(EINTR));
dsp->dsa_pending_op = PENDING_NONE;
}
}
/* create a FREE record and make it pending */
bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
dsp->dsa_drr->drr_type = DRR_FREE;
drrf->drr_object = object;
drrf->drr_offset = offset;
drrf->drr_length = length;
drrf->drr_toguid = dsp->dsa_toguid;
if (length == -1ULL) {
if (dump_record(dsp, NULL, 0) != 0)
return (SET_ERROR(EINTR));
} else {
dsp->dsa_pending_op = PENDING_FREE;
}
return (0);
}
static int
dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type, uint64_t object,
uint64_t offset, int lsize, int psize, const blkptr_t *bp, void *data)
{
uint64_t payload_size;
boolean_t raw = (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_RAW);
struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write);
/*
* We send data in increasing object, offset order.
* See comment in dump_free() for details.
*/
ASSERT(object > dsp->dsa_last_data_object ||
(object == dsp->dsa_last_data_object &&
offset > dsp->dsa_last_data_offset));
dsp->dsa_last_data_object = object;
dsp->dsa_last_data_offset = offset + lsize - 1;
/*
* If there is any kind of pending aggregation (currently either
* a grouping of free objects or free blocks), push it out to
* the stream, since aggregation can't be done across operations
* of different types.
*/
if (dsp->dsa_pending_op != PENDING_NONE) {
if (dump_record(dsp, NULL, 0) != 0)
return (SET_ERROR(EINTR));
dsp->dsa_pending_op = PENDING_NONE;
}
/* write a WRITE record */
bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
dsp->dsa_drr->drr_type = DRR_WRITE;
drrw->drr_object = object;
drrw->drr_type = type;
drrw->drr_offset = offset;
drrw->drr_toguid = dsp->dsa_toguid;
drrw->drr_logical_size = lsize;
/* only set the compression fields if the buf is compressed or raw */
if (raw || lsize != psize) {
ASSERT(!BP_IS_EMBEDDED(bp));
ASSERT3S(psize, >, 0);
if (raw) {
ASSERT(BP_IS_PROTECTED(bp));
/*
* This is a raw protected block so we need to pass
* along everything the receiving side will need to
* interpret this block, including the byteswap, salt,
* IV, and MAC.
*/
if (BP_SHOULD_BYTESWAP(bp))
drrw->drr_flags |= DRR_RAW_BYTESWAP;
zio_crypt_decode_params_bp(bp, drrw->drr_salt,
drrw->drr_iv);
zio_crypt_decode_mac_bp(bp, drrw->drr_mac);
} else {
/* this is a compressed block */
ASSERT(dsp->dsa_featureflags &
DMU_BACKUP_FEATURE_COMPRESSED);
ASSERT(!BP_SHOULD_BYTESWAP(bp));
ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)));
ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF);
ASSERT3S(lsize, >=, psize);
}
/* set fields common to compressed and raw sends */
drrw->drr_compressiontype = BP_GET_COMPRESS(bp);
drrw->drr_compressed_size = psize;
payload_size = drrw->drr_compressed_size;
} else {
payload_size = drrw->drr_logical_size;
}
if (bp == NULL || BP_IS_EMBEDDED(bp) || (BP_IS_PROTECTED(bp) && !raw)) {
/*
* There's no pre-computed checksum for partial-block writes,
* embedded BP's, or encrypted BP's that are being sent as
* plaintext, so (like fletcher4-checkummed blocks) userland
* will have to compute a dedup-capable checksum itself.
*/
drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
} else {
drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
ZCHECKSUM_FLAG_DEDUP)
drrw->drr_flags |= DRR_CHECKSUM_DEDUP;
DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
DDK_SET_CRYPT(&drrw->drr_key, BP_IS_PROTECTED(bp));
drrw->drr_key.ddk_cksum = bp->blk_cksum;
}
if (dump_record(dsp, data, payload_size) != 0)
return (SET_ERROR(EINTR));
return (0);
}
static int
dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
int blksz, const blkptr_t *bp)
{
char buf[BPE_PAYLOAD_SIZE];
struct drr_write_embedded *drrw =
&(dsp->dsa_drr->drr_u.drr_write_embedded);
if (dsp->dsa_pending_op != PENDING_NONE) {
if (dump_record(dsp, NULL, 0) != 0)
return (SET_ERROR(EINTR));
dsp->dsa_pending_op = PENDING_NONE;
}
ASSERT(BP_IS_EMBEDDED(bp));
bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED;
drrw->drr_object = object;
drrw->drr_offset = offset;
drrw->drr_length = blksz;
drrw->drr_toguid = dsp->dsa_toguid;
drrw->drr_compression = BP_GET_COMPRESS(bp);
drrw->drr_etype = BPE_GET_ETYPE(bp);
drrw->drr_lsize = BPE_GET_LSIZE(bp);
drrw->drr_psize = BPE_GET_PSIZE(bp);
decode_embedded_bp_compressed(bp, buf);
if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
return (SET_ERROR(EINTR));
return (0);
}
static int
dump_spill(dmu_sendarg_t *dsp, const blkptr_t *bp, uint64_t object, void *data)
{
struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill);
uint64_t blksz = BP_GET_LSIZE(bp);
if (dsp->dsa_pending_op != PENDING_NONE) {
if (dump_record(dsp, NULL, 0) != 0)
return (SET_ERROR(EINTR));
dsp->dsa_pending_op = PENDING_NONE;
}
/* write a SPILL record */
bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
dsp->dsa_drr->drr_type = DRR_SPILL;
drrs->drr_object = object;
drrs->drr_length = blksz;
drrs->drr_toguid = dsp->dsa_toguid;
/* handle raw send fields */
if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_RAW) {
ASSERT(BP_IS_PROTECTED(bp));
if (BP_SHOULD_BYTESWAP(bp))
drrs->drr_flags |= DRR_RAW_BYTESWAP;
drrs->drr_compressiontype = BP_GET_COMPRESS(bp);
drrs->drr_compressed_size = BP_GET_PSIZE(bp);
zio_crypt_decode_params_bp(bp, drrs->drr_salt, drrs->drr_iv);
zio_crypt_decode_mac_bp(bp, drrs->drr_mac);
}
if (dump_record(dsp, data, blksz) != 0)
return (SET_ERROR(EINTR));
return (0);
}
static int
dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs)
{
struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects);
/*
* If there is a pending op, but it's not PENDING_FREEOBJECTS,
* push it out, since free block aggregation can only be done for
* blocks of the same type (i.e., DRR_FREE records can only be
* aggregated with other DRR_FREE records. DRR_FREEOBJECTS records
* can only be aggregated with other DRR_FREEOBJECTS records.
*/
if (dsp->dsa_pending_op != PENDING_NONE &&
dsp->dsa_pending_op != PENDING_FREEOBJECTS) {
if (dump_record(dsp, NULL, 0) != 0)
return (SET_ERROR(EINTR));
dsp->dsa_pending_op = PENDING_NONE;
}
if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) {
/*
* See whether this free object array can be aggregated
* with pending one
*/
if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
drrfo->drr_numobjs += numobjs;
return (0);
} else {
/* can't be aggregated. Push out pending record */
if (dump_record(dsp, NULL, 0) != 0)
return (SET_ERROR(EINTR));
dsp->dsa_pending_op = PENDING_NONE;
}
}
/* write a FREEOBJECTS record */
bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
dsp->dsa_drr->drr_type = DRR_FREEOBJECTS;
drrfo->drr_firstobj = firstobj;
drrfo->drr_numobjs = numobjs;
drrfo->drr_toguid = dsp->dsa_toguid;
dsp->dsa_pending_op = PENDING_FREEOBJECTS;
return (0);
}
static int
dump_dnode(dmu_sendarg_t *dsp, const blkptr_t *bp, uint64_t object,
dnode_phys_t *dnp)
{
struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object);
int bonuslen = P2ROUNDUP(dnp->dn_bonuslen, 8);
if (object < dsp->dsa_resume_object) {
/*
* Note: when resuming, we will visit all the dnodes in
* the block of dnodes that we are resuming from. In
* this case it's unnecessary to send the dnodes prior to
* the one we are resuming from. We should be at most one
* block's worth of dnodes behind the resume point.
*/
ASSERT3U(dsp->dsa_resume_object - object, <,
1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
return (0);
}
if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
return (dump_freeobjects(dsp, object, 1));
if (dsp->dsa_pending_op != PENDING_NONE) {
if (dump_record(dsp, NULL, 0) != 0)
return (SET_ERROR(EINTR));
dsp->dsa_pending_op = PENDING_NONE;
}
/* write an OBJECT record */
bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
dsp->dsa_drr->drr_type = DRR_OBJECT;
drro->drr_object = object;
drro->drr_type = dnp->dn_type;
drro->drr_bonustype = dnp->dn_bonustype;
drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
drro->drr_bonuslen = dnp->dn_bonuslen;
drro->drr_dn_slots = dnp->dn_extra_slots + 1;
drro->drr_checksumtype = dnp->dn_checksum;
drro->drr_compress = dnp->dn_compress;
drro->drr_toguid = dsp->dsa_toguid;
if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
if ((dsp->dsa_featureflags & DMU_BACKUP_FEATURE_RAW)) {
ASSERT(BP_IS_ENCRYPTED(bp));
if (BP_SHOULD_BYTESWAP(bp))
drro->drr_flags |= DRR_RAW_BYTESWAP;
/* needed for reconstructing dnp on recv side */
drro->drr_indblkshift = dnp->dn_indblkshift;
drro->drr_nlevels = dnp->dn_nlevels;
drro->drr_nblkptr = dnp->dn_nblkptr;
/*
* Since we encrypt the entire bonus area, the (raw) part
* beyond the the bonuslen is actually nonzero, so we need
* to send it.
*/
if (bonuslen != 0) {
drro->drr_raw_bonuslen = DN_MAX_BONUS_LEN(dnp);
bonuslen = drro->drr_raw_bonuslen;
}
}
if (dump_record(dsp, DN_BONUS(dnp), bonuslen) != 0)
return (SET_ERROR(EINTR));
/* Free anything past the end of the file. */
if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) *
(dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0)
return (SET_ERROR(EINTR));
if (dsp->dsa_err != 0)
return (SET_ERROR(EINTR));
return (0);
}
static int
dump_object_range(dmu_sendarg_t *dsp, const blkptr_t *bp, uint64_t firstobj,
uint64_t numslots)
{
struct drr_object_range *drror =
&(dsp->dsa_drr->drr_u.drr_object_range);
/* we only use this record type for raw sends */
ASSERT(BP_IS_PROTECTED(bp));
ASSERT(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_RAW);
ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_DNODE);
ASSERT0(BP_GET_LEVEL(bp));
if (dsp->dsa_pending_op != PENDING_NONE) {
if (dump_record(dsp, NULL, 0) != 0)
return (SET_ERROR(EINTR));
dsp->dsa_pending_op = PENDING_NONE;
}
bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
dsp->dsa_drr->drr_type = DRR_OBJECT_RANGE;
drror->drr_firstobj = firstobj;
drror->drr_numslots = numslots;
drror->drr_toguid = dsp->dsa_toguid;
if (BP_SHOULD_BYTESWAP(bp))
drror->drr_flags |= DRR_RAW_BYTESWAP;
zio_crypt_decode_params_bp(bp, drror->drr_salt, drror->drr_iv);
zio_crypt_decode_mac_bp(bp, drror->drr_mac);
if (dump_record(dsp, NULL, 0) != 0)
return (SET_ERROR(EINTR));
return (0);
}
static boolean_t
backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp)
{
if (!BP_IS_EMBEDDED(bp))
return (B_FALSE);
/*
* Compression function must be legacy, or explicitly enabled.
*/
if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LZ4)))
return (B_FALSE);
/*
* Embed type must be explicitly enabled.
*/
switch (BPE_GET_ETYPE(bp)) {
case BP_EMBEDDED_TYPE_DATA:
if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
return (B_TRUE);
break;
default:
return (B_FALSE);
}
return (B_FALSE);
}
/*
* This is the callback function to traverse_dataset that acts as the worker
* thread for dmu_send_impl.
*/
/*ARGSUSED*/
static int
send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
{
struct send_thread_arg *sta = arg;
struct send_block_record *record;
uint64_t record_size;
int err = 0;
ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
zb->zb_object >= sta->resume.zb_object);
ASSERT3P(sta->ds, !=, NULL);
if (sta->cancel)
return (SET_ERROR(EINTR));
if (bp == NULL) {
ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
return (0);
} else if (zb->zb_level < 0) {
return (0);
}
record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP);
record->eos_marker = B_FALSE;
record->bp = *bp;
record->zb = *zb;
record->indblkshift = dnp->dn_indblkshift;
record->datablkszsec = dnp->dn_datablkszsec;
record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
bqueue_enqueue(&sta->q, record, record_size);
return (err);
}
/*
* This function kicks off the traverse_dataset. It also handles setting the
* error code of the thread in case something goes wrong, and pushes the End of
* Stream record when the traverse_dataset call has finished. If there is no
* dataset to traverse, the thread immediately pushes End of Stream marker.
*/
static void
send_traverse_thread(void *arg)
{
struct send_thread_arg *st_arg = arg;
int err;
struct send_block_record *data;
fstrans_cookie_t cookie = spl_fstrans_mark();
if (st_arg->ds != NULL) {
err = traverse_dataset_resume(st_arg->ds,
st_arg->fromtxg, &st_arg->resume,
st_arg->flags, send_cb, st_arg);
if (err != EINTR)
st_arg->error_code = err;
}
data = kmem_zalloc(sizeof (*data), KM_SLEEP);
data->eos_marker = B_TRUE;
bqueue_enqueue(&st_arg->q, data, 1);
spl_fstrans_unmark(cookie);
thread_exit();
}
/*
* This function actually handles figuring out what kind of record needs to be
* dumped, reading the data (which has hopefully been prefetched), and calling
* the appropriate helper function.
*/
static int
do_dump(dmu_sendarg_t *dsa, struct send_block_record *data)
{
dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os);
const blkptr_t *bp = &data->bp;
const zbookmark_phys_t *zb = &data->zb;
uint8_t indblkshift = data->indblkshift;
uint16_t dblkszsec = data->datablkszsec;
spa_t *spa = ds->ds_dir->dd_pool->dp_spa;
dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE;
int err = 0;
uint64_t dnobj;
ASSERT3U(zb->zb_level, >=, 0);
ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
zb->zb_object >= dsa->dsa_resume_object);
/*
* All bps of an encrypted os should have the encryption bit set.
* If this is not true it indicates tampering and we report an error.
*/
if (dsa->dsa_os->os_encrypted &&
!BP_IS_HOLE(bp) && !BP_USES_CRYPT(bp)) {
spa_log_error(spa, zb);
zfs_panic_recover("unencrypted block in encrypted "
"object set %llu", ds->ds_object);
return (SET_ERROR(EIO));
}
if (zb->zb_object != DMU_META_DNODE_OBJECT &&
DMU_OBJECT_IS_SPECIAL(zb->zb_object)) {
return (0);
} else if (BP_IS_HOLE(bp) &&
zb->zb_object == DMU_META_DNODE_OBJECT) {
uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT;
err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT);
} else if (BP_IS_HOLE(bp)) {
uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
uint64_t offset = zb->zb_blkid * span;
err = dump_free(dsa, zb->zb_object, offset, span);
} else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) {
return (0);
} else if (type == DMU_OT_DNODE) {
dnode_phys_t *blk;
int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
arc_flags_t aflags = ARC_FLAG_WAIT;
arc_buf_t *abuf;
enum zio_flag zioflags = ZIO_FLAG_CANFAIL;
int i;
if (dsa->dsa_featureflags & DMU_BACKUP_FEATURE_RAW) {
ASSERT(BP_IS_ENCRYPTED(bp));
ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
zioflags |= ZIO_FLAG_RAW;
}
ASSERT0(zb->zb_level);
if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
ZIO_PRIORITY_ASYNC_READ, zioflags, &aflags, zb) != 0)
return (SET_ERROR(EIO));
blk = abuf->b_data;
dnobj = zb->zb_blkid * epb;
/*
* Raw sends require sending encryption parameters for the
* block of dnodes. Regular sends do not need to send this
* info.
*/
if (dsa->dsa_featureflags & DMU_BACKUP_FEATURE_RAW) {
ASSERT(arc_is_encrypted(abuf));
err = dump_object_range(dsa, bp, dnobj, epb);
}
if (err == 0) {
for (i = 0; i < epb; i += blk[i].dn_extra_slots + 1) {
err = dump_dnode(dsa, bp, dnobj + i, blk + i);
if (err != 0)
break;
}
}
arc_buf_destroy(abuf, &abuf);
} else if (type == DMU_OT_SA) {
arc_flags_t aflags = ARC_FLAG_WAIT;
arc_buf_t *abuf;
enum zio_flag zioflags = ZIO_FLAG_CANFAIL;
if (dsa->dsa_featureflags & DMU_BACKUP_FEATURE_RAW) {
ASSERT(BP_IS_PROTECTED(bp));
zioflags |= ZIO_FLAG_RAW;
}
if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
ZIO_PRIORITY_ASYNC_READ, zioflags, &aflags, zb) != 0)
return (SET_ERROR(EIO));
err = dump_spill(dsa, bp, zb->zb_object, abuf->b_data);
arc_buf_destroy(abuf, &abuf);
} else if (backup_do_embed(dsa, bp)) {
/* it's an embedded level-0 block of a regular object */
int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
ASSERT0(zb->zb_level);
err = dump_write_embedded(dsa, zb->zb_object,
zb->zb_blkid * blksz, blksz, bp);
} else {
/* it's a level-0 block of a regular object */
arc_flags_t aflags = ARC_FLAG_WAIT;
arc_buf_t *abuf;
int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
uint64_t offset;
/*
* If we have large blocks stored on disk but the send flags
* don't allow us to send large blocks, we split the data from
* the arc buf into chunks.
*/
boolean_t split_large_blocks = blksz > SPA_OLD_MAXBLOCKSIZE &&
!(dsa->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS);
/*
* Raw sends require that we always get raw data as it exists
* on disk, so we assert that we are not splitting blocks here.
*/
boolean_t request_raw =
(dsa->dsa_featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
/*
* We should only request compressed data from the ARC if all
* the following are true:
* - stream compression was requested
* - we aren't splitting large blocks into smaller chunks
* - the data won't need to be byteswapped before sending
* - this isn't an embedded block
* - this isn't metadata (if receiving on a different endian
* system it can be byteswapped more easily)
*/
boolean_t request_compressed =
(dsa->dsa_featureflags & DMU_BACKUP_FEATURE_COMPRESSED) &&
!split_large_blocks && !BP_SHOULD_BYTESWAP(bp) &&
!BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp));
IMPLY(request_raw, !split_large_blocks);
IMPLY(request_raw, BP_IS_PROTECTED(bp));
ASSERT0(zb->zb_level);
ASSERT(zb->zb_object > dsa->dsa_resume_object ||
(zb->zb_object == dsa->dsa_resume_object &&
zb->zb_blkid * blksz >= dsa->dsa_resume_offset));
ASSERT3U(blksz, ==, BP_GET_LSIZE(bp));
enum zio_flag zioflags = ZIO_FLAG_CANFAIL;
if (request_raw)
zioflags |= ZIO_FLAG_RAW;
else if (request_compressed)
zioflags |= ZIO_FLAG_RAW_COMPRESS;
if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
ZIO_PRIORITY_ASYNC_READ, zioflags, &aflags, zb) != 0) {
if (zfs_send_corrupt_data) {
/* Send a block filled with 0x"zfs badd bloc" */
abuf = arc_alloc_buf(spa, &abuf, ARC_BUFC_DATA,
blksz);
uint64_t *ptr;
for (ptr = abuf->b_data;
(char *)ptr < (char *)abuf->b_data + blksz;
ptr++)
*ptr = 0x2f5baddb10cULL;
} else {
return (SET_ERROR(EIO));
}
}
offset = zb->zb_blkid * blksz;
if (split_large_blocks) {
ASSERT0(arc_is_encrypted(abuf));
ASSERT3U(arc_get_compression(abuf), ==,
ZIO_COMPRESS_OFF);
char *buf = abuf->b_data;
while (blksz > 0 && err == 0) {
int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE);
err = dump_write(dsa, type, zb->zb_object,
offset, n, n, NULL, buf);
offset += n;
buf += n;
blksz -= n;
}
} else {
err = dump_write(dsa, type, zb->zb_object, offset,
blksz, arc_buf_size(abuf), bp, abuf->b_data);
}
arc_buf_destroy(abuf, &abuf);
}
ASSERT(err == 0 || err == EINTR);
return (err);
}
/*
* Pop the new data off the queue, and free the old data.
*/
static struct send_block_record *
get_next_record(bqueue_t *bq, struct send_block_record *data)
{
struct send_block_record *tmp = bqueue_dequeue(bq);
kmem_free(data, sizeof (*data));
return (tmp);
}
/*
* Actually do the bulk of the work in a zfs send.
*
* Note: Releases dp using the specified tag.
*/
static int
dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds,
zfs_bookmark_phys_t *ancestor_zb, boolean_t is_clone,
boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
boolean_t rawok, int outfd, uint64_t resumeobj, uint64_t resumeoff,
vnode_t *vp, offset_t *off)
{
objset_t *os;
dmu_replay_record_t *drr;
dmu_sendarg_t *dsp;
int err;
uint64_t fromtxg = 0;
uint64_t featureflags = 0;
struct send_thread_arg to_arg;
void *payload = NULL;
size_t payload_len = 0;
struct send_block_record *to_data;
err = dmu_objset_from_ds(to_ds, &os);
if (err != 0) {
dsl_pool_rele(dp, tag);
return (err);
}
/*
* If this is a non-raw send of an encrypted ds, we can ensure that
* the objset_phys_t is authenticated. This is safe because this is
* either a snapshot or we have owned the dataset, ensuring that
* it can't be modified.
*/
if (!rawok && os->os_encrypted &&
arc_is_unauthenticated(os->os_phys_buf)) {
err = arc_untransform(os->os_phys_buf, os->os_spa,
to_ds->ds_object, B_FALSE);
if (err != 0) {
dsl_pool_rele(dp, tag);
return (err);
}
ASSERT0(arc_is_unauthenticated(os->os_phys_buf));
}
drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP);
drr->drr_type = DRR_BEGIN;
drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC;
DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo,
DMU_SUBSTREAM);
bzero(&to_arg, sizeof (to_arg));
#ifdef _KERNEL
if (dmu_objset_type(os) == DMU_OST_ZFS) {
uint64_t version;
if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) {
kmem_free(drr, sizeof (dmu_replay_record_t));
dsl_pool_rele(dp, tag);
return (SET_ERROR(EINVAL));
}
if (version >= ZPL_VERSION_SA) {
featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
}
}
#endif
/* raw sends imply large_block_ok */
if ((large_block_ok || rawok) &&
to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS])
featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
if (to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_DNODE])
featureflags |= DMU_BACKUP_FEATURE_LARGE_DNODE;
/* encrypted datasets will not have embedded blocks */
if ((embedok || rawok) && !os->os_encrypted &&
spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
}
/* raw send implies compressok */
if (compressok || rawok)
featureflags |= DMU_BACKUP_FEATURE_COMPRESSED;
if (rawok && os->os_encrypted)
featureflags |= DMU_BACKUP_FEATURE_RAW;
if ((featureflags &
(DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED |
DMU_BACKUP_FEATURE_RAW)) != 0 &&
spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) {
featureflags |= DMU_BACKUP_FEATURE_LZ4;
}
if (resumeobj != 0 || resumeoff != 0) {
featureflags |= DMU_BACKUP_FEATURE_RESUMING;
}
DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo,
featureflags);
drr->drr_u.drr_begin.drr_creation_time =
dsl_dataset_phys(to_ds)->ds_creation_time;
drr->drr_u.drr_begin.drr_type = dmu_objset_type(os);
if (is_clone)
drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE;
drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET)
drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA;
if (zfs_send_set_freerecords_bit)
drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS;
if (ancestor_zb != NULL) {
drr->drr_u.drr_begin.drr_fromguid =
ancestor_zb->zbm_guid;
fromtxg = ancestor_zb->zbm_creation_txg;
}
dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname);
if (!to_ds->ds_is_snapshot) {
(void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--",
sizeof (drr->drr_u.drr_begin.drr_toname));
}
dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP);
dsp->dsa_drr = drr;
dsp->dsa_vp = vp;
dsp->dsa_outfd = outfd;
dsp->dsa_proc = curproc;
dsp->dsa_os = os;
dsp->dsa_off = off;
dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid;
dsp->dsa_pending_op = PENDING_NONE;
dsp->dsa_featureflags = featureflags;
dsp->dsa_resume_object = resumeobj;
dsp->dsa_resume_offset = resumeoff;
mutex_enter(&to_ds->ds_sendstream_lock);
list_insert_head(&to_ds->ds_sendstreams, dsp);
mutex_exit(&to_ds->ds_sendstream_lock);
dsl_dataset_long_hold(to_ds, FTAG);
dsl_pool_rele(dp, tag);
/* handle features that require a DRR_BEGIN payload */
if (featureflags &
(DMU_BACKUP_FEATURE_RESUMING | DMU_BACKUP_FEATURE_RAW)) {
nvlist_t *keynvl = NULL;
nvlist_t *nvl = fnvlist_alloc();
if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
dmu_object_info_t to_doi;
err = dmu_object_info(os, resumeobj, &to_doi);
if (err != 0) {
fnvlist_free(nvl);
goto out;
}
SET_BOOKMARK(&to_arg.resume, to_ds->ds_object,
resumeobj, 0,
resumeoff / to_doi.doi_data_block_size);
fnvlist_add_uint64(nvl, "resume_object", resumeobj);
fnvlist_add_uint64(nvl, "resume_offset", resumeoff);
}
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
ASSERT(os->os_encrypted);
err = dsl_crypto_populate_key_nvlist(to_ds, &keynvl);
if (err != 0) {
fnvlist_free(nvl);
goto out;
}
fnvlist_add_nvlist(nvl, "crypt_keydata", keynvl);
}
payload = fnvlist_pack(nvl, &payload_len);
drr->drr_payloadlen = payload_len;
fnvlist_free(keynvl);
fnvlist_free(nvl);
}
err = dump_record(dsp, payload, payload_len);
fnvlist_pack_free(payload, payload_len);
if (err != 0) {
err = dsp->dsa_err;
goto out;
}
err = bqueue_init(&to_arg.q, zfs_send_queue_length,
offsetof(struct send_block_record, ln));
to_arg.error_code = 0;
to_arg.cancel = B_FALSE;
to_arg.ds = to_ds;
to_arg.fromtxg = fromtxg;
to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH;
if (rawok)
to_arg.flags |= TRAVERSE_NO_DECRYPT;
(void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc,
TS_RUN, minclsyspri);
to_data = bqueue_dequeue(&to_arg.q);
while (!to_data->eos_marker && err == 0) {
err = do_dump(dsp, to_data);
to_data = get_next_record(&to_arg.q, to_data);
if (issig(JUSTLOOKING) && issig(FORREAL))
err = EINTR;
}
if (err != 0) {
to_arg.cancel = B_TRUE;
while (!to_data->eos_marker) {
to_data = get_next_record(&to_arg.q, to_data);
}
}
kmem_free(to_data, sizeof (*to_data));
bqueue_destroy(&to_arg.q);
if (err == 0 && to_arg.error_code != 0)
err = to_arg.error_code;
if (err != 0)
goto out;
if (dsp->dsa_pending_op != PENDING_NONE)
if (dump_record(dsp, NULL, 0) != 0)
err = SET_ERROR(EINTR);
if (err != 0) {
if (err == EINTR && dsp->dsa_err != 0)
err = dsp->dsa_err;
goto out;
}
bzero(drr, sizeof (dmu_replay_record_t));
drr->drr_type = DRR_END;
drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc;
drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid;
if (dump_record(dsp, NULL, 0) != 0)
err = dsp->dsa_err;
out:
mutex_enter(&to_ds->ds_sendstream_lock);
list_remove(&to_ds->ds_sendstreams, dsp);
mutex_exit(&to_ds->ds_sendstream_lock);
VERIFY(err != 0 || (dsp->dsa_sent_begin && dsp->dsa_sent_end));
kmem_free(drr, sizeof (dmu_replay_record_t));
kmem_free(dsp, sizeof (dmu_sendarg_t));
dsl_dataset_long_rele(to_ds, FTAG);
return (err);
}
int
dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
boolean_t rawok, int outfd, vnode_t *vp, offset_t *off)
{
dsl_pool_t *dp;
dsl_dataset_t *ds;
dsl_dataset_t *fromds = NULL;
ds_hold_flags_t dsflags = (rawok) ? 0 : DS_HOLD_FLAG_DECRYPT;
int err;
err = dsl_pool_hold(pool, FTAG, &dp);
if (err != 0)
return (err);
err = dsl_dataset_hold_obj_flags(dp, tosnap, dsflags, FTAG, &ds);
if (err != 0) {
dsl_pool_rele(dp, FTAG);
return (err);
}
if (fromsnap != 0) {
zfs_bookmark_phys_t zb;
boolean_t is_clone;
err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds);
if (err != 0) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
dsl_pool_rele(dp, FTAG);
return (err);
}
if (!dsl_dataset_is_before(ds, fromds, 0))
err = SET_ERROR(EXDEV);
zb.zbm_creation_time =
dsl_dataset_phys(fromds)->ds_creation_time;
zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg;
zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
is_clone = (fromds->ds_dir != ds->ds_dir);
dsl_dataset_rele(fromds, FTAG);
err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
embedok, large_block_ok, compressok, rawok, outfd,
0, 0, vp, off);
} else {
err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
embedok, large_block_ok, compressok, rawok, outfd,
0, 0, vp, off);
}
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (err);
}
int
dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
boolean_t large_block_ok, boolean_t compressok, boolean_t rawok,
int outfd, uint64_t resumeobj, uint64_t resumeoff, vnode_t *vp,
offset_t *off)
{
dsl_pool_t *dp;
dsl_dataset_t *ds;
int err;
ds_hold_flags_t dsflags = (rawok) ? 0 : DS_HOLD_FLAG_DECRYPT;
boolean_t owned = B_FALSE;
if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
return (SET_ERROR(EINVAL));
err = dsl_pool_hold(tosnap, FTAG, &dp);
if (err != 0)
return (err);
if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) {
/*
* We are sending a filesystem or volume. Ensure
* that it doesn't change by owning the dataset.
*/
err = dsl_dataset_own(dp, tosnap, dsflags, FTAG, &ds);
owned = B_TRUE;
} else {
err = dsl_dataset_hold_flags(dp, tosnap, dsflags, FTAG, &ds);
}
if (err != 0) {
dsl_pool_rele(dp, FTAG);
return (err);
}
if (fromsnap != NULL) {
zfs_bookmark_phys_t zb;
boolean_t is_clone = B_FALSE;
int fsnamelen = strchr(tosnap, '@') - tosnap;
/*
* If the fromsnap is in a different filesystem, then
* mark the send stream as a clone.
*/
if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
(fromsnap[fsnamelen] != '@' &&
fromsnap[fsnamelen] != '#')) {
is_clone = B_TRUE;
}
if (strchr(fromsnap, '@')) {
dsl_dataset_t *fromds;
err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds);
if (err == 0) {
if (!dsl_dataset_is_before(ds, fromds, 0))
err = SET_ERROR(EXDEV);
zb.zbm_creation_time =
dsl_dataset_phys(fromds)->ds_creation_time;
zb.zbm_creation_txg =
dsl_dataset_phys(fromds)->ds_creation_txg;
zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
is_clone = (ds->ds_dir != fromds->ds_dir);
dsl_dataset_rele(fromds, FTAG);
}
} else {
err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb);
}
if (err != 0) {
if (owned)
dsl_dataset_disown(ds, dsflags, FTAG);
else
dsl_dataset_rele_flags(ds, dsflags, FTAG);
dsl_pool_rele(dp, FTAG);
return (err);
}
err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
embedok, large_block_ok, compressok, rawok,
outfd, resumeobj, resumeoff, vp, off);
} else {
err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
embedok, large_block_ok, compressok, rawok,
outfd, resumeobj, resumeoff, vp, off);
}
if (owned)
dsl_dataset_disown(ds, dsflags, FTAG);
else
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (err);
}
static int
dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed,
uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep)
{
int err;
uint64_t size;
/*
* Assume that space (both on-disk and in-stream) is dominated by
* data. We will adjust for indirect blocks and the copies property,
* but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
*/
uint64_t recordsize;
uint64_t record_count;
objset_t *os;
VERIFY0(dmu_objset_from_ds(ds, &os));
/* Assume all (uncompressed) blocks are recordsize. */
if (os->os_phys->os_type == DMU_OST_ZVOL) {
err = dsl_prop_get_int_ds(ds,
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize);
} else {
err = dsl_prop_get_int_ds(ds,
zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize);
}
if (err != 0)
return (err);
record_count = uncompressed / recordsize;
/*
* If we're estimating a send size for a compressed stream, use the
* compressed data size to estimate the stream size. Otherwise, use the
* uncompressed data size.
*/
size = stream_compressed ? compressed : uncompressed;
/*
* Subtract out approximate space used by indirect blocks.
* Assume most space is used by data blocks (non-indirect, non-dnode).
* Assume no ditto blocks or internal fragmentation.
*
* Therefore, space used by indirect blocks is sizeof(blkptr_t) per
* block.
*/
size -= record_count * sizeof (blkptr_t);
/* Add in the space for the record associated with each block. */
size += record_count * sizeof (dmu_replay_record_t);
*sizep = size;
return (0);
}
int
dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds,
boolean_t stream_compressed, uint64_t *sizep)
{
int err;
uint64_t uncomp, comp;
ASSERT(dsl_pool_config_held(ds->ds_dir->dd_pool));
/* tosnap must be a snapshot */
if (!ds->ds_is_snapshot)
return (SET_ERROR(EINVAL));
/* fromsnap, if provided, must be a snapshot */
if (fromds != NULL && !fromds->ds_is_snapshot)
return (SET_ERROR(EINVAL));
/*
* fromsnap must be an earlier snapshot from the same fs as tosnap,
* or the origin's fs.
*/
if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0))
return (SET_ERROR(EXDEV));
/* Get compressed and uncompressed size estimates of changed data. */
if (fromds == NULL) {
uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
comp = dsl_dataset_phys(ds)->ds_compressed_bytes;
} else {
uint64_t used;
err = dsl_dataset_space_written(fromds, ds,
&used, &comp, &uncomp);
if (err != 0)
return (err);
}
err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp,
stream_compressed, sizep);
/*
* Add the size of the BEGIN and END records to the estimate.
*/
*sizep += 2 * sizeof (dmu_replay_record_t);
return (err);
}
struct calculate_send_arg {
uint64_t uncompressed;
uint64_t compressed;
};
/*
* Simple callback used to traverse the blocks of a snapshot and sum their
* uncompressed and compressed sizes.
*/
/* ARGSUSED */
static int
dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
{
struct calculate_send_arg *space = arg;
if (bp != NULL && !BP_IS_HOLE(bp)) {
space->uncompressed += BP_GET_UCSIZE(bp);
space->compressed += BP_GET_PSIZE(bp);
}
return (0);
}
/*
* Given a desination snapshot and a TXG, calculate the approximate size of a
* send stream sent from that TXG. from_txg may be zero, indicating that the
* whole snapshot will be sent.
*/
int
dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg,
boolean_t stream_compressed, uint64_t *sizep)
{
int err;
struct calculate_send_arg size = { 0 };
ASSERT(dsl_pool_config_held(ds->ds_dir->dd_pool));
/* tosnap must be a snapshot */
if (!dsl_dataset_is_snapshot(ds))
return (SET_ERROR(EINVAL));
/* verify that from_txg is before the provided snapshot was taken */
if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) {
return (SET_ERROR(EXDEV));
}
/*
* traverse the blocks of the snapshot with birth times after
* from_txg, summing their uncompressed size
*/
err = traverse_dataset(ds, from_txg,
TRAVERSE_POST | TRAVERSE_NO_DECRYPT,
dmu_calculate_send_traversal, &size);
if (err)
return (err);
err = dmu_adjust_send_estimate_for_indirects(ds, size.uncompressed,
size.compressed, stream_compressed, sizep);
return (err);
}
typedef struct dmu_recv_begin_arg {
const char *drba_origin;
dmu_recv_cookie_t *drba_cookie;
cred_t *drba_cred;
uint64_t drba_snapobj;
} dmu_recv_begin_arg_t;
static int
recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
uint64_t fromguid)
{
uint64_t val;
int error;
dsl_pool_t *dp = ds->ds_dir->dd_pool;
/* temporary clone name must not exist */
error = zap_lookup(dp->dp_meta_objset,
dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
8, 1, &val);
if (error != ENOENT)
return (error == 0 ? EBUSY : error);
/* new snapshot name must not exist */
error = zap_lookup(dp->dp_meta_objset,
dsl_dataset_phys(ds)->ds_snapnames_zapobj,
drba->drba_cookie->drc_tosnap, 8, 1, &val);
if (error != ENOENT)
return (error == 0 ? EEXIST : error);
/*
* Check snapshot limit before receiving. We'll recheck again at the
* end, but might as well abort before receiving if we're already over
* the limit.
*
* Note that we do not check the file system limit with
* dsl_dir_fscount_check because the temporary %clones don't count
* against that limit.
*/
error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
NULL, drba->drba_cred);
if (error != 0)
return (error);
if (fromguid != 0) {
dsl_dataset_t *snap;
uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
/* Find snapshot in this dir that matches fromguid. */
while (obj != 0) {
error = dsl_dataset_hold_obj(dp, obj, FTAG,
&snap);
if (error != 0)
return (SET_ERROR(ENODEV));
if (snap->ds_dir != ds->ds_dir) {
dsl_dataset_rele(snap, FTAG);
return (SET_ERROR(ENODEV));
}
if (dsl_dataset_phys(snap)->ds_guid == fromguid)
break;
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
dsl_dataset_rele(snap, FTAG);
}
if (obj == 0)
return (SET_ERROR(ENODEV));
if (drba->drba_cookie->drc_force) {
drba->drba_snapobj = obj;
} else {
/*
* If we are not forcing, there must be no
* changes since fromsnap.
*/
if (dsl_dataset_modified_since_snap(ds, snap)) {
dsl_dataset_rele(snap, FTAG);
return (SET_ERROR(ETXTBSY));
}
drba->drba_snapobj = ds->ds_prev->ds_object;
}
dsl_dataset_rele(snap, FTAG);
} else {
/* if full, then must be forced */
if (!drba->drba_cookie->drc_force)
return (SET_ERROR(EEXIST));
/*
* We don't support using zfs recv -F to blow away
* encrypted filesystems. This would require the
* dsl dir to point to the old encryption key and
* the new one at the same time during the receive.
*/
if (ds->ds_dir->dd_crypto_obj != 0)
return (SET_ERROR(EINVAL));
drba->drba_snapobj = 0;
}
return (0);
}
static int
dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
{
dmu_recv_begin_arg_t *drba = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
uint64_t fromguid = drrb->drr_fromguid;
int flags = drrb->drr_flags;
ds_hold_flags_t dsflags = 0;
int error;
uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
dsl_dataset_t *ds;
const char *tofs = drba->drba_cookie->drc_tofs;
/* already checked */
ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
DMU_COMPOUNDSTREAM ||
drrb->drr_type >= DMU_OST_NUMTYPES ||
((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
return (SET_ERROR(EINVAL));
/* Verify pool version supports SA if SA_SPILL feature set */
if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
spa_version(dp->dp_spa) < SPA_VERSION_SA)
return (SET_ERROR(ENOTSUP));
if (drba->drba_cookie->drc_resumable &&
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
return (SET_ERROR(ENOTSUP));
/*
* The receiving code doesn't know how to translate a WRITE_EMBEDDED
* record to a plain WRITE record, so the pool must have the
* EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
* records. Same with WRITE_EMBEDDED records that use LZ4 compression.
*/
if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
return (SET_ERROR(ENOTSUP));
if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
return (SET_ERROR(ENOTSUP));
/*
* The receiving code doesn't know how to translate large blocks
* to smaller ones, so the pool must have the LARGE_BLOCKS
* feature enabled if the stream has LARGE_BLOCKS. Same with
* large dnodes.
*/
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
return (SET_ERROR(ENOTSUP));
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE))
return (SET_ERROR(ENOTSUP));
if ((featureflags & DMU_BACKUP_FEATURE_RAW)) {
/* raw receives require the encryption feature */
if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
return (SET_ERROR(ENOTSUP));
} else {
dsflags |= DS_HOLD_FLAG_DECRYPT;
}
error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
if (error == 0) {
/* target fs already exists; recv into temp clone */
/* Can't recv a clone into an existing fs */
if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
error = recv_begin_check_existing_impl(drba, ds, fromguid);
dsl_dataset_rele_flags(ds, dsflags, FTAG);
} else if (error == ENOENT) {
/* target fs does not exist; must be a full backup or clone */
char buf[ZFS_MAX_DATASET_NAME_LEN];
/*
* If it's a non-clone incremental, we are missing the
* target fs, so fail the recv.
*/
if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
drba->drba_origin))
return (SET_ERROR(ENOENT));
/*
* If we're receiving a full send as a clone, and it doesn't
* contain all the necessary free records and freeobject
* records, reject it.
*/
if (fromguid == 0 && drba->drba_origin &&
!(flags & DRR_FLAG_FREERECORDS))
return (SET_ERROR(EINVAL));
/* Open the parent of tofs */
ASSERT3U(strlen(tofs), <, sizeof (buf));
(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
error = dsl_dataset_hold_flags(dp, buf, dsflags, FTAG, &ds);
if (error != 0)
return (error);
/*
* Check filesystem and snapshot limits before receiving. We'll
* recheck snapshot limits again at the end (we create the
* filesystems and increment those counts during begin_sync).
*/
error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
if (error != 0) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (error);
}
error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
if (error != 0) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (error);
}
if (drba->drba_origin != NULL) {
dsl_dataset_t *origin;
error = dsl_dataset_hold_flags(dp, drba->drba_origin,
dsflags, FTAG, &origin);
if (error != 0) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (error);
}
if (!origin->ds_is_snapshot) {
dsl_dataset_rele_flags(origin, dsflags, FTAG);
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
fromguid != 0) {
dsl_dataset_rele_flags(origin, dsflags, FTAG);
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(ENODEV));
}
dsl_dataset_rele_flags(origin,
dsflags, FTAG);
}
dsl_dataset_rele_flags(ds, dsflags, FTAG);
error = 0;
}
return (error);
}
static void
dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
{
dmu_recv_begin_arg_t *drba = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
objset_t *mos = dp->dp_meta_objset;
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
const char *tofs = drba->drba_cookie->drc_tofs;
uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
dsl_dataset_t *ds, *newds;
objset_t *os;
uint64_t dsobj;
ds_hold_flags_t dsflags = 0;
int error;
uint64_t crflags = 0;
dsl_crypto_params_t *dcpp = NULL;
dsl_crypto_params_t dcp = { 0 };
if (drrb->drr_flags & DRR_FLAG_CI_DATA)
crflags |= DS_FLAG_CI_DATASET;
if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0) {
dsflags |= DS_HOLD_FLAG_DECRYPT;
} else {
dcp.cp_cmd = DCP_CMD_RAW_RECV;
}
error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
if (error == 0) {
/* create temporary clone */
dsl_dataset_t *snap = NULL;
if (drba->drba_snapobj != 0) {
VERIFY0(dsl_dataset_hold_obj(dp,
drba->drba_snapobj, FTAG, &snap));
} else {
/* we use the dcp whenever we are not making a clone */
dcpp = &dcp;
}
dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
snap, crflags, drba->drba_cred, dcpp, tx);
if (drba->drba_snapobj != 0)
dsl_dataset_rele(snap, FTAG);
dsl_dataset_rele_flags(ds, dsflags, FTAG);
} else {
dsl_dir_t *dd;
const char *tail;
dsl_dataset_t *origin = NULL;
VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
if (drba->drba_origin != NULL) {
VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
FTAG, &origin));
} else {
/* we use the dcp whenever we are not making a clone */
dcpp = &dcp;
}
/* Create new dataset. */
dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
origin, crflags, drba->drba_cred, dcpp, tx);
if (origin != NULL)
dsl_dataset_rele(origin, FTAG);
dsl_dir_rele(dd, FTAG);
drba->drba_cookie->drc_newfs = B_TRUE;
}
VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &newds));
VERIFY0(dmu_objset_from_ds(newds, &os));
if (drba->drba_cookie->drc_resumable) {
uint64_t one = 1;
uint64_t zero = 0;
dsl_dataset_zapify(newds, tx);
if (drrb->drr_fromguid != 0) {
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
8, 1, &drrb->drr_fromguid, tx));
}
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
8, 1, &drrb->drr_toguid, tx));
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
8, 1, &one, tx));
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
8, 1, &zero, tx));
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
8, 1, &zero, tx));
if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
8, 1, &one, tx));
}
if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
8, 1, &one, tx));
}
if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
8, 1, &one, tx));
}
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
8, 1, &one, tx));
}
}
/*
* Usually the os->os_encrypted value is tied to the presence of a
* DSL Crypto Key object in the dd. However, that will not be received
* until dmu_recv_stream(), so we set the value manually for now.
*/
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
os->os_encrypted = B_TRUE;
drba->drba_cookie->drc_raw = B_TRUE;
}
dmu_buf_will_dirty(newds->ds_dbuf, tx);
dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
/*
* If we actually created a non-clone, we need to create the objset
* in our new dataset. If this is a raw send we postpone this until
* dmu_recv_stream() so that we can allocate the metadnode with the
* properties from the DRR_BEGIN payload.
*/
rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
(featureflags & DMU_BACKUP_FEATURE_RAW) == 0) {
(void) dmu_objset_create_impl(dp->dp_spa,
newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
}
rrw_exit(&newds->ds_bp_rwlock, FTAG);
drba->drba_cookie->drc_ds = newds;
spa_history_log_internal_ds(newds, "receive", tx, "");
}
static int
dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
{
dmu_recv_begin_arg_t *drba = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
int error;
ds_hold_flags_t dsflags = 0;
uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
dsl_dataset_t *ds;
const char *tofs = drba->drba_cookie->drc_tofs;
uint64_t val;
/* 6 extra bytes for /%recv */
char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
/* already checked */
ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
DMU_COMPOUNDSTREAM ||
drrb->drr_type >= DMU_OST_NUMTYPES)
return (SET_ERROR(EINVAL));
/* Verify pool version supports SA if SA_SPILL feature set */
if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
spa_version(dp->dp_spa) < SPA_VERSION_SA)
return (SET_ERROR(ENOTSUP));
/*
* The receiving code doesn't know how to translate a WRITE_EMBEDDED
* record to a plain WRITE record, so the pool must have the
* EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
* records. Same with WRITE_EMBEDDED records that use LZ4 compression.
*/
if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
return (SET_ERROR(ENOTSUP));
if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
return (SET_ERROR(ENOTSUP));
/*
* The receiving code doesn't know how to translate large blocks
* to smaller ones, so the pool must have the LARGE_BLOCKS
* feature enabled if the stream has LARGE_BLOCKS. Same with
* large dnodes.
*/
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
return (SET_ERROR(ENOTSUP));
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE))
return (SET_ERROR(ENOTSUP));
(void) snprintf(recvname, sizeof (recvname), "%s/%s",
tofs, recv_clone_name);
if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
dsflags |= DS_HOLD_FLAG_DECRYPT;
if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
/* %recv does not exist; continue in tofs */
error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
if (error != 0)
return (error);
}
/* check that ds is marked inconsistent */
if (!DS_IS_INCONSISTENT(ds)) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
/* check that there is resuming data, and that the toguid matches */
if (!dsl_dataset_is_zapified(ds)) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
if (error != 0 || drrb->drr_toguid != val) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
/*
* Check if the receive is still running. If so, it will be owned.
* Note that nothing else can own the dataset (e.g. after the receive
* fails) because it will be marked inconsistent.
*/
if (dsl_dataset_has_owner(ds)) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EBUSY));
}
/* There should not be any snapshots of this fs yet. */
if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
/*
* Note: resume point will be checked when we process the first WRITE
* record.
*/
/* check that the origin matches */
val = 0;
(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
if (drrb->drr_fromguid != val) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (0);
}
static void
dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
{
dmu_recv_begin_arg_t *drba = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
const char *tofs = drba->drba_cookie->drc_tofs;
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
dsl_dataset_t *ds;
objset_t *os;
ds_hold_flags_t dsflags = 0;
uint64_t dsobj;
/* 6 extra bytes for /%recv */
char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
(void) snprintf(recvname, sizeof (recvname), "%s/%s",
tofs, recv_clone_name);
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
drba->drba_cookie->drc_raw = B_TRUE;
} else {
dsflags |= DS_HOLD_FLAG_DECRYPT;
}
if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
/* %recv does not exist; continue in tofs */
VERIFY0(dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds));
drba->drba_cookie->drc_newfs = B_TRUE;
}
/* clear the inconsistent flag so that we can own it */
ASSERT(DS_IS_INCONSISTENT(ds));
dmu_buf_will_dirty(ds->ds_dbuf, tx);
dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
dsobj = ds->ds_object;
dsl_dataset_rele_flags(ds, dsflags, FTAG);
VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &ds));
VERIFY0(dmu_objset_from_ds(ds, &os));
dmu_buf_will_dirty(ds->ds_dbuf, tx);
dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)));
rrw_exit(&ds->ds_bp_rwlock, FTAG);
drba->drba_cookie->drc_ds = ds;
spa_history_log_internal_ds(ds, "resume receive", tx, "");
}
/*
* NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
* succeeds; otherwise we will leak the holds on the datasets.
*/
int
dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc)
{
dmu_recv_begin_arg_t drba = { 0 };
bzero(drc, sizeof (dmu_recv_cookie_t));
drc->drc_drr_begin = drr_begin;
drc->drc_drrb = &drr_begin->drr_u.drr_begin;
drc->drc_tosnap = tosnap;
drc->drc_tofs = tofs;
drc->drc_force = force;
drc->drc_resumable = resumable;
drc->drc_cred = CRED();
if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
drc->drc_byteswap = B_TRUE;
(void) fletcher_4_incremental_byteswap(drr_begin,
sizeof (dmu_replay_record_t), &drc->drc_cksum);
byteswap_record(drr_begin);
} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
(void) fletcher_4_incremental_native(drr_begin,
sizeof (dmu_replay_record_t), &drc->drc_cksum);
} else {
return (SET_ERROR(EINVAL));
}
drba.drba_origin = origin;
drba.drba_cookie = drc;
drba.drba_cred = CRED();
if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
DMU_BACKUP_FEATURE_RESUMING) {
return (dsl_sync_task(tofs,
dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
&drba, 5, ZFS_SPACE_CHECK_NORMAL));
} else {
return (dsl_sync_task(tofs,
dmu_recv_begin_check, dmu_recv_begin_sync,
&drba, 5, ZFS_SPACE_CHECK_NORMAL));
}
}
struct receive_record_arg {
dmu_replay_record_t header;
void *payload; /* Pointer to a buffer containing the payload */
/*
* If the record is a write, pointer to the arc_buf_t containing the
* payload.
*/
arc_buf_t *arc_buf;
int payload_size;
uint64_t bytes_read; /* bytes read from stream when record created */
boolean_t eos_marker; /* Marks the end of the stream */
bqueue_node_t node;
};
struct receive_writer_arg {
objset_t *os;
boolean_t byteswap;
bqueue_t q;
/*
* These three args are used to signal to the main thread that we're
* done.
*/
kmutex_t mutex;
kcondvar_t cv;
boolean_t done;
int err;
/* A map from guid to dataset to help handle dedup'd streams. */
avl_tree_t *guid_to_ds_map;
boolean_t resumable;
boolean_t raw;
uint64_t last_object, last_offset;
uint64_t bytes_read; /* bytes read when current record created */
};
struct objlist {
list_t list; /* List of struct receive_objnode. */
/*
* Last object looked up. Used to assert that objects are being looked
* up in ascending order.
*/
uint64_t last_lookup;
};
struct receive_objnode {
list_node_t node;
uint64_t object;
};
struct receive_arg {
objset_t *os;
vnode_t *vp; /* The vnode to read the stream from */
uint64_t voff; /* The current offset in the stream */
uint64_t bytes_read;
/*
* A record that has had its payload read in, but hasn't yet been handed
* off to the worker thread.
*/
struct receive_record_arg *rrd;
/* A record that has had its header read in, but not its payload. */
struct receive_record_arg *next_rrd;
zio_cksum_t cksum;
zio_cksum_t prev_cksum;
int err;
boolean_t byteswap;
boolean_t raw;
uint64_t featureflags;
/* Sorted list of objects not to issue prefetches for. */
struct objlist ignore_objlist;
};
typedef struct guid_map_entry {
uint64_t guid;
boolean_t raw;
dsl_dataset_t *gme_ds;
avl_node_t avlnode;
} guid_map_entry_t;
static int
guid_compare(const void *arg1, const void *arg2)
{
const guid_map_entry_t *gmep1 = (const guid_map_entry_t *)arg1;
const guid_map_entry_t *gmep2 = (const guid_map_entry_t *)arg2;
return (AVL_CMP(gmep1->guid, gmep2->guid));
}
static void
free_guid_map_onexit(void *arg)
{
avl_tree_t *ca = arg;
void *cookie = NULL;
guid_map_entry_t *gmep;
while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
dsl_dataset_long_rele(gmep->gme_ds, gmep);
dsl_dataset_rele_flags(gmep->gme_ds,
(gmep->raw) ? 0 : DS_HOLD_FLAG_DECRYPT, gmep);
kmem_free(gmep, sizeof (guid_map_entry_t));
}
avl_destroy(ca);
kmem_free(ca, sizeof (avl_tree_t));
}
static int
receive_read(struct receive_arg *ra, int len, void *buf)
{
int done = 0;
/*
* The code doesn't rely on this (lengths being multiples of 8). See
* comment in dump_bytes.
*/
ASSERT(len % 8 == 0 ||
(ra->featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
while (done < len) {
ssize_t resid;
ra->err = vn_rdwr(UIO_READ, ra->vp,
(char *)buf + done, len - done,
ra->voff, UIO_SYSSPACE, FAPPEND,
RLIM64_INFINITY, CRED(), &resid);
if (resid == len - done) {
/*
* Note: ECKSUM indicates that the receive
* was interrupted and can potentially be resumed.
*/
ra->err = SET_ERROR(ECKSUM);
}
ra->voff += len - done - resid;
done = len - resid;
if (ra->err != 0)
return (ra->err);
}
ra->bytes_read += len;
ASSERT3U(done, ==, len);
return (0);
}
noinline static void
byteswap_record(dmu_replay_record_t *drr)
{
#define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
#define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
drr->drr_type = BSWAP_32(drr->drr_type);
drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
switch (drr->drr_type) {
case DRR_BEGIN:
DO64(drr_begin.drr_magic);
DO64(drr_begin.drr_versioninfo);
DO64(drr_begin.drr_creation_time);
DO32(drr_begin.drr_type);
DO32(drr_begin.drr_flags);
DO64(drr_begin.drr_toguid);
DO64(drr_begin.drr_fromguid);
break;
case DRR_OBJECT:
DO64(drr_object.drr_object);
DO32(drr_object.drr_type);
DO32(drr_object.drr_bonustype);
DO32(drr_object.drr_blksz);
DO32(drr_object.drr_bonuslen);
DO32(drr_object.drr_raw_bonuslen);
DO64(drr_object.drr_toguid);
break;
case DRR_FREEOBJECTS:
DO64(drr_freeobjects.drr_firstobj);
DO64(drr_freeobjects.drr_numobjs);
DO64(drr_freeobjects.drr_toguid);
break;
case DRR_WRITE:
DO64(drr_write.drr_object);
DO32(drr_write.drr_type);
DO64(drr_write.drr_offset);
DO64(drr_write.drr_logical_size);
DO64(drr_write.drr_toguid);
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
DO64(drr_write.drr_key.ddk_prop);
DO64(drr_write.drr_compressed_size);
break;
case DRR_WRITE_BYREF:
DO64(drr_write_byref.drr_object);
DO64(drr_write_byref.drr_offset);
DO64(drr_write_byref.drr_length);
DO64(drr_write_byref.drr_toguid);
DO64(drr_write_byref.drr_refguid);
DO64(drr_write_byref.drr_refobject);
DO64(drr_write_byref.drr_refoffset);
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
drr_key.ddk_cksum);
DO64(drr_write_byref.drr_key.ddk_prop);
break;
case DRR_WRITE_EMBEDDED:
DO64(drr_write_embedded.drr_object);
DO64(drr_write_embedded.drr_offset);
DO64(drr_write_embedded.drr_length);
DO64(drr_write_embedded.drr_toguid);
DO32(drr_write_embedded.drr_lsize);
DO32(drr_write_embedded.drr_psize);
break;
case DRR_FREE:
DO64(drr_free.drr_object);
DO64(drr_free.drr_offset);
DO64(drr_free.drr_length);
DO64(drr_free.drr_toguid);
break;
case DRR_SPILL:
DO64(drr_spill.drr_object);
DO64(drr_spill.drr_length);
DO64(drr_spill.drr_toguid);
DO64(drr_spill.drr_compressed_size);
DO32(drr_spill.drr_type);
break;
case DRR_OBJECT_RANGE:
DO64(drr_object_range.drr_firstobj);
DO64(drr_object_range.drr_numslots);
DO64(drr_object_range.drr_toguid);
break;
case DRR_END:
DO64(drr_end.drr_toguid);
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
break;
default:
break;
}
if (drr->drr_type != DRR_BEGIN) {
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
}
#undef DO64
#undef DO32
}
static inline uint8_t
deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
{
if (bonus_type == DMU_OT_SA) {
return (1);
} else {
return (1 +
((DN_OLD_MAX_BONUSLEN -
MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
}
}
static void
save_resume_state(struct receive_writer_arg *rwa,
uint64_t object, uint64_t offset, dmu_tx_t *tx)
{
int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
if (!rwa->resumable)
return;
/*
* We use ds_resume_bytes[] != 0 to indicate that we need to
* update this on disk, so it must not be 0.
*/
ASSERT(rwa->bytes_read != 0);
/*
* We only resume from write records, which have a valid
* (non-meta-dnode) object number.
*/
ASSERT(object != 0);
/*
* For resuming to work correctly, we must receive records in order,
* sorted by object,offset. This is checked by the callers, but
* assert it here for good measure.
*/
ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
ASSERT3U(rwa->bytes_read, >=,
rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
}
noinline static int
receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
void *data)
{
dmu_object_info_t doi;
dmu_tx_t *tx;
uint64_t object;
int err;
if (drro->drr_type == DMU_OT_NONE ||
!DMU_OT_IS_VALID(drro->drr_type) ||
!DMU_OT_IS_VALID(drro->drr_bonustype) ||
drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
drro->drr_blksz < SPA_MINBLOCKSIZE ||
drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
drro->drr_bonuslen >
DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
drro->drr_dn_slots >
(spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
return (SET_ERROR(EINVAL));
}
if (rwa->raw) {
if (drro->drr_raw_bonuslen < drro->drr_bonuslen ||
drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
drro->drr_nlevels > DN_MAX_LEVELS ||
drro->drr_nblkptr > DN_MAX_NBLKPTR ||
DN_SLOTS_TO_BONUSLEN(drro->drr_dn_slots) <
drro->drr_raw_bonuslen)
return (SET_ERROR(EINVAL));
} else {
if (drro->drr_flags != 0 || drro->drr_raw_bonuslen != 0 ||
drro->drr_indblkshift != 0 || drro->drr_nlevels != 0 ||
drro->drr_nblkptr != 0)
return (SET_ERROR(EINVAL));
}
err = dmu_object_info(rwa->os, drro->drr_object, &doi);
if (err != 0 && err != ENOENT)
return (SET_ERROR(EINVAL));
object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT;
/*
* If we are losing blkptrs or changing the block size this must
* be a new file instance. We must clear out the previous file
* contents before we can change this type of metadata in the dnode.
* Raw receives will also check that the indirect structure of the
* dnode hasn't changed.
*/
if (err == 0) {
uint32_t indblksz = drro->drr_indblkshift ?
1ULL << drro->drr_indblkshift : 0;
int nblkptr = deduce_nblkptr(drro->drr_bonustype,
drro->drr_bonuslen);
/* nblkptr will be bounded by the bonus size and type */
if (rwa->raw && nblkptr != drro->drr_nblkptr)
return (SET_ERROR(EINVAL));
if (drro->drr_blksz != doi.doi_data_block_size ||
nblkptr < doi.doi_nblkptr ||
(rwa->raw &&
(indblksz != doi.doi_metadata_block_size ||
drro->drr_nlevels < doi.doi_indirection))) {
err = dmu_free_long_range(rwa->os, drro->drr_object,
0, DMU_OBJECT_END);
if (err != 0)
return (SET_ERROR(EINVAL));
}
}
tx = dmu_tx_create(rwa->os);
dmu_tx_hold_bonus(tx, object);
dmu_tx_hold_write(tx, object, 0, 0);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err != 0) {
dmu_tx_abort(tx);
return (err);
}
if (object == DMU_NEW_OBJECT) {
/* currently free, want to be allocated */
err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
drro->drr_type, drro->drr_blksz,
drro->drr_bonustype, drro->drr_bonuslen,
drro->drr_dn_slots << DNODE_SHIFT, tx);
} else if (drro->drr_type != doi.doi_type ||
drro->drr_blksz != doi.doi_data_block_size ||
drro->drr_bonustype != doi.doi_bonus_type ||
drro->drr_bonuslen != doi.doi_bonus_size) {
/* currently allocated, but with different properties */
err = dmu_object_reclaim(rwa->os, drro->drr_object,
drro->drr_type, drro->drr_blksz,
drro->drr_bonustype, drro->drr_bonuslen, tx);
}
if (err != 0) {
dmu_tx_commit(tx);
return (SET_ERROR(EINVAL));
}
if (rwa->raw)
VERIFY0(dmu_object_dirty_raw(rwa->os, drro->drr_object, tx));
dmu_object_set_checksum(rwa->os, drro->drr_object,
drro->drr_checksumtype, tx);
dmu_object_set_compress(rwa->os, drro->drr_object,
drro->drr_compress, tx);
/* handle more restrictive dnode structuring for raw recvs */
if (rwa->raw) {
/*
* Set the indirect block shift and nlevels. This will not fail
* because we ensured all of the blocks were free earlier if
* this is a new object.
*/
VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
drro->drr_blksz, drro->drr_indblkshift, tx));
VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
drro->drr_nlevels, tx));
}
if (data != NULL) {
dmu_buf_t *db;
uint32_t flags = DMU_READ_NO_PREFETCH;
if (rwa->raw)
flags |= DMU_READ_NO_DECRYPT;
VERIFY0(dmu_bonus_hold_impl(rwa->os, drro->drr_object,
FTAG, flags, &db));
dmu_buf_will_dirty(db, tx);
ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro));
/*
* Raw bonus buffers have their byteorder determined by the
* DRR_OBJECT_RANGE record.
*/
if (rwa->byteswap && !rwa->raw) {
dmu_object_byteswap_t byteswap =
DMU_OT_BYTESWAP(drro->drr_bonustype);
dmu_ot_byteswap[byteswap].ob_func(db->db_data,
DRR_OBJECT_PAYLOAD_SIZE(drro));
}
dmu_buf_rele(db, FTAG);
}
dmu_tx_commit(tx);
return (0);
}
/* ARGSUSED */
noinline static int
receive_freeobjects(struct receive_writer_arg *rwa,
struct drr_freeobjects *drrfo)
{
uint64_t obj;
int next_err = 0;
if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
return (SET_ERROR(EINVAL));
for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
dmu_object_info_t doi;
int err;
err = dmu_object_info(rwa->os, obj, &doi);
if (err == ENOENT) {
obj++;
continue;
} else if (err != 0) {
return (err);
}
err = dmu_free_long_object(rwa->os, obj);
if (err != 0)
return (err);
}
if (next_err != ESRCH)
return (next_err);
return (0);
}
noinline static int
receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
arc_buf_t *abuf)
{
dmu_tx_t *tx;
dmu_buf_t *bonus;
int err;
if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
!DMU_OT_IS_VALID(drrw->drr_type))
return (SET_ERROR(EINVAL));
/*
* For resuming to work, records must be in increasing order
* by (object, offset).
*/
if (drrw->drr_object < rwa->last_object ||
(drrw->drr_object == rwa->last_object &&
drrw->drr_offset < rwa->last_offset)) {
return (SET_ERROR(EINVAL));
}
rwa->last_object = drrw->drr_object;
rwa->last_offset = drrw->drr_offset;
if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
return (SET_ERROR(EINVAL));
tx = dmu_tx_create(rwa->os);
dmu_tx_hold_write(tx, drrw->drr_object,
drrw->drr_offset, drrw->drr_logical_size);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err != 0) {
dmu_tx_abort(tx);
return (err);
}
if (rwa->raw)
VERIFY0(dmu_object_dirty_raw(rwa->os, drrw->drr_object, tx));
if (rwa->byteswap && !arc_is_encrypted(abuf) &&
arc_get_compression(abuf) == ZIO_COMPRESS_OFF) {
dmu_object_byteswap_t byteswap =
DMU_OT_BYTESWAP(drrw->drr_type);
dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
DRR_WRITE_PAYLOAD_SIZE(drrw));
}
/* use the bonus buf to look up the dnode in dmu_assign_arcbuf */
if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0)
return (SET_ERROR(EINVAL));
dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx);
/*
* Note: If the receive fails, we want the resume stream to start
* with the same record that we last successfully received (as opposed
* to the next record), so that we can verify that we are
* resuming from the correct location.
*/
save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
dmu_tx_commit(tx);
dmu_buf_rele(bonus, FTAG);
return (0);
}
/*
* Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed
* streams to refer to a copy of the data that is already on the
* system because it came in earlier in the stream. This function
* finds the earlier copy of the data, and uses that copy instead of
* data from the stream to fulfill this write.
*/
static int
receive_write_byref(struct receive_writer_arg *rwa,
struct drr_write_byref *drrwbr)
{
dmu_tx_t *tx;
int err;
guid_map_entry_t gmesrch;
guid_map_entry_t *gmep;
avl_index_t where;
objset_t *ref_os = NULL;
int flags = DMU_READ_PREFETCH;
dmu_buf_t *dbp;
if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
return (SET_ERROR(EINVAL));
/*
* If the GUID of the referenced dataset is different from the
* GUID of the target dataset, find the referenced dataset.
*/
if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
gmesrch.guid = drrwbr->drr_refguid;
if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
&where)) == NULL) {
return (SET_ERROR(EINVAL));
}
if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
return (SET_ERROR(EINVAL));
} else {
ref_os = rwa->os;
}
if (rwa->raw)
flags |= DMU_READ_NO_DECRYPT;
/* may return either a regular db or an encrypted one */
err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
drrwbr->drr_refoffset, FTAG, &dbp, flags);
if (err != 0)
return (err);
tx = dmu_tx_create(rwa->os);
dmu_tx_hold_write(tx, drrwbr->drr_object,
drrwbr->drr_offset, drrwbr->drr_length);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err != 0) {
dmu_tx_abort(tx);
return (err);
}
if (rwa->raw) {
VERIFY0(dmu_object_dirty_raw(rwa->os, drrwbr->drr_object, tx));
dmu_copy_from_buf(rwa->os, drrwbr->drr_object,
drrwbr->drr_offset, dbp, tx);
} else {
dmu_write(rwa->os, drrwbr->drr_object,
drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
}
dmu_buf_rele(dbp, FTAG);
/* See comment in restore_write. */
save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
dmu_tx_commit(tx);
return (0);
}
static int
receive_write_embedded(struct receive_writer_arg *rwa,
struct drr_write_embedded *drrwe, void *data)
{
dmu_tx_t *tx;
int err;
if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
return (SET_ERROR(EINVAL));
if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
return (SET_ERROR(EINVAL));
if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
return (SET_ERROR(EINVAL));
if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
return (SET_ERROR(EINVAL));
tx = dmu_tx_create(rwa->os);
dmu_tx_hold_write(tx, drrwe->drr_object,
drrwe->drr_offset, drrwe->drr_length);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err != 0) {
dmu_tx_abort(tx);
return (err);
}
dmu_write_embedded(rwa->os, drrwe->drr_object,
drrwe->drr_offset, data, drrwe->drr_etype,
drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
/* See comment in restore_write. */
save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
dmu_tx_commit(tx);
return (0);
}
static int
receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
arc_buf_t *abuf)
{
dmu_tx_t *tx;
dmu_buf_t *db, *db_spill;
int err;
if (drrs->drr_length < SPA_MINBLOCKSIZE ||
drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
return (SET_ERROR(EINVAL));
if (rwa->raw) {
if (!DMU_OT_IS_VALID(drrs->drr_type) ||
drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
drrs->drr_compressed_size == 0)
return (SET_ERROR(EINVAL));
}
if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
return (SET_ERROR(EINVAL));
VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) {
dmu_buf_rele(db, FTAG);
return (err);
}
tx = dmu_tx_create(rwa->os);
dmu_tx_hold_spill(tx, db->db_object);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err != 0) {
dmu_buf_rele(db, FTAG);
dmu_buf_rele(db_spill, FTAG);
dmu_tx_abort(tx);
return (err);
}
dmu_buf_will_dirty(db_spill, tx);
if (rwa->raw)
VERIFY0(dmu_object_dirty_raw(rwa->os, drrs->drr_object, tx));
if (db_spill->db_size < drrs->drr_length)
VERIFY(0 == dbuf_spill_set_blksz(db_spill,
drrs->drr_length, tx));
dmu_assign_arcbuf_impl(db_spill, abuf, tx);
dmu_buf_rele(db, FTAG);
dmu_buf_rele(db_spill, FTAG);
dmu_tx_commit(tx);
return (0);
}
/* ARGSUSED */
noinline static int
receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
{
int err;
if (drrf->drr_length != -1ULL &&
drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
return (SET_ERROR(EINVAL));
if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
return (SET_ERROR(EINVAL));
err = dmu_free_long_range(rwa->os, drrf->drr_object,
drrf->drr_offset, drrf->drr_length);
return (err);
}
static int
receive_object_range(struct receive_writer_arg *rwa,
struct drr_object_range *drror)
{
int ret;
dmu_tx_t *tx;
dnode_t *mdn = NULL;
dmu_buf_t *db = NULL;
uint64_t offset;
/*
* By default, we assume this block is in our native format
* (ZFS_HOST_BYTEORDER). We then take into account whether
* the send stream is byteswapped (rwa->byteswap). Finally,
* we need to byteswap again if this particular block was
* in non-native format on the send side.
*/
boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
!!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
/*
* Since dnode block sizes are constant, we should not need to worry
* about making sure that the dnode block size is the same on the
* sending and receiving sides for the time being. For non-raw sends,
* this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
* record at all). Raw sends require this record type because the
* encryption parameters are used to protect an entire block of bonus
* buffers. If the size of dnode blocks ever becomes variable,
* handling will need to be added to ensure that dnode block sizes
* match on the sending and receiving side.
*/
if (drror->drr_numslots != DNODES_PER_BLOCK ||
P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
!rwa->raw)
return (SET_ERROR(EINVAL));
offset = drror->drr_firstobj * sizeof (dnode_phys_t);
mdn = DMU_META_DNODE(rwa->os);
tx = dmu_tx_create(rwa->os);
ret = dmu_tx_assign(tx, TXG_WAIT);
if (ret != 0) {
dmu_tx_abort(tx);
return (ret);
}
ret = dmu_buf_hold_by_dnode(mdn, offset, FTAG, &db,
DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
if (ret != 0) {
dmu_tx_commit(tx);
return (ret);
}
/*
* Convert the buffer associated with this range of dnodes to a
* raw buffer. This ensures that it will be written out as a raw
* buffer when we fill in the dnode objects in future records.
* Since we are commiting this tx now, it is technically possible
* for the dnode block to end up on-disk with the incorrect MAC.
* Despite this, the dataset is marked as inconsistent so no other
* code paths (apart from scrubs) will attempt to read this data.
* Scrubs will not be effected by this either since scrubs only
* read raw data and do not attempt to check the MAC.
*/
dmu_convert_to_raw(db, byteorder, drror->drr_salt, drror->drr_iv,
drror->drr_mac, tx);
dmu_buf_rele(db, FTAG);
dmu_tx_commit(tx);
return (0);
}
/* used to destroy the drc_ds on error */
static void
dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
{
ds_hold_flags_t dsflags = (drc->drc_raw) ? 0 : DS_HOLD_FLAG_DECRYPT;
/*
* Wait for the txg sync before cleaning up the receive. For
* resumable receives, this ensures that our resume state has
* been written out to disk. For raw receives, this ensures
* that the user accounting code will not attempt to do anything
* after we stopped receiving the dataset.
*/
txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0);
if (drc->drc_resumable) {
dsl_dataset_disown(drc->drc_ds, dsflags, dmu_recv_tag);
} else {
char name[ZFS_MAX_DATASET_NAME_LEN];
dsl_dataset_name(drc->drc_ds, name);
dsl_dataset_disown(drc->drc_ds, dsflags, dmu_recv_tag);
(void) dsl_destroy_head(name);
}
}
static void
receive_cksum(struct receive_arg *ra, int len, void *buf)
{
if (ra->byteswap) {
(void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
} else {
(void) fletcher_4_incremental_native(buf, len, &ra->cksum);
}
}
/*
* Read the payload into a buffer of size len, and update the current record's
* payload field.
* Allocate ra->next_rrd and read the next record's header into
* ra->next_rrd->header.
* Verify checksum of payload and next record.
*/
static int
receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
{
int err;
zio_cksum_t cksum_orig;
zio_cksum_t *cksump;
if (len != 0) {
ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
err = receive_read(ra, len, buf);
if (err != 0)
return (err);
receive_cksum(ra, len, buf);
/* note: rrd is NULL when reading the begin record's payload */
if (ra->rrd != NULL) {
ra->rrd->payload = buf;
ra->rrd->payload_size = len;
ra->rrd->bytes_read = ra->bytes_read;
}
}
ra->prev_cksum = ra->cksum;
ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
err = receive_read(ra, sizeof (ra->next_rrd->header),
&ra->next_rrd->header);
ra->next_rrd->bytes_read = ra->bytes_read;
if (err != 0) {
kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
ra->next_rrd = NULL;
return (err);
}
if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
ra->next_rrd = NULL;
return (SET_ERROR(EINVAL));
}
/*
* Note: checksum is of everything up to but not including the
* checksum itself.
*/
ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
receive_cksum(ra,
offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
&ra->next_rrd->header);
cksum_orig = ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
cksump = &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
if (ra->byteswap)
byteswap_record(&ra->next_rrd->header);
if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
!ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
ra->next_rrd = NULL;
return (SET_ERROR(ECKSUM));
}
receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
return (0);
}
static void
objlist_create(struct objlist *list)
{
list_create(&list->list, sizeof (struct receive_objnode),
offsetof(struct receive_objnode, node));
list->last_lookup = 0;
}
static void
objlist_destroy(struct objlist *list)
{
struct receive_objnode *n;
for (n = list_remove_head(&list->list);
n != NULL; n = list_remove_head(&list->list)) {
kmem_free(n, sizeof (*n));
}
list_destroy(&list->list);
}
/*
* This function looks through the objlist to see if the specified object number
* is contained in the objlist. In the process, it will remove all object
* numbers in the list that are smaller than the specified object number. Thus,
* any lookup of an object number smaller than a previously looked up object
* number will always return false; therefore, all lookups should be done in
* ascending order.
*/
static boolean_t
objlist_exists(struct objlist *list, uint64_t object)
{
struct receive_objnode *node = list_head(&list->list);
ASSERT3U(object, >=, list->last_lookup);
list->last_lookup = object;
while (node != NULL && node->object < object) {
VERIFY3P(node, ==, list_remove_head(&list->list));
kmem_free(node, sizeof (*node));
node = list_head(&list->list);
}
return (node != NULL && node->object == object);
}
/*
* The objlist is a list of object numbers stored in ascending order. However,
* the insertion of new object numbers does not seek out the correct location to
* store a new object number; instead, it appends it to the list for simplicity.
* Thus, any users must take care to only insert new object numbers in ascending
* order.
*/
static void
objlist_insert(struct objlist *list, uint64_t object)
{
struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
node->object = object;
#ifdef ZFS_DEBUG
{
struct receive_objnode *last_object = list_tail(&list->list);
uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
ASSERT3U(node->object, >, last_objnum);
}
#endif
list_insert_tail(&list->list, node);
}
/*
* Issue the prefetch reads for any necessary indirect blocks.
*
* We use the object ignore list to tell us whether or not to issue prefetches
* for a given object. We do this for both correctness (in case the blocksize
* of an object has changed) and performance (if the object doesn't exist, don't
* needlessly try to issue prefetches). We also trim the list as we go through
* the stream to prevent it from growing to an unbounded size.
*
* The object numbers within will always be in sorted order, and any write
* records we see will also be in sorted order, but they're not sorted with
* respect to each other (i.e. we can get several object records before
* receiving each object's write records). As a result, once we've reached a
* given object number, we can safely remove any reference to lower object
* numbers in the ignore list. In practice, we receive up to 32 object records
* before receiving write records, so the list can have up to 32 nodes in it.
*/
/* ARGSUSED */
static void
receive_read_prefetch(struct receive_arg *ra,
uint64_t object, uint64_t offset, uint64_t length)
{
if (!objlist_exists(&ra->ignore_objlist, object)) {
dmu_prefetch(ra->os, object, 1, offset, length,
ZIO_PRIORITY_SYNC_READ);
}
}
/*
* Read records off the stream, issuing any necessary prefetches.
*/
static int
receive_read_record(struct receive_arg *ra)
{
int err;
switch (ra->rrd->header.drr_type) {
case DRR_OBJECT:
{
struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
void *buf = kmem_zalloc(size, KM_SLEEP);
dmu_object_info_t doi;
err = receive_read_payload_and_next_header(ra, size, buf);
if (err != 0) {
kmem_free(buf, size);
return (err);
}
err = dmu_object_info(ra->os, drro->drr_object, &doi);
/*
* See receive_read_prefetch for an explanation why we're
* storing this object in the ignore_obj_list.
*/
if (err == ENOENT ||
(err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
objlist_insert(&ra->ignore_objlist, drro->drr_object);
err = 0;
}
return (err);
}
case DRR_FREEOBJECTS:
{
err = receive_read_payload_and_next_header(ra, 0, NULL);
return (err);
}
case DRR_WRITE:
{
struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
arc_buf_t *abuf;
boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type);
if (ra->raw) {
boolean_t byteorder = ZFS_HOST_BYTEORDER ^
!!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
ra->byteswap;
abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os),
drrw->drr_object, byteorder, drrw->drr_salt,
drrw->drr_iv, drrw->drr_mac, drrw->drr_type,
drrw->drr_compressed_size, drrw->drr_logical_size,
drrw->drr_compressiontype);
} else if (DRR_WRITE_COMPRESSED(drrw)) {
ASSERT3U(drrw->drr_compressed_size, >, 0);
ASSERT3U(drrw->drr_logical_size, >=,
drrw->drr_compressed_size);
ASSERT(!is_meta);
abuf = arc_loan_compressed_buf(
dmu_objset_spa(ra->os),
drrw->drr_compressed_size, drrw->drr_logical_size,
drrw->drr_compressiontype);
} else {
abuf = arc_loan_buf(dmu_objset_spa(ra->os),
is_meta, drrw->drr_logical_size);
}
err = receive_read_payload_and_next_header(ra,
DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data);
if (err != 0) {
dmu_return_arcbuf(abuf);
return (err);
}
ra->rrd->arc_buf = abuf;
receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
drrw->drr_logical_size);
return (err);
}
case DRR_WRITE_BYREF:
{
struct drr_write_byref *drrwb =
&ra->rrd->header.drr_u.drr_write_byref;
err = receive_read_payload_and_next_header(ra, 0, NULL);
receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
drrwb->drr_length);
return (err);
}
case DRR_WRITE_EMBEDDED:
{
struct drr_write_embedded *drrwe =
&ra->rrd->header.drr_u.drr_write_embedded;
uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
void *buf = kmem_zalloc(size, KM_SLEEP);
err = receive_read_payload_and_next_header(ra, size, buf);
if (err != 0) {
kmem_free(buf, size);
return (err);
}
receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
drrwe->drr_length);
return (err);
}
case DRR_FREE:
{
/*
* It might be beneficial to prefetch indirect blocks here, but
* we don't really have the data to decide for sure.
*/
err = receive_read_payload_and_next_header(ra, 0, NULL);
return (err);
}
case DRR_END:
{
struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
return (SET_ERROR(ECKSUM));
return (0);
}
case DRR_SPILL:
{
struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
arc_buf_t *abuf;
int len = DRR_SPILL_PAYLOAD_SIZE(drrs);
/* DRR_SPILL records are either raw or uncompressed */
if (ra->raw) {
boolean_t byteorder = ZFS_HOST_BYTEORDER ^
!!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
ra->byteswap;
abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os),
drrs->drr_object, byteorder, drrs->drr_salt,
drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
drrs->drr_compressed_size, drrs->drr_length,
drrs->drr_compressiontype);
} else {
abuf = arc_loan_buf(dmu_objset_spa(ra->os),
DMU_OT_IS_METADATA(drrs->drr_type),
drrs->drr_length);
}
err = receive_read_payload_and_next_header(ra, len,
abuf->b_data);
if (err != 0) {
dmu_return_arcbuf(abuf);
return (err);
}
ra->rrd->arc_buf = abuf;
return (err);
}
case DRR_OBJECT_RANGE:
{
err = receive_read_payload_and_next_header(ra, 0, NULL);
return (err);
}
default:
return (SET_ERROR(EINVAL));
}
}
static void
dprintf_drr(struct receive_record_arg *rrd, int err)
{
switch (rrd->header.drr_type) {
case DRR_OBJECT:
{
struct drr_object *drro = &rrd->header.drr_u.drr_object;
dprintf("drr_type = OBJECT obj = %llu type = %u "
"bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
"compress = %u dn_slots = %u err = %d\n",
drro->drr_object, drro->drr_type, drro->drr_bonustype,
drro->drr_blksz, drro->drr_bonuslen,
drro->drr_checksumtype, drro->drr_compress,
drro->drr_dn_slots, err);
break;
}
case DRR_FREEOBJECTS:
{
struct drr_freeobjects *drrfo =
&rrd->header.drr_u.drr_freeobjects;
dprintf("drr_type = FREEOBJECTS firstobj = %llu "
"numobjs = %llu err = %d\n",
drrfo->drr_firstobj, drrfo->drr_numobjs, err);
break;
}
case DRR_WRITE:
{
struct drr_write *drrw = &rrd->header.drr_u.drr_write;
dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
"lsize = %llu cksumtype = %u cksumflags = %u "
"compress = %u psize = %llu err = %d\n",
drrw->drr_object, drrw->drr_type, drrw->drr_offset,
drrw->drr_logical_size, drrw->drr_checksumtype,
drrw->drr_flags, drrw->drr_compressiontype,
drrw->drr_compressed_size, err);
break;
}
case DRR_WRITE_BYREF:
{
struct drr_write_byref *drrwbr =
&rrd->header.drr_u.drr_write_byref;
dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
"length = %llu toguid = %llx refguid = %llx "
"refobject = %llu refoffset = %llu cksumtype = %u "
"cksumflags = %u err = %d\n",
drrwbr->drr_object, drrwbr->drr_offset,
drrwbr->drr_length, drrwbr->drr_toguid,
drrwbr->drr_refguid, drrwbr->drr_refobject,
drrwbr->drr_refoffset, drrwbr->drr_checksumtype,
drrwbr->drr_flags, err);
break;
}
case DRR_WRITE_EMBEDDED:
{
struct drr_write_embedded *drrwe =
&rrd->header.drr_u.drr_write_embedded;
dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
"length = %llu compress = %u etype = %u lsize = %u "
"psize = %u err = %d\n",
drrwe->drr_object, drrwe->drr_offset, drrwe->drr_length,
drrwe->drr_compression, drrwe->drr_etype,
drrwe->drr_lsize, drrwe->drr_psize, err);
break;
}
case DRR_FREE:
{
struct drr_free *drrf = &rrd->header.drr_u.drr_free;
dprintf("drr_type = FREE obj = %llu offset = %llu "
"length = %lld err = %d\n",
drrf->drr_object, drrf->drr_offset, drrf->drr_length,
err);
break;
}
case DRR_SPILL:
{
struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
dprintf("drr_type = SPILL obj = %llu length = %llu "
"err = %d\n", drrs->drr_object, drrs->drr_length, err);
break;
}
default:
return;
}
}
/*
* Commit the records to the pool.
*/
static int
receive_process_record(struct receive_writer_arg *rwa,
struct receive_record_arg *rrd)
{
int err;
/* Processing in order, therefore bytes_read should be increasing. */
ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
rwa->bytes_read = rrd->bytes_read;
switch (rrd->header.drr_type) {
case DRR_OBJECT:
{
struct drr_object *drro = &rrd->header.drr_u.drr_object;
err = receive_object(rwa, drro, rrd->payload);
kmem_free(rrd->payload, rrd->payload_size);
rrd->payload = NULL;
break;
}
case DRR_FREEOBJECTS:
{
struct drr_freeobjects *drrfo =
&rrd->header.drr_u.drr_freeobjects;
err = receive_freeobjects(rwa, drrfo);
break;
}
case DRR_WRITE:
{
struct drr_write *drrw = &rrd->header.drr_u.drr_write;
err = receive_write(rwa, drrw, rrd->arc_buf);
/* if receive_write() is successful, it consumes the arc_buf */
if (err != 0)
dmu_return_arcbuf(rrd->arc_buf);
rrd->arc_buf = NULL;
rrd->payload = NULL;
break;
}
case DRR_WRITE_BYREF:
{
struct drr_write_byref *drrwbr =
&rrd->header.drr_u.drr_write_byref;
err = receive_write_byref(rwa, drrwbr);
break;
}
case DRR_WRITE_EMBEDDED:
{
struct drr_write_embedded *drrwe =
&rrd->header.drr_u.drr_write_embedded;
err = receive_write_embedded(rwa, drrwe, rrd->payload);
kmem_free(rrd->payload, rrd->payload_size);
rrd->payload = NULL;
break;
}
case DRR_FREE:
{
struct drr_free *drrf = &rrd->header.drr_u.drr_free;
err = receive_free(rwa, drrf);
break;
}
case DRR_SPILL:
{
struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
err = receive_spill(rwa, drrs, rrd->arc_buf);
/* if receive_spill() is successful, it consumes the arc_buf */
if (err != 0)
dmu_return_arcbuf(rrd->arc_buf);
rrd->arc_buf = NULL;
rrd->payload = NULL;
break;
}
case DRR_OBJECT_RANGE:
{
struct drr_object_range *drror =
&rrd->header.drr_u.drr_object_range;
return (receive_object_range(rwa, drror));
}
default:
return (SET_ERROR(EINVAL));
}
if (err != 0)
dprintf_drr(rrd, err);
return (err);
}
/*
* dmu_recv_stream's worker thread; pull records off the queue, and then call
* receive_process_record When we're done, signal the main thread and exit.
*/
static void
receive_writer_thread(void *arg)
{
struct receive_writer_arg *rwa = arg;
struct receive_record_arg *rrd;
fstrans_cookie_t cookie = spl_fstrans_mark();
for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
rrd = bqueue_dequeue(&rwa->q)) {
/*
* If there's an error, the main thread will stop putting things
* on the queue, but we need to clear everything in it before we
* can exit.
*/
if (rwa->err == 0) {
rwa->err = receive_process_record(rwa, rrd);
} else if (rrd->arc_buf != NULL) {
dmu_return_arcbuf(rrd->arc_buf);
rrd->arc_buf = NULL;
rrd->payload = NULL;
} else if (rrd->payload != NULL) {
kmem_free(rrd->payload, rrd->payload_size);
rrd->payload = NULL;
}
kmem_free(rrd, sizeof (*rrd));
}
kmem_free(rrd, sizeof (*rrd));
mutex_enter(&rwa->mutex);
rwa->done = B_TRUE;
cv_signal(&rwa->cv);
mutex_exit(&rwa->mutex);
spl_fstrans_unmark(cookie);
thread_exit();
}
static int
resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
{
uint64_t val;
objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
uint64_t dsobj = dmu_objset_id(ra->os);
uint64_t resume_obj, resume_off;
if (nvlist_lookup_uint64(begin_nvl,
"resume_object", &resume_obj) != 0 ||
nvlist_lookup_uint64(begin_nvl,
"resume_offset", &resume_off) != 0) {
return (SET_ERROR(EINVAL));
}
VERIFY0(zap_lookup(mos, dsobj,
DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
if (resume_obj != val)
return (SET_ERROR(EINVAL));
VERIFY0(zap_lookup(mos, dsobj,
DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
if (resume_off != val)
return (SET_ERROR(EINVAL));
return (0);
}
/*
* Read in the stream's records, one by one, and apply them to the pool. There
* are two threads involved; the thread that calls this function will spin up a
* worker thread, read the records off the stream one by one, and issue
* prefetches for any necessary indirect blocks. It will then push the records
* onto an internal blocking queue. The worker thread will pull the records off
* the queue, and actually write the data into the DMU. This way, the worker
* thread doesn't have to wait for reads to complete, since everything it needs
* (the indirect blocks) will be prefetched.
*
* NB: callers *must* call dmu_recv_end() if this succeeds.
*/
int
dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp,
int cleanup_fd, uint64_t *action_handlep)
{
int err = 0;
struct receive_arg *ra;
struct receive_writer_arg *rwa;
int featureflags;
uint32_t payloadlen;
void *payload;
nvlist_t *begin_nvl = NULL;
ra = kmem_zalloc(sizeof (*ra), KM_SLEEP);
rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
ra->byteswap = drc->drc_byteswap;
ra->raw = drc->drc_raw;
ra->cksum = drc->drc_cksum;
ra->vp = vp;
ra->voff = *voffp;
if (dsl_dataset_is_zapified(drc->drc_ds)) {
(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
sizeof (ra->bytes_read), 1, &ra->bytes_read);
}
objlist_create(&ra->ignore_objlist);
/* these were verified in dmu_recv_begin */
ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
DMU_SUBSTREAM);
ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
/*
* Open the objset we are modifying.
*/
VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra->os));
ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
ra->featureflags = featureflags;
/* embedded data is incompatible with encrypted datasets */
if (ra->os->os_encrypted &&
(featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
err = SET_ERROR(EINVAL);
goto out;
}
/* if this stream is dedup'ed, set up the avl tree for guid mapping */
if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
minor_t minor;
if (cleanup_fd == -1) {
err = SET_ERROR(EBADF);
goto out;
}
err = zfs_onexit_fd_hold(cleanup_fd, &minor);
if (err != 0) {
cleanup_fd = -1;
goto out;
}
if (*action_handlep == 0) {
rwa->guid_to_ds_map =
kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
avl_create(rwa->guid_to_ds_map, guid_compare,
sizeof (guid_map_entry_t),
offsetof(guid_map_entry_t, avlnode));
err = zfs_onexit_add_cb(minor,
free_guid_map_onexit, rwa->guid_to_ds_map,
action_handlep);
if (err != 0)
goto out;
} else {
err = zfs_onexit_cb_data(minor, *action_handlep,
(void **)&rwa->guid_to_ds_map);
if (err != 0)
goto out;
}
drc->drc_guid_to_ds_map = rwa->guid_to_ds_map;
}
payloadlen = drc->drc_drr_begin->drr_payloadlen;
payload = NULL;
if (payloadlen != 0)
payload = kmem_alloc(payloadlen, KM_SLEEP);
err = receive_read_payload_and_next_header(ra, payloadlen, payload);
if (err != 0) {
if (payloadlen != 0)
kmem_free(payload, payloadlen);
goto out;
}
if (payloadlen != 0) {
err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
kmem_free(payload, payloadlen);
if (err != 0)
goto out;
}
/* handle DSL encryption key payload */
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
nvlist_t *keynvl = NULL;
ASSERT(ra->os->os_encrypted);
ASSERT(drc->drc_raw);
err = nvlist_lookup_nvlist(begin_nvl, "crypt_keydata", &keynvl);
if (err != 0)
goto out;
err = dsl_crypto_recv_key(spa_name(ra->os->os_spa),
drc->drc_ds->ds_object, drc->drc_drrb->drr_type,
keynvl);
if (err != 0)
goto out;
}
if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
err = resume_check(ra, begin_nvl);
if (err != 0)
goto out;
}
(void) bqueue_init(&rwa->q, zfs_recv_queue_length,
offsetof(struct receive_record_arg, node));
cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
rwa->os = ra->os;
rwa->byteswap = drc->drc_byteswap;
rwa->resumable = drc->drc_resumable;
rwa->raw = drc->drc_raw;
(void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
TS_RUN, minclsyspri);
/*
* We're reading rwa->err without locks, which is safe since we are the
* only reader, and the worker thread is the only writer. It's ok if we
* miss a write for an iteration or two of the loop, since the writer
* thread will keep freeing records we send it until we send it an eos
* marker.
*
* We can leave this loop in 3 ways: First, if rwa->err is
* non-zero. In that case, the writer thread will free the rrd we just
* pushed. Second, if we're interrupted; in that case, either it's the
* first loop and ra->rrd was never allocated, or it's later and ra->rrd
* has been handed off to the writer thread who will free it. Finally,
* if receive_read_record fails or we're at the end of the stream, then
* we free ra->rrd and exit.
*/
while (rwa->err == 0) {
if (issig(JUSTLOOKING) && issig(FORREAL)) {
err = SET_ERROR(EINTR);
break;
}
ASSERT3P(ra->rrd, ==, NULL);
ra->rrd = ra->next_rrd;
ra->next_rrd = NULL;
/* Allocates and loads header into ra->next_rrd */
err = receive_read_record(ra);
if (ra->rrd->header.drr_type == DRR_END || err != 0) {
kmem_free(ra->rrd, sizeof (*ra->rrd));
ra->rrd = NULL;
break;
}
bqueue_enqueue(&rwa->q, ra->rrd,
sizeof (struct receive_record_arg) + ra->rrd->payload_size);
ra->rrd = NULL;
}
if (ra->next_rrd == NULL)
ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
ra->next_rrd->eos_marker = B_TRUE;
bqueue_enqueue(&rwa->q, ra->next_rrd, 1);
mutex_enter(&rwa->mutex);
while (!rwa->done) {
cv_wait(&rwa->cv, &rwa->mutex);
}
mutex_exit(&rwa->mutex);
cv_destroy(&rwa->cv);
mutex_destroy(&rwa->mutex);
bqueue_destroy(&rwa->q);
if (err == 0)
err = rwa->err;
out:
nvlist_free(begin_nvl);
if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
zfs_onexit_fd_rele(cleanup_fd);
if (err != 0) {
/*
* Clean up references. If receive is not resumable,
* destroy what we created, so we don't leave it in
* the inconsistent state.
*/
dmu_recv_cleanup_ds(drc);
}
*voffp = ra->voff;
objlist_destroy(&ra->ignore_objlist);
kmem_free(ra, sizeof (*ra));
kmem_free(rwa, sizeof (*rwa));
return (err);
}
static int
dmu_recv_end_check(void *arg, dmu_tx_t *tx)
{
dmu_recv_cookie_t *drc = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
int error;
ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
if (!drc->drc_newfs) {
dsl_dataset_t *origin_head;
error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
if (error != 0)
return (error);
if (drc->drc_force) {
/*
* We will destroy any snapshots in tofs (i.e. before
* origin_head) that are after the origin (which is
* the snap before drc_ds, because drc_ds can not
* have any snaps of its own).
*/
uint64_t obj;
obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
while (obj !=
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
dsl_dataset_t *snap;
error = dsl_dataset_hold_obj(dp, obj, FTAG,
&snap);
if (error != 0)
break;
if (snap->ds_dir != origin_head->ds_dir)
error = SET_ERROR(EINVAL);
if (error == 0) {
error = dsl_destroy_snapshot_check_impl(
snap, B_FALSE);
}
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
dsl_dataset_rele(snap, FTAG);
if (error != 0)
break;
}
if (error != 0) {
dsl_dataset_rele(origin_head, FTAG);
return (error);
}
}
error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
origin_head, drc->drc_force, drc->drc_owner, tx);
if (error != 0) {
dsl_dataset_rele(origin_head, FTAG);
return (error);
}
error = dsl_dataset_snapshot_check_impl(origin_head,
drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
dsl_dataset_rele(origin_head, FTAG);
if (error != 0)
return (error);
error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
} else {
error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
}
return (error);
}
static void
dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
{
dmu_recv_cookie_t *drc = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
tx, "snap=%s", drc->drc_tosnap);
if (!drc->drc_newfs) {
dsl_dataset_t *origin_head;
VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
&origin_head));
if (drc->drc_force) {
/*
* Destroy any snapshots of drc_tofs (origin_head)
* after the origin (the snap before drc_ds).
*/
uint64_t obj;
obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
while (obj !=
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
dsl_dataset_t *snap;
VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
&snap));
ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
dsl_destroy_snapshot_sync_impl(snap,
B_FALSE, tx);
dsl_dataset_rele(snap, FTAG);
}
}
VERIFY3P(drc->drc_ds->ds_prev, ==,
origin_head->ds_prev);
dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
origin_head, tx);
dsl_dataset_snapshot_sync_impl(origin_head,
drc->drc_tosnap, tx);
/* set snapshot's creation time and guid */
dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
drc->drc_drrb->drr_creation_time;
dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
drc->drc_drrb->drr_toguid;
dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
~DS_FLAG_INCONSISTENT;
dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
dsl_dataset_phys(origin_head)->ds_flags &=
~DS_FLAG_INCONSISTENT;
drc->drc_newsnapobj =
dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
dsl_dataset_rele(origin_head, FTAG);
dsl_destroy_head_sync_impl(drc->drc_ds, tx);
if (drc->drc_owner != NULL)
VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
} else {
dsl_dataset_t *ds = drc->drc_ds;
dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
/* set snapshot's creation time and guid */
dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
drc->drc_drrb->drr_creation_time;
dsl_dataset_phys(ds->ds_prev)->ds_guid =
drc->drc_drrb->drr_toguid;
dsl_dataset_phys(ds->ds_prev)->ds_flags &=
~DS_FLAG_INCONSISTENT;
dmu_buf_will_dirty(ds->ds_dbuf, tx);
dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
if (dsl_dataset_has_resume_receive_state(ds)) {
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_FROMGUID, tx);
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_OBJECT, tx);
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_OFFSET, tx);
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_BYTES, tx);
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_TOGUID, tx);
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_TONAME, tx);
}
drc->drc_newsnapobj =
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
}
zvol_create_minors(dp->dp_spa, drc->drc_tofs, B_TRUE);
/*
* Release the hold from dmu_recv_begin. This must be done before
* we return to open context, so that when we free the dataset's dnode
* we can evict its bonus buffer. Since the dataset may be destroyed
* at this point (and therefore won't have a valid pointer to the spa)
* we release the key mapping manually here while we do have a valid
* pointer, if it exists.
*/
if (!drc->drc_raw && encrypted) {
(void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
drc->drc_ds->ds_object, drc->drc_ds);
}
dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
drc->drc_ds = NULL;
}
static int
add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj,
boolean_t raw)
{
dsl_pool_t *dp;
dsl_dataset_t *snapds;
guid_map_entry_t *gmep;
ds_hold_flags_t dsflags = (raw) ? 0 : DS_HOLD_FLAG_DECRYPT;
int err;
ASSERT(guid_map != NULL);
err = dsl_pool_hold(name, FTAG, &dp);
if (err != 0)
return (err);
gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
err = dsl_dataset_hold_obj_flags(dp, snapobj, dsflags, gmep, &snapds);
if (err == 0) {
gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
gmep->raw = raw;
gmep->gme_ds = snapds;
avl_add(guid_map, gmep);
dsl_dataset_long_hold(snapds, gmep);
} else {
kmem_free(gmep, sizeof (*gmep));
}
dsl_pool_rele(dp, FTAG);
return (err);
}
static int dmu_recv_end_modified_blocks = 3;
static int
dmu_recv_existing_end(dmu_recv_cookie_t *drc)
{
#ifdef _KERNEL
/*
* We will be destroying the ds; make sure its origin is unmounted if
* necessary.
*/
char name[ZFS_MAX_DATASET_NAME_LEN];
dsl_dataset_name(drc->drc_ds, name);
zfs_destroy_unmount_origin(name);
#endif
return (dsl_sync_task(drc->drc_tofs,
dmu_recv_end_check, dmu_recv_end_sync, drc,
dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
}
static int
dmu_recv_new_end(dmu_recv_cookie_t *drc)
{
return (dsl_sync_task(drc->drc_tofs,
dmu_recv_end_check, dmu_recv_end_sync, drc,
dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
}
int
dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
{
int error;
drc->drc_owner = owner;
if (drc->drc_newfs)
error = dmu_recv_new_end(drc);
else
error = dmu_recv_existing_end(drc);
if (error != 0) {
dmu_recv_cleanup_ds(drc);
} else if (drc->drc_guid_to_ds_map != NULL) {
(void) add_ds_to_guidmap(drc->drc_tofs, drc->drc_guid_to_ds_map,
drc->drc_newsnapobj, drc->drc_raw);
}
return (error);
}
/*
* Return TRUE if this objset is currently being received into.
*/
boolean_t
dmu_objset_is_receiving(objset_t *os)
{
return (os->os_dsl_dataset != NULL &&
os->os_dsl_dataset->ds_owner == dmu_recv_tag);
}
#if defined(_KERNEL)
module_param(zfs_send_corrupt_data, int, 0644);
MODULE_PARM_DESC(zfs_send_corrupt_data, "Allow sending corrupt data");
#endif