freebsd-dev/sys/dev/cxgbe/t4_main.c
Navdeep Parhar 7a32954c40 Change the default to not use packet counters to generate rx interrupts.
Rely solely on the timer based mechanism.

Update man page to reflect this change.

MFC after:	1 week
2012-04-30 09:46:05 +00:00

5469 lines
138 KiB
C

/*-
* Copyright (c) 2011 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/priv.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/taskqueue.h>
#include <sys/pciio.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pci_private.h>
#include <sys/firmware.h>
#include <sys/sbuf.h>
#include <sys/smp.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/if_dl.h>
#include <net/if_vlan_var.h>
#include "common/common.h"
#include "common/t4_msg.h"
#include "common/t4_regs.h"
#include "common/t4_regs_values.h"
#include "t4_ioctl.h"
#include "t4_l2t.h"
/* T4 bus driver interface */
static int t4_probe(device_t);
static int t4_attach(device_t);
static int t4_detach(device_t);
static device_method_t t4_methods[] = {
DEVMETHOD(device_probe, t4_probe),
DEVMETHOD(device_attach, t4_attach),
DEVMETHOD(device_detach, t4_detach),
DEVMETHOD_END
};
static driver_t t4_driver = {
"t4nex",
t4_methods,
sizeof(struct adapter)
};
/* T4 port (cxgbe) interface */
static int cxgbe_probe(device_t);
static int cxgbe_attach(device_t);
static int cxgbe_detach(device_t);
static device_method_t cxgbe_methods[] = {
DEVMETHOD(device_probe, cxgbe_probe),
DEVMETHOD(device_attach, cxgbe_attach),
DEVMETHOD(device_detach, cxgbe_detach),
{ 0, 0 }
};
static driver_t cxgbe_driver = {
"cxgbe",
cxgbe_methods,
sizeof(struct port_info)
};
static d_ioctl_t t4_ioctl;
static d_open_t t4_open;
static d_close_t t4_close;
static struct cdevsw t4_cdevsw = {
.d_version = D_VERSION,
.d_flags = 0,
.d_open = t4_open,
.d_close = t4_close,
.d_ioctl = t4_ioctl,
.d_name = "t4nex",
};
/* ifnet + media interface */
static void cxgbe_init(void *);
static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t);
static int cxgbe_transmit(struct ifnet *, struct mbuf *);
static void cxgbe_qflush(struct ifnet *);
static int cxgbe_media_change(struct ifnet *);
static void cxgbe_media_status(struct ifnet *, struct ifmediareq *);
MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4 Ethernet driver and services");
static struct mtx t4_list_lock;
static SLIST_HEAD(, adapter) t4_list;
#ifndef TCP_OFFLOAD_DISABLE
static struct mtx t4_uld_list_lock;
static SLIST_HEAD(, uld_info) t4_uld_list;
#endif
/*
* Tunables. See tweak_tunables() too.
*/
/*
* Number of queues for tx and rx, 10G and 1G, NIC and offload.
*/
#define NTXQ_10G 16
static int t4_ntxq10g = -1;
TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq10g);
#define NRXQ_10G 8
static int t4_nrxq10g = -1;
TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq10g);
#define NTXQ_1G 4
static int t4_ntxq1g = -1;
TUNABLE_INT("hw.cxgbe.ntxq1g", &t4_ntxq1g);
#define NRXQ_1G 2
static int t4_nrxq1g = -1;
TUNABLE_INT("hw.cxgbe.nrxq1g", &t4_nrxq1g);
#ifndef TCP_OFFLOAD_DISABLE
#define NOFLDTXQ_10G 8
static int t4_nofldtxq10g = -1;
TUNABLE_INT("hw.cxgbe.nofldtxq10g", &t4_nofldtxq10g);
#define NOFLDRXQ_10G 2
static int t4_nofldrxq10g = -1;
TUNABLE_INT("hw.cxgbe.nofldrxq10g", &t4_nofldrxq10g);
#define NOFLDTXQ_1G 2
static int t4_nofldtxq1g = -1;
TUNABLE_INT("hw.cxgbe.nofldtxq1g", &t4_nofldtxq1g);
#define NOFLDRXQ_1G 1
static int t4_nofldrxq1g = -1;
TUNABLE_INT("hw.cxgbe.nofldrxq1g", &t4_nofldrxq1g);
#endif
/*
* Holdoff parameters for 10G and 1G ports.
*/
#define TMR_IDX_10G 1
static int t4_tmr_idx_10g = TMR_IDX_10G;
TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx_10g);
#define PKTC_IDX_10G (-1)
static int t4_pktc_idx_10g = PKTC_IDX_10G;
TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx_10g);
#define TMR_IDX_1G 1
static int t4_tmr_idx_1g = TMR_IDX_1G;
TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_1G", &t4_tmr_idx_1g);
#define PKTC_IDX_1G (-1)
static int t4_pktc_idx_1g = PKTC_IDX_1G;
TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_1G", &t4_pktc_idx_1g);
/*
* Size (# of entries) of each tx and rx queue.
*/
static unsigned int t4_qsize_txq = TX_EQ_QSIZE;
TUNABLE_INT("hw.cxgbe.qsize_txq", &t4_qsize_txq);
static unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
TUNABLE_INT("hw.cxgbe.qsize_rxq", &t4_qsize_rxq);
/*
* Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
*/
static int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
TUNABLE_INT("hw.cxgbe.interrupt_types", &t4_intr_types);
/*
* Configuration file.
*/
static char t4_cfg_file[32] = "default";
TUNABLE_STR("hw.cxgbe.config_file", t4_cfg_file, sizeof(t4_cfg_file));
/*
* ASIC features that will be used. Disable the ones you don't want so that the
* chip resources aren't wasted on features that will not be used.
*/
static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */
TUNABLE_INT("hw.cxgbe.linkcaps_allowed", &t4_linkcaps_allowed);
static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC;
TUNABLE_INT("hw.cxgbe.niccaps_allowed", &t4_niccaps_allowed);
static int t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
TUNABLE_INT("hw.cxgbe.toecaps_allowed", &t4_toecaps_allowed);
static int t4_rdmacaps_allowed = 0;
TUNABLE_INT("hw.cxgbe.rdmacaps_allowed", &t4_rdmacaps_allowed);
static int t4_iscsicaps_allowed = 0;
TUNABLE_INT("hw.cxgbe.iscsicaps_allowed", &t4_iscsicaps_allowed);
static int t4_fcoecaps_allowed = 0;
TUNABLE_INT("hw.cxgbe.fcoecaps_allowed", &t4_fcoecaps_allowed);
struct intrs_and_queues {
int intr_type; /* INTx, MSI, or MSI-X */
int nirq; /* Number of vectors */
int intr_flags;
int ntxq10g; /* # of NIC txq's for each 10G port */
int nrxq10g; /* # of NIC rxq's for each 10G port */
int ntxq1g; /* # of NIC txq's for each 1G port */
int nrxq1g; /* # of NIC rxq's for each 1G port */
#ifndef TCP_OFFLOAD_DISABLE
int nofldtxq10g; /* # of TOE txq's for each 10G port */
int nofldrxq10g; /* # of TOE rxq's for each 10G port */
int nofldtxq1g; /* # of TOE txq's for each 1G port */
int nofldrxq1g; /* # of TOE rxq's for each 1G port */
#endif
};
struct filter_entry {
uint32_t valid:1; /* filter allocated and valid */
uint32_t locked:1; /* filter is administratively locked */
uint32_t pending:1; /* filter action is pending firmware reply */
uint32_t smtidx:8; /* Source MAC Table index for smac */
struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
struct t4_filter_specification fs;
};
enum {
XGMAC_MTU = (1 << 0),
XGMAC_PROMISC = (1 << 1),
XGMAC_ALLMULTI = (1 << 2),
XGMAC_VLANEX = (1 << 3),
XGMAC_UCADDR = (1 << 4),
XGMAC_MCADDRS = (1 << 5),
XGMAC_ALL = 0xffff
};
static int map_bars(struct adapter *);
static void setup_memwin(struct adapter *);
static int cfg_itype_and_nqueues(struct adapter *, int, int,
struct intrs_and_queues *);
static int prep_firmware(struct adapter *);
static int upload_config_file(struct adapter *, const struct firmware *,
uint32_t *, uint32_t *);
static int partition_resources(struct adapter *, const struct firmware *);
static int get_params__pre_init(struct adapter *);
static int get_params__post_init(struct adapter *);
static void t4_set_desc(struct adapter *);
static void build_medialist(struct port_info *);
static int update_mac_settings(struct port_info *, int);
static int cxgbe_init_locked(struct port_info *);
static int cxgbe_init_synchronized(struct port_info *);
static int cxgbe_uninit_locked(struct port_info *);
static int cxgbe_uninit_synchronized(struct port_info *);
static int adapter_full_init(struct adapter *);
static int adapter_full_uninit(struct adapter *);
static int port_full_init(struct port_info *);
static int port_full_uninit(struct port_info *);
static void quiesce_eq(struct adapter *, struct sge_eq *);
static void quiesce_iq(struct adapter *, struct sge_iq *);
static void quiesce_fl(struct adapter *, struct sge_fl *);
static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
driver_intr_t *, void *, char *);
static int t4_free_irq(struct adapter *, struct irq *);
static void reg_block_dump(struct adapter *, uint8_t *, unsigned int,
unsigned int);
static void t4_get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
static void cxgbe_tick(void *);
static int cpl_not_handled(struct sge_iq *, const struct rss_header *,
struct mbuf *);
static int t4_sysctls(struct adapter *);
static int cxgbe_sysctls(struct port_info *);
static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
static int sysctl_bitfield(SYSCTL_HANDLER_ARGS);
static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
#ifdef SBUF_DRAIN
static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_tids(SYSCTL_HANDLER_ARGS);
static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
#endif
static inline void txq_start(struct ifnet *, struct sge_txq *);
static uint32_t fconf_to_mode(uint32_t);
static uint32_t mode_to_fconf(uint32_t);
static uint32_t fspec_to_fconf(struct t4_filter_specification *);
static int get_filter_mode(struct adapter *, uint32_t *);
static int set_filter_mode(struct adapter *, uint32_t);
static inline uint64_t get_filter_hits(struct adapter *, uint32_t);
static int get_filter(struct adapter *, struct t4_filter *);
static int set_filter(struct adapter *, struct t4_filter *);
static int del_filter(struct adapter *, struct t4_filter *);
static void clear_filter(struct filter_entry *);
static int set_filter_wr(struct adapter *, int);
static int del_filter_wr(struct adapter *, int);
static int filter_rpl(struct sge_iq *, const struct rss_header *,
struct mbuf *);
static int get_sge_context(struct adapter *, struct t4_sge_context *);
static int read_card_mem(struct adapter *, struct t4_mem_range *);
#ifndef TCP_OFFLOAD_DISABLE
static int toe_capability(struct port_info *, int);
static int activate_uld(struct adapter *, int, struct uld_softc *);
static int deactivate_uld(struct uld_softc *);
#endif
static int t4_mod_event(module_t, int, void *);
struct t4_pciids {
uint16_t device;
uint8_t mpf;
char *desc;
} t4_pciids[] = {
{0xa000, 0, "Chelsio Terminator 4 FPGA"},
{0x4400, 4, "Chelsio T440-dbg"},
{0x4401, 4, "Chelsio T420-CR"},
{0x4402, 4, "Chelsio T422-CR"},
{0x4403, 4, "Chelsio T440-CR"},
{0x4404, 4, "Chelsio T420-BCH"},
{0x4405, 4, "Chelsio T440-BCH"},
{0x4406, 4, "Chelsio T440-CH"},
{0x4407, 4, "Chelsio T420-SO"},
{0x4408, 4, "Chelsio T420-CX"},
{0x4409, 4, "Chelsio T420-BT"},
{0x440a, 4, "Chelsio T404-BT"},
};
#ifndef TCP_OFFLOAD_DISABLE
/* This is used in service_iq() to get to the fl associated with an iq. */
CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
#endif
static int
t4_probe(device_t dev)
{
int i;
uint16_t v = pci_get_vendor(dev);
uint16_t d = pci_get_device(dev);
if (v != PCI_VENDOR_ID_CHELSIO)
return (ENXIO);
for (i = 0; i < ARRAY_SIZE(t4_pciids); i++) {
if (d == t4_pciids[i].device &&
pci_get_function(dev) == t4_pciids[i].mpf) {
device_set_desc(dev, t4_pciids[i].desc);
return (BUS_PROBE_DEFAULT);
}
}
return (ENXIO);
}
static int
t4_attach(device_t dev)
{
struct adapter *sc;
int rc = 0, i, n10g, n1g, rqidx, tqidx;
struct intrs_and_queues iaq;
struct sge *s;
#ifndef TCP_OFFLOAD_DISABLE
int ofld_rqidx, ofld_tqidx;
#endif
sc = device_get_softc(dev);
sc->dev = dev;
sc->pf = pci_get_function(dev);
sc->mbox = sc->pf;
pci_enable_busmaster(dev);
if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
uint32_t v;
pci_set_max_read_req(dev, 4096);
v = pci_read_config(dev, i + PCIR_EXPRESS_DEVICE_CTL, 2);
v |= PCIM_EXP_CTL_RELAXED_ORD_ENABLE;
pci_write_config(dev, i + PCIR_EXPRESS_DEVICE_CTL, v, 2);
}
snprintf(sc->lockname, sizeof(sc->lockname), "%s",
device_get_nameunit(dev));
mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
mtx_lock(&t4_list_lock);
SLIST_INSERT_HEAD(&t4_list, sc, link);
mtx_unlock(&t4_list_lock);
mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
TAILQ_INIT(&sc->sfl);
callout_init(&sc->sfl_callout, CALLOUT_MPSAFE);
rc = map_bars(sc);
if (rc != 0)
goto done; /* error message displayed already */
memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
for (i = 0; i < ARRAY_SIZE(sc->cpl_handler); i++)
sc->cpl_handler[i] = cpl_not_handled;
t4_register_cpl_handler(sc, CPL_SET_TCB_RPL, filter_rpl);
/* Prepare the adapter for operation */
rc = -t4_prep_adapter(sc);
if (rc != 0) {
device_printf(dev, "failed to prepare adapter: %d.\n", rc);
goto done;
}
/*
* Do this really early, with the memory windows set up even before the
* character device. The userland tool's register i/o and mem read
* will work even in "recovery mode".
*/
setup_memwin(sc);
sc->cdev = make_dev(&t4_cdevsw, device_get_unit(dev), UID_ROOT,
GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
sc->cdev->si_drv1 = sc;
/* Go no further if recovery mode has been requested. */
if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
device_printf(dev, "recovery mode.\n");
goto done;
}
/* Prepare the firmware for operation */
rc = prep_firmware(sc);
if (rc != 0)
goto done; /* error message displayed already */
rc = get_params__pre_init(sc);
if (rc != 0)
goto done; /* error message displayed already */
rc = t4_sge_init(sc);
if (rc != 0)
goto done; /* error message displayed already */
if (sc->flags & MASTER_PF) {
/* get basic stuff going */
rc = -t4_fw_initialize(sc, sc->mbox);
if (rc != 0) {
device_printf(dev, "early init failed: %d.\n", rc);
goto done;
}
}
rc = get_params__post_init(sc);
if (rc != 0)
goto done; /* error message displayed already */
if (sc->flags & MASTER_PF) {
/* final tweaks to some settings */
t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd,
sc->params.b_wnd);
t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
t4_set_reg_field(sc, A_TP_PARA_REG3, F_TUNNELCNGDROP0 |
F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 | F_TUNNELCNGDROP3, 0);
t4_set_reg_field(sc, A_TP_PARA_REG5,
V_INDICATESIZE(M_INDICATESIZE) |
F_REARMDDPOFFSET | F_RESETDDPOFFSET,
V_INDICATESIZE(M_INDICATESIZE) |
F_REARMDDPOFFSET | F_RESETDDPOFFSET);
} else {
/*
* XXX: Verify that we can live with whatever the master driver
* has done so far, and hope that it doesn't change any global
* setting from underneath us in the future.
*/
}
t4_read_indirect(sc, A_TP_PIO_ADDR, A_TP_PIO_DATA, &sc->filter_mode, 1,
A_TP_VLAN_PRI_MAP);
for (i = 0; i < NCHAN; i++)
sc->params.tp.tx_modq[i] = i;
rc = t4_create_dma_tag(sc);
if (rc != 0)
goto done; /* error message displayed already */
/*
* First pass over all the ports - allocate VIs and initialize some
* basic parameters like mac address, port type, etc. We also figure
* out whether a port is 10G or 1G and use that information when
* calculating how many interrupts to attempt to allocate.
*/
n10g = n1g = 0;
for_each_port(sc, i) {
struct port_info *pi;
pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
sc->port[i] = pi;
/* These must be set before t4_port_init */
pi->adapter = sc;
pi->port_id = i;
/* Allocate the vi and initialize parameters like mac addr */
rc = -t4_port_init(pi, sc->mbox, sc->pf, 0);
if (rc != 0) {
device_printf(dev, "unable to initialize port %d: %d\n",
i, rc);
free(pi, M_CXGBE);
sc->port[i] = NULL;
goto done;
}
snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
device_get_nameunit(dev), i);
mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
if (is_10G_port(pi)) {
n10g++;
pi->tmr_idx = t4_tmr_idx_10g;
pi->pktc_idx = t4_pktc_idx_10g;
} else {
n1g++;
pi->tmr_idx = t4_tmr_idx_1g;
pi->pktc_idx = t4_pktc_idx_1g;
}
pi->xact_addr_filt = -1;
pi->qsize_rxq = t4_qsize_rxq;
pi->qsize_txq = t4_qsize_txq;
pi->dev = device_add_child(dev, "cxgbe", -1);
if (pi->dev == NULL) {
device_printf(dev,
"failed to add device for port %d.\n", i);
rc = ENXIO;
goto done;
}
device_set_softc(pi->dev, pi);
}
/*
* Interrupt type, # of interrupts, # of rx/tx queues, etc.
*/
rc = cfg_itype_and_nqueues(sc, n10g, n1g, &iaq);
if (rc != 0)
goto done; /* error message displayed already */
sc->intr_type = iaq.intr_type;
sc->intr_count = iaq.nirq;
sc->flags |= iaq.intr_flags;
s = &sc->sge;
s->nrxq = n10g * iaq.nrxq10g + n1g * iaq.nrxq1g;
s->ntxq = n10g * iaq.ntxq10g + n1g * iaq.ntxq1g;
s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */
s->neq += sc->params.nports + 1;/* ctrl queues: 1 per port + 1 mgmt */
s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */
#ifndef TCP_OFFLOAD_DISABLE
if (is_offload(sc)) {
s->nofldrxq = n10g * iaq.nofldrxq10g + n1g * iaq.nofldrxq1g;
s->nofldtxq = n10g * iaq.nofldtxq10g + n1g * iaq.nofldtxq1g;
s->neq += s->nofldtxq + s->nofldrxq;
s->niq += s->nofldrxq;
s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
M_CXGBE, M_ZERO | M_WAITOK);
s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq),
M_CXGBE, M_ZERO | M_WAITOK);
}
#endif
s->ctrlq = malloc(sc->params.nports * sizeof(struct sge_wrq), M_CXGBE,
M_ZERO | M_WAITOK);
s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
M_ZERO | M_WAITOK);
s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
M_ZERO | M_WAITOK);
s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE,
M_ZERO | M_WAITOK);
s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE,
M_ZERO | M_WAITOK);
sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
M_ZERO | M_WAITOK);
t4_init_l2t(sc, M_WAITOK);
/*
* Second pass over the ports. This time we know the number of rx and
* tx queues that each port should get.
*/
rqidx = tqidx = 0;
#ifndef TCP_OFFLOAD_DISABLE
ofld_rqidx = ofld_tqidx = 0;
#endif
for_each_port(sc, i) {
struct port_info *pi = sc->port[i];
if (pi == NULL)
continue;
pi->first_rxq = rqidx;
pi->first_txq = tqidx;
if (is_10G_port(pi)) {
pi->nrxq = iaq.nrxq10g;
pi->ntxq = iaq.ntxq10g;
} else {
pi->nrxq = iaq.nrxq1g;
pi->ntxq = iaq.ntxq1g;
}
rqidx += pi->nrxq;
tqidx += pi->ntxq;
#ifndef TCP_OFFLOAD_DISABLE
if (is_offload(sc)) {
pi->first_ofld_rxq = ofld_rqidx;
pi->first_ofld_txq = ofld_tqidx;
if (is_10G_port(pi)) {
pi->nofldrxq = iaq.nofldrxq10g;
pi->nofldtxq = iaq.nofldtxq10g;
} else {
pi->nofldrxq = iaq.nofldrxq1g;
pi->nofldtxq = iaq.nofldtxq1g;
}
ofld_rqidx += pi->nofldrxq;
ofld_tqidx += pi->nofldtxq;
}
#endif
}
rc = bus_generic_attach(dev);
if (rc != 0) {
device_printf(dev,
"failed to attach all child ports: %d\n", rc);
goto done;
}
device_printf(dev,
"PCIe x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
sc->params.pci.width, sc->params.nports, sc->intr_count,
sc->intr_type == INTR_MSIX ? "MSI-X" :
(sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
t4_set_desc(sc);
done:
if (rc != 0 && sc->cdev) {
/* cdev was created and so cxgbetool works; recover that way. */
device_printf(dev,
"error during attach, adapter is now in recovery mode.\n");
rc = 0;
}
if (rc != 0)
t4_detach(dev);
else
t4_sysctls(sc);
return (rc);
}
/*
* Idempotent
*/
static int
t4_detach(device_t dev)
{
struct adapter *sc;
struct port_info *pi;
int i, rc;
sc = device_get_softc(dev);
if (sc->flags & FULL_INIT_DONE)
t4_intr_disable(sc);
if (sc->cdev) {
destroy_dev(sc->cdev);
sc->cdev = NULL;
}
rc = bus_generic_detach(dev);
if (rc) {
device_printf(dev,
"failed to detach child devices: %d\n", rc);
return (rc);
}
for (i = 0; i < MAX_NPORTS; i++) {
pi = sc->port[i];
if (pi) {
t4_free_vi(pi->adapter, sc->mbox, sc->pf, 0, pi->viid);
if (pi->dev)
device_delete_child(dev, pi->dev);
mtx_destroy(&pi->pi_lock);
free(pi, M_CXGBE);
}
}
if (sc->flags & FULL_INIT_DONE)
adapter_full_uninit(sc);
if (sc->flags & FW_OK)
t4_fw_bye(sc, sc->mbox);
if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
pci_release_msi(dev);
if (sc->regs_res)
bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
sc->regs_res);
if (sc->msix_res)
bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
sc->msix_res);
if (sc->l2t)
t4_free_l2t(sc->l2t);
#ifndef TCP_OFFLOAD_DISABLE
free(sc->sge.ofld_rxq, M_CXGBE);
free(sc->sge.ofld_txq, M_CXGBE);
#endif
free(sc->irq, M_CXGBE);
free(sc->sge.rxq, M_CXGBE);
free(sc->sge.txq, M_CXGBE);
free(sc->sge.ctrlq, M_CXGBE);
free(sc->sge.iqmap, M_CXGBE);
free(sc->sge.eqmap, M_CXGBE);
free(sc->tids.ftid_tab, M_CXGBE);
t4_destroy_dma_tag(sc);
if (mtx_initialized(&sc->sc_lock)) {
mtx_lock(&t4_list_lock);
SLIST_REMOVE(&t4_list, sc, adapter, link);
mtx_unlock(&t4_list_lock);
mtx_destroy(&sc->sc_lock);
}
if (mtx_initialized(&sc->sfl_lock))
mtx_destroy(&sc->sfl_lock);
bzero(sc, sizeof(*sc));
return (0);
}
static int
cxgbe_probe(device_t dev)
{
char buf[128];
struct port_info *pi = device_get_softc(dev);
snprintf(buf, sizeof(buf), "port %d", pi->port_id);
device_set_desc_copy(dev, buf);
return (BUS_PROBE_DEFAULT);
}
#define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
IFCAP_VLAN_HWTSO)
#define T4_CAP_ENABLE (T4_CAP & ~IFCAP_TSO6)
static int
cxgbe_attach(device_t dev)
{
struct port_info *pi = device_get_softc(dev);
struct ifnet *ifp;
/* Allocate an ifnet and set it up */
ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "Cannot allocate ifnet\n");
return (ENOMEM);
}
pi->ifp = ifp;
ifp->if_softc = pi;
callout_init(&pi->tick, CALLOUT_MPSAFE);
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = cxgbe_init;
ifp->if_ioctl = cxgbe_ioctl;
ifp->if_transmit = cxgbe_transmit;
ifp->if_qflush = cxgbe_qflush;
ifp->if_capabilities = T4_CAP;
#ifndef TCP_OFFLOAD_DISABLE
if (is_offload(pi->adapter))
ifp->if_capabilities |= IFCAP_TOE4;
#endif
ifp->if_capenable = T4_CAP_ENABLE;
ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO;
/* Initialize ifmedia for this port */
ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
cxgbe_media_status);
build_medialist(pi);
ether_ifattach(ifp, pi->hw_addr);
#ifndef TCP_OFFLOAD_DISABLE
if (is_offload(pi->adapter)) {
device_printf(dev,
"%d txq, %d rxq (NIC); %d txq, %d rxq (TOE)\n",
pi->ntxq, pi->nrxq, pi->nofldtxq, pi->nofldrxq);
} else
#endif
device_printf(dev, "%d txq, %d rxq\n", pi->ntxq, pi->nrxq);
cxgbe_sysctls(pi);
return (0);
}
static int
cxgbe_detach(device_t dev)
{
struct port_info *pi = device_get_softc(dev);
struct adapter *sc = pi->adapter;
struct ifnet *ifp = pi->ifp;
/* Tell if_ioctl and if_init that the port is going away */
ADAPTER_LOCK(sc);
SET_DOOMED(pi);
wakeup(&sc->flags);
while (IS_BUSY(sc))
mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
SET_BUSY(sc);
ADAPTER_UNLOCK(sc);
PORT_LOCK(pi);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
callout_stop(&pi->tick);
PORT_UNLOCK(pi);
callout_drain(&pi->tick);
/* Let detach proceed even if these fail. */
cxgbe_uninit_synchronized(pi);
port_full_uninit(pi);
ifmedia_removeall(&pi->media);
ether_ifdetach(pi->ifp);
if_free(pi->ifp);
ADAPTER_LOCK(sc);
CLR_BUSY(sc);
wakeup_one(&sc->flags);
ADAPTER_UNLOCK(sc);
return (0);
}
static void
cxgbe_init(void *arg)
{
struct port_info *pi = arg;
struct adapter *sc = pi->adapter;
ADAPTER_LOCK(sc);
cxgbe_init_locked(pi); /* releases adapter lock */
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
}
static int
cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data)
{
int rc = 0, mtu, flags;
struct port_info *pi = ifp->if_softc;
struct adapter *sc = pi->adapter;
struct ifreq *ifr = (struct ifreq *)data;
uint32_t mask;
switch (cmd) {
case SIOCSIFMTU:
ADAPTER_LOCK(sc);
rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0);
if (rc) {
fail:
ADAPTER_UNLOCK(sc);
return (rc);
}
mtu = ifr->ifr_mtu;
if ((mtu < ETHERMIN) || (mtu > ETHERMTU_JUMBO)) {
rc = EINVAL;
} else {
ifp->if_mtu = mtu;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
t4_update_fl_bufsize(ifp);
PORT_LOCK(pi);
rc = update_mac_settings(pi, XGMAC_MTU);
PORT_UNLOCK(pi);
}
}
ADAPTER_UNLOCK(sc);
break;
case SIOCSIFFLAGS:
ADAPTER_LOCK(sc);
if (IS_DOOMED(pi)) {
rc = ENXIO;
goto fail;
}
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
flags = pi->if_flags;
if ((ifp->if_flags ^ flags) &
(IFF_PROMISC | IFF_ALLMULTI)) {
if (IS_BUSY(sc)) {
rc = EBUSY;
goto fail;
}
PORT_LOCK(pi);
rc = update_mac_settings(pi,
XGMAC_PROMISC | XGMAC_ALLMULTI);
PORT_UNLOCK(pi);
}
ADAPTER_UNLOCK(sc);
} else
rc = cxgbe_init_locked(pi);
pi->if_flags = ifp->if_flags;
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
rc = cxgbe_uninit_locked(pi);
else
ADAPTER_UNLOCK(sc);
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI: /* these two can be called with a mutex held :-( */
ADAPTER_LOCK(sc);
rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0);
if (rc)
goto fail;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
PORT_LOCK(pi);
rc = update_mac_settings(pi, XGMAC_MCADDRS);
PORT_UNLOCK(pi);
}
ADAPTER_UNLOCK(sc);
break;
case SIOCSIFCAP:
ADAPTER_LOCK(sc);
rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0);
if (rc)
goto fail;
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if (mask & IFCAP_TXCSUM) {
ifp->if_capenable ^= IFCAP_TXCSUM;
ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP);
if (IFCAP_TSO & ifp->if_capenable &&
!(IFCAP_TXCSUM & ifp->if_capenable)) {
ifp->if_capenable &= ~IFCAP_TSO;
ifp->if_hwassist &= ~CSUM_TSO;
if_printf(ifp,
"tso disabled due to -txcsum.\n");
}
}
if (mask & IFCAP_RXCSUM)
ifp->if_capenable ^= IFCAP_RXCSUM;
if (mask & IFCAP_TSO4) {
ifp->if_capenable ^= IFCAP_TSO4;
if (IFCAP_TSO & ifp->if_capenable) {
if (IFCAP_TXCSUM & ifp->if_capenable)
ifp->if_hwassist |= CSUM_TSO;
else {
ifp->if_capenable &= ~IFCAP_TSO;
ifp->if_hwassist &= ~CSUM_TSO;
if_printf(ifp,
"enable txcsum first.\n");
rc = EAGAIN;
goto fail;
}
} else
ifp->if_hwassist &= ~CSUM_TSO;
}
if (mask & IFCAP_LRO) {
#ifdef INET
int i;
struct sge_rxq *rxq;
ifp->if_capenable ^= IFCAP_LRO;
for_each_rxq(pi, i, rxq) {
if (ifp->if_capenable & IFCAP_LRO)
rxq->iq.flags |= IQ_LRO_ENABLED;
else
rxq->iq.flags &= ~IQ_LRO_ENABLED;
}
#endif
}
#ifndef TCP_OFFLOAD_DISABLE
if (mask & IFCAP_TOE) {
int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE;
rc = toe_capability(pi, enable);
if (rc != 0)
goto fail;
ifp->if_capenable ^= mask;
}
#endif
if (mask & IFCAP_VLAN_HWTAGGING) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
PORT_LOCK(pi);
rc = update_mac_settings(pi, XGMAC_VLANEX);
PORT_UNLOCK(pi);
}
}
if (mask & IFCAP_VLAN_MTU) {
ifp->if_capenable ^= IFCAP_VLAN_MTU;
/* Need to find out how to disable auto-mtu-inflation */
}
if (mask & IFCAP_VLAN_HWTSO)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if (mask & IFCAP_VLAN_HWCSUM)
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
#ifdef VLAN_CAPABILITIES
VLAN_CAPABILITIES(ifp);
#endif
ADAPTER_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
break;
default:
rc = ether_ioctl(ifp, cmd, data);
}
return (rc);
}
static int
cxgbe_transmit(struct ifnet *ifp, struct mbuf *m)
{
struct port_info *pi = ifp->if_softc;
struct adapter *sc = pi->adapter;
struct sge_txq *txq = &sc->sge.txq[pi->first_txq];
struct buf_ring *br;
int rc;
M_ASSERTPKTHDR(m);
if (__predict_false(pi->link_cfg.link_ok == 0)) {
m_freem(m);
return (ENETDOWN);
}
if (m->m_flags & M_FLOWID)
txq += (m->m_pkthdr.flowid % pi->ntxq);
br = txq->br;
if (TXQ_TRYLOCK(txq) == 0) {
struct sge_eq *eq = &txq->eq;
/*
* It is possible that t4_eth_tx finishes up and releases the
* lock between the TRYLOCK above and the drbr_enqueue here. We
* need to make sure that this mbuf doesn't just sit there in
* the drbr.
*/
rc = drbr_enqueue(ifp, br, m);
if (rc == 0 && callout_pending(&eq->tx_callout) == 0 &&
!(eq->flags & EQ_DOOMED))
callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
return (rc);
}
/*
* txq->m is the mbuf that is held up due to a temporary shortage of
* resources and it should be put on the wire first. Then what's in
* drbr and finally the mbuf that was just passed in to us.
*
* Return code should indicate the fate of the mbuf that was passed in
* this time.
*/
TXQ_LOCK_ASSERT_OWNED(txq);
if (drbr_needs_enqueue(ifp, br) || txq->m) {
/* Queued for transmission. */
rc = drbr_enqueue(ifp, br, m);
m = txq->m ? txq->m : drbr_dequeue(ifp, br);
(void) t4_eth_tx(ifp, txq, m);
TXQ_UNLOCK(txq);
return (rc);
}
/* Direct transmission. */
rc = t4_eth_tx(ifp, txq, m);
if (rc != 0 && txq->m)
rc = 0; /* held, will be transmitted soon (hopefully) */
TXQ_UNLOCK(txq);
return (rc);
}
static void
cxgbe_qflush(struct ifnet *ifp)
{
struct port_info *pi = ifp->if_softc;
struct sge_txq *txq;
int i;
struct mbuf *m;
/* queues do not exist if !PORT_INIT_DONE. */
if (pi->flags & PORT_INIT_DONE) {
for_each_txq(pi, i, txq) {
TXQ_LOCK(txq);
m_freem(txq->m);
txq->m = NULL;
while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
m_freem(m);
TXQ_UNLOCK(txq);
}
}
if_qflush(ifp);
}
static int
cxgbe_media_change(struct ifnet *ifp)
{
struct port_info *pi = ifp->if_softc;
device_printf(pi->dev, "%s unimplemented.\n", __func__);
return (EOPNOTSUPP);
}
static void
cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct port_info *pi = ifp->if_softc;
struct ifmedia_entry *cur = pi->media.ifm_cur;
int speed = pi->link_cfg.speed;
int data = (pi->port_type << 8) | pi->mod_type;
if (cur->ifm_data != data) {
build_medialist(pi);
cur = pi->media.ifm_cur;
}
ifmr->ifm_status = IFM_AVALID;
if (!pi->link_cfg.link_ok)
return;
ifmr->ifm_status |= IFM_ACTIVE;
/* active and current will differ iff current media is autoselect. */
if (IFM_SUBTYPE(cur->ifm_media) != IFM_AUTO)
return;
ifmr->ifm_active = IFM_ETHER | IFM_FDX;
if (speed == SPEED_10000)
ifmr->ifm_active |= IFM_10G_T;
else if (speed == SPEED_1000)
ifmr->ifm_active |= IFM_1000_T;
else if (speed == SPEED_100)
ifmr->ifm_active |= IFM_100_TX;
else if (speed == SPEED_10)
ifmr->ifm_active |= IFM_10_T;
else
KASSERT(0, ("%s: link up but speed unknown (%u)", __func__,
speed));
}
void
t4_fatal_err(struct adapter *sc)
{
t4_set_reg_field(sc, A_SGE_CONTROL, F_GLOBALENABLE, 0);
t4_intr_disable(sc);
log(LOG_EMERG, "%s: encountered fatal error, adapter stopped.\n",
device_get_nameunit(sc->dev));
}
static int
map_bars(struct adapter *sc)
{
sc->regs_rid = PCIR_BAR(0);
sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
&sc->regs_rid, RF_ACTIVE);
if (sc->regs_res == NULL) {
device_printf(sc->dev, "cannot map registers.\n");
return (ENXIO);
}
sc->bt = rman_get_bustag(sc->regs_res);
sc->bh = rman_get_bushandle(sc->regs_res);
sc->mmio_len = rman_get_size(sc->regs_res);
sc->msix_rid = PCIR_BAR(4);
sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
&sc->msix_rid, RF_ACTIVE);
if (sc->msix_res == NULL) {
device_printf(sc->dev, "cannot map MSI-X BAR.\n");
return (ENXIO);
}
return (0);
}
static void
setup_memwin(struct adapter *sc)
{
u_long bar0;
bar0 = rman_get_start(sc->regs_res);
t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 0),
(bar0 + MEMWIN0_BASE) | V_BIR(0) |
V_WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 1),
(bar0 + MEMWIN1_BASE) | V_BIR(0) |
V_WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2),
(bar0 + MEMWIN2_BASE) | V_BIR(0) |
V_WINDOW(ilog2(MEMWIN2_APERTURE) - 10));
}
static int
cfg_itype_and_nqueues(struct adapter *sc, int n10g, int n1g,
struct intrs_and_queues *iaq)
{
int rc, itype, navail, nrxq10g, nrxq1g, n;
int nofldrxq10g = 0, nofldrxq1g = 0;
bzero(iaq, sizeof(*iaq));
iaq->ntxq10g = t4_ntxq10g;
iaq->ntxq1g = t4_ntxq1g;
iaq->nrxq10g = nrxq10g = t4_nrxq10g;
iaq->nrxq1g = nrxq1g = t4_nrxq1g;
#ifndef TCP_OFFLOAD_DISABLE
iaq->nofldtxq10g = t4_nofldtxq10g;
iaq->nofldtxq1g = t4_nofldtxq1g;
iaq->nofldrxq10g = nofldrxq10g = t4_nofldrxq10g;
iaq->nofldrxq1g = nofldrxq1g = t4_nofldrxq1g;
#endif
for (itype = INTR_MSIX; itype; itype >>= 1) {
if ((itype & t4_intr_types) == 0)
continue; /* not allowed */
if (itype == INTR_MSIX)
navail = pci_msix_count(sc->dev);
else if (itype == INTR_MSI)
navail = pci_msi_count(sc->dev);
else
navail = 1;
restart:
if (navail == 0)
continue;
iaq->intr_type = itype;
iaq->intr_flags = 0;
/*
* Best option: an interrupt vector for errors, one for the
* firmware event queue, and one each for each rxq (NIC as well
* as offload).
*/
iaq->nirq = T4_EXTRA_INTR;
iaq->nirq += n10g * (nrxq10g + nofldrxq10g);
iaq->nirq += n1g * (nrxq1g + nofldrxq1g);
if (iaq->nirq <= navail &&
(itype != INTR_MSI || powerof2(iaq->nirq))) {
iaq->intr_flags |= INTR_DIRECT;
goto allocate;
}
/*
* Second best option: an interrupt vector for errors, one for
* the firmware event queue, and one each for either NIC or
* offload rxq's.
*/
iaq->nirq = T4_EXTRA_INTR;
iaq->nirq += n10g * max(nrxq10g, nofldrxq10g);
iaq->nirq += n1g * max(nrxq1g, nofldrxq1g);
if (iaq->nirq <= navail &&
(itype != INTR_MSI || powerof2(iaq->nirq)))
goto allocate;
/*
* Next best option: an interrupt vector for errors, one for the
* firmware event queue, and at least one per port. At this
* point we know we'll have to downsize nrxq or nofldrxq to fit
* what's available to us.
*/
iaq->nirq = T4_EXTRA_INTR;
iaq->nirq += n10g + n1g;
if (iaq->nirq <= navail) {
int leftover = navail - iaq->nirq;
if (n10g > 0) {
int target = max(nrxq10g, nofldrxq10g);
n = 1;
while (n < target && leftover >= n10g) {
leftover -= n10g;
iaq->nirq += n10g;
n++;
}
iaq->nrxq10g = min(n, nrxq10g);
#ifndef TCP_OFFLOAD_DISABLE
iaq->nofldrxq10g = min(n, nofldrxq10g);
#endif
}
if (n1g > 0) {
int target = max(nrxq1g, nofldrxq1g);
n = 1;
while (n < target && leftover >= n1g) {
leftover -= n1g;
iaq->nirq += n1g;
n++;
}
iaq->nrxq1g = min(n, nrxq1g);
#ifndef TCP_OFFLOAD_DISABLE
iaq->nofldrxq1g = min(n, nofldrxq1g);
#endif
}
if (itype != INTR_MSI || powerof2(iaq->nirq))
goto allocate;
}
/*
* Least desirable option: one interrupt vector for everything.
*/
iaq->nirq = iaq->nrxq10g = iaq->nrxq1g = 1;
#ifndef TCP_OFFLOAD_DISABLE
iaq->nofldrxq10g = iaq->nofldrxq1g = 1;
#endif
allocate:
navail = iaq->nirq;
rc = 0;
if (itype == INTR_MSIX)
rc = pci_alloc_msix(sc->dev, &navail);
else if (itype == INTR_MSI)
rc = pci_alloc_msi(sc->dev, &navail);
if (rc == 0) {
if (navail == iaq->nirq)
return (0);
/*
* Didn't get the number requested. Use whatever number
* the kernel is willing to allocate (it's in navail).
*/
device_printf(sc->dev, "fewer vectors than requested, "
"type=%d, req=%d, rcvd=%d; will downshift req.\n",
itype, iaq->nirq, navail);
pci_release_msi(sc->dev);
goto restart;
}
device_printf(sc->dev,
"failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
itype, rc, iaq->nirq, navail);
}
device_printf(sc->dev,
"failed to find a usable interrupt type. "
"allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
pci_msix_count(sc->dev), pci_msi_count(sc->dev));
return (ENXIO);
}
/*
* Install a compatible firmware (if required), establish contact with it (by
* saying hello), and reset the device. If we end up as the master driver,
* partition adapter resources by providing a configuration file to the
* firmware.
*/
static int
prep_firmware(struct adapter *sc)
{
const struct firmware *fw = NULL, *cfg = NULL, *default_cfg;
int rc;
enum dev_state state;
default_cfg = firmware_get(T4_CFGNAME);
/* Check firmware version and install a different one if necessary */
rc = t4_check_fw_version(sc);
snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
if (rc != 0) {
uint32_t v = 0;
fw = firmware_get(T4_FWNAME);
if (fw != NULL) {
const struct fw_hdr *hdr = (const void *)fw->data;
v = ntohl(hdr->fw_ver);
/*
* The firmware module will not be used if it isn't the
* same major version as what the driver was compiled
* with.
*/
if (G_FW_HDR_FW_VER_MAJOR(v) != FW_VERSION_MAJOR) {
device_printf(sc->dev,
"Found firmware image but version %d "
"can not be used with this driver (%d)\n",
G_FW_HDR_FW_VER_MAJOR(v), FW_VERSION_MAJOR);
firmware_put(fw, FIRMWARE_UNLOAD);
fw = NULL;
}
}
if (fw == NULL && rc < 0) {
device_printf(sc->dev, "No usable firmware. "
"card has %d.%d.%d, driver compiled with %d.%d.%d",
G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
FW_VERSION_MAJOR, FW_VERSION_MINOR,
FW_VERSION_MICRO);
rc = EAGAIN;
goto done;
}
/*
* Always upgrade, even for minor/micro/build mismatches.
* Downgrade only for a major version mismatch or if
* force_firmware_install was specified.
*/
if (fw != NULL && (rc < 0 || v > sc->params.fw_vers)) {
device_printf(sc->dev,
"installing firmware %d.%d.%d.%d on card.\n",
G_FW_HDR_FW_VER_MAJOR(v), G_FW_HDR_FW_VER_MINOR(v),
G_FW_HDR_FW_VER_MICRO(v), G_FW_HDR_FW_VER_BUILD(v));
rc = -t4_load_fw(sc, fw->data, fw->datasize);
if (rc != 0) {
device_printf(sc->dev,
"failed to install firmware: %d\n", rc);
goto done;
} else {
/* refresh */
(void) t4_check_fw_version(sc);
snprintf(sc->fw_version,
sizeof(sc->fw_version), "%u.%u.%u.%u",
G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
}
}
}
/* Contact firmware. */
rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
if (rc < 0) {
rc = -rc;
device_printf(sc->dev,
"failed to connect to the firmware: %d.\n", rc);
goto done;
}
if (rc == sc->mbox)
sc->flags |= MASTER_PF;
/* Reset device */
rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
if (rc != 0) {
device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
if (rc != ETIMEDOUT && rc != EIO)
t4_fw_bye(sc, sc->mbox);
goto done;
}
/* Partition adapter resources as specified in the config file. */
if (sc->flags & MASTER_PF) {
if (strncmp(t4_cfg_file, "default", sizeof(t4_cfg_file))) {
char s[32];
snprintf(s, sizeof(s), "t4fw_cfg_%s", t4_cfg_file);
cfg = firmware_get(s);
if (cfg == NULL) {
device_printf(sc->dev,
"unable to locate %s module, "
"will use default config file.\n", s);
}
}
rc = partition_resources(sc, cfg ? cfg : default_cfg);
if (rc != 0)
goto done; /* error message displayed already */
}
sc->flags |= FW_OK;
done:
if (fw != NULL)
firmware_put(fw, FIRMWARE_UNLOAD);
if (cfg != NULL)
firmware_put(cfg, FIRMWARE_UNLOAD);
if (default_cfg != NULL)
firmware_put(default_cfg, FIRMWARE_UNLOAD);
return (rc);
}
#define FW_PARAM_DEV(param) \
(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
#define FW_PARAM_PFVF(param) \
(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
/*
* Upload configuration file to card's memory.
*/
static int
upload_config_file(struct adapter *sc, const struct firmware *fw, uint32_t *mt,
uint32_t *ma)
{
int rc, i;
uint32_t param, val, mtype, maddr, bar, off, win, remaining;
const uint32_t *b;
/* Figure out where the firmware wants us to upload it. */
param = FW_PARAM_DEV(CF);
rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
if (rc != 0) {
/* Firmwares without config file support will fail this way */
device_printf(sc->dev,
"failed to query config file location: %d.\n", rc);
return (rc);
}
*mt = mtype = G_FW_PARAMS_PARAM_Y(val);
*ma = maddr = G_FW_PARAMS_PARAM_Z(val) << 16;
if (maddr & 3) {
device_printf(sc->dev,
"cannot upload config file (type %u, addr %x).\n",
mtype, maddr);
return (EFAULT);
}
/* Translate mtype/maddr to an address suitable for the PCIe window */
val = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
val &= F_EDRAM0_ENABLE | F_EDRAM1_ENABLE | F_EXT_MEM_ENABLE;
switch (mtype) {
case FW_MEMTYPE_CF_EDC0:
if (!(val & F_EDRAM0_ENABLE))
goto err;
bar = t4_read_reg(sc, A_MA_EDRAM0_BAR);
maddr += G_EDRAM0_BASE(bar) << 20;
break;
case FW_MEMTYPE_CF_EDC1:
if (!(val & F_EDRAM1_ENABLE))
goto err;
bar = t4_read_reg(sc, A_MA_EDRAM1_BAR);
maddr += G_EDRAM1_BASE(bar) << 20;
break;
case FW_MEMTYPE_CF_EXTMEM:
if (!(val & F_EXT_MEM_ENABLE))
goto err;
bar = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
maddr += G_EXT_MEM_BASE(bar) << 20;
break;
default:
err:
device_printf(sc->dev,
"cannot upload config file (type %u, enabled %u).\n",
mtype, val);
return (EFAULT);
}
/*
* Position the PCIe window (we use memwin2) to the 16B aligned area
* just at/before the upload location.
*/
win = maddr & ~0xf;
off = maddr - win; /* offset from the start of the window. */
t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2), win);
t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2));
remaining = fw->datasize;
if (remaining > FLASH_CFG_MAX_SIZE ||
remaining > MEMWIN2_APERTURE - off) {
device_printf(sc->dev, "cannot upload config file all at once "
"(size %u, max %u, room %u).\n",
remaining, FLASH_CFG_MAX_SIZE, MEMWIN2_APERTURE - off);
return (EFBIG);
}
/*
* XXX: sheer laziness. We deliberately added 4 bytes of useless
* stuffing/comments at the end of the config file so it's ok to simply
* throw away the last remaining bytes when the config file is not an
* exact multiple of 4.
*/
b = fw->data;
for (i = 0; remaining >= 4; i += 4, remaining -= 4)
t4_write_reg(sc, MEMWIN2_BASE + off + i, *b++);
return (rc);
}
/*
* Partition chip resources for use between various PFs, VFs, etc. This is done
* by uploading the firmware configuration file to the adapter and instructing
* the firmware to process it.
*/
static int
partition_resources(struct adapter *sc, const struct firmware *cfg)
{
int rc;
struct fw_caps_config_cmd caps;
uint32_t mtype, maddr, finicsum, cfcsum;
rc = cfg ? upload_config_file(sc, cfg, &mtype, &maddr) : ENOENT;
if (rc != 0) {
mtype = FW_MEMTYPE_CF_FLASH;
maddr = t4_flash_cfg_addr(sc);
}
bzero(&caps, sizeof(caps));
caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ);
caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) | FW_LEN16(caps));
rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
if (rc != 0) {
device_printf(sc->dev,
"failed to pre-process config file: %d.\n", rc);
return (rc);
}
finicsum = be32toh(caps.finicsum);
cfcsum = be32toh(caps.cfcsum);
if (finicsum != cfcsum) {
device_printf(sc->dev,
"WARNING: config file checksum mismatch: %08x %08x\n",
finicsum, cfcsum);
}
sc->cfcsum = cfcsum;
#define LIMIT_CAPS(x) do { \
caps.x &= htobe16(t4_##x##_allowed); \
sc->x = htobe16(caps.x); \
} while (0)
/*
* Let the firmware know what features will (not) be used so it can tune
* things accordingly.
*/
LIMIT_CAPS(linkcaps);
LIMIT_CAPS(niccaps);
LIMIT_CAPS(toecaps);
LIMIT_CAPS(rdmacaps);
LIMIT_CAPS(iscsicaps);
LIMIT_CAPS(fcoecaps);
#undef LIMIT_CAPS
caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
if (rc != 0) {
device_printf(sc->dev,
"failed to process config file: %d.\n", rc);
return (rc);
}
return (0);
}
/*
* Retrieve parameters that are needed (or nice to have) prior to calling
* t4_sge_init and t4_fw_initialize.
*/
static int
get_params__pre_init(struct adapter *sc)
{
int rc;
uint32_t param[2], val[2];
struct fw_devlog_cmd cmd;
struct devlog_params *dlog = &sc->params.devlog;
param[0] = FW_PARAM_DEV(PORTVEC);
param[1] = FW_PARAM_DEV(CCLK);
rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
if (rc != 0) {
device_printf(sc->dev,
"failed to query parameters (pre_init): %d.\n", rc);
return (rc);
}
sc->params.portvec = val[0];
sc->params.nports = 0;
while (val[0]) {
sc->params.nports++;
val[0] &= val[0] - 1;
}
sc->params.vpd.cclk = val[1];
/* Read device log parameters. */
bzero(&cmd, sizeof(cmd));
cmd.op_to_write = htobe32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ);
cmd.retval_len16 = htobe32(FW_LEN16(cmd));
rc = -t4_wr_mbox(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
if (rc != 0) {
device_printf(sc->dev,
"failed to get devlog parameters: %d.\n", rc);
bzero(dlog, sizeof (*dlog));
rc = 0; /* devlog isn't critical for device operation */
} else {
val[0] = be32toh(cmd.memtype_devlog_memaddr16_devlog);
dlog->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(val[0]);
dlog->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(val[0]) << 4;
dlog->size = be32toh(cmd.memsize_devlog);
}
return (rc);
}
/*
* Retrieve various parameters that are of interest to the driver. The device
* has been initialized by the firmware at this point.
*/
static int
get_params__post_init(struct adapter *sc)
{
int rc;
uint32_t param[7], val[7];
struct fw_caps_config_cmd caps;
param[0] = FW_PARAM_PFVF(IQFLINT_START);
param[1] = FW_PARAM_PFVF(EQ_START);
param[2] = FW_PARAM_PFVF(FILTER_START);
param[3] = FW_PARAM_PFVF(FILTER_END);
rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
if (rc != 0) {
device_printf(sc->dev,
"failed to query parameters (post_init): %d.\n", rc);
return (rc);
}
sc->sge.iq_start = val[0];
sc->sge.eq_start = val[1];
sc->tids.ftid_base = val[2];
sc->tids.nftids = val[3] - val[2] + 1;
/* get capabilites */
bzero(&caps, sizeof(caps));
caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ);
caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
if (rc != 0) {
device_printf(sc->dev,
"failed to get card capabilities: %d.\n", rc);
return (rc);
}
if (caps.toecaps) {
/* query offload-related parameters */
param[0] = FW_PARAM_DEV(NTID);
param[1] = FW_PARAM_PFVF(SERVER_START);
param[2] = FW_PARAM_PFVF(SERVER_END);
param[3] = FW_PARAM_PFVF(TDDP_START);
param[4] = FW_PARAM_PFVF(TDDP_END);
param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
if (rc != 0) {
device_printf(sc->dev,
"failed to query TOE parameters: %d.\n", rc);
return (rc);
}
sc->tids.ntids = val[0];
sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
sc->tids.stid_base = val[1];
sc->tids.nstids = val[2] - val[1] + 1;
sc->vres.ddp.start = val[3];
sc->vres.ddp.size = val[4] - val[3] + 1;
sc->params.ofldq_wr_cred = val[5];
sc->params.offload = 1;
}
if (caps.rdmacaps) {
param[0] = FW_PARAM_PFVF(STAG_START);
param[1] = FW_PARAM_PFVF(STAG_END);
param[2] = FW_PARAM_PFVF(RQ_START);
param[3] = FW_PARAM_PFVF(RQ_END);
param[4] = FW_PARAM_PFVF(PBL_START);
param[5] = FW_PARAM_PFVF(PBL_END);
rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
if (rc != 0) {
device_printf(sc->dev,
"failed to query RDMA parameters(1): %d.\n", rc);
return (rc);
}
sc->vres.stag.start = val[0];
sc->vres.stag.size = val[1] - val[0] + 1;
sc->vres.rq.start = val[2];
sc->vres.rq.size = val[3] - val[2] + 1;
sc->vres.pbl.start = val[4];
sc->vres.pbl.size = val[5] - val[4] + 1;
param[0] = FW_PARAM_PFVF(SQRQ_START);
param[1] = FW_PARAM_PFVF(SQRQ_END);
param[2] = FW_PARAM_PFVF(CQ_START);
param[3] = FW_PARAM_PFVF(CQ_END);
param[4] = FW_PARAM_PFVF(OCQ_START);
param[5] = FW_PARAM_PFVF(OCQ_END);
rc = -t4_query_params(sc, 0, 0, 0, 6, param, val);
if (rc != 0) {
device_printf(sc->dev,
"failed to query RDMA parameters(2): %d.\n", rc);
return (rc);
}
sc->vres.qp.start = val[0];
sc->vres.qp.size = val[1] - val[0] + 1;
sc->vres.cq.start = val[2];
sc->vres.cq.size = val[3] - val[2] + 1;
sc->vres.ocq.start = val[4];
sc->vres.ocq.size = val[5] - val[4] + 1;
}
if (caps.iscsicaps) {
param[0] = FW_PARAM_PFVF(ISCSI_START);
param[1] = FW_PARAM_PFVF(ISCSI_END);
rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
if (rc != 0) {
device_printf(sc->dev,
"failed to query iSCSI parameters: %d.\n", rc);
return (rc);
}
sc->vres.iscsi.start = val[0];
sc->vres.iscsi.size = val[1] - val[0] + 1;
}
/* These are finalized by FW initialization, load their values now */
val[0] = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
sc->params.tp.tre = G_TIMERRESOLUTION(val[0]);
sc->params.tp.dack_re = G_DELAYEDACKRESOLUTION(val[0]);
t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
return (rc);
}
#undef FW_PARAM_PFVF
#undef FW_PARAM_DEV
static void
t4_set_desc(struct adapter *sc)
{
char buf[128];
struct adapter_params *p = &sc->params;
snprintf(buf, sizeof(buf), "Chelsio %s %sNIC (rev %d), S/N:%s, E/C:%s",
p->vpd.id, is_offload(sc) ? "R" : "", p->rev, p->vpd.sn, p->vpd.ec);
device_set_desc_copy(sc->dev, buf);
}
static void
build_medialist(struct port_info *pi)
{
struct ifmedia *media = &pi->media;
int data, m;
PORT_LOCK(pi);
ifmedia_removeall(media);
m = IFM_ETHER | IFM_FDX;
data = (pi->port_type << 8) | pi->mod_type;
switch(pi->port_type) {
case FW_PORT_TYPE_BT_XFI:
ifmedia_add(media, m | IFM_10G_T, data, NULL);
break;
case FW_PORT_TYPE_BT_XAUI:
ifmedia_add(media, m | IFM_10G_T, data, NULL);
/* fall through */
case FW_PORT_TYPE_BT_SGMII:
ifmedia_add(media, m | IFM_1000_T, data, NULL);
ifmedia_add(media, m | IFM_100_TX, data, NULL);
ifmedia_add(media, IFM_ETHER | IFM_AUTO, data, NULL);
ifmedia_set(media, IFM_ETHER | IFM_AUTO);
break;
case FW_PORT_TYPE_CX4:
ifmedia_add(media, m | IFM_10G_CX4, data, NULL);
ifmedia_set(media, m | IFM_10G_CX4);
break;
case FW_PORT_TYPE_SFP:
case FW_PORT_TYPE_FIBER_XFI:
case FW_PORT_TYPE_FIBER_XAUI:
switch (pi->mod_type) {
case FW_PORT_MOD_TYPE_LR:
ifmedia_add(media, m | IFM_10G_LR, data, NULL);
ifmedia_set(media, m | IFM_10G_LR);
break;
case FW_PORT_MOD_TYPE_SR:
ifmedia_add(media, m | IFM_10G_SR, data, NULL);
ifmedia_set(media, m | IFM_10G_SR);
break;
case FW_PORT_MOD_TYPE_LRM:
ifmedia_add(media, m | IFM_10G_LRM, data, NULL);
ifmedia_set(media, m | IFM_10G_LRM);
break;
case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
ifmedia_add(media, m | IFM_10G_TWINAX, data, NULL);
ifmedia_set(media, m | IFM_10G_TWINAX);
break;
case FW_PORT_MOD_TYPE_NONE:
m &= ~IFM_FDX;
ifmedia_add(media, m | IFM_NONE, data, NULL);
ifmedia_set(media, m | IFM_NONE);
break;
case FW_PORT_MOD_TYPE_NA:
case FW_PORT_MOD_TYPE_ER:
default:
ifmedia_add(media, m | IFM_UNKNOWN, data, NULL);
ifmedia_set(media, m | IFM_UNKNOWN);
break;
}
break;
case FW_PORT_TYPE_KX4:
case FW_PORT_TYPE_KX:
case FW_PORT_TYPE_KR:
default:
ifmedia_add(media, m | IFM_UNKNOWN, data, NULL);
ifmedia_set(media, m | IFM_UNKNOWN);
break;
}
PORT_UNLOCK(pi);
}
#define FW_MAC_EXACT_CHUNK 7
/*
* Program the port's XGMAC based on parameters in ifnet. The caller also
* indicates which parameters should be programmed (the rest are left alone).
*/
static int
update_mac_settings(struct port_info *pi, int flags)
{
int rc;
struct ifnet *ifp = pi->ifp;
struct adapter *sc = pi->adapter;
int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
PORT_LOCK_ASSERT_OWNED(pi);
KASSERT(flags, ("%s: not told what to update.", __func__));
if (flags & XGMAC_MTU)
mtu = ifp->if_mtu;
if (flags & XGMAC_PROMISC)
promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0;
if (flags & XGMAC_ALLMULTI)
allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0;
if (flags & XGMAC_VLANEX)
vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0;
rc = -t4_set_rxmode(sc, sc->mbox, pi->viid, mtu, promisc, allmulti, 1,
vlanex, false);
if (rc) {
if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, rc);
return (rc);
}
if (flags & XGMAC_UCADDR) {
uint8_t ucaddr[ETHER_ADDR_LEN];
bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr));
rc = t4_change_mac(sc, sc->mbox, pi->viid, pi->xact_addr_filt,
ucaddr, true, true);
if (rc < 0) {
rc = -rc;
if_printf(ifp, "change_mac failed: %d\n", rc);
return (rc);
} else {
pi->xact_addr_filt = rc;
rc = 0;
}
}
if (flags & XGMAC_MCADDRS) {
const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
int del = 1;
uint64_t hash = 0;
struct ifmultiaddr *ifma;
int i = 0, j;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family == AF_LINK)
continue;
mcaddr[i++] =
LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
if (i == FW_MAC_EXACT_CHUNK) {
rc = t4_alloc_mac_filt(sc, sc->mbox, pi->viid,
del, i, mcaddr, NULL, &hash, 0);
if (rc < 0) {
rc = -rc;
for (j = 0; j < i; j++) {
if_printf(ifp,
"failed to add mc address"
" %02x:%02x:%02x:"
"%02x:%02x:%02x rc=%d\n",
mcaddr[j][0], mcaddr[j][1],
mcaddr[j][2], mcaddr[j][3],
mcaddr[j][4], mcaddr[j][5],
rc);
}
goto mcfail;
}
del = 0;
i = 0;
}
}
if (i > 0) {
rc = t4_alloc_mac_filt(sc, sc->mbox, pi->viid,
del, i, mcaddr, NULL, &hash, 0);
if (rc < 0) {
rc = -rc;
for (j = 0; j < i; j++) {
if_printf(ifp,
"failed to add mc address"
" %02x:%02x:%02x:"
"%02x:%02x:%02x rc=%d\n",
mcaddr[j][0], mcaddr[j][1],
mcaddr[j][2], mcaddr[j][3],
mcaddr[j][4], mcaddr[j][5],
rc);
}
goto mcfail;
}
}
rc = -t4_set_addr_hash(sc, sc->mbox, pi->viid, 0, hash, 0);
if (rc != 0)
if_printf(ifp, "failed to set mc address hash: %d", rc);
mcfail:
if_maddr_runlock(ifp);
}
return (rc);
}
static int
cxgbe_init_locked(struct port_info *pi)
{
struct adapter *sc = pi->adapter;
int rc = 0;
ADAPTER_LOCK_ASSERT_OWNED(sc);
while (!IS_DOOMED(pi) && IS_BUSY(sc)) {
if (mtx_sleep(&sc->flags, &sc->sc_lock, PCATCH, "t4init", 0)) {
rc = EINTR;
goto done;
}
}
if (IS_DOOMED(pi)) {
rc = ENXIO;
goto done;
}
KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
/* Give up the adapter lock, port init code can sleep. */
SET_BUSY(sc);
ADAPTER_UNLOCK(sc);
rc = cxgbe_init_synchronized(pi);
done:
ADAPTER_LOCK(sc);
KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
CLR_BUSY(sc);
wakeup_one(&sc->flags);
ADAPTER_UNLOCK(sc);
return (rc);
}
static int
cxgbe_init_synchronized(struct port_info *pi)
{
struct adapter *sc = pi->adapter;
struct ifnet *ifp = pi->ifp;
int rc = 0;
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
if (isset(&sc->open_device_map, pi->port_id)) {
KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING,
("mismatch between open_device_map and if_drv_flags"));
return (0); /* already running */
}
if (!(sc->flags & FULL_INIT_DONE) &&
((rc = adapter_full_init(sc)) != 0))
return (rc); /* error message displayed already */
if (!(pi->flags & PORT_INIT_DONE) &&
((rc = port_full_init(pi)) != 0))
return (rc); /* error message displayed already */
PORT_LOCK(pi);
rc = update_mac_settings(pi, XGMAC_ALL);
PORT_UNLOCK(pi);
if (rc)
goto done; /* error message displayed already */
rc = -t4_link_start(sc, sc->mbox, pi->tx_chan, &pi->link_cfg);
if (rc != 0) {
if_printf(ifp, "start_link failed: %d\n", rc);
goto done;
}
rc = -t4_enable_vi(sc, sc->mbox, pi->viid, true, true);
if (rc != 0) {
if_printf(ifp, "enable_vi failed: %d\n", rc);
goto done;
}
/* all ok */
setbit(&sc->open_device_map, pi->port_id);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
callout_reset(&pi->tick, hz, cxgbe_tick, pi);
done:
if (rc != 0)
cxgbe_uninit_synchronized(pi);
return (rc);
}
static int
cxgbe_uninit_locked(struct port_info *pi)
{
struct adapter *sc = pi->adapter;
int rc;
ADAPTER_LOCK_ASSERT_OWNED(sc);
while (!IS_DOOMED(pi) && IS_BUSY(sc)) {
if (mtx_sleep(&sc->flags, &sc->sc_lock, PCATCH, "t4uninit", 0)) {
rc = EINTR;
goto done;
}
}
if (IS_DOOMED(pi)) {
rc = ENXIO;
goto done;
}
KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
SET_BUSY(sc);
ADAPTER_UNLOCK(sc);
rc = cxgbe_uninit_synchronized(pi);
ADAPTER_LOCK(sc);
KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
CLR_BUSY(sc);
wakeup_one(&sc->flags);
done:
ADAPTER_UNLOCK(sc);
return (rc);
}
/*
* Idempotent.
*/
static int
cxgbe_uninit_synchronized(struct port_info *pi)
{
struct adapter *sc = pi->adapter;
struct ifnet *ifp = pi->ifp;
int rc;
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
/*
* Disable the VI so that all its data in either direction is discarded
* by the MPS. Leave everything else (the queues, interrupts, and 1Hz
* tick) intact as the TP can deliver negative advice or data that it's
* holding in its RAM (for an offloaded connection) even after the VI is
* disabled.
*/
rc = -t4_enable_vi(sc, sc->mbox, pi->viid, false, false);
if (rc) {
if_printf(ifp, "disable_vi failed: %d\n", rc);
return (rc);
}
clrbit(&sc->open_device_map, pi->port_id);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
pi->link_cfg.link_ok = 0;
pi->link_cfg.speed = 0;
t4_os_link_changed(sc, pi->port_id, 0);
return (0);
}
#define T4_ALLOC_IRQ(sc, irq, rid, handler, arg, name) do { \
rc = t4_alloc_irq(sc, irq, rid, handler, arg, name); \
if (rc != 0) \
goto done; \
} while (0)
static int
adapter_full_init(struct adapter *sc)
{
int rc, i, rid, p, q;
char s[8];
struct irq *irq;
struct port_info *pi;
struct sge_rxq *rxq;
#ifndef TCP_OFFLOAD_DISABLE
struct sge_ofld_rxq *ofld_rxq;
#endif
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
KASSERT((sc->flags & FULL_INIT_DONE) == 0,
("%s: FULL_INIT_DONE already", __func__));
/*
* queues that belong to the adapter (not any particular port).
*/
rc = t4_setup_adapter_queues(sc);
if (rc != 0)
goto done;
for (i = 0; i < ARRAY_SIZE(sc->tq); i++) {
sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
taskqueue_thread_enqueue, &sc->tq[i]);
if (sc->tq[i] == NULL) {
device_printf(sc->dev,
"failed to allocate task queue %d\n", i);
rc = ENOMEM;
goto done;
}
taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
device_get_nameunit(sc->dev), i);
}
/*
* Setup interrupts.
*/
irq = &sc->irq[0];
rid = sc->intr_type == INTR_INTX ? 0 : 1;
if (sc->intr_count == 1) {
KASSERT(!(sc->flags & INTR_DIRECT),
("%s: single interrupt && INTR_DIRECT?", __func__));
T4_ALLOC_IRQ(sc, irq, rid, t4_intr_all, sc, "all");
} else {
/* Multiple interrupts. */
KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
("%s: too few intr.", __func__));
/* The first one is always error intr */
T4_ALLOC_IRQ(sc, irq, rid, t4_intr_err, sc, "err");
irq++;
rid++;
/* The second one is always the firmware event queue */
T4_ALLOC_IRQ(sc, irq, rid, t4_intr_evt, &sc->sge.fwq, "evt");
irq++;
rid++;
/*
* Note that if INTR_DIRECT is not set then either the NIC rx
* queues or (exclusive or) the TOE rx queueus will be taking
* direct interrupts.
*
* There is no need to check for is_offload(sc) as nofldrxq
* will be 0 if offload is disabled.
*/
for_each_port(sc, p) {
pi = sc->port[p];
#ifndef TCP_OFFLOAD_DISABLE
/*
* Skip over the NIC queues if they aren't taking direct
* interrupts.
*/
if (!(sc->flags & INTR_DIRECT) &&
pi->nofldrxq > pi->nrxq)
goto ofld_queues;
#endif
rxq = &sc->sge.rxq[pi->first_rxq];
for (q = 0; q < pi->nrxq; q++, rxq++) {
snprintf(s, sizeof(s), "%d.%d", p, q);
T4_ALLOC_IRQ(sc, irq, rid, t4_intr, rxq, s);
irq++;
rid++;
}
#ifndef TCP_OFFLOAD_DISABLE
/*
* Skip over the offload queues if they aren't taking
* direct interrupts.
*/
if (!(sc->flags & INTR_DIRECT))
continue;
ofld_queues:
ofld_rxq = &sc->sge.ofld_rxq[pi->first_ofld_rxq];
for (q = 0; q < pi->nofldrxq; q++, ofld_rxq++) {
snprintf(s, sizeof(s), "%d,%d", p, q);
T4_ALLOC_IRQ(sc, irq, rid, t4_intr, ofld_rxq, s);
irq++;
rid++;
}
#endif
}
}
t4_intr_enable(sc);
sc->flags |= FULL_INIT_DONE;
done:
if (rc != 0)
adapter_full_uninit(sc);
return (rc);
}
#undef T4_ALLOC_IRQ
static int
adapter_full_uninit(struct adapter *sc)
{
int i;
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
t4_teardown_adapter_queues(sc);
for (i = 0; i < sc->intr_count; i++)
t4_free_irq(sc, &sc->irq[i]);
for (i = 0; i < ARRAY_SIZE(sc->tq) && sc->tq[i]; i++) {
taskqueue_free(sc->tq[i]);
sc->tq[i] = NULL;
}
sc->flags &= ~FULL_INIT_DONE;
return (0);
}
static int
port_full_init(struct port_info *pi)
{
struct adapter *sc = pi->adapter;
struct ifnet *ifp = pi->ifp;
uint16_t *rss;
struct sge_rxq *rxq;
int rc, i;
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
KASSERT((pi->flags & PORT_INIT_DONE) == 0,
("%s: PORT_INIT_DONE already", __func__));
sysctl_ctx_init(&pi->ctx);
pi->flags |= PORT_SYSCTL_CTX;
/*
* Allocate tx/rx/fl queues for this port.
*/
rc = t4_setup_port_queues(pi);
if (rc != 0)
goto done; /* error message displayed already */
/*
* Setup RSS for this port.
*/
rss = malloc(pi->nrxq * sizeof (*rss), M_CXGBE,
M_ZERO | M_WAITOK);
for_each_rxq(pi, i, rxq) {
rss[i] = rxq->iq.abs_id;
}
rc = -t4_config_rss_range(sc, sc->mbox, pi->viid, 0,
pi->rss_size, rss, pi->nrxq);
free(rss, M_CXGBE);
if (rc != 0) {
if_printf(ifp, "rss_config failed: %d\n", rc);
goto done;
}
pi->flags |= PORT_INIT_DONE;
done:
if (rc != 0)
port_full_uninit(pi);
return (rc);
}
/*
* Idempotent.
*/
static int
port_full_uninit(struct port_info *pi)
{
struct adapter *sc = pi->adapter;
int i;
struct sge_rxq *rxq;
struct sge_txq *txq;
#ifndef TCP_OFFLOAD_DISABLE
struct sge_ofld_rxq *ofld_rxq;
struct sge_wrq *ofld_txq;
#endif
if (pi->flags & PORT_INIT_DONE) {
/* Need to quiesce queues. XXX: ctrl queues? */
for_each_txq(pi, i, txq) {
quiesce_eq(sc, &txq->eq);
}
#ifndef TCP_OFFLOAD_DISABLE
for_each_ofld_txq(pi, i, ofld_txq) {
quiesce_eq(sc, &ofld_txq->eq);
}
#endif
for_each_rxq(pi, i, rxq) {
quiesce_iq(sc, &rxq->iq);
quiesce_fl(sc, &rxq->fl);
}
#ifndef TCP_OFFLOAD_DISABLE
for_each_ofld_rxq(pi, i, ofld_rxq) {
quiesce_iq(sc, &ofld_rxq->iq);
quiesce_fl(sc, &ofld_rxq->fl);
}
#endif
}
t4_teardown_port_queues(pi);
pi->flags &= ~PORT_INIT_DONE;
return (0);
}
static void
quiesce_eq(struct adapter *sc, struct sge_eq *eq)
{
EQ_LOCK(eq);
eq->flags |= EQ_DOOMED;
/*
* Wait for the response to a credit flush if one's
* pending.
*/
while (eq->flags & EQ_CRFLUSHED)
mtx_sleep(eq, &eq->eq_lock, 0, "crflush", 0);
EQ_UNLOCK(eq);
callout_drain(&eq->tx_callout); /* XXX: iffy */
pause("callout", 10); /* Still iffy */
taskqueue_drain(sc->tq[eq->tx_chan], &eq->tx_task);
}
static void
quiesce_iq(struct adapter *sc, struct sge_iq *iq)
{
(void) sc; /* unused */
/* Synchronize with the interrupt handler */
while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
pause("iqfree", 1);
}
static void
quiesce_fl(struct adapter *sc, struct sge_fl *fl)
{
mtx_lock(&sc->sfl_lock);
FL_LOCK(fl);
fl->flags |= FL_DOOMED;
FL_UNLOCK(fl);
mtx_unlock(&sc->sfl_lock);
callout_drain(&sc->sfl_callout);
KASSERT((fl->flags & FL_STARVING) == 0,
("%s: still starving", __func__));
}
static int
t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
driver_intr_t *handler, void *arg, char *name)
{
int rc;
irq->rid = rid;
irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
RF_SHAREABLE | RF_ACTIVE);
if (irq->res == NULL) {
device_printf(sc->dev,
"failed to allocate IRQ for rid %d, name %s.\n", rid, name);
return (ENOMEM);
}
rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
NULL, handler, arg, &irq->tag);
if (rc != 0) {
device_printf(sc->dev,
"failed to setup interrupt for rid %d, name %s: %d\n",
rid, name, rc);
} else if (name)
bus_describe_intr(sc->dev, irq->res, irq->tag, name);
return (rc);
}
static int
t4_free_irq(struct adapter *sc, struct irq *irq)
{
if (irq->tag)
bus_teardown_intr(sc->dev, irq->res, irq->tag);
if (irq->res)
bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
bzero(irq, sizeof(*irq));
return (0);
}
static void
reg_block_dump(struct adapter *sc, uint8_t *buf, unsigned int start,
unsigned int end)
{
uint32_t *p = (uint32_t *)(buf + start);
for ( ; start <= end; start += sizeof(uint32_t))
*p++ = t4_read_reg(sc, start);
}
static void
t4_get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
{
int i;
static const unsigned int reg_ranges[] = {
0x1008, 0x1108,
0x1180, 0x11b4,
0x11fc, 0x123c,
0x1300, 0x173c,
0x1800, 0x18fc,
0x3000, 0x30d8,
0x30e0, 0x5924,
0x5960, 0x59d4,
0x5a00, 0x5af8,
0x6000, 0x6098,
0x6100, 0x6150,
0x6200, 0x6208,
0x6240, 0x6248,
0x6280, 0x6338,
0x6370, 0x638c,
0x6400, 0x643c,
0x6500, 0x6524,
0x6a00, 0x6a38,
0x6a60, 0x6a78,
0x6b00, 0x6b84,
0x6bf0, 0x6c84,
0x6cf0, 0x6d84,
0x6df0, 0x6e84,
0x6ef0, 0x6f84,
0x6ff0, 0x7084,
0x70f0, 0x7184,
0x71f0, 0x7284,
0x72f0, 0x7384,
0x73f0, 0x7450,
0x7500, 0x7530,
0x7600, 0x761c,
0x7680, 0x76cc,
0x7700, 0x7798,
0x77c0, 0x77fc,
0x7900, 0x79fc,
0x7b00, 0x7c38,
0x7d00, 0x7efc,
0x8dc0, 0x8e1c,
0x8e30, 0x8e78,
0x8ea0, 0x8f6c,
0x8fc0, 0x9074,
0x90fc, 0x90fc,
0x9400, 0x9458,
0x9600, 0x96bc,
0x9800, 0x9808,
0x9820, 0x983c,
0x9850, 0x9864,
0x9c00, 0x9c6c,
0x9c80, 0x9cec,
0x9d00, 0x9d6c,
0x9d80, 0x9dec,
0x9e00, 0x9e6c,
0x9e80, 0x9eec,
0x9f00, 0x9f6c,
0x9f80, 0x9fec,
0xd004, 0xd03c,
0xdfc0, 0xdfe0,
0xe000, 0xea7c,
0xf000, 0x11190,
0x19040, 0x19124,
0x19150, 0x191b0,
0x191d0, 0x191e8,
0x19238, 0x1924c,
0x193f8, 0x19474,
0x19490, 0x194f8,
0x19800, 0x19f30,
0x1a000, 0x1a06c,
0x1a0b0, 0x1a120,
0x1a128, 0x1a138,
0x1a190, 0x1a1c4,
0x1a1fc, 0x1a1fc,
0x1e040, 0x1e04c,
0x1e240, 0x1e28c,
0x1e2c0, 0x1e2c0,
0x1e2e0, 0x1e2e0,
0x1e300, 0x1e384,
0x1e3c0, 0x1e3c8,
0x1e440, 0x1e44c,
0x1e640, 0x1e68c,
0x1e6c0, 0x1e6c0,
0x1e6e0, 0x1e6e0,
0x1e700, 0x1e784,
0x1e7c0, 0x1e7c8,
0x1e840, 0x1e84c,
0x1ea40, 0x1ea8c,
0x1eac0, 0x1eac0,
0x1eae0, 0x1eae0,
0x1eb00, 0x1eb84,
0x1ebc0, 0x1ebc8,
0x1ec40, 0x1ec4c,
0x1ee40, 0x1ee8c,
0x1eec0, 0x1eec0,
0x1eee0, 0x1eee0,
0x1ef00, 0x1ef84,
0x1efc0, 0x1efc8,
0x1f040, 0x1f04c,
0x1f240, 0x1f28c,
0x1f2c0, 0x1f2c0,
0x1f2e0, 0x1f2e0,
0x1f300, 0x1f384,
0x1f3c0, 0x1f3c8,
0x1f440, 0x1f44c,
0x1f640, 0x1f68c,
0x1f6c0, 0x1f6c0,
0x1f6e0, 0x1f6e0,
0x1f700, 0x1f784,
0x1f7c0, 0x1f7c8,
0x1f840, 0x1f84c,
0x1fa40, 0x1fa8c,
0x1fac0, 0x1fac0,
0x1fae0, 0x1fae0,
0x1fb00, 0x1fb84,
0x1fbc0, 0x1fbc8,
0x1fc40, 0x1fc4c,
0x1fe40, 0x1fe8c,
0x1fec0, 0x1fec0,
0x1fee0, 0x1fee0,
0x1ff00, 0x1ff84,
0x1ffc0, 0x1ffc8,
0x20000, 0x2002c,
0x20100, 0x2013c,
0x20190, 0x201c8,
0x20200, 0x20318,
0x20400, 0x20528,
0x20540, 0x20614,
0x21000, 0x21040,
0x2104c, 0x21060,
0x210c0, 0x210ec,
0x21200, 0x21268,
0x21270, 0x21284,
0x212fc, 0x21388,
0x21400, 0x21404,
0x21500, 0x21518,
0x2152c, 0x2153c,
0x21550, 0x21554,
0x21600, 0x21600,
0x21608, 0x21628,
0x21630, 0x2163c,
0x21700, 0x2171c,
0x21780, 0x2178c,
0x21800, 0x21c38,
0x21c80, 0x21d7c,
0x21e00, 0x21e04,
0x22000, 0x2202c,
0x22100, 0x2213c,
0x22190, 0x221c8,
0x22200, 0x22318,
0x22400, 0x22528,
0x22540, 0x22614,
0x23000, 0x23040,
0x2304c, 0x23060,
0x230c0, 0x230ec,
0x23200, 0x23268,
0x23270, 0x23284,
0x232fc, 0x23388,
0x23400, 0x23404,
0x23500, 0x23518,
0x2352c, 0x2353c,
0x23550, 0x23554,
0x23600, 0x23600,
0x23608, 0x23628,
0x23630, 0x2363c,
0x23700, 0x2371c,
0x23780, 0x2378c,
0x23800, 0x23c38,
0x23c80, 0x23d7c,
0x23e00, 0x23e04,
0x24000, 0x2402c,
0x24100, 0x2413c,
0x24190, 0x241c8,
0x24200, 0x24318,
0x24400, 0x24528,
0x24540, 0x24614,
0x25000, 0x25040,
0x2504c, 0x25060,
0x250c0, 0x250ec,
0x25200, 0x25268,
0x25270, 0x25284,
0x252fc, 0x25388,
0x25400, 0x25404,
0x25500, 0x25518,
0x2552c, 0x2553c,
0x25550, 0x25554,
0x25600, 0x25600,
0x25608, 0x25628,
0x25630, 0x2563c,
0x25700, 0x2571c,
0x25780, 0x2578c,
0x25800, 0x25c38,
0x25c80, 0x25d7c,
0x25e00, 0x25e04,
0x26000, 0x2602c,
0x26100, 0x2613c,
0x26190, 0x261c8,
0x26200, 0x26318,
0x26400, 0x26528,
0x26540, 0x26614,
0x27000, 0x27040,
0x2704c, 0x27060,
0x270c0, 0x270ec,
0x27200, 0x27268,
0x27270, 0x27284,
0x272fc, 0x27388,
0x27400, 0x27404,
0x27500, 0x27518,
0x2752c, 0x2753c,
0x27550, 0x27554,
0x27600, 0x27600,
0x27608, 0x27628,
0x27630, 0x2763c,
0x27700, 0x2771c,
0x27780, 0x2778c,
0x27800, 0x27c38,
0x27c80, 0x27d7c,
0x27e00, 0x27e04
};
regs->version = 4 | (sc->params.rev << 10);
for (i = 0; i < ARRAY_SIZE(reg_ranges); i += 2)
reg_block_dump(sc, buf, reg_ranges[i], reg_ranges[i + 1]);
}
static void
cxgbe_tick(void *arg)
{
struct port_info *pi = arg;
struct ifnet *ifp = pi->ifp;
struct sge_txq *txq;
int i, drops;
struct port_stats *s = &pi->stats;
PORT_LOCK(pi);
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
PORT_UNLOCK(pi);
return; /* without scheduling another callout */
}
t4_get_port_stats(pi->adapter, pi->tx_chan, s);
ifp->if_opackets = s->tx_frames - s->tx_pause;
ifp->if_ipackets = s->rx_frames - s->rx_pause;
ifp->if_obytes = s->tx_octets - s->tx_pause * 64;
ifp->if_ibytes = s->rx_octets - s->rx_pause * 64;
ifp->if_omcasts = s->tx_mcast_frames - s->tx_pause;
ifp->if_imcasts = s->rx_mcast_frames - s->rx_pause;
ifp->if_iqdrops = s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
s->rx_ovflow3;
drops = s->tx_drop;
for_each_txq(pi, i, txq)
drops += txq->br->br_drops;
ifp->if_snd.ifq_drops = drops;
ifp->if_oerrors = s->tx_error_frames;
ifp->if_ierrors = s->rx_jabber + s->rx_runt + s->rx_too_long +
s->rx_fcs_err + s->rx_len_err;
callout_schedule(&pi->tick, hz);
PORT_UNLOCK(pi);
}
static int
cpl_not_handled(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
#ifdef INVARIANTS
panic("%s: opcode %02x on iq %p with payload %p",
__func__, rss->opcode, iq, m);
#else
log(LOG_ERR, "%s: opcode %02x on iq %p with payload %p",
__func__, rss->opcode, iq, m);
m_freem(m);
#endif
return (EDOOFUS);
}
int
t4_register_cpl_handler(struct adapter *sc, int opcode, cpl_handler_t h)
{
uintptr_t *loc, new;
if (opcode >= ARRAY_SIZE(sc->cpl_handler))
return (EINVAL);
new = h ? (uintptr_t)h : (uintptr_t)cpl_not_handled;
loc = (uintptr_t *) &sc->cpl_handler[opcode];
atomic_store_rel_ptr(loc, new);
return (0);
}
static int
t4_sysctls(struct adapter *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid *oid;
struct sysctl_oid_list *children, *c0;
static char *caps[] = {
"\20\1PPP\2QFC\3DCBX", /* caps[0] linkcaps */
"\20\1NIC\2VM\3IDS\4UM\5UM_ISGL", /* caps[1] niccaps */
"\20\1TOE", /* caps[2] toecaps */
"\20\1RDDP\2RDMAC", /* caps[3] rdmacaps */
"\20\1INITIATOR_PDU\2TARGET_PDU" /* caps[4] iscsicaps */
"\3INITIATOR_CNXOFLD\4TARGET_CNXOFLD"
"\5INITIATOR_SSNOFLD\6TARGET_SSNOFLD",
"\20\1INITIATOR\2TARGET\3CTRL_OFLD" /* caps[5] fcoecaps */
};
ctx = device_get_sysctl_ctx(sc->dev);
/*
* dev.t4nex.X.
*/
oid = device_get_sysctl_tree(sc->dev);
c0 = children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD,
&sc->params.nports, 0, "# of ports");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
&sc->params.rev, 0, "chip hardware revision");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
CTLFLAG_RD, &sc->fw_version, 0, "firmware version");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
CTLFLAG_RD, &t4_cfg_file, 0, "configuration file");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD,
&sc->cfcsum, 0, "config file checksum");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkcaps",
CTLTYPE_STRING | CTLFLAG_RD, caps[0], sc->linkcaps,
sysctl_bitfield, "A", "available link capabilities");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "niccaps",
CTLTYPE_STRING | CTLFLAG_RD, caps[1], sc->niccaps,
sysctl_bitfield, "A", "available NIC capabilities");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "toecaps",
CTLTYPE_STRING | CTLFLAG_RD, caps[2], sc->toecaps,
sysctl_bitfield, "A", "available TCP offload capabilities");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdmacaps",
CTLTYPE_STRING | CTLFLAG_RD, caps[3], sc->rdmacaps,
sysctl_bitfield, "A", "available RDMA capabilities");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "iscsicaps",
CTLTYPE_STRING | CTLFLAG_RD, caps[4], sc->iscsicaps,
sysctl_bitfield, "A", "available iSCSI capabilities");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoecaps",
CTLTYPE_STRING | CTLFLAG_RD, caps[5], sc->fcoecaps,
sysctl_bitfield, "A", "available FCoE capabilities");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD,
&sc->params.vpd.cclk, 0, "core clock frequency (in KHz)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
CTLTYPE_STRING | CTLFLAG_RD, sc->sge.timer_val,
sizeof(sc->sge.timer_val), sysctl_int_array, "A",
"interrupt holdoff timer values (us)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
CTLTYPE_STRING | CTLFLAG_RD, sc->sge.counter_val,
sizeof(sc->sge.counter_val), sysctl_int_array, "A",
"interrupt holdoff packet counter values");
#ifdef SBUF_DRAIN
/*
* dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload.
*/
oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
CTLFLAG_RD | CTLFLAG_SKIP, NULL,
"logs and miscellaneous information");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_cctrl, "A", "congestion control");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_cpl_stats, "A", "CPL statistics");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_ddp_stats, "A", "DDP statistics");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_devlog, "A", "firmware's device log");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_fcoe_stats, "A", "FCoE statistics");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_hw_sched, "A", "hardware scheduler ");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_l2t, "A", "hardware L2 table");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_lb_stats, "A", "loopback statistics");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_meminfo, "A", "memory regions");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_path_mtus, "A", "path MTUs");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_pm_stats, "A", "PM statistics");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_rdma_stats, "A", "RDMA statistics");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_tcp_stats, "A", "TCP statistics");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_tids, "A", "TID information");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_tp_err_stats, "A", "TP error statistics");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_tx_rate, "A", "Tx rate");
#endif
#ifndef TCP_OFFLOAD_DISABLE
if (is_offload(sc)) {
/*
* dev.t4nex.X.toe.
*/
oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD,
NULL, "TOE parameters");
children = SYSCTL_CHILDREN(oid);
sc->tt.sndbuf = 256 * 1024;
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
&sc->tt.sndbuf, 0, "max hardware send buffer size");
sc->tt.ddp = 0;
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", CTLFLAG_RW,
&sc->tt.ddp, 0, "DDP allowed");
sc->tt.indsz = M_INDICATESIZE;
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "indsz", CTLFLAG_RW,
&sc->tt.indsz, 0, "DDP max indicate size allowed");
sc->tt.ddp_thres = 3*4096;
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp_thres", CTLFLAG_RW,
&sc->tt.ddp_thres, 0, "DDP threshold");
}
#endif
return (0);
}
static int
cxgbe_sysctls(struct port_info *pi)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid *oid;
struct sysctl_oid_list *children;
ctx = device_get_sysctl_ctx(pi->dev);
/*
* dev.cxgbe.X.
*/
oid = device_get_sysctl_tree(pi->dev);
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
&pi->nrxq, 0, "# of rx queues");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
&pi->ntxq, 0, "# of tx queues");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
&pi->first_rxq, 0, "index of first rx queue");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
&pi->first_txq, 0, "index of first tx queue");
#ifndef TCP_OFFLOAD_DISABLE
if (is_offload(pi->adapter)) {
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
&pi->nofldrxq, 0,
"# of rx queues for offloaded TCP connections");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
&pi->nofldtxq, 0,
"# of tx queues for offloaded TCP connections");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
CTLFLAG_RD, &pi->first_ofld_rxq, 0,
"index of first TOE rx queue");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
CTLFLAG_RD, &pi->first_ofld_txq, 0,
"index of first TOE tx queue");
}
#endif
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_holdoff_tmr_idx, "I",
"holdoff timer index");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_holdoff_pktc_idx, "I",
"holdoff packet counter index");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_qsize_rxq, "I",
"rx queue size");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_qsize_txq, "I",
"tx queue size");
/*
* dev.cxgbe.X.stats.
*/
oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "port statistics");
children = SYSCTL_CHILDREN(oid);
#define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \
SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \
CTLTYPE_U64 | CTLFLAG_RD, pi->adapter, reg, \
sysctl_handle_t4_reg64, "QU", desc)
SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L));
SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L));
SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L));
SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_64",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L));
SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L));
SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L));
SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L));
SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L));
SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L));
SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L));
SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L));
SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err",
"# of frames received with bad FCS",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L));
SYSCTL_ADD_T4_REG64(pi, "rx_len_err",
"# of frames received with length error",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L));
SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L));
SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_64",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L));
SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L));
#undef SYSCTL_ADD_T4_REG64
#define SYSCTL_ADD_T4_PORTSTAT(name, desc) \
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
&pi->stats.name, desc)
/* We get these from port_stats and they may be stale by upto 1s */
SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0,
"# drops due to buffer-group 0 overflows");
SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1,
"# drops due to buffer-group 1 overflows");
SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2,
"# drops due to buffer-group 2 overflows");
SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3,
"# drops due to buffer-group 3 overflows");
SYSCTL_ADD_T4_PORTSTAT(rx_trunc0,
"# of buffer-group 0 truncated packets");
SYSCTL_ADD_T4_PORTSTAT(rx_trunc1,
"# of buffer-group 1 truncated packets");
SYSCTL_ADD_T4_PORTSTAT(rx_trunc2,
"# of buffer-group 2 truncated packets");
SYSCTL_ADD_T4_PORTSTAT(rx_trunc3,
"# of buffer-group 3 truncated packets");
#undef SYSCTL_ADD_T4_PORTSTAT
return (0);
}
static int
sysctl_int_array(SYSCTL_HANDLER_ARGS)
{
int rc, *i;
struct sbuf sb;
sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
for (i = arg1; arg2; arg2 -= sizeof(int), i++)
sbuf_printf(&sb, "%d ", *i);
sbuf_trim(&sb);
sbuf_finish(&sb);
rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
sbuf_delete(&sb);
return (rc);
}
static int
sysctl_bitfield(SYSCTL_HANDLER_ARGS)
{
int rc;
struct sbuf *sb;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return(rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
if (sb == NULL)
return (ENOMEM);
sbuf_printf(sb, "%b", (int)arg2, (char *)arg1);
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
{
struct port_info *pi = arg1;
struct adapter *sc = pi->adapter;
int idx, rc, i;
idx = pi->tmr_idx;
rc = sysctl_handle_int(oidp, &idx, 0, req);
if (rc != 0 || req->newptr == NULL)
return (rc);
if (idx < 0 || idx >= SGE_NTIMERS)
return (EINVAL);
ADAPTER_LOCK(sc);
rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0);
if (rc == 0) {
struct sge_rxq *rxq;
uint8_t v;
v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(pi->pktc_idx != -1);
for_each_rxq(pi, i, rxq) {
#ifdef atomic_store_rel_8
atomic_store_rel_8(&rxq->iq.intr_params, v);
#else
rxq->iq.intr_params = v;
#endif
}
pi->tmr_idx = idx;
}
ADAPTER_UNLOCK(sc);
return (rc);
}
static int
sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
{
struct port_info *pi = arg1;
struct adapter *sc = pi->adapter;
int idx, rc;
idx = pi->pktc_idx;
rc = sysctl_handle_int(oidp, &idx, 0, req);
if (rc != 0 || req->newptr == NULL)
return (rc);
if (idx < -1 || idx >= SGE_NCOUNTERS)
return (EINVAL);
ADAPTER_LOCK(sc);
rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0);
if (rc == 0 && pi->flags & PORT_INIT_DONE)
rc = EBUSY; /* cannot be changed once the queues are created */
if (rc == 0)
pi->pktc_idx = idx;
ADAPTER_UNLOCK(sc);
return (rc);
}
static int
sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
{
struct port_info *pi = arg1;
struct adapter *sc = pi->adapter;
int qsize, rc;
qsize = pi->qsize_rxq;
rc = sysctl_handle_int(oidp, &qsize, 0, req);
if (rc != 0 || req->newptr == NULL)
return (rc);
if (qsize < 128 || (qsize & 7))
return (EINVAL);
ADAPTER_LOCK(sc);
rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0);
if (rc == 0 && pi->flags & PORT_INIT_DONE)
rc = EBUSY; /* cannot be changed once the queues are created */
if (rc == 0)
pi->qsize_rxq = qsize;
ADAPTER_UNLOCK(sc);
return (rc);
}
static int
sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
{
struct port_info *pi = arg1;
struct adapter *sc = pi->adapter;
int qsize, rc;
qsize = pi->qsize_txq;
rc = sysctl_handle_int(oidp, &qsize, 0, req);
if (rc != 0 || req->newptr == NULL)
return (rc);
if (qsize < 128)
return (EINVAL);
ADAPTER_LOCK(sc);
rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0);
if (rc == 0 && pi->flags & PORT_INIT_DONE)
rc = EBUSY; /* cannot be changed once the queues are created */
if (rc == 0)
pi->qsize_txq = qsize;
ADAPTER_UNLOCK(sc);
return (rc);
}
static int
sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
int reg = arg2;
uint64_t val;
val = t4_read_reg64(sc, reg);
return (sysctl_handle_64(oidp, &val, 0, req));
}
#ifdef SBUF_DRAIN
static int
sysctl_cctrl(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc, i;
uint16_t incr[NMTUS][NCCTRL_WIN];
static const char *dec_fac[] = {
"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
"0.9375"
};
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL)
return (ENOMEM);
t4_read_cong_tbl(sc, incr);
for (i = 0; i < NCCTRL_WIN; ++i) {
sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
incr[5][i], incr[6][i], incr[7][i]);
sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
incr[8][i], incr[9][i], incr[10][i], incr[11][i],
incr[12][i], incr[13][i], incr[14][i], incr[15][i],
sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
}
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc;
struct tp_cpl_stats stats;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
t4_tp_get_cpl_stats(sc, &stats);
sbuf_printf(sb, " channel 0 channel 1 channel 2 "
"channel 3\n");
sbuf_printf(sb, "CPL requests: %10u %10u %10u %10u\n",
stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
sbuf_printf(sb, "CPL responses: %10u %10u %10u %10u",
stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc;
struct tp_usm_stats stats;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return(rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
t4_get_usm_stats(sc, &stats);
sbuf_printf(sb, "Frames: %u\n", stats.frames);
sbuf_printf(sb, "Octets: %ju\n", stats.octets);
sbuf_printf(sb, "Drops: %u", stats.drops);
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
const char *devlog_level_strings[] = {
[FW_DEVLOG_LEVEL_EMERG] = "EMERG",
[FW_DEVLOG_LEVEL_CRIT] = "CRIT",
[FW_DEVLOG_LEVEL_ERR] = "ERR",
[FW_DEVLOG_LEVEL_NOTICE] = "NOTICE",
[FW_DEVLOG_LEVEL_INFO] = "INFO",
[FW_DEVLOG_LEVEL_DEBUG] = "DEBUG"
};
const char *devlog_facility_strings[] = {
[FW_DEVLOG_FACILITY_CORE] = "CORE",
[FW_DEVLOG_FACILITY_SCHED] = "SCHED",
[FW_DEVLOG_FACILITY_TIMER] = "TIMER",
[FW_DEVLOG_FACILITY_RES] = "RES",
[FW_DEVLOG_FACILITY_HW] = "HW",
[FW_DEVLOG_FACILITY_FLR] = "FLR",
[FW_DEVLOG_FACILITY_DMAQ] = "DMAQ",
[FW_DEVLOG_FACILITY_PHY] = "PHY",
[FW_DEVLOG_FACILITY_MAC] = "MAC",
[FW_DEVLOG_FACILITY_PORT] = "PORT",
[FW_DEVLOG_FACILITY_VI] = "VI",
[FW_DEVLOG_FACILITY_FILTER] = "FILTER",
[FW_DEVLOG_FACILITY_ACL] = "ACL",
[FW_DEVLOG_FACILITY_TM] = "TM",
[FW_DEVLOG_FACILITY_QFC] = "QFC",
[FW_DEVLOG_FACILITY_DCB] = "DCB",
[FW_DEVLOG_FACILITY_ETH] = "ETH",
[FW_DEVLOG_FACILITY_OFLD] = "OFLD",
[FW_DEVLOG_FACILITY_RI] = "RI",
[FW_DEVLOG_FACILITY_ISCSI] = "ISCSI",
[FW_DEVLOG_FACILITY_FCOE] = "FCOE",
[FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI",
[FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE"
};
static int
sysctl_devlog(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct devlog_params *dparams = &sc->params.devlog;
struct fw_devlog_e *buf, *e;
int i, j, rc, nentries, first = 0;
struct sbuf *sb;
uint64_t ftstamp = UINT64_MAX;
if (dparams->start == 0)
return (ENXIO);
nentries = dparams->size / sizeof(struct fw_devlog_e);
buf = malloc(dparams->size, M_CXGBE, M_NOWAIT);
if (buf == NULL)
return (ENOMEM);
rc = -t4_mem_read(sc, dparams->memtype, dparams->start, dparams->size,
(void *)buf);
if (rc != 0)
goto done;
for (i = 0; i < nentries; i++) {
e = &buf[i];
if (e->timestamp == 0)
break; /* end */
e->timestamp = be64toh(e->timestamp);
e->seqno = be32toh(e->seqno);
for (j = 0; j < 8; j++)
e->params[j] = be32toh(e->params[j]);
if (e->timestamp < ftstamp) {
ftstamp = e->timestamp;
first = i;
}
}
if (buf[first].timestamp == 0)
goto done; /* nothing in the log */
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
goto done;
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL) {
rc = ENOMEM;
goto done;
}
sbuf_printf(sb, "%10s %15s %8s %8s %s\n",
"Seq#", "Tstamp", "Level", "Facility", "Message");
i = first;
do {
e = &buf[i];
if (e->timestamp == 0)
break; /* end */
sbuf_printf(sb, "%10d %15ju %8s %8s ",
e->seqno, e->timestamp,
(e->level < ARRAY_SIZE(devlog_level_strings) ?
devlog_level_strings[e->level] : "UNKNOWN"),
(e->facility < ARRAY_SIZE(devlog_facility_strings) ?
devlog_facility_strings[e->facility] : "UNKNOWN"));
sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
e->params[2], e->params[3], e->params[4],
e->params[5], e->params[6], e->params[7]);
if (++i == nentries)
i = 0;
} while (i != first);
rc = sbuf_finish(sb);
sbuf_delete(sb);
done:
free(buf, M_CXGBE);
return (rc);
}
static int
sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc;
struct tp_fcoe_stats stats[4];
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
t4_get_fcoe_stats(sc, 0, &stats[0]);
t4_get_fcoe_stats(sc, 1, &stats[1]);
t4_get_fcoe_stats(sc, 2, &stats[2]);
t4_get_fcoe_stats(sc, 3, &stats[3]);
sbuf_printf(sb, " channel 0 channel 1 "
"channel 2 channel 3\n");
sbuf_printf(sb, "octetsDDP: %16ju %16ju %16ju %16ju\n",
stats[0].octetsDDP, stats[1].octetsDDP, stats[2].octetsDDP,
stats[3].octetsDDP);
sbuf_printf(sb, "framesDDP: %16u %16u %16u %16u\n", stats[0].framesDDP,
stats[1].framesDDP, stats[2].framesDDP, stats[3].framesDDP);
sbuf_printf(sb, "framesDrop: %16u %16u %16u %16u",
stats[0].framesDrop, stats[1].framesDrop, stats[2].framesDrop,
stats[3].framesDrop);
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc, i;
unsigned int map, kbps, ipg, mode;
unsigned int pace_tab[NTX_SCHED];
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
t4_read_pace_tbl(sc, pace_tab);
sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) "
"Class IPG (0.1 ns) Flow IPG (us)");
for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
t4_get_tx_sched(sc, i, &kbps, &ipg);
sbuf_printf(sb, "\n %u %-5s %u ", i,
(mode & (1 << i)) ? "flow" : "class", map & 3);
if (kbps)
sbuf_printf(sb, "%9u ", kbps);
else
sbuf_printf(sb, " disabled ");
if (ipg)
sbuf_printf(sb, "%13u ", ipg);
else
sbuf_printf(sb, " disabled ");
if (pace_tab[i])
sbuf_printf(sb, "%10u", pace_tab[i]);
else
sbuf_printf(sb, " disabled");
}
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc, i, j;
uint64_t *p0, *p1;
struct lb_port_stats s[2];
static const char *stat_name[] = {
"OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
"UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
"Frames128To255:", "Frames256To511:", "Frames512To1023:",
"Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
"BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
"BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
"BG2FramesTrunc:", "BG3FramesTrunc:"
};
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL)
return (ENOMEM);
memset(s, 0, sizeof(s));
for (i = 0; i < 4; i += 2) {
t4_get_lb_stats(sc, i, &s[0]);
t4_get_lb_stats(sc, i + 1, &s[1]);
p0 = &s[0].octets;
p1 = &s[1].octets;
sbuf_printf(sb, "%s Loopback %u"
" Loopback %u", i == 0 ? "" : "\n", i, i + 1);
for (j = 0; j < ARRAY_SIZE(stat_name); j++)
sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
*p0++, *p1++);
}
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
struct mem_desc {
unsigned int base;
unsigned int limit;
unsigned int idx;
};
static int
mem_desc_cmp(const void *a, const void *b)
{
return ((const struct mem_desc *)a)->base -
((const struct mem_desc *)b)->base;
}
static void
mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
unsigned int to)
{
unsigned int size;
size = to - from + 1;
if (size == 0)
return;
/* XXX: need humanize_number(3) in libkern for a more readable 'size' */
sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
}
static int
sysctl_meminfo(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc, i, n;
uint32_t lo, hi;
static const char *memory[] = { "EDC0:", "EDC1:", "MC:" };
static const char *region[] = {
"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
"RQUDP region:", "PBL region:", "TXPBL region:", "ULPRX state:",
"ULPTX state:", "On-chip queues:"
};
struct mem_desc avail[3];
struct mem_desc mem[ARRAY_SIZE(region) + 3]; /* up to 3 holes */
struct mem_desc *md = mem;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL)
return (ENOMEM);
for (i = 0; i < ARRAY_SIZE(mem); i++) {
mem[i].limit = 0;
mem[i].idx = i;
}
/* Find and sort the populated memory ranges */
i = 0;
lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
if (lo & F_EDRAM0_ENABLE) {
hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
avail[i].base = G_EDRAM0_BASE(hi) << 20;
avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
avail[i].idx = 0;
i++;
}
if (lo & F_EDRAM1_ENABLE) {
hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
avail[i].base = G_EDRAM1_BASE(hi) << 20;
avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
avail[i].idx = 1;
i++;
}
if (lo & F_EXT_MEM_ENABLE) {
hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
avail[i].base = G_EXT_MEM_BASE(hi) << 20;
avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20);
avail[i].idx = 2;
i++;
}
if (!i) /* no memory available */
return 0;
qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
(md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
(md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
(md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
(md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
(md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
/* the next few have explicit upper bounds */
md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
md->limit = md->base - 1 +
t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
md++;
md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
md->limit = md->base - 1 +
t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
md++;
if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
hi = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
md->limit = (sc->tids.ntids - hi) * 16 + md->base - 1;
} else {
md->base = 0;
md->idx = ARRAY_SIZE(region); /* hide it */
}
md++;
#define ulp_region(reg) \
md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
(md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
ulp_region(RX_ISCSI);
ulp_region(RX_TDDP);
ulp_region(TX_TPT);
ulp_region(RX_STAG);
ulp_region(RX_RQ);
ulp_region(RX_RQUDP);
ulp_region(RX_PBL);
ulp_region(TX_PBL);
#undef ulp_region
md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
md->limit = md->base + sc->tids.ntids - 1;
md++;
md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
md->limit = md->base + sc->tids.ntids - 1;
md++;
md->base = sc->vres.ocq.start;
if (sc->vres.ocq.size)
md->limit = md->base + sc->vres.ocq.size - 1;
else
md->idx = ARRAY_SIZE(region); /* hide it */
md++;
/* add any address-space holes, there can be up to 3 */
for (n = 0; n < i - 1; n++)
if (avail[n].limit < avail[n + 1].base)
(md++)->base = avail[n].limit;
if (avail[n].limit)
(md++)->base = avail[n].limit;
n = md - mem;
qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
for (lo = 0; lo < i; lo++)
mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
avail[lo].limit - 1);
sbuf_printf(sb, "\n");
for (i = 0; i < n; i++) {
if (mem[i].idx >= ARRAY_SIZE(region))
continue; /* skip holes */
if (!mem[i].limit)
mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
mem_region_show(sb, region[mem[i].idx], mem[i].base,
mem[i].limit);
}
sbuf_printf(sb, "\n");
lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
mem_region_show(sb, "uP RAM:", lo, hi);
lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
mem_region_show(sb, "uP Extmem2:", lo, hi);
lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n",
G_PMRXMAXPAGE(lo),
t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
(lo & F_PMRXNUMCHN) ? 2 : 1);
lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n",
G_PMTXMAXPAGE(lo),
hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
sbuf_printf(sb, "%u p-structs\n",
t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT));
for (i = 0; i < 4; i++) {
lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
i, G_USED(lo), G_ALLOC(lo));
}
for (i = 0; i < 4; i++) {
lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
sbuf_printf(sb,
"\nLoopback %d using %u pages out of %u allocated",
i, G_USED(lo), G_ALLOC(lo));
}
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc;
uint16_t mtus[NMTUS];
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
t4_read_mtu_tbl(sc, mtus, NULL);
sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
mtus[14], mtus[15]);
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc, i;
uint32_t tx_cnt[PM_NSTATS], rx_cnt[PM_NSTATS];
uint64_t tx_cyc[PM_NSTATS], rx_cyc[PM_NSTATS];
static const char *pm_stats[] = {
"Read:", "Write bypass:", "Write mem:", "Flush:", "FIFO wait:"
};
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
sbuf_printf(sb, " Tx count Tx cycles "
"Rx count Rx cycles");
for (i = 0; i < PM_NSTATS; i++)
sbuf_printf(sb, "\n%-13s %10u %20ju %10u %20ju",
pm_stats[i], tx_cnt[i], tx_cyc[i], rx_cnt[i], rx_cyc[i]);
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc;
struct tp_rdma_stats stats;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
t4_tp_get_rdma_stats(sc, &stats);
sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc;
struct tp_tcp_stats v4, v6;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
t4_tp_get_tcp_stats(sc, &v4, &v6);
sbuf_printf(sb,
" IP IPv6\n");
sbuf_printf(sb, "OutRsts: %20u %20u\n",
v4.tcpOutRsts, v6.tcpOutRsts);
sbuf_printf(sb, "InSegs: %20ju %20ju\n",
v4.tcpInSegs, v6.tcpInSegs);
sbuf_printf(sb, "OutSegs: %20ju %20ju\n",
v4.tcpOutSegs, v6.tcpOutSegs);
sbuf_printf(sb, "RetransSegs: %20ju %20ju",
v4.tcpRetransSegs, v6.tcpRetransSegs);
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_tids(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc;
struct tid_info *t = &sc->tids;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
if (t->natids) {
sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
t->atids_in_use);
}
if (t->ntids) {
if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
uint32_t b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
if (b) {
sbuf_printf(sb, "TID range: 0-%u, %u-%u", b - 1,
t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4,
t->ntids - 1);
} else {
sbuf_printf(sb, "TID range: %u-%u",
t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4,
t->ntids - 1);
}
} else
sbuf_printf(sb, "TID range: 0-%u", t->ntids - 1);
sbuf_printf(sb, ", in use: %u\n",
atomic_load_acq_int(&t->tids_in_use));
}
if (t->nstids) {
sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
t->stid_base + t->nstids - 1, t->stids_in_use);
}
if (t->nftids) {
sbuf_printf(sb, "FTID range: %u-%u\n", t->ftid_base,
t->ftid_base + t->nftids - 1);
}
sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users",
t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4),
t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6));
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc;
struct tp_err_stats stats;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
t4_tp_get_err_stats(sc, &stats);
sbuf_printf(sb, " channel 0 channel 1 channel 2 "
"channel 3\n");
sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n",
stats.macInErrs[0], stats.macInErrs[1], stats.macInErrs[2],
stats.macInErrs[3]);
sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n",
stats.hdrInErrs[0], stats.hdrInErrs[1], stats.hdrInErrs[2],
stats.hdrInErrs[3]);
sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n",
stats.tcpInErrs[0], stats.tcpInErrs[1], stats.tcpInErrs[2],
stats.tcpInErrs[3]);
sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n",
stats.tcp6InErrs[0], stats.tcp6InErrs[1], stats.tcp6InErrs[2],
stats.tcp6InErrs[3]);
sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n",
stats.tnlCongDrops[0], stats.tnlCongDrops[1], stats.tnlCongDrops[2],
stats.tnlCongDrops[3]);
sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n",
stats.tnlTxDrops[0], stats.tnlTxDrops[1], stats.tnlTxDrops[2],
stats.tnlTxDrops[3]);
sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n",
stats.ofldVlanDrops[0], stats.ofldVlanDrops[1],
stats.ofldVlanDrops[2], stats.ofldVlanDrops[3]);
sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n",
stats.ofldChanDrops[0], stats.ofldChanDrops[1],
stats.ofldChanDrops[2], stats.ofldChanDrops[3]);
sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u",
stats.ofldNoNeigh, stats.ofldCongDefer);
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc;
u64 nrate[NCHAN], orate[NCHAN];
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
t4_get_chan_txrate(sc, nrate, orate);
sbuf_printf(sb, " channel 0 channel 1 channel 2 "
"channel 3\n");
sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n",
nrate[0], nrate[1], nrate[2], nrate[3]);
sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju",
orate[0], orate[1], orate[2], orate[3]);
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
#endif
static inline void
txq_start(struct ifnet *ifp, struct sge_txq *txq)
{
struct buf_ring *br;
struct mbuf *m;
TXQ_LOCK_ASSERT_OWNED(txq);
br = txq->br;
m = txq->m ? txq->m : drbr_dequeue(ifp, br);
if (m)
t4_eth_tx(ifp, txq, m);
}
void
t4_tx_callout(void *arg)
{
struct sge_eq *eq = arg;
struct adapter *sc;
if (EQ_TRYLOCK(eq) == 0)
goto reschedule;
if (eq->flags & EQ_STALLED && !can_resume_tx(eq)) {
EQ_UNLOCK(eq);
reschedule:
if (__predict_true(!(eq->flags && EQ_DOOMED)))
callout_schedule(&eq->tx_callout, 1);
return;
}
EQ_LOCK_ASSERT_OWNED(eq);
if (__predict_true((eq->flags & EQ_DOOMED) == 0)) {
if ((eq->flags & EQ_TYPEMASK) == EQ_ETH) {
struct sge_txq *txq = arg;
struct port_info *pi = txq->ifp->if_softc;
sc = pi->adapter;
} else {
struct sge_wrq *wrq = arg;
sc = wrq->adapter;
}
taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task);
}
EQ_UNLOCK(eq);
}
void
t4_tx_task(void *arg, int count)
{
struct sge_eq *eq = arg;
EQ_LOCK(eq);
if ((eq->flags & EQ_TYPEMASK) == EQ_ETH) {
struct sge_txq *txq = arg;
txq_start(txq->ifp, txq);
} else {
struct sge_wrq *wrq = arg;
t4_wrq_tx_locked(wrq->adapter, wrq, NULL);
}
EQ_UNLOCK(eq);
}
static uint32_t
fconf_to_mode(uint32_t fconf)
{
uint32_t mode;
mode = T4_FILTER_IPv4 | T4_FILTER_IPv6 | T4_FILTER_IP_SADDR |
T4_FILTER_IP_DADDR | T4_FILTER_IP_SPORT | T4_FILTER_IP_DPORT;
if (fconf & F_FRAGMENTATION)
mode |= T4_FILTER_IP_FRAGMENT;
if (fconf & F_MPSHITTYPE)
mode |= T4_FILTER_MPS_HIT_TYPE;
if (fconf & F_MACMATCH)
mode |= T4_FILTER_MAC_IDX;
if (fconf & F_ETHERTYPE)
mode |= T4_FILTER_ETH_TYPE;
if (fconf & F_PROTOCOL)
mode |= T4_FILTER_IP_PROTO;
if (fconf & F_TOS)
mode |= T4_FILTER_IP_TOS;
if (fconf & F_VLAN)
mode |= T4_FILTER_VLAN;
if (fconf & F_VNIC_ID)
mode |= T4_FILTER_VNIC;
if (fconf & F_PORT)
mode |= T4_FILTER_PORT;
if (fconf & F_FCOE)
mode |= T4_FILTER_FCoE;
return (mode);
}
static uint32_t
mode_to_fconf(uint32_t mode)
{
uint32_t fconf = 0;
if (mode & T4_FILTER_IP_FRAGMENT)
fconf |= F_FRAGMENTATION;
if (mode & T4_FILTER_MPS_HIT_TYPE)
fconf |= F_MPSHITTYPE;
if (mode & T4_FILTER_MAC_IDX)
fconf |= F_MACMATCH;
if (mode & T4_FILTER_ETH_TYPE)
fconf |= F_ETHERTYPE;
if (mode & T4_FILTER_IP_PROTO)
fconf |= F_PROTOCOL;
if (mode & T4_FILTER_IP_TOS)
fconf |= F_TOS;
if (mode & T4_FILTER_VLAN)
fconf |= F_VLAN;
if (mode & T4_FILTER_VNIC)
fconf |= F_VNIC_ID;
if (mode & T4_FILTER_PORT)
fconf |= F_PORT;
if (mode & T4_FILTER_FCoE)
fconf |= F_FCOE;
return (fconf);
}
static uint32_t
fspec_to_fconf(struct t4_filter_specification *fs)
{
uint32_t fconf = 0;
if (fs->val.frag || fs->mask.frag)
fconf |= F_FRAGMENTATION;
if (fs->val.matchtype || fs->mask.matchtype)
fconf |= F_MPSHITTYPE;
if (fs->val.macidx || fs->mask.macidx)
fconf |= F_MACMATCH;
if (fs->val.ethtype || fs->mask.ethtype)
fconf |= F_ETHERTYPE;
if (fs->val.proto || fs->mask.proto)
fconf |= F_PROTOCOL;
if (fs->val.tos || fs->mask.tos)
fconf |= F_TOS;
if (fs->val.vlan_vld || fs->mask.vlan_vld)
fconf |= F_VLAN;
if (fs->val.vnic_vld || fs->mask.vnic_vld)
fconf |= F_VNIC_ID;
if (fs->val.iport || fs->mask.iport)
fconf |= F_PORT;
if (fs->val.fcoe || fs->mask.fcoe)
fconf |= F_FCOE;
return (fconf);
}
static int
get_filter_mode(struct adapter *sc, uint32_t *mode)
{
uint32_t fconf;
t4_read_indirect(sc, A_TP_PIO_ADDR, A_TP_PIO_DATA, &fconf, 1,
A_TP_VLAN_PRI_MAP);
if (sc->filter_mode != fconf) {
log(LOG_WARNING, "%s: cached filter mode out of sync %x %x.\n",
device_get_nameunit(sc->dev), sc->filter_mode, fconf);
sc->filter_mode = fconf;
}
*mode = fconf_to_mode(sc->filter_mode);
return (0);
}
static int
set_filter_mode(struct adapter *sc, uint32_t mode)
{
uint32_t fconf;
int rc;
fconf = mode_to_fconf(mode);
ADAPTER_LOCK(sc);
if (IS_BUSY(sc)) {
rc = EAGAIN;
goto done;
}
if (sc->tids.ftids_in_use > 0) {
rc = EBUSY;
goto done;
}
#ifndef TCP_OFFLOAD_DISABLE
if (sc->offload_map) {
rc = EBUSY;
goto done;
}
#endif
#ifdef notyet
rc = -t4_set_filter_mode(sc, fconf);
if (rc == 0)
sc->filter_mode = fconf;
#else
rc = ENOTSUP;
#endif
done:
ADAPTER_UNLOCK(sc);
return (rc);
}
static inline uint64_t
get_filter_hits(struct adapter *sc, uint32_t fid)
{
uint32_t tcb_base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
uint64_t hits;
t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 0),
tcb_base + (fid + sc->tids.ftid_base) * TCB_SIZE);
t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 0));
hits = t4_read_reg64(sc, MEMWIN0_BASE + 16);
return (be64toh(hits));
}
static int
get_filter(struct adapter *sc, struct t4_filter *t)
{
int i, nfilters = sc->tids.nftids;
struct filter_entry *f;
ADAPTER_LOCK_ASSERT_OWNED(sc);
if (IS_BUSY(sc))
return (EAGAIN);
if (sc->tids.ftids_in_use == 0 || sc->tids.ftid_tab == NULL ||
t->idx >= nfilters) {
t->idx = 0xffffffff;
return (0);
}
f = &sc->tids.ftid_tab[t->idx];
for (i = t->idx; i < nfilters; i++, f++) {
if (f->valid) {
t->idx = i;
t->l2tidx = f->l2t ? f->l2t->idx : 0;
t->smtidx = f->smtidx;
if (f->fs.hitcnts)
t->hits = get_filter_hits(sc, t->idx);
else
t->hits = UINT64_MAX;
t->fs = f->fs;
return (0);
}
}
t->idx = 0xffffffff;
return (0);
}
static int
set_filter(struct adapter *sc, struct t4_filter *t)
{
unsigned int nfilters, nports;
struct filter_entry *f;
int i;
ADAPTER_LOCK_ASSERT_OWNED(sc);
nfilters = sc->tids.nftids;
nports = sc->params.nports;
if (nfilters == 0)
return (ENOTSUP);
if (!(sc->flags & FULL_INIT_DONE))
return (EAGAIN);
if (t->idx >= nfilters)
return (EINVAL);
/* Validate against the global filter mode */
if ((sc->filter_mode | fspec_to_fconf(&t->fs)) != sc->filter_mode)
return (E2BIG);
if (t->fs.action == FILTER_SWITCH && t->fs.eport >= nports)
return (EINVAL);
if (t->fs.val.iport >= nports)
return (EINVAL);
/* Can't specify an iq if not steering to it */
if (!t->fs.dirsteer && t->fs.iq)
return (EINVAL);
/* IPv6 filter idx must be 4 aligned */
if (t->fs.type == 1 &&
((t->idx & 0x3) || t->idx + 4 >= nfilters))
return (EINVAL);
if (sc->tids.ftid_tab == NULL) {
KASSERT(sc->tids.ftids_in_use == 0,
("%s: no memory allocated but filters_in_use > 0",
__func__));
sc->tids.ftid_tab = malloc(sizeof (struct filter_entry) *
nfilters, M_CXGBE, M_NOWAIT | M_ZERO);
if (sc->tids.ftid_tab == NULL)
return (ENOMEM);
}
for (i = 0; i < 4; i++) {
f = &sc->tids.ftid_tab[t->idx + i];
if (f->pending || f->valid)
return (EBUSY);
if (f->locked)
return (EPERM);
if (t->fs.type == 0)
break;
}
f = &sc->tids.ftid_tab[t->idx];
f->fs = t->fs;
return set_filter_wr(sc, t->idx);
}
static int
del_filter(struct adapter *sc, struct t4_filter *t)
{
unsigned int nfilters;
struct filter_entry *f;
ADAPTER_LOCK_ASSERT_OWNED(sc);
if (IS_BUSY(sc))
return (EAGAIN);
nfilters = sc->tids.nftids;
if (nfilters == 0)
return (ENOTSUP);
if (sc->tids.ftid_tab == NULL || sc->tids.ftids_in_use == 0 ||
t->idx >= nfilters)
return (EINVAL);
if (!(sc->flags & FULL_INIT_DONE))
return (EAGAIN);
f = &sc->tids.ftid_tab[t->idx];
if (f->pending)
return (EBUSY);
if (f->locked)
return (EPERM);
if (f->valid) {
t->fs = f->fs; /* extra info for the caller */
return del_filter_wr(sc, t->idx);
}
return (0);
}
static void
clear_filter(struct filter_entry *f)
{
if (f->l2t)
t4_l2t_release(f->l2t);
bzero(f, sizeof (*f));
}
static int
set_filter_wr(struct adapter *sc, int fidx)
{
struct filter_entry *f = &sc->tids.ftid_tab[fidx];
struct mbuf *m;
struct fw_filter_wr *fwr;
unsigned int ftid;
ADAPTER_LOCK_ASSERT_OWNED(sc);
if (f->fs.newdmac || f->fs.newvlan) {
/* This filter needs an L2T entry; allocate one. */
f->l2t = t4_l2t_alloc_switching(sc->l2t);
if (f->l2t == NULL)
return (EAGAIN);
if (t4_l2t_set_switching(sc, f->l2t, f->fs.vlan, f->fs.eport,
f->fs.dmac)) {
t4_l2t_release(f->l2t);
f->l2t = NULL;
return (ENOMEM);
}
}
ftid = sc->tids.ftid_base + fidx;
m = m_gethdr(M_NOWAIT, MT_DATA);
if (m == NULL)
return (ENOMEM);
fwr = mtod(m, struct fw_filter_wr *);
m->m_len = m->m_pkthdr.len = sizeof(*fwr);
bzero(fwr, sizeof (*fwr));
fwr->op_pkd = htobe32(V_FW_WR_OP(FW_FILTER_WR));
fwr->len16_pkd = htobe32(FW_LEN16(*fwr));
fwr->tid_to_iq =
htobe32(V_FW_FILTER_WR_TID(ftid) |
V_FW_FILTER_WR_RQTYPE(f->fs.type) |
V_FW_FILTER_WR_NOREPLY(0) |
V_FW_FILTER_WR_IQ(f->fs.iq));
fwr->del_filter_to_l2tix =
htobe32(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
f->fs.newvlan == VLAN_REWRITE) |
V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
f->fs.newvlan == VLAN_REWRITE) |
V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
V_FW_FILTER_WR_PRIO(f->fs.prio) |
V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
fwr->ethtype = htobe16(f->fs.val.ethtype);
fwr->ethtypem = htobe16(f->fs.mask.ethtype);
fwr->frag_to_ovlan_vldm =
(V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.vlan_vld) |
V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.vnic_vld) |
V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.vlan_vld) |
V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.vnic_vld));
fwr->smac_sel = 0;
fwr->rx_chan_rx_rpl_iq = htobe16(V_FW_FILTER_WR_RX_CHAN(0) |
V_FW_FILTER_WR_RX_RPL_IQ(sc->sge.fwq.abs_id));
fwr->maci_to_matchtypem =
htobe32(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
V_FW_FILTER_WR_PORT(f->fs.val.iport) |
V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
fwr->ptcl = f->fs.val.proto;
fwr->ptclm = f->fs.mask.proto;
fwr->ttyp = f->fs.val.tos;
fwr->ttypm = f->fs.mask.tos;
fwr->ivlan = htobe16(f->fs.val.vlan);
fwr->ivlanm = htobe16(f->fs.mask.vlan);
fwr->ovlan = htobe16(f->fs.val.vnic);
fwr->ovlanm = htobe16(f->fs.mask.vnic);
bcopy(f->fs.val.dip, fwr->lip, sizeof (fwr->lip));
bcopy(f->fs.mask.dip, fwr->lipm, sizeof (fwr->lipm));
bcopy(f->fs.val.sip, fwr->fip, sizeof (fwr->fip));
bcopy(f->fs.mask.sip, fwr->fipm, sizeof (fwr->fipm));
fwr->lp = htobe16(f->fs.val.dport);
fwr->lpm = htobe16(f->fs.mask.dport);
fwr->fp = htobe16(f->fs.val.sport);
fwr->fpm = htobe16(f->fs.mask.sport);
if (f->fs.newsmac)
bcopy(f->fs.smac, fwr->sma, sizeof (fwr->sma));
f->pending = 1;
sc->tids.ftids_in_use++;
t4_mgmt_tx(sc, m);
return (0);
}
static int
del_filter_wr(struct adapter *sc, int fidx)
{
struct filter_entry *f = &sc->tids.ftid_tab[fidx];
struct mbuf *m;
struct fw_filter_wr *fwr;
unsigned int ftid;
ADAPTER_LOCK_ASSERT_OWNED(sc);
ftid = sc->tids.ftid_base + fidx;
m = m_gethdr(M_NOWAIT, MT_DATA);
if (m == NULL)
return (ENOMEM);
fwr = mtod(m, struct fw_filter_wr *);
m->m_len = m->m_pkthdr.len = sizeof(*fwr);
bzero(fwr, sizeof (*fwr));
t4_mk_filtdelwr(ftid, fwr, sc->sge.fwq.abs_id);
f->pending = 1;
t4_mgmt_tx(sc, m);
return (0);
}
static int
filter_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_set_tcb_rpl *rpl = (const void *)(rss + 1);
unsigned int idx = GET_TID(rpl);
KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
rss->opcode));
if (idx >= sc->tids.ftid_base &&
(idx -= sc->tids.ftid_base) < sc->tids.nftids) {
unsigned int rc = G_COOKIE(rpl->cookie);
struct filter_entry *f = &sc->tids.ftid_tab[idx];
ADAPTER_LOCK(sc);
if (rc == FW_FILTER_WR_FLT_ADDED) {
f->smtidx = (be64toh(rpl->oldval) >> 24) & 0xff;
f->pending = 0; /* asynchronous setup completed */
f->valid = 1;
} else {
if (rc != FW_FILTER_WR_FLT_DELETED) {
/* Add or delete failed, display an error */
log(LOG_ERR,
"filter %u setup failed with error %u\n",
idx, rc);
}
clear_filter(f);
sc->tids.ftids_in_use--;
}
ADAPTER_UNLOCK(sc);
}
return (0);
}
static int
get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
{
int rc = EINVAL;
if (cntxt->cid > M_CTXTQID)
return (rc);
if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
return (rc);
if (sc->flags & FW_OK) {
ADAPTER_LOCK(sc); /* Avoid parallel t4_wr_mbox */
rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
&cntxt->data[0]);
ADAPTER_UNLOCK(sc);
}
if (rc != 0) {
/* Read via firmware failed or wasn't even attempted */
rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id,
&cntxt->data[0]);
}
return (rc);
}
static int
read_card_mem(struct adapter *sc, struct t4_mem_range *mr)
{
uint32_t base, size, lo, hi, win, off, remaining, i, n;
uint32_t *buf, *b;
int rc;
/* reads are in multiples of 32 bits */
if (mr->addr & 3 || mr->len & 3 || mr->len == 0)
return (EINVAL);
/*
* We don't want to deal with potential holes so we mandate that the
* requested region must lie entirely within one of the 3 memories.
*/
lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
if (lo & F_EDRAM0_ENABLE) {
hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
base = G_EDRAM0_BASE(hi) << 20;
size = G_EDRAM0_SIZE(hi) << 20;
if (size > 0 &&
mr->addr >= base && mr->addr < base + size &&
mr->addr + mr->len <= base + size)
goto proceed;
}
if (lo & F_EDRAM1_ENABLE) {
hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
base = G_EDRAM1_BASE(hi) << 20;
size = G_EDRAM1_SIZE(hi) << 20;
if (size > 0 &&
mr->addr >= base && mr->addr < base + size &&
mr->addr + mr->len <= base + size)
goto proceed;
}
if (lo & F_EXT_MEM_ENABLE) {
hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
base = G_EXT_MEM_BASE(hi) << 20;
size = G_EXT_MEM_SIZE(hi) << 20;
if (size > 0 &&
mr->addr >= base && mr->addr < base + size &&
mr->addr + mr->len <= base + size)
goto proceed;
}
return (ENXIO);
proceed:
buf = b = malloc(mr->len, M_CXGBE, M_WAITOK);
/*
* Position the PCIe window (we use memwin2) to the 16B aligned area
* just at/before the requested region.
*/
win = mr->addr & ~0xf;
off = mr->addr - win; /* offset of the requested region in the win */
remaining = mr->len;
while (remaining) {
t4_write_reg(sc,
PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2), win);
t4_read_reg(sc,
PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2));
/* number of bytes that we'll copy in the inner loop */
n = min(remaining, MEMWIN2_APERTURE - off);
for (i = 0; i < n; i += 4, remaining -= 4)
*b++ = t4_read_reg(sc, MEMWIN2_BASE + off + i);
win += MEMWIN2_APERTURE;
off = 0;
}
rc = copyout(buf, mr->data, mr->len);
free(buf, M_CXGBE);
return (rc);
}
int
t4_os_find_pci_capability(struct adapter *sc, int cap)
{
int i;
return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
}
int
t4_os_pci_save_state(struct adapter *sc)
{
device_t dev;
struct pci_devinfo *dinfo;
dev = sc->dev;
dinfo = device_get_ivars(dev);
pci_cfg_save(dev, dinfo, 0);
return (0);
}
int
t4_os_pci_restore_state(struct adapter *sc)
{
device_t dev;
struct pci_devinfo *dinfo;
dev = sc->dev;
dinfo = device_get_ivars(dev);
pci_cfg_restore(dev, dinfo);
return (0);
}
void
t4_os_portmod_changed(const struct adapter *sc, int idx)
{
struct port_info *pi = sc->port[idx];
static const char *mod_str[] = {
NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
};
if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
if_printf(pi->ifp, "transceiver unplugged.\n");
else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
if_printf(pi->ifp, "unknown transceiver inserted.\n");
else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
if_printf(pi->ifp, "unsupported transceiver inserted.\n");
else if (pi->mod_type > 0 && pi->mod_type < ARRAY_SIZE(mod_str)) {
if_printf(pi->ifp, "%s transceiver inserted.\n",
mod_str[pi->mod_type]);
} else {
if_printf(pi->ifp, "transceiver (type %d) inserted.\n",
pi->mod_type);
}
}
void
t4_os_link_changed(struct adapter *sc, int idx, int link_stat)
{
struct port_info *pi = sc->port[idx];
struct ifnet *ifp = pi->ifp;
if (link_stat) {
ifp->if_baudrate = IF_Mbps(pi->link_cfg.speed);
if_link_state_change(ifp, LINK_STATE_UP);
} else
if_link_state_change(ifp, LINK_STATE_DOWN);
}
void
t4_iterate(void (*func)(struct adapter *, void *), void *arg)
{
struct adapter *sc;
mtx_lock(&t4_list_lock);
SLIST_FOREACH(sc, &t4_list, link) {
/*
* func should not make any assumptions about what state sc is
* in - the only guarantee is that sc->sc_lock is a valid lock.
*/
func(sc, arg);
}
mtx_unlock(&t4_list_lock);
}
static int
t4_open(struct cdev *dev, int flags, int type, struct thread *td)
{
return (0);
}
static int
t4_close(struct cdev *dev, int flags, int type, struct thread *td)
{
return (0);
}
static int
t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
struct thread *td)
{
int rc;
struct adapter *sc = dev->si_drv1;
rc = priv_check(td, PRIV_DRIVER);
if (rc != 0)
return (rc);
switch (cmd) {
case CHELSIO_T4_GETREG: {
struct t4_reg *edata = (struct t4_reg *)data;
if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
return (EFAULT);
if (edata->size == 4)
edata->val = t4_read_reg(sc, edata->addr);
else if (edata->size == 8)
edata->val = t4_read_reg64(sc, edata->addr);
else
return (EINVAL);
break;
}
case CHELSIO_T4_SETREG: {
struct t4_reg *edata = (struct t4_reg *)data;
if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
return (EFAULT);
if (edata->size == 4) {
if (edata->val & 0xffffffff00000000)
return (EINVAL);
t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
} else if (edata->size == 8)
t4_write_reg64(sc, edata->addr, edata->val);
else
return (EINVAL);
break;
}
case CHELSIO_T4_REGDUMP: {
struct t4_regdump *regs = (struct t4_regdump *)data;
int reglen = T4_REGDUMP_SIZE;
uint8_t *buf;
if (regs->len < reglen) {
regs->len = reglen; /* hint to the caller */
return (ENOBUFS);
}
regs->len = reglen;
buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
t4_get_regs(sc, regs, buf);
rc = copyout(buf, regs->data, reglen);
free(buf, M_CXGBE);
break;
}
case CHELSIO_T4_GET_FILTER_MODE:
rc = get_filter_mode(sc, (uint32_t *)data);
break;
case CHELSIO_T4_SET_FILTER_MODE:
rc = set_filter_mode(sc, *(uint32_t *)data);
break;
case CHELSIO_T4_GET_FILTER:
ADAPTER_LOCK(sc);
rc = get_filter(sc, (struct t4_filter *)data);
ADAPTER_UNLOCK(sc);
break;
case CHELSIO_T4_SET_FILTER:
ADAPTER_LOCK(sc);
rc = set_filter(sc, (struct t4_filter *)data);
ADAPTER_UNLOCK(sc);
break;
case CHELSIO_T4_DEL_FILTER:
ADAPTER_LOCK(sc);
rc = del_filter(sc, (struct t4_filter *)data);
ADAPTER_UNLOCK(sc);
break;
case CHELSIO_T4_GET_SGE_CONTEXT:
rc = get_sge_context(sc, (struct t4_sge_context *)data);
break;
case CHELSIO_T4_LOAD_FW: {
struct t4_data *fw = (struct t4_data *)data;
uint8_t *fw_data;
if (sc->flags & FULL_INIT_DONE)
return (EBUSY);
fw_data = malloc(fw->len, M_CXGBE, M_NOWAIT);
if (fw_data == NULL)
return (ENOMEM);
rc = copyin(fw->data, fw_data, fw->len);
if (rc == 0)
rc = -t4_load_fw(sc, fw_data, fw->len);
free(fw_data, M_CXGBE);
break;
}
case CHELSIO_T4_GET_MEM:
rc = read_card_mem(sc, (struct t4_mem_range *)data);
break;
default:
rc = EINVAL;
}
return (rc);
}
#ifndef TCP_OFFLOAD_DISABLE
static int
toe_capability(struct port_info *pi, int enable)
{
int rc;
struct adapter *sc = pi->adapter;
ADAPTER_LOCK_ASSERT_OWNED(sc);
if (!is_offload(sc))
return (ENODEV);
if (enable) {
if (isset(&sc->offload_map, pi->port_id))
return (0);
if (sc->offload_map == 0) {
rc = activate_uld(sc, ULD_TOM, &sc->tom);
if (rc != 0)
return (rc);
}
setbit(&sc->offload_map, pi->port_id);
} else {
if (!isset(&sc->offload_map, pi->port_id))
return (0);
clrbit(&sc->offload_map, pi->port_id);
if (sc->offload_map == 0) {
rc = deactivate_uld(&sc->tom);
if (rc != 0) {
setbit(&sc->offload_map, pi->port_id);
return (rc);
}
}
}
return (0);
}
/*
* Add an upper layer driver to the global list.
*/
int
t4_register_uld(struct uld_info *ui)
{
int rc = 0;
struct uld_info *u;
mtx_lock(&t4_uld_list_lock);
SLIST_FOREACH(u, &t4_uld_list, link) {
if (u->uld_id == ui->uld_id) {
rc = EEXIST;
goto done;
}
}
SLIST_INSERT_HEAD(&t4_uld_list, ui, link);
ui->refcount = 0;
done:
mtx_unlock(&t4_uld_list_lock);
return (rc);
}
int
t4_unregister_uld(struct uld_info *ui)
{
int rc = EINVAL;
struct uld_info *u;
mtx_lock(&t4_uld_list_lock);
SLIST_FOREACH(u, &t4_uld_list, link) {
if (u == ui) {
if (ui->refcount > 0) {
rc = EBUSY;
goto done;
}
SLIST_REMOVE(&t4_uld_list, ui, uld_info, link);
rc = 0;
goto done;
}
}
done:
mtx_unlock(&t4_uld_list_lock);
return (rc);
}
static int
activate_uld(struct adapter *sc, int id, struct uld_softc *usc)
{
int rc = EAGAIN;
struct uld_info *ui;
mtx_lock(&t4_uld_list_lock);
SLIST_FOREACH(ui, &t4_uld_list, link) {
if (ui->uld_id == id) {
rc = ui->attach(sc, &usc->softc);
if (rc == 0) {
KASSERT(usc->softc != NULL,
("%s: ULD %d has no state", __func__, id));
ui->refcount++;
usc->uld = ui;
}
goto done;
}
}
done:
mtx_unlock(&t4_uld_list_lock);
return (rc);
}
static int
deactivate_uld(struct uld_softc *usc)
{
int rc;
mtx_lock(&t4_uld_list_lock);
if (usc->uld == NULL || usc->softc == NULL) {
rc = EINVAL;
goto done;
}
rc = usc->uld->detach(usc->softc);
if (rc == 0) {
KASSERT(usc->uld->refcount > 0,
("%s: ULD has bad refcount", __func__));
usc->uld->refcount--;
usc->uld = NULL;
usc->softc = NULL;
}
done:
mtx_unlock(&t4_uld_list_lock);
return (rc);
}
#endif
/*
* Come up with reasonable defaults for some of the tunables, provided they're
* not set by the user (in which case we'll use the values as is).
*/
static void
tweak_tunables(void)
{
int nc = mp_ncpus; /* our snapshot of the number of CPUs */
if (t4_ntxq10g < 1)
t4_ntxq10g = min(nc, NTXQ_10G);
if (t4_ntxq1g < 1)
t4_ntxq1g = min(nc, NTXQ_1G);
if (t4_nrxq10g < 1)
t4_nrxq10g = min(nc, NRXQ_10G);
if (t4_nrxq1g < 1)
t4_nrxq1g = min(nc, NRXQ_1G);
#ifndef TCP_OFFLOAD_DISABLE
if (t4_nofldtxq10g < 1)
t4_nofldtxq10g = min(nc, NOFLDTXQ_10G);
if (t4_nofldtxq1g < 1)
t4_nofldtxq1g = min(nc, NOFLDTXQ_1G);
if (t4_nofldrxq10g < 1)
t4_nofldrxq10g = min(nc, NOFLDRXQ_10G);
if (t4_nofldrxq1g < 1)
t4_nofldrxq1g = min(nc, NOFLDRXQ_1G);
#endif
if (t4_tmr_idx_10g < 0 || t4_tmr_idx_10g >= SGE_NTIMERS)
t4_tmr_idx_10g = TMR_IDX_10G;
if (t4_pktc_idx_10g < -1 || t4_pktc_idx_10g >= SGE_NCOUNTERS)
t4_pktc_idx_10g = PKTC_IDX_10G;
if (t4_tmr_idx_1g < 0 || t4_tmr_idx_1g >= SGE_NTIMERS)
t4_tmr_idx_1g = TMR_IDX_1G;
if (t4_pktc_idx_1g < -1 || t4_pktc_idx_1g >= SGE_NCOUNTERS)
t4_pktc_idx_1g = PKTC_IDX_1G;
if (t4_qsize_txq < 128)
t4_qsize_txq = 128;
if (t4_qsize_rxq < 128)
t4_qsize_rxq = 128;
while (t4_qsize_rxq & 7)
t4_qsize_rxq++;
t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
}
static int
t4_mod_event(module_t mod, int cmd, void *arg)
{
int rc = 0;
switch (cmd) {
case MOD_LOAD:
t4_sge_modload();
mtx_init(&t4_list_lock, "T4 adapters", 0, MTX_DEF);
SLIST_INIT(&t4_list);
#ifndef TCP_OFFLOAD_DISABLE
mtx_init(&t4_uld_list_lock, "T4 ULDs", 0, MTX_DEF);
SLIST_INIT(&t4_uld_list);
#endif
tweak_tunables();
break;
case MOD_UNLOAD:
#ifndef TCP_OFFLOAD_DISABLE
mtx_lock(&t4_uld_list_lock);
if (!SLIST_EMPTY(&t4_uld_list)) {
rc = EBUSY;
mtx_unlock(&t4_uld_list_lock);
break;
}
mtx_unlock(&t4_uld_list_lock);
mtx_destroy(&t4_uld_list_lock);
#endif
mtx_lock(&t4_list_lock);
if (!SLIST_EMPTY(&t4_list)) {
rc = EBUSY;
mtx_unlock(&t4_list_lock);
break;
}
mtx_unlock(&t4_list_lock);
mtx_destroy(&t4_list_lock);
break;
}
return (rc);
}
static devclass_t t4_devclass;
static devclass_t cxgbe_devclass;
DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, t4_mod_event, 0);
MODULE_VERSION(t4nex, 1);
DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0);
MODULE_VERSION(cxgbe, 1);