freebsd-dev/sys/i386/isa/istallion.c
Bruce Evans cf8c7b0963 Added D_TTY to the cdevswitch flags for all tty drivers. This is required
for the Lite2 fix for always returning EIO in dead_read().

Cleaned up the cdevswitch initializers for all tty drivers.

Removed explicit calls to ttsetwater() from all (tty) drivers.  ttsetwater()
is now called centrally for opens, not just for parameter changes.
1998-08-23 08:26:42 +00:00

3872 lines
97 KiB
C

/*****************************************************************************/
/*
* istallion.c -- stallion intelligent multiport serial driver.
*
* Copyright (c) 1994-1996 Greg Ungerer (gerg@stallion.oz.au).
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Greg Ungerer.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: istallion.c,v 1.20 1998/08/16 01:21:49 bde Exp $
*/
/*****************************************************************************/
#include "opt_compat.h"
#define TTYDEFCHARS 1
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/tty.h>
#include <sys/proc.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/uio.h>
#include <machine/clock.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <i386/isa/isa_device.h>
#include <machine/cdk.h>
#include <machine/comstats.h>
/*****************************************************************************/
/*
* Define the version level of the kernel - so we can compile in the
* appropriate bits of code. By default this will compile for a 2.1
* level kernel.
*/
#define VFREEBSD 220
#if VFREEBSD >= 220
#define STATIC static
#else
#define STATIC
#endif
/*****************************************************************************/
/*
* Define different board types. Not all of the following board types
* are supported by this driver. But I will use the standard "assigned"
* board numbers. Currently supported boards are abbreviated as:
* ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
* STAL = Stallion.
*/
#define BRD_UNKNOWN 0
#define BRD_STALLION 1
#define BRD_BRUMBY4 2
#define BRD_ONBOARD2 3
#define BRD_ONBOARD 4
#define BRD_BRUMBY8 5
#define BRD_BRUMBY16 6
#define BRD_ONBOARDE 7
#define BRD_ONBOARD32 9
#define BRD_ONBOARD2_32 10
#define BRD_ONBOARDRS 11
#define BRD_EASYIO 20
#define BRD_ECH 21
#define BRD_ECHMC 22
#define BRD_ECP 23
#define BRD_ECPE 24
#define BRD_ECPMC 25
#define BRD_ECHPCI 26
#define BRD_BRUMBY BRD_BRUMBY4
/*****************************************************************************/
/*
* Define important driver limitations.
*/
#define STL_MAXBRDS 8
#define STL_MAXPANELS 4
#define STL_PORTSPERPANEL 16
#define STL_PORTSPERBRD 64
#define STL_MAXCHANS STL_PORTSPERBRD
/*
* Define the important minor number break down bits. These have been
* chosen to be "compatable" with the standard sio driver minor numbers.
* Extra high bits are used to distinguish between boards and also for
* really high port numbers (> 32).
*/
#define STL_CALLOUTDEV 0x80
#define STL_CTRLLOCK 0x40
#define STL_CTRLINIT 0x20
#define STL_CTRLDEV (STL_CTRLLOCK | STL_CTRLINIT)
#define STL_MEMDEV 0x07000000
#define STL_DEFSPEED 9600
#define STL_DEFCFLAG (CS8 | CREAD | HUPCL)
/*****************************************************************************/
/*
* Define our local driver identity first. Set up stuff to deal with
* all the local structures required by a serial tty driver.
*/
static char stli_drvname[] = "stli";
static char const stli_longdrvname[] = "Stallion Multiport Serial Driver";
static char const stli_drvversion[] = "1.0.0";
static int stli_nrbrds = 0;
static int stli_doingtimeout = 0;
static char *__file__ = /*__FILE__*/ "istallion.c";
/*
* Define some macros to use to class define boards.
*/
#define BRD_ISA 0x1
#define BRD_EISA 0x2
#define BRD_MCA 0x4
#define BRD_PCI 0x8
static unsigned char stli_stliprobed[STL_MAXBRDS];
/*****************************************************************************/
/*
* Define a set of structures to hold all the board/panel/port info
* for our ports. These will be dynamically allocated as required at
* driver initialization time.
*/
/*
* Port and board structures to hold status info about each object.
* The board structure contains pointers to structures for each port
* connected to it. Panels are not distinguished here, since
* communication with the slave board will always be on a per port
* basis.
*/
typedef struct {
struct tty tty;
int portnr;
int panelnr;
int brdnr;
int ioaddr;
int callout;
int devnr;
int dtrwait;
int dotimestamp;
int waitopens;
int hotchar;
int rc;
int argsize;
void *argp;
unsigned int state;
unsigned int sigs;
struct termios initintios;
struct termios initouttios;
struct termios lockintios;
struct termios lockouttios;
struct timeval timestamp;
asysigs_t asig;
unsigned long addr;
unsigned long rxlost;
unsigned long rxoffset;
unsigned long txoffset;
unsigned long pflag;
unsigned int rxsize;
unsigned int txsize;
unsigned char reqidx;
unsigned char reqbit;
unsigned char portidx;
unsigned char portbit;
} stliport_t;
/*
* Use a structure of function pointers to do board level operations.
* These include, enable/disable, paging shared memory, interrupting, etc.
*/
typedef struct stlibrd {
int brdnr;
int brdtype;
int unitid;
int state;
int nrpanels;
int nrports;
int nrdevs;
unsigned int iobase;
unsigned long paddr;
void *vaddr;
int memsize;
int pagesize;
int hostoffset;
int slaveoffset;
int bitsize;
int confbits;
void (*init)(struct stlibrd *brdp);
void (*enable)(struct stlibrd *brdp);
void (*reenable)(struct stlibrd *brdp);
void (*disable)(struct stlibrd *brdp);
void (*intr)(struct stlibrd *brdp);
void (*reset)(struct stlibrd *brdp);
char *(*getmemptr)(struct stlibrd *brdp,
unsigned long offset, int line);
int panels[STL_MAXPANELS];
int panelids[STL_MAXPANELS];
stliport_t *ports[STL_PORTSPERBRD];
} stlibrd_t;
static stlibrd_t *stli_brds[STL_MAXBRDS];
static int stli_shared = 0;
/*
* Keep a local char buffer for processing chars into the LD. We
* do this to avoid copying from the boards shared memory one char
* at a time.
*/
static int stli_rxtmplen;
static stliport_t *stli_rxtmpport;
static char stli_rxtmpbuf[TTYHOG];
/*
* Define global stats structures. Not used often, and can be re-used
* for each stats call.
*/
static comstats_t stli_comstats;
static combrd_t stli_brdstats;
static asystats_t stli_cdkstats;
/*
* Per board state flags. Used with the state field of the board struct.
* Not really much here... All we need to do is keep track of whether
* the board has been detected, and whether it is actully running a slave
* or not.
*/
#define BST_FOUND 0x1
#define BST_STARTED 0x2
/*
* Define the set of port state flags. These are marked for internal
* state purposes only, usually to do with the state of communications
* with the slave. They need to be updated atomically.
*/
#define ST_INITIALIZING 0x1
#define ST_INITIALIZED 0x2
#define ST_OPENING 0x4
#define ST_CLOSING 0x8
#define ST_CMDING 0x10
#define ST_RXING 0x20
#define ST_TXBUSY 0x40
#define ST_DOFLUSHRX 0x80
#define ST_DOFLUSHTX 0x100
#define ST_DOSIGS 0x200
#define ST_GETSIGS 0x400
#define ST_DTRWAIT 0x800
/*
* Define an array of board names as printable strings. Handy for
* referencing boards when printing trace and stuff.
*/
static char *stli_brdnames[] = {
"Unknown",
"Stallion",
"Brumby",
"ONboard-MC",
"ONboard",
"Brumby",
"Brumby",
"ONboard-EI",
(char *) NULL,
"ONboard",
"ONboard-MC",
"ONboard-MC",
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
"EasyIO",
"EC8/32-AT",
"EC8/32-MC",
"EC8/64-AT",
"EC8/64-EI",
"EC8/64-MC",
"EC8/32-PCI",
};
/*****************************************************************************/
/*
* Hardware configuration info for ECP boards. These defines apply
* to the directly accessable io ports of the ECP. There is a set of
* defines for each ECP board type, ISA, EISA and MCA.
*/
#define ECP_IOSIZE 4
#define ECP_MEMSIZE (128 * 1024)
#define ECP_ATPAGESIZE (4 * 1024)
#define ECP_EIPAGESIZE (64 * 1024)
#define ECP_MCPAGESIZE (4 * 1024)
#define STL_EISAID 0x8c4e
/*
* Important defines for the ISA class of ECP board.
*/
#define ECP_ATIREG 0
#define ECP_ATCONFR 1
#define ECP_ATMEMAR 2
#define ECP_ATMEMPR 3
#define ECP_ATSTOP 0x1
#define ECP_ATINTENAB 0x10
#define ECP_ATENABLE 0x20
#define ECP_ATDISABLE 0x00
#define ECP_ATADDRMASK 0x3f000
#define ECP_ATADDRSHFT 12
/*
* Important defines for the EISA class of ECP board.
*/
#define ECP_EIIREG 0
#define ECP_EIMEMARL 1
#define ECP_EICONFR 2
#define ECP_EIMEMARH 3
#define ECP_EIENABLE 0x1
#define ECP_EIDISABLE 0x0
#define ECP_EISTOP 0x4
#define ECP_EIEDGE 0x00
#define ECP_EILEVEL 0x80
#define ECP_EIADDRMASKL 0x00ff0000
#define ECP_EIADDRSHFTL 16
#define ECP_EIADDRMASKH 0xff000000
#define ECP_EIADDRSHFTH 24
#define ECP_EIBRDENAB 0xc84
#define ECP_EISAID 0x4
/*
* Important defines for the Micro-channel class of ECP board.
* (It has a lot in common with the ISA boards.)
*/
#define ECP_MCIREG 0
#define ECP_MCCONFR 1
#define ECP_MCSTOP 0x20
#define ECP_MCENABLE 0x80
#define ECP_MCDISABLE 0x00
/*
* Hardware configuration info for ONboard and Brumby boards. These
* defines apply to the directly accessable io ports of these boards.
*/
#define ONB_IOSIZE 16
#define ONB_MEMSIZE (64 * 1024)
#define ONB_ATPAGESIZE (64 * 1024)
#define ONB_MCPAGESIZE (64 * 1024)
#define ONB_EIMEMSIZE (128 * 1024)
#define ONB_EIPAGESIZE (64 * 1024)
/*
* Important defines for the ISA class of ONboard board.
*/
#define ONB_ATIREG 0
#define ONB_ATMEMAR 1
#define ONB_ATCONFR 2
#define ONB_ATSTOP 0x4
#define ONB_ATENABLE 0x01
#define ONB_ATDISABLE 0x00
#define ONB_ATADDRMASK 0xff0000
#define ONB_ATADDRSHFT 16
#define ONB_HIMEMENAB 0x02
/*
* Important defines for the EISA class of ONboard board.
*/
#define ONB_EIIREG 0
#define ONB_EIMEMARL 1
#define ONB_EICONFR 2
#define ONB_EIMEMARH 3
#define ONB_EIENABLE 0x1
#define ONB_EIDISABLE 0x0
#define ONB_EISTOP 0x4
#define ONB_EIEDGE 0x00
#define ONB_EILEVEL 0x80
#define ONB_EIADDRMASKL 0x00ff0000
#define ONB_EIADDRSHFTL 16
#define ONB_EIADDRMASKH 0xff000000
#define ONB_EIADDRSHFTH 24
#define ONB_EIBRDENAB 0xc84
#define ONB_EISAID 0x1
/*
* Important defines for the Brumby boards. They are pretty simple,
* there is not much that is programmably configurable.
*/
#define BBY_IOSIZE 16
#define BBY_MEMSIZE (64 * 1024)
#define BBY_PAGESIZE (16 * 1024)
#define BBY_ATIREG 0
#define BBY_ATCONFR 1
#define BBY_ATSTOP 0x4
/*
* Important defines for the Stallion boards. They are pretty simple,
* there is not much that is programmably configurable.
*/
#define STAL_IOSIZE 16
#define STAL_MEMSIZE (64 * 1024)
#define STAL_PAGESIZE (64 * 1024)
/*
* Define the set of status register values for EasyConnection panels.
* The signature will return with the status value for each panel. From
* this we can determine what is attached to the board - before we have
* actually down loaded any code to it.
*/
#define ECH_PNLSTATUS 2
#define ECH_PNL16PORT 0x20
#define ECH_PNLIDMASK 0x07
#define ECH_PNLINTRPEND 0x80
/*
* Define some macros to do things to the board. Even those these boards
* are somewhat related there is often significantly different ways of
* doing some operation on it (like enable, paging, reset, etc). So each
* board class has a set of functions which do the commonly required
* operations. The macros below basically just call these functions,
* generally checking for a NULL function - which means that the board
* needs nothing done to it to achieve this operation!
*/
#define EBRDINIT(brdp) \
if (brdp->init != NULL) \
(* brdp->init)(brdp)
#define EBRDENABLE(brdp) \
if (brdp->enable != NULL) \
(* brdp->enable)(brdp);
#define EBRDDISABLE(brdp) \
if (brdp->disable != NULL) \
(* brdp->disable)(brdp);
#define EBRDINTR(brdp) \
if (brdp->intr != NULL) \
(* brdp->intr)(brdp);
#define EBRDRESET(brdp) \
if (brdp->reset != NULL) \
(* brdp->reset)(brdp);
#define EBRDGETMEMPTR(brdp,offset) \
(* brdp->getmemptr)(brdp, offset, __LINE__)
/*
* Define the maximal baud rate.
*/
#define STL_MAXBAUD 230400
/*****************************************************************************/
/*
* Define macros to extract a brd and port number from a minor number.
* This uses the extended minor number range in the upper 2 bytes of
* the device number. This gives us plenty of minor numbers to play
* with...
*/
#define MKDEV2BRD(m) (((m) & 0x00700000) >> 20)
#define MKDEV2PORT(m) (((m) & 0x1f) | (((m) & 0x00010000) >> 11))
/*
* Define some handy local macros...
*/
#ifndef MIN
#define MIN(a,b) (((a) <= (b)) ? (a) : (b))
#endif
/*****************************************************************************/
/*
* Declare all those functions in this driver! First up is the set of
* externally visible functions.
*/
static int stliprobe(struct isa_device *idp);
static int stliattach(struct isa_device *idp);
STATIC d_open_t stliopen;
STATIC d_close_t stliclose;
STATIC d_read_t stliread;
STATIC d_write_t stliwrite;
STATIC d_ioctl_t stliioctl;
STATIC d_stop_t stlistop;
#if VFREEBSD >= 220
STATIC d_devtotty_t stlidevtotty;
#else
struct tty *stlidevtotty(dev_t dev);
#endif
/*
* Internal function prototypes.
*/
static stliport_t *stli_dev2port(dev_t dev);
static int stli_chksharemem(void);
static int stli_isaprobe(struct isa_device *idp);
static int stli_eisaprobe(struct isa_device *idp);
static int stli_mcaprobe(struct isa_device *idp);
static int stli_brdinit(stlibrd_t *brdp);
static int stli_brdattach(stlibrd_t *brdp);
static int stli_initecp(stlibrd_t *brdp);
static int stli_initonb(stlibrd_t *brdp);
static int stli_initports(stlibrd_t *brdp);
static int stli_startbrd(stlibrd_t *brdp);
static void stli_poll(void *arg);
static __inline void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp);
static __inline int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp);
static __inline void stli_dodelaycmd(stliport_t *portp,
volatile cdkctrl_t *cp);
static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
static long stli_mktiocm(unsigned long sigvalue);
static void stli_rxprocess(stlibrd_t *brdp, stliport_t *portp);
static void stli_flush(stliport_t *portp, int flag);
static void stli_start(struct tty *tp);
static int stli_param(struct tty *tp, struct termios *tiosp);
static void stli_ttyoptim(stliport_t *portp, struct termios *tiosp);
static void stli_dtrwakeup(void *arg);
static int stli_initopen(stliport_t *portp);
static int stli_shutdownclose(stliport_t *portp);
static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp,
unsigned long arg, int wait);
static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp,
unsigned long arg, int wait);
static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp,
unsigned long cmd, void *arg, int size, int copyback);
static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp,
unsigned long cmd, void *arg, int size, int copyback);
static void stli_mkasyport(stliport_t *portp, asyport_t *pp,
struct termios *tiosp);
static int stli_memrw(dev_t dev, struct uio *uiop, int flag);
static int stli_memioctl(dev_t dev, int cmd, caddr_t data, int flag,
struct proc *p);
static int stli_getbrdstats(caddr_t data);
static int stli_getportstats(stliport_t *portp, caddr_t data);
static int stli_clrportstats(stliport_t *portp, caddr_t data);
static stliport_t *stli_getport(int brdnr, int panelnr, int portnr);
static void stli_ecpinit(stlibrd_t *brdp);
static void stli_ecpenable(stlibrd_t *brdp);
static void stli_ecpdisable(stlibrd_t *brdp);
static void stli_ecpreset(stlibrd_t *brdp);
static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset,
int line);
static void stli_ecpintr(stlibrd_t *brdp);
static void stli_ecpeiinit(stlibrd_t *brdp);
static void stli_ecpeienable(stlibrd_t *brdp);
static void stli_ecpeidisable(stlibrd_t *brdp);
static void stli_ecpeireset(stlibrd_t *brdp);
static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset,
int line);
static void stli_ecpmcenable(stlibrd_t *brdp);
static void stli_ecpmcdisable(stlibrd_t *brdp);
static void stli_ecpmcreset(stlibrd_t *brdp);
static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset,
int line);
static void stli_onbinit(stlibrd_t *brdp);
static void stli_onbenable(stlibrd_t *brdp);
static void stli_onbdisable(stlibrd_t *brdp);
static void stli_onbreset(stlibrd_t *brdp);
static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset,
int line);
static void stli_onbeinit(stlibrd_t *brdp);
static void stli_onbeenable(stlibrd_t *brdp);
static void stli_onbedisable(stlibrd_t *brdp);
static void stli_onbereset(stlibrd_t *brdp);
static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset,
int line);
static void stli_bbyinit(stlibrd_t *brdp);
static void stli_bbyreset(stlibrd_t *brdp);
static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset,
int line);
static void stli_stalinit(stlibrd_t *brdp);
static void stli_stalreset(stlibrd_t *brdp);
static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset,
int line);
/*****************************************************************************/
/*
* Declare the driver isa structure.
*/
struct isa_driver stlidriver = {
stliprobe, stliattach, stli_drvname
};
/*****************************************************************************/
#if VFREEBSD >= 220
/*
* FreeBSD-2.2+ kernel linkage.
*/
#define CDEV_MAJOR 75
static struct cdevsw stli_cdevsw = {
stliopen, stliclose, stliread, stliwrite,
stliioctl, stlistop, noreset, stlidevtotty,
ttpoll, nommap, NULL, stli_drvname,
NULL, -1, nodump, nopsize,
D_TTY,
};
static stli_devsw_installed = 0;
static void stli_drvinit(void *unused)
{
dev_t dev;
if (! stli_devsw_installed ) {
dev = makedev(CDEV_MAJOR, 0);
cdevsw_add(&dev, &stli_cdevsw, NULL);
stli_devsw_installed = 1;
}
}
SYSINIT(sidev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,stli_drvinit,NULL)
#endif
/*****************************************************************************/
static stlibrd_t *stli_brdalloc(void)
{
stlibrd_t *brdp;
brdp = (stlibrd_t *) malloc(sizeof(stlibrd_t), M_TTYS, M_NOWAIT);
if (brdp == (stlibrd_t *) NULL) {
printf("STALLION: failed to allocate memory (size=%d)\n",
sizeof(stlibrd_t));
return((stlibrd_t *) NULL);
}
bzero(brdp, sizeof(stlibrd_t));
return(brdp);
}
/*****************************************************************************/
/*
* Find an available internal board number (unit number). The problem
* is that the same unit numbers can be assigned to different class
* boards - but we only want to maintain one setup board structures.
*/
static int stli_findfreeunit(void)
{
int i;
for (i = 0; (i < STL_MAXBRDS); i++)
if (stli_brds[i] == (stlibrd_t *) NULL)
break;
return((i >= STL_MAXBRDS) ? -1 : i);
}
/*****************************************************************************/
/*
* Try and determine the ISA board type. Hopefully the board
* configuration entry will help us out, using the flags field.
* If not, we may ne be able to determine the board type...
*/
static int stli_isaprobe(struct isa_device *idp)
{
int btype;
#if DEBUG
printf("stli_isaprobe(idp=%x): unit=%d iobase=%x flags=%x\n",
(int) idp, idp->id_unit, idp->id_iobase, idp->id_flags);
#endif
switch (idp->id_flags) {
case BRD_STALLION:
case BRD_BRUMBY4:
case BRD_BRUMBY8:
case BRD_BRUMBY16:
case BRD_ONBOARD:
case BRD_ONBOARD32:
case BRD_ECP:
btype = idp->id_flags;
break;
default:
btype = 0;
break;
}
return(btype);
}
/*****************************************************************************/
/*
* Probe for an EISA board type. We should be able to read the EISA ID,
* that will tell us if a board is present or not...
*/
static int stli_eisaprobe(struct isa_device *idp)
{
int btype, eid;
#if DEBUG
printf("stli_eisaprobe(idp=%x): unit=%d iobase=%x flags=%x\n",
(int) idp, idp->id_unit, idp->id_iobase, idp->id_flags);
#endif
/*
* Firstly check if this is an EISA system. Do this by probing for
* the system board EISA ID. If this is not an EISA system then
* don't bother going any further!
*/
outb(0xc80, 0xff);
if (inb(0xc80) == 0xff)
return(0);
/*
* Try and read the EISA ID from the board at specified address.
* If one is present it will tell us the board type as well.
*/
outb((idp->id_iobase + 0xc80), 0xff);
eid = inb(idp->id_iobase + 0xc80);
eid |= inb(idp->id_iobase + 0xc81) << 8;
if (eid != STL_EISAID)
return(0);
btype = 0;
eid = inb(idp->id_iobase + 0xc82);
if (eid == ECP_EISAID)
btype = BRD_ECPE;
else if (eid == ONB_EISAID)
btype = BRD_ONBOARDE;
outb((idp->id_iobase + 0xc84), 0x1);
return(btype);
}
/*****************************************************************************/
/*
* Probe for an MCA board type. Not really sure how to do this yet,
* so for now just use the supplied flag specifier as board type...
*/
static int stli_mcaprobe(struct isa_device *idp)
{
int btype;
#if DEBUG
printf("stli_mcaprobe(idp=%x): unit=%d iobase=%x flags=%x\n",
(int) idp, idp->id_unit, idp->id_iobase, idp->id_flags);
#endif
switch (idp->id_flags) {
case BRD_ONBOARD2:
case BRD_ONBOARD2_32:
case BRD_ONBOARDRS:
case BRD_ECHMC:
case BRD_ECPMC:
btype = idp->id_flags;
break;
default:
btype = 0;
break;
}
return(0);
}
/*****************************************************************************/
/*
* Probe for a board. This is involved, since we need to enable the
* shared memory region to see if the board is really there or not...
*/
static int stliprobe(struct isa_device *idp)
{
stlibrd_t *brdp;
int btype, bclass;
#if DEBUG
printf("stliprobe(idp=%x): unit=%d iobase=%x flags=%x\n", (int) idp,
idp->id_unit, idp->id_iobase, idp->id_flags);
#endif
if (idp->id_unit > STL_MAXBRDS)
return(0);
/*
* First up determine what bus type of board we might be dealing
* with. It is easy to separate out the ISA from the EISA and MCA
* boards, based on their IO addresses. We may not be able to tell
* the EISA and MCA apart on IO address alone...
*/
bclass = 0;
if ((idp->id_iobase > 0) && (idp->id_iobase < 0x400)) {
bclass |= BRD_ISA;
} else {
/* ONboard2 range */
if ((idp->id_iobase >= 0x700) && (idp->id_iobase < 0x900))
bclass |= BRD_MCA;
/* EC-MCA ranges */
if ((idp->id_iobase >= 0x7000) && (idp->id_iobase < 0x7400))
bclass |= BRD_MCA;
if ((idp->id_iobase >= 0x8000) && (idp->id_iobase < 0xc000))
bclass |= BRD_MCA;
/* EISA board range */
if ((idp->id_iobase & ~0xf000) == 0)
bclass |= BRD_EISA;
}
if ((bclass == 0) || (idp->id_iobase == 0))
return(0);
/*
* Based on the board bus type, try and figure out what it might be...
*/
btype = 0;
if (bclass & BRD_ISA)
btype = stli_isaprobe(idp);
if ((btype == 0) && (bclass & BRD_EISA))
btype = stli_eisaprobe(idp);
if ((btype == 0) && (bclass & BRD_MCA))
btype = stli_mcaprobe(idp);
if (btype == 0)
return(0);
/*
* Go ahead and try probing for the shared memory region now.
* This way we will really know if the board is here...
*/
if ((brdp = stli_brdalloc()) == (stlibrd_t *) NULL)
return(0);
brdp->brdnr = stli_findfreeunit();
brdp->brdtype = btype;
brdp->unitid = idp->id_unit;
brdp->iobase = idp->id_iobase;
brdp->vaddr = idp->id_maddr;
brdp->paddr = vtophys(idp->id_maddr);
#if DEBUG
printf("%s(%d): btype=%x unit=%d brd=%d io=%x mem=%x(%x)\n",
__file__, __LINE__, btype, brdp->unitid, brdp->brdnr,
brdp->iobase, brdp->paddr, brdp->vaddr);
#endif
stli_stliprobed[idp->id_unit] = brdp->brdnr;
stli_brdinit(brdp);
if ((brdp->state & BST_FOUND) == 0) {
stli_brds[brdp->brdnr] = (stlibrd_t *) NULL;
return(0);
}
stli_nrbrds++;
return(1);
}
/*****************************************************************************/
/*
* Allocate resources for and initialize a board.
*/
static int stliattach(struct isa_device *idp)
{
stlibrd_t *brdp;
int brdnr;
#if DEBUG
printf("stliattach(idp=%x): unit=%d iobase=%x\n", idp,
idp->id_unit, idp->id_iobase);
#endif
brdnr = stli_stliprobed[idp->id_unit];
brdp = stli_brds[brdnr];
if (brdp == (stlibrd_t *) NULL)
return(0);
if (brdp->state & BST_FOUND)
stli_brdattach(brdp);
return(1);
}
/*****************************************************************************/
STATIC int stliopen(dev_t dev, int flag, int mode, struct proc *p)
{
struct tty *tp;
stliport_t *portp;
int error, callout, x;
#if DEBUG
printf("stliopen(dev=%x,flag=%x,mode=%x,p=%x)\n", (int) dev, flag,
mode, (int) p);
#endif
/*
* Firstly check if the supplied device number is a valid device.
*/
if (dev & STL_MEMDEV)
return(0);
portp = stli_dev2port(dev);
if (portp == (stliport_t *) NULL)
return(ENXIO);
tp = &portp->tty;
callout = minor(dev) & STL_CALLOUTDEV;
error = 0;
x = spltty();
stliopen_restart:
/*
* Wait here for the DTR drop timeout period to expire.
*/
while (portp->state & ST_DTRWAIT) {
error = tsleep(&portp->dtrwait, (TTIPRI | PCATCH),
"stlidtr", 0);
if (error)
goto stliopen_end;
}
/*
* If the port is in its raw hardware initialization phase, then
* hold up here 'till it is done.
*/
while (portp->state & (ST_INITIALIZING | ST_CLOSING)) {
error = tsleep(&portp->state, (TTIPRI | PCATCH),
"stliraw", 0);
if (error)
goto stliopen_end;
}
/*
* We have a valid device, so now we check if it is already open.
* If not then initialize the port hardware and set up the tty
* struct as required.
*/
if ((tp->t_state & TS_ISOPEN) == 0) {
tp->t_oproc = stli_start;
tp->t_param = stli_param;
tp->t_dev = dev;
tp->t_termios = callout ? portp->initouttios :
portp->initintios;
stli_initopen(portp);
wakeup(&portp->state);
if ((portp->sigs & TIOCM_CD) || callout)
(*linesw[tp->t_line].l_modem)(tp, 1);
} else {
if (callout) {
if (portp->callout == 0) {
error = EBUSY;
goto stliopen_end;
}
} else {
if (portp->callout != 0) {
if (flag & O_NONBLOCK) {
error = EBUSY;
goto stliopen_end;
}
error = tsleep(&portp->callout,
(TTIPRI | PCATCH), "stlicall", 0);
if (error)
goto stliopen_end;
goto stliopen_restart;
}
}
if ((tp->t_state & TS_XCLUDE) && (p->p_ucred->cr_uid != 0)) {
error = EBUSY;
goto stliopen_end;
}
}
/*
* If this port is not the callout device and we do not have carrier
* then we need to sleep, waiting for it to be asserted.
*/
if (((tp->t_state & TS_CARR_ON) == 0) && !callout &&
((tp->t_cflag & CLOCAL) == 0) &&
((flag & O_NONBLOCK) == 0)) {
portp->waitopens++;
error = tsleep(TSA_CARR_ON(tp), (TTIPRI | PCATCH), "stlidcd",0);
portp->waitopens--;
if (error)
goto stliopen_end;
goto stliopen_restart;
}
/*
* Open the line discipline.
*/
error = (*linesw[tp->t_line].l_open)(dev, tp);
stli_ttyoptim(portp, &tp->t_termios);
if ((tp->t_state & TS_ISOPEN) && callout)
portp->callout = 1;
/*
* If for any reason we get to here and the port is not actually
* open then close of the physical hardware - no point leaving it
* active when the open failed...
*/
stliopen_end:
splx(x);
if (((tp->t_state & TS_ISOPEN) == 0) && (portp->waitopens == 0))
stli_shutdownclose(portp);
return(error);
}
/*****************************************************************************/
STATIC int stliclose(dev_t dev, int flag, int mode, struct proc *p)
{
struct tty *tp;
stliport_t *portp;
int x;
#if DEBUG
printf("stliclose(dev=%x,flag=%x,mode=%x,p=%x)\n", dev, flag, mode, p);
#endif
if (dev & STL_MEMDEV)
return(0);
portp = stli_dev2port(dev);
if (portp == (stliport_t *) NULL)
return(ENXIO);
tp = &portp->tty;
x = spltty();
(*linesw[tp->t_line].l_close)(tp, flag);
stli_ttyoptim(portp, &tp->t_termios);
stli_shutdownclose(portp);
ttyclose(tp);
splx(x);
return(0);
}
/*****************************************************************************/
STATIC int stliread(dev_t dev, struct uio *uiop, int flag)
{
stliport_t *portp;
#if DEBUG
printf("stliread(dev=%x,uiop=%x,flag=%x)\n", dev, uiop, flag);
#endif
if (dev & STL_MEMDEV)
return(stli_memrw(dev, uiop, flag));
portp = stli_dev2port(dev);
if (portp == (stliport_t *) NULL)
return(ENODEV);
return((*linesw[portp->tty.t_line].l_read)(&portp->tty, uiop, flag));
}
/*****************************************************************************/
#if VFREEBSD >= 220
STATIC void stlistop(struct tty *tp, int rw)
{
#if DEBUG
printf("stlistop(tp=%x,rw=%x)\n", (int) tp, rw);
#endif
stli_flush((stliport_t *) tp, rw);
}
#else
STATIC int stlistop(struct tty *tp, int rw)
{
#if DEBUG
printf("stlistop(tp=%x,rw=%x)\n", (int) tp, rw);
#endif
stli_flush((stliport_t *) tp, rw);
return(0);
}
#endif
/*****************************************************************************/
STATIC struct tty *stlidevtotty(dev_t dev)
{
#if DEBUG
printf("stlidevtotty(dev=%x)\n", dev);
#endif
return((struct tty *) stli_dev2port(dev));
}
/*****************************************************************************/
STATIC int stliwrite(dev_t dev, struct uio *uiop, int flag)
{
stliport_t *portp;
#if DEBUG
printf("stliwrite(dev=%x,uiop=%x,flag=%x)\n", dev, uiop, flag);
#endif
if (dev & STL_MEMDEV)
return(stli_memrw(dev, uiop, flag));
portp = stli_dev2port(dev);
if (portp == (stliport_t *) NULL)
return(ENODEV);
return((*linesw[portp->tty.t_line].l_write)(&portp->tty, uiop, flag));
}
/*****************************************************************************/
STATIC int stliioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
{
struct termios *newtios, *localtios;
struct tty *tp;
stlibrd_t *brdp;
stliport_t *portp;
long arg;
int error, i, x;
#if DEBUG
printf("stliioctl(dev=%x,cmd=%x,data=%x,flag=%x,p=%x)\n", dev, cmd,
data, flag, p);
#endif
dev = minor(dev);
if (dev & STL_MEMDEV)
return(stli_memioctl(dev, cmd, data, flag, p));
portp = stli_dev2port(dev);
if (portp == (stliport_t *) NULL)
return(ENODEV);
if ((brdp = stli_brds[portp->brdnr]) == (stlibrd_t *) NULL)
return(ENODEV);
tp = &portp->tty;
error = 0;
/*
* First up handle ioctls on the control devices.
*/
if (dev & STL_CTRLDEV) {
if ((dev & STL_CTRLDEV) == STL_CTRLINIT)
localtios = (dev & STL_CALLOUTDEV) ?
&portp->initouttios : &portp->initintios;
else if ((dev & STL_CTRLDEV) == STL_CTRLLOCK)
localtios = (dev & STL_CALLOUTDEV) ?
&portp->lockouttios : &portp->lockintios;
else
return(ENODEV);
switch (cmd) {
case TIOCSETA:
if ((error = suser(p->p_ucred, &p->p_acflag)) == 0)
*localtios = *((struct termios *) data);
break;
case TIOCGETA:
*((struct termios *) data) = *localtios;
break;
case TIOCGETD:
*((int *) data) = TTYDISC;
break;
case TIOCGWINSZ:
bzero(data, sizeof(struct winsize));
break;
default:
error = ENOTTY;
break;
}
return(error);
}
/*
* Deal with 4.3 compatability issues if we have too...
*/
#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
if (1) {
struct termios tios;
int oldcmd;
tios = tp->t_termios;
oldcmd = cmd;
if ((error = ttsetcompat(tp, &cmd, data, &tios)))
return(error);
if (cmd != oldcmd)
data = (caddr_t) &tios;
}
#endif
/*
* Carry out some pre-cmd processing work first...
* Hmmm, not so sure we want this, disable for now...
*/
if ((cmd == TIOCSETA) || (cmd == TIOCSETAW) || (cmd == TIOCSETAF)) {
newtios = (struct termios *) data;
localtios = (dev & STL_CALLOUTDEV) ? &portp->lockouttios :
&portp->lockintios;
newtios->c_iflag = (tp->t_iflag & localtios->c_iflag) |
(newtios->c_iflag & ~localtios->c_iflag);
newtios->c_oflag = (tp->t_oflag & localtios->c_oflag) |
(newtios->c_oflag & ~localtios->c_oflag);
newtios->c_cflag = (tp->t_cflag & localtios->c_cflag) |
(newtios->c_cflag & ~localtios->c_cflag);
newtios->c_lflag = (tp->t_lflag & localtios->c_lflag) |
(newtios->c_lflag & ~localtios->c_lflag);
for (i = 0; (i < NCCS); i++) {
if (localtios->c_cc[i] != 0)
newtios->c_cc[i] = tp->t_cc[i];
}
if (localtios->c_ispeed != 0)
newtios->c_ispeed = tp->t_ispeed;
if (localtios->c_ospeed != 0)
newtios->c_ospeed = tp->t_ospeed;
}
/*
* Call the line discipline and the common command processing to
* process this command (if they can).
*/
error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p);
if (error != ENOIOCTL)
return(error);
x = spltty();
error = ttioctl(tp, cmd, data, flag);
stli_ttyoptim(portp, &tp->t_termios);
if (error != ENOIOCTL) {
splx(x);
return(error);
}
error = 0;
/*
* Process local commands here. These are all commands that only we
* can take care of (they all rely on actually doing something special
* to the actual hardware).
*/
switch (cmd) {
case TIOCSBRK:
arg = BREAKON;
error = stli_cmdwait(brdp, portp, A_BREAK, &arg,
sizeof(unsigned long), 0);
break;
case TIOCCBRK:
arg = BREAKOFF;
error = stli_cmdwait(brdp, portp, A_BREAK, &arg,
sizeof(unsigned long), 0);
break;
case TIOCSDTR:
stli_mkasysigs(&portp->asig, 1, -1);
error = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
sizeof(asysigs_t), 0);
break;
case TIOCCDTR:
stli_mkasysigs(&portp->asig, 0, -1);
error = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
sizeof(asysigs_t), 0);
break;
case TIOCMSET:
i = *((int *) data);
stli_mkasysigs(&portp->asig, ((i & TIOCM_DTR) ? 1 : 0),
((i & TIOCM_RTS) ? 1 : 0));
error = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
sizeof(asysigs_t), 0);
break;
case TIOCMBIS:
i = *((int *) data);
stli_mkasysigs(&portp->asig, ((i & TIOCM_DTR) ? 1 : -1),
((i & TIOCM_RTS) ? 1 : -1));
error = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
sizeof(asysigs_t), 0);
break;
case TIOCMBIC:
i = *((int *) data);
stli_mkasysigs(&portp->asig, ((i & TIOCM_DTR) ? 0 : -1),
((i & TIOCM_RTS) ? 0 : -1));
error = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
sizeof(asysigs_t), 0);
break;
case TIOCMGET:
if ((error = stli_cmdwait(brdp, portp, A_GETSIGNALS,
&portp->asig, sizeof(asysigs_t), 1)) < 0)
break;
portp->sigs = stli_mktiocm(portp->asig.sigvalue);
*((int *) data) = (portp->sigs | TIOCM_LE);
break;
case TIOCMSDTRWAIT:
if ((error = suser(p->p_ucred, &p->p_acflag)) == 0)
portp->dtrwait = *((int *) data) * hz / 100;
break;
case TIOCMGDTRWAIT:
*((int *) data) = portp->dtrwait * 100 / hz;
break;
case TIOCTIMESTAMP:
portp->dotimestamp = 1;
*((struct timeval *) data) = portp->timestamp;
break;
default:
error = ENOTTY;
break;
}
splx(x);
return(error);
}
/*****************************************************************************/
/*
* Convert the specified minor device number into a port struct
* pointer. Return NULL if the device number is not a valid port.
*/
STATIC stliport_t *stli_dev2port(dev_t dev)
{
stlibrd_t *brdp;
brdp = stli_brds[MKDEV2BRD(dev)];
if (brdp == (stlibrd_t *) NULL)
return((stliport_t *) NULL);
if ((brdp->state & BST_STARTED) == 0)
return((stliport_t *) NULL);
return(brdp->ports[MKDEV2PORT(dev)]);
}
/*****************************************************************************/
/*
* Carry out first open operations on a port. This involves a number of
* commands to be sent to the slave. We need to open the port, set the
* notification events, set the initial port settings, get and set the
* initial signal values. We sleep and wait in between each one. But
* this still all happens pretty quickly.
*/
static int stli_initopen(stliport_t *portp)
{
stlibrd_t *brdp;
asynotify_t nt;
asyport_t aport;
int rc;
#if DEBUG
printf("stli_initopen(portp=%x)\n", (int) portp);
#endif
if ((brdp = stli_brds[portp->brdnr]) == (stlibrd_t *) NULL)
return(ENXIO);
if (portp->state & ST_INITIALIZED)
return(0);
portp->state |= ST_INITIALIZED;
if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
return(rc);
bzero(&nt, sizeof(asynotify_t));
nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
nt.signal = SG_DCD;
if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
sizeof(asynotify_t), 0)) < 0)
return(rc);
stli_mkasyport(portp, &aport, &portp->tty.t_termios);
if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
sizeof(asyport_t), 0)) < 0)
return(rc);
portp->state |= ST_GETSIGS;
if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
sizeof(asysigs_t), 1)) < 0)
return(rc);
if (portp->state & ST_GETSIGS) {
portp->sigs = stli_mktiocm(portp->asig.sigvalue);
portp->state &= ~ST_GETSIGS;
}
stli_mkasysigs(&portp->asig, 1, 1);
if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
sizeof(asysigs_t), 0)) < 0)
return(rc);
return(0);
}
/*****************************************************************************/
/*
* Shutdown the hardware of a port.
*/
static int stli_shutdownclose(stliport_t *portp)
{
stlibrd_t *brdp;
struct tty *tp;
int x;
#if DEBUG
printf("stli_shutdownclose(portp=%x): brdnr=%d panelnr=%d portnr=%d\n",
portp, portp->brdnr, portp->panelnr, portp->portnr);
#endif
if ((brdp = stli_brds[portp->brdnr]) == (stlibrd_t *) NULL)
return(ENXIO);
tp = &portp->tty;
stli_rawclose(brdp, portp, 0, 0);
stli_flush(portp, (FWRITE | FREAD));
if (tp->t_cflag & HUPCL) {
x = spltty();
stli_mkasysigs(&portp->asig, 0, 0);
if (portp->state & ST_CMDING) {
portp->state |= ST_DOSIGS;
} else {
stli_sendcmd(brdp, portp, A_SETSIGNALS,
&portp->asig, sizeof(asysigs_t), 0);
}
splx(x);
if (portp->dtrwait != 0) {
portp->state |= ST_DTRWAIT;
timeout(stli_dtrwakeup, portp, portp->dtrwait);
}
}
portp->callout = 0;
portp->state &= ~ST_INITIALIZED;
wakeup(&portp->callout);
wakeup(TSA_CARR_ON(tp));
return(0);
}
/*****************************************************************************/
/*
* Clear the DTR waiting flag, and wake up any sleepers waiting for
* DTR wait period to finish.
*/
static void stli_dtrwakeup(void *arg)
{
stliport_t *portp;
portp = (stliport_t *) arg;
portp->state &= ~ST_DTRWAIT;
wakeup(&portp->dtrwait);
}
/*****************************************************************************/
/*
* Send an open message to the slave. This will sleep waiting for the
* acknowledgement, so must have user context. We need to co-ordinate
* with close events here, since we don't want open and close events
* to overlap.
*/
static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
{
volatile cdkhdr_t *hdrp;
volatile cdkctrl_t *cp;
volatile unsigned char *bits;
int rc, x;
#if DEBUG
printf("stli_rawopen(brdp=%x,portp=%x,arg=%x,wait=%d)\n", (int) brdp,
(int) portp, (int) arg, wait);
#endif
x = spltty();
/*
* Slave is already closing this port. This can happen if a hangup
* occurs on this port. So we must wait until it is complete. The
* order of opens and closes may not be preserved across shared
* memory, so we must wait until it is complete.
*/
while (portp->state & ST_CLOSING) {
rc = tsleep(&portp->state, (TTIPRI | PCATCH), "stliraw", 0);
if (rc) {
splx(x);
return(rc);
}
}
/*
* Everything is ready now, so write the open message into shared
* memory. Once the message is in set the service bits to say that
* this port wants service.
*/
EBRDENABLE(brdp);
cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
cp->openarg = arg;
cp->open = 1;
hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
portp->portidx;
*bits |= portp->portbit;
EBRDDISABLE(brdp);
if (wait == 0) {
splx(x);
return(0);
}
/*
* Slave is in action, so now we must wait for the open acknowledgment
* to come back.
*/
rc = 0;
portp->state |= ST_OPENING;
while (portp->state & ST_OPENING) {
rc = tsleep(&portp->state, (TTIPRI | PCATCH), "stliraw", 0);
if (rc) {
splx(x);
return(rc);
}
}
splx(x);
if ((rc == 0) && (portp->rc != 0))
rc = EIO;
return(rc);
}
/*****************************************************************************/
/*
* Send a close message to the slave. Normally this will sleep waiting
* for the acknowledgement, but if wait parameter is 0 it will not. If
* wait is true then must have user context (to sleep).
*/
static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
{
volatile cdkhdr_t *hdrp;
volatile cdkctrl_t *cp;
volatile unsigned char *bits;
int rc, x;
#if DEBUG
printf("stli_rawclose(brdp=%x,portp=%x,arg=%x,wait=%d)\n", (int) brdp,
(int) portp, (int) arg, wait);
#endif
x = spltty();
/*
* Slave is already closing this port. This can happen if a hangup
* occurs on this port.
*/
if (wait) {
while (portp->state & ST_CLOSING) {
rc = tsleep(&portp->state, (TTIPRI | PCATCH),
"stliraw", 0);
if (rc) {
splx(x);
return(rc);
}
}
}
/*
* Write the close command into shared memory.
*/
EBRDENABLE(brdp);
cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
cp->closearg = arg;
cp->close = 1;
hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
portp->portidx;
*bits |= portp->portbit;
EBRDDISABLE(brdp);
portp->state |= ST_CLOSING;
if (wait == 0) {
splx(x);
return(0);
}
/*
* Slave is in action, so now we must wait for the open acknowledgment
* to come back.
*/
rc = 0;
while (portp->state & ST_CLOSING) {
rc = tsleep(&portp->state, (TTIPRI | PCATCH), "stliraw", 0);
if (rc) {
splx(x);
return(rc);
}
}
splx(x);
if ((rc == 0) && (portp->rc != 0))
rc = EIO;
return(rc);
}
/*****************************************************************************/
/*
* Send a command to the slave and wait for the response. This must
* have user context (it sleeps). This routine is generic in that it
* can send any type of command. Its purpose is to wait for that command
* to complete (as opposed to initiating the command then returning).
*/
static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
{
int rc, x;
#if DEBUG
printf("stli_cmdwait(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
"copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
(int) arg, size, copyback);
#endif
x = spltty();
while (portp->state & ST_CMDING) {
rc = tsleep(&portp->state, (TTIPRI | PCATCH), "stliraw", 0);
if (rc) {
splx(x);
return(rc);
}
}
stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
while (portp->state & ST_CMDING) {
rc = tsleep(&portp->state, (TTIPRI | PCATCH), "stliraw", 0);
if (rc) {
splx(x);
return(rc);
}
}
splx(x);
if (portp->rc != 0)
return(EIO);
return(0);
}
/*****************************************************************************/
/*
* Start (or continue) the transfer of TX data on this port. If the
* port is not currently busy then load up the interrupt ring queue
* buffer and kick of the transmitter. If the port is running low on
* TX data then refill the ring queue. This routine is also used to
* activate input flow control!
*/
static void stli_start(struct tty *tp)
{
volatile cdkasy_t *ap;
volatile cdkhdr_t *hdrp;
volatile unsigned char *bits;
unsigned char *shbuf;
stliport_t *portp;
stlibrd_t *brdp;
unsigned int len, stlen, head, tail, size;
int count, x;
portp = (stliport_t *) tp;
#if DEBUG
printf("stli_start(tp=%x): brdnr=%d portnr=%d\n", (int) tp,
portp->brdnr, portp->portnr);
#endif
x = spltty();
#if VFREEBSD == 205
/*
* Check if the output cooked clist buffers are near empty, wake up
* the line discipline to fill it up.
*/
if (tp->t_outq.c_cc <= tp->t_lowat) {
if (tp->t_state & TS_ASLEEP) {
tp->t_state &= ~TS_ASLEEP;
wakeup(&tp->t_outq);
}
selwakeup(&tp->t_wsel);
}
#endif
if (tp->t_state & (TS_TIMEOUT | TS_TTSTOP)) {
splx(x);
return;
}
/*
* Copy data from the clists into the interrupt ring queue. This will
* require at most 2 copys... What we do is calculate how many chars
* can fit into the ring queue, and how many can fit in 1 copy. If after
* the first copy there is still more room then do the second copy.
*/
if (tp->t_outq.c_cc != 0) {
brdp = stli_brds[portp->brdnr];
if (brdp == (stlibrd_t *) NULL) {
splx(x);
return;
}
EBRDENABLE(brdp);
ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
head = (unsigned int) ap->txq.head;
tail = (unsigned int) ap->txq.tail;
if (tail != ((unsigned int) ap->txq.tail))
tail = (unsigned int) ap->txq.tail;
size = portp->txsize;
if (head >= tail) {
len = size - (head - tail) - 1;
stlen = size - head;
} else {
len = tail - head - 1;
stlen = len;
}
count = 0;
shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
if (len > 0) {
stlen = MIN(len, stlen);
count = q_to_b(&tp->t_outq, (shbuf + head), stlen);
len -= count;
head += count;
if (head >= size) {
head = 0;
if (len > 0) {
stlen = q_to_b(&tp->t_outq, shbuf, len);
head += stlen;
count += stlen;
}
}
}
ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
ap->txq.head = head;
hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
portp->portidx;
*bits |= portp->portbit;
portp->state |= ST_TXBUSY;
tp->t_state |= TS_BUSY;
EBRDDISABLE(brdp);
}
#if VFREEBSD != 205
/*
* Do any writer wakeups.
*/
ttwwakeup(tp);
#endif
splx(x);
}
/*****************************************************************************/
/*
* Send a new port configuration to the slave.
*/
static int stli_param(struct tty *tp, struct termios *tiosp)
{
stlibrd_t *brdp;
stliport_t *portp;
asyport_t aport;
int x, rc;
portp = (stliport_t *) tp;
if ((brdp = stli_brds[portp->brdnr]) == (stlibrd_t *) NULL)
return(ENXIO);
x = spltty();
stli_mkasyport(portp, &aport, tiosp);
/* can we sleep here? */
rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
stli_ttyoptim(portp, tiosp);
splx(x);
return(rc);
}
/*****************************************************************************/
/*
* Flush characters from the lower buffer. We may not have user context
* so we cannot sleep waiting for it to complete. Also we need to check
* if there is chars for this port in the TX cook buffer, and flush them
* as well.
*/
static void stli_flush(stliport_t *portp, int flag)
{
stlibrd_t *brdp;
unsigned long ftype;
int x;
#if DEBUG
printf("stli_flush(portp=%x,flag=%x)\n", (int) portp, flag);
#endif
if (portp == (stliport_t *) NULL)
return;
if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
return;
brdp = stli_brds[portp->brdnr];
if (brdp == (stlibrd_t *) NULL)
return;
x = spltty();
if (portp->state & ST_CMDING) {
portp->state |= (flag & FWRITE) ? ST_DOFLUSHTX : 0;
portp->state |= (flag & FREAD) ? ST_DOFLUSHRX : 0;
} else {
ftype = (flag & FWRITE) ? FLUSHTX : 0;
ftype |= (flag & FREAD) ? FLUSHRX : 0;
portp->state &= ~(ST_DOFLUSHTX | ST_DOFLUSHRX);
stli_sendcmd(brdp, portp, A_FLUSH, &ftype,
sizeof(unsigned long), 0);
}
if ((flag & FREAD) && (stli_rxtmpport == portp))
stli_rxtmplen = 0;
splx(x);
}
/*****************************************************************************/
/*
* Generic send command routine. This will send a message to the slave,
* of the specified type with the specified argument. Must be very
* carefull of data that will be copied out from shared memory -
* containing command results. The command completion is all done from
* a poll routine that does not have user coontext. Therefore you cannot
* copy back directly into user space, or to the kernel stack of a
* process. This routine does not sleep, so can be called from anywhere,
* and must be called with interrupt locks set.
*/
static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
{
volatile cdkhdr_t *hdrp;
volatile cdkctrl_t *cp;
volatile unsigned char *bits;
#if DEBUG
printf("stli_sendcmd(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
"copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
(int) arg, size, copyback);
#endif
if (portp->state & ST_CMDING) {
printf("STALLION: command already busy, cmd=%x!\n", (int) cmd);
return;
}
EBRDENABLE(brdp);
cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
if (size > 0) {
bcopy(arg, (void *) &(cp->args[0]), size);
if (copyback) {
portp->argp = arg;
portp->argsize = size;
}
}
cp->status = 0;
cp->cmd = cmd;
hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
portp->portidx;
*bits |= portp->portbit;
portp->state |= ST_CMDING;
EBRDDISABLE(brdp);
}
/*****************************************************************************/
/*
* Read data from shared memory. This assumes that the shared memory
* is enabled and that interrupts are off. Basically we just empty out
* the shared memory buffer into the tty buffer. Must be carefull to
* handle the case where we fill up the tty buffer, but still have
* more chars to unload.
*/
static void stli_rxprocess(stlibrd_t *brdp, stliport_t *portp)
{
volatile cdkasyrq_t *rp;
volatile char *shbuf;
struct tty *tp;
unsigned int head, tail, size;
unsigned int len, stlen, i;
int ch;
#if DEBUG
printf("stli_rxprocess(brdp=%x,portp=%d)\n", (int) brdp, (int) portp);
#endif
tp = &portp->tty;
if ((tp->t_state & TS_ISOPEN) == 0) {
stli_flush(portp, FREAD);
return;
}
if (tp->t_state & TS_TBLOCK)
return;
rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
head = (unsigned int) rp->head;
if (head != ((unsigned int) rp->head))
head = (unsigned int) rp->head;
tail = (unsigned int) rp->tail;
size = portp->rxsize;
if (head >= tail) {
len = head - tail;
stlen = len;
} else {
len = size - (tail - head);
stlen = size - tail;
}
if (len == 0)
return;
shbuf = (volatile char *) EBRDGETMEMPTR(brdp, portp->rxoffset);
/*
* If we can bypass normal LD processing then just copy direct
* from board shared memory into the tty buffers.
*/
if (tp->t_state & TS_CAN_BYPASS_L_RINT) {
if (((tp->t_rawq.c_cc + len) >= TTYHOG) &&
((tp->t_cflag & CRTS_IFLOW) || (tp->t_iflag & IXOFF)) &&
((tp->t_state & TS_TBLOCK) == 0)) {
ch = TTYHOG - tp->t_rawq.c_cc - 1;
len = (ch > 0) ? ch : 0;
stlen = MIN(stlen, len);
tp->t_state |= TS_TBLOCK;
}
i = b_to_q((char *) (shbuf + tail), stlen, &tp->t_rawq);
tail += stlen;
len -= stlen;
if (tail >= size) {
tail = 0;
i += b_to_q((char *) shbuf, len, &tp->t_rawq);
tail += len;
}
portp->rxlost += i;
ttwakeup(tp);
rp = &((volatile cdkasy_t *)
EBRDGETMEMPTR(brdp, portp->addr))->rxq;
rp->tail = tail;
} else {
/*
* Copy the data from board shared memory into a local
* memory buffer. Then feed them from here into the LD.
* We don't want to go into board shared memory one char
* at a time, it is too slow...
*/
if (len > TTYHOG) {
len = TTYHOG - 1;
stlen = min(len, stlen);
}
stli_rxtmpport = portp;
stli_rxtmplen = len;
bcopy((char *) (shbuf + tail), &stli_rxtmpbuf[0], stlen);
len -= stlen;
if (len > 0)
bcopy((char *) shbuf, &stli_rxtmpbuf[stlen], len);
for (i = 0; (i < stli_rxtmplen); i++) {
ch = (unsigned char) stli_rxtmpbuf[i];
(*linesw[tp->t_line].l_rint)(ch, tp);
}
EBRDENABLE(brdp);
rp = &((volatile cdkasy_t *)
EBRDGETMEMPTR(brdp, portp->addr))->rxq;
if (stli_rxtmplen == 0) {
head = (unsigned int) rp->head;
if (head != ((unsigned int) rp->head))
head = (unsigned int) rp->head;
tail = head;
} else {
tail += i;
if (tail >= size)
tail -= size;
}
rp->tail = tail;
stli_rxtmpport = (stliport_t *) NULL;
stli_rxtmplen = 0;
}
portp->state |= ST_RXING;
}
/*****************************************************************************/
/*
* Set up and carry out any delayed commands. There is only a small set
* of slave commands that can be done "off-level". So it is not too
* difficult to deal with them as a special case here.
*/
static __inline void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp)
{
int cmd;
if (portp->state & ST_DOSIGS) {
if ((portp->state & ST_DOFLUSHTX) &&
(portp->state & ST_DOFLUSHRX))
cmd = A_SETSIGNALSF;
else if (portp->state & ST_DOFLUSHTX)
cmd = A_SETSIGNALSFTX;
else if (portp->state & ST_DOFLUSHRX)
cmd = A_SETSIGNALSFRX;
else
cmd = A_SETSIGNALS;
portp->state &= ~(ST_DOFLUSHTX | ST_DOFLUSHRX | ST_DOSIGS);
bcopy((void *) &portp->asig, (void *) &(cp->args[0]),
sizeof(asysigs_t));
cp->status = 0;
cp->cmd = cmd;
portp->state |= ST_CMDING;
} else if ((portp->state & ST_DOFLUSHTX) ||
(portp->state & ST_DOFLUSHRX)) {
cmd = ((portp->state & ST_DOFLUSHTX) ? FLUSHTX : 0);
cmd |= ((portp->state & ST_DOFLUSHRX) ? FLUSHRX : 0);
portp->state &= ~(ST_DOFLUSHTX | ST_DOFLUSHRX);
bcopy((void *) &cmd, (void *) &(cp->args[0]), sizeof(int));
cp->status = 0;
cp->cmd = A_FLUSH;
portp->state |= ST_CMDING;
}
}
/*****************************************************************************/
/*
* Host command service checking. This handles commands or messages
* coming from the slave to the host. Must have board shared memory
* enabled and interrupts off when called. Notice that by servicing the
* read data last we don't need to change the shared memory pointer
* during processing (which is a slow IO operation).
* Return value indicates if this port is still awaiting actions from
* the slave (like open, command, or even TX data being sent). If 0
* then port is still busy, otherwise the port request bit flag is
* returned.
*/
static __inline int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp)
{
volatile cdkasy_t *ap;
volatile cdkctrl_t *cp;
asynotify_t nt;
unsigned long oldsigs;
unsigned int head, tail;
int rc, donerx;
#if DEBUG
printf("stli_hostcmd(brdp=%x,portp=%x)\n", (int) brdp, (int) portp);
#endif
ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
cp = &ap->ctrl;
/*
* Check if we are waiting for an open completion message.
*/
if (portp->state & ST_OPENING) {
rc = (int) cp->openarg;
if ((cp->open == 0) && (rc != 0)) {
if (rc > 0)
rc--;
cp->openarg = 0;
portp->rc = rc;
portp->state &= ~ST_OPENING;
wakeup(&portp->state);
}
}
/*
* Check if we are waiting for a close completion message.
*/
if (portp->state & ST_CLOSING) {
rc = (int) cp->closearg;
if ((cp->close == 0) && (rc != 0)) {
if (rc > 0)
rc--;
cp->closearg = 0;
portp->rc = rc;
portp->state &= ~ST_CLOSING;
wakeup(&portp->state);
}
}
/*
* Check if we are waiting for a command completion message. We may
* need to copy out the command results associated with this command.
*/
if (portp->state & ST_CMDING) {
rc = cp->status;
if ((cp->cmd == 0) && (rc != 0)) {
if (rc > 0)
rc--;
if (portp->argp != (void *) NULL) {
bcopy((void *) &(cp->args[0]), portp->argp,
portp->argsize);
portp->argp = (void *) NULL;
}
cp->status = 0;
portp->rc = rc;
portp->state &= ~ST_CMDING;
stli_dodelaycmd(portp, cp);
wakeup(&portp->state);
}
}
/*
* Check for any notification messages ready. This includes lots of
* different types of events - RX chars ready, RX break received,
* TX data low or empty in the slave, modem signals changed state.
* Must be extremely carefull if we call to the LD, it may call
* other routines of ours that will disable the memory...
* Something else we need to be carefull of is race conditions on
* marking the TX as empty...
*/
donerx = 0;
if (ap->notify) {
struct tty *tp;
nt = ap->changed;
ap->notify = 0;
tp = &portp->tty;
if (nt.signal & SG_DCD) {
oldsigs = portp->sigs;
portp->sigs = stli_mktiocm(nt.sigvalue);
portp->state &= ~ST_GETSIGS;
(*linesw[tp->t_line].l_modem)(tp,
(portp->sigs & TIOCM_CD));
EBRDENABLE(brdp);
}
if (nt.data & DT_RXBUSY) {
donerx++;
stli_rxprocess(brdp, portp);
}
if (nt.data & DT_RXBREAK) {
(*linesw[tp->t_line].l_rint)(TTY_BI, tp);
EBRDENABLE(brdp);
}
if (nt.data & DT_TXEMPTY) {
ap = (volatile cdkasy_t *)
EBRDGETMEMPTR(brdp, portp->addr);
head = (unsigned int) ap->txq.head;
tail = (unsigned int) ap->txq.tail;
if (tail != ((unsigned int) ap->txq.tail))
tail = (unsigned int) ap->txq.tail;
head = (head >= tail) ? (head - tail) :
portp->txsize - (tail - head);
if (head == 0) {
portp->state &= ~ST_TXBUSY;
tp->t_state &= ~TS_BUSY;
}
}
if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
(*linesw[tp->t_line].l_start)(tp);
EBRDENABLE(brdp);
}
}
/*
* It might seem odd that we are checking for more RX chars here.
* But, we need to handle the case where the tty buffer was previously
* filled, but we had more characters to pass up. The slave will not
* send any more RX notify messages until the RX buffer has been emptied.
* But it will leave the service bits on (since the buffer is not empty).
* So from here we can try to process more RX chars.
*/
if ((!donerx) && (portp->state & ST_RXING)) {
portp->state &= ~ST_RXING;
stli_rxprocess(brdp, portp);
}
return((portp->state & (ST_OPENING | ST_CLOSING | ST_CMDING |
ST_TXBUSY | ST_RXING)) ? 0 : 1);
}
/*****************************************************************************/
/*
* Service all ports on a particular board. Assumes that the boards
* shared memory is enabled, and that the page pointer is pointed
* at the cdk header structure.
*/
static __inline void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp)
{
stliport_t *portp;
unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
unsigned char *slavep;
int bitpos, bitat, bitsize;
int channr, nrdevs, slavebitchange;
bitsize = brdp->bitsize;
nrdevs = brdp->nrdevs;
/*
* Check if slave wants any service. Basically we try to do as
* little work as possible here. There are 2 levels of service
* bits. So if there is nothing to do we bail early. We check
* 8 service bits at a time in the inner loop, so we can bypass
* the lot if none of them want service.
*/
bcopy((((unsigned char *) hdrp) + brdp->hostoffset), &hostbits[0],
bitsize);
bzero(&slavebits[0], bitsize);
slavebitchange = 0;
for (bitpos = 0; (bitpos < bitsize); bitpos++) {
if (hostbits[bitpos] == 0)
continue;
channr = bitpos * 8;
bitat = 0x1;
for (; (channr < nrdevs); channr++, bitat <<=1) {
if (hostbits[bitpos] & bitat) {
portp = brdp->ports[(channr - 1)];
if (stli_hostcmd(brdp, portp)) {
slavebitchange++;
slavebits[bitpos] |= bitat;
}
}
}
}
/*
* If any of the ports are no longer busy then update them in the
* slave request bits. We need to do this after, since a host port
* service may initiate more slave requests...
*/
if (slavebitchange) {
hdrp = (volatile cdkhdr_t *)
EBRDGETMEMPTR(brdp, CDK_CDKADDR);
slavep = ((unsigned char *) hdrp) + brdp->slaveoffset;
for (bitpos = 0; (bitpos < bitsize); bitpos++) {
if (slavebits[bitpos])
slavep[bitpos] &= ~slavebits[bitpos];
}
}
}
/*****************************************************************************/
/*
* Driver poll routine. This routine polls the boards in use and passes
* messages back up to host when neccesary. This is actually very
* CPU efficient, since we will always have the kernel poll clock, it
* adds only a few cycles when idle (since board service can be
* determined very easily), but when loaded generates no interrupts
* (with their expensive associated context change).
*/
static void stli_poll(void *arg)
{
volatile cdkhdr_t *hdrp;
stlibrd_t *brdp;
int brdnr, x;
x = spltty();
/*
* Check each board and do any servicing required.
*/
for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
brdp = stli_brds[brdnr];
if (brdp == (stlibrd_t *) NULL)
continue;
if ((brdp->state & BST_STARTED) == 0)
continue;
EBRDENABLE(brdp);
hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
if (hdrp->hostreq)
stli_brdpoll(brdp, hdrp);
EBRDDISABLE(brdp);
}
splx(x);
timeout(stli_poll, 0, 1);
}
/*****************************************************************************/
/*
* Translate the termios settings into the port setting structure of
* the slave.
*/
static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp)
{
#if DEBUG
printf("stli_mkasyport(portp=%x,pp=%x,tiosp=%d)\n", (int) portp,
(int) pp, (int) tiosp);
#endif
bzero(pp, sizeof(asyport_t));
/*
* Start of by setting the baud, char size, parity and stop bit info.
*/
if (tiosp->c_ispeed == 0)
tiosp->c_ispeed = tiosp->c_ospeed;
if ((tiosp->c_ospeed < 0) || (tiosp->c_ospeed > STL_MAXBAUD))
tiosp->c_ospeed = STL_MAXBAUD;
pp->baudout = tiosp->c_ospeed;
pp->baudin = pp->baudout;
switch (tiosp->c_cflag & CSIZE) {
case CS5:
pp->csize = 5;
break;
case CS6:
pp->csize = 6;
break;
case CS7:
pp->csize = 7;
break;
default:
pp->csize = 8;
break;
}
if (tiosp->c_cflag & CSTOPB)
pp->stopbs = PT_STOP2;
else
pp->stopbs = PT_STOP1;
if (tiosp->c_cflag & PARENB) {
if (tiosp->c_cflag & PARODD)
pp->parity = PT_ODDPARITY;
else
pp->parity = PT_EVENPARITY;
} else {
pp->parity = PT_NOPARITY;
}
if (tiosp->c_iflag & ISTRIP)
pp->iflag |= FI_ISTRIP;
/*
* Set up any flow control options enabled.
*/
if (tiosp->c_iflag & IXON) {
pp->flow |= F_IXON;
if (tiosp->c_iflag & IXANY)
pp->flow |= F_IXANY;
}
if (tiosp->c_iflag & IXOFF)
pp->flow |= F_IXOFF;
if (tiosp->c_cflag & CCTS_OFLOW)
pp->flow |= F_CTSFLOW;
if (tiosp->c_cflag & CRTS_IFLOW)
pp->flow |= F_RTSFLOW;
pp->startin = tiosp->c_cc[VSTART];
pp->stopin = tiosp->c_cc[VSTOP];
pp->startout = tiosp->c_cc[VSTART];
pp->stopout = tiosp->c_cc[VSTOP];
/*
* Set up the RX char marking mask with those RX error types we must
* catch. We can get the slave to help us out a little here, it will
* ignore parity errors and breaks for us, and mark parity errors in
* the data stream.
*/
if (tiosp->c_iflag & IGNPAR)
pp->iflag |= FI_IGNRXERRS;
if (tiosp->c_iflag & IGNBRK)
pp->iflag |= FI_IGNBREAK;
if (tiosp->c_iflag & (INPCK | PARMRK))
pp->iflag |= FI_1MARKRXERRS;
/*
* Transfer any persistent flags into the asyport structure.
*/
pp->pflag = portp->pflag;
}
/*****************************************************************************/
/*
* Construct a slave signals structure for setting the DTR and RTS
* signals as specified.
*/
static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
{
#if DEBUG
printf("stli_mkasysigs(sp=%x,dtr=%d,rts=%d)\n", (int) sp, dtr, rts);
#endif
bzero(sp, sizeof(asysigs_t));
if (dtr >= 0) {
sp->signal |= SG_DTR;
sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
}
if (rts >= 0) {
sp->signal |= SG_RTS;
sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
}
}
/*****************************************************************************/
/*
* Convert the signals returned from the slave into a local TIOCM type
* signals value. We keep them localy in TIOCM format.
*/
static long stli_mktiocm(unsigned long sigvalue)
{
long tiocm;
#if DEBUG
printf("stli_mktiocm(sigvalue=%x)\n", (int) sigvalue);
#endif
tiocm = 0;
tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
return(tiocm);
}
/*****************************************************************************/
/*
* Enable l_rint processing bypass mode if tty modes allow it.
*/
static void stli_ttyoptim(stliport_t *portp, struct termios *tiosp)
{
struct tty *tp;
tp = &portp->tty;
if (((tiosp->c_iflag & (ICRNL | IGNCR | IMAXBEL | INLCR)) == 0) &&
(((tiosp->c_iflag & BRKINT) == 0) || (tiosp->c_iflag & IGNBRK)) &&
(((tiosp->c_iflag & PARMRK) == 0) ||
((tiosp->c_iflag & (IGNPAR | IGNBRK)) == (IGNPAR | IGNBRK))) &&
((tiosp->c_lflag & (ECHO | ICANON | IEXTEN | ISIG | PENDIN)) ==0) &&
(linesw[tp->t_line].l_rint == ttyinput))
tp->t_state |= TS_CAN_BYPASS_L_RINT;
else
tp->t_state &= ~TS_CAN_BYPASS_L_RINT;
portp->hotchar = linesw[tp->t_line].l_hotchar;
}
/*****************************************************************************/
/*
* All panels and ports actually attached have been worked out. All
* we need to do here is set up the appropriate per port data structures.
*/
static int stli_initports(stlibrd_t *brdp)
{
stliport_t *portp;
int i, panelnr, panelport;
#if DEBUG
printf("stli_initports(brdp=%x)\n", (int) brdp);
#endif
for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
portp = (stliport_t *) malloc(sizeof(stliport_t), M_TTYS,
M_NOWAIT);
if (portp == (stliport_t *) NULL) {
printf("STALLION: failed to allocate port structure\n");
continue;
}
bzero(portp, sizeof(stliport_t));
portp->portnr = i;
portp->brdnr = brdp->brdnr;
portp->panelnr = panelnr;
portp->initintios.c_ispeed = STL_DEFSPEED;
portp->initintios.c_ospeed = STL_DEFSPEED;
portp->initintios.c_cflag = STL_DEFCFLAG;
portp->initintios.c_iflag = 0;
portp->initintios.c_oflag = 0;
portp->initintios.c_lflag = 0;
bcopy(&ttydefchars[0], &portp->initintios.c_cc[0],
sizeof(portp->initintios.c_cc));
portp->initouttios = portp->initintios;
portp->dtrwait = 3 * hz;
panelport++;
if (panelport >= brdp->panels[panelnr]) {
panelport = 0;
panelnr++;
}
brdp->ports[i] = portp;
}
return(0);
}
/*****************************************************************************/
/*
* All the following routines are board specific hardware operations.
*/
static void stli_ecpinit(stlibrd_t *brdp)
{
unsigned long memconf;
#if DEBUG
printf("stli_ecpinit(brdp=%d)\n", (int) brdp);
#endif
outb((brdp->iobase + ECP_ATCONFR), ECP_ATSTOP);
DELAY(10);
outb((brdp->iobase + ECP_ATCONFR), ECP_ATDISABLE);
DELAY(100);
memconf = (brdp->paddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
outb((brdp->iobase + ECP_ATMEMAR), memconf);
}
/*****************************************************************************/
static void stli_ecpenable(stlibrd_t *brdp)
{
#if DEBUG
printf("stli_ecpenable(brdp=%x)\n", (int) brdp);
#endif
outb((brdp->iobase + ECP_ATCONFR), ECP_ATENABLE);
}
/*****************************************************************************/
static void stli_ecpdisable(stlibrd_t *brdp)
{
#if DEBUG
printf("stli_ecpdisable(brdp=%x)\n", (int) brdp);
#endif
outb((brdp->iobase + ECP_ATCONFR), ECP_ATDISABLE);
}
/*****************************************************************************/
static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{
void *ptr;
unsigned char val;
#if DEBUG
printf("stli_ecpgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
(int) offset);
#endif
if (offset > brdp->memsize) {
printf("STALLION: shared memory pointer=%x out of range at "
"line=%d(%d), brd=%d\n", (int) offset, line,
__LINE__, brdp->brdnr);
ptr = 0;
val = 0;
} else {
ptr = (char *) brdp->vaddr + (offset % ECP_ATPAGESIZE);
val = (unsigned char) (offset / ECP_ATPAGESIZE);
}
outb((brdp->iobase + ECP_ATMEMPR), val);
return(ptr);
}
/*****************************************************************************/
static void stli_ecpreset(stlibrd_t *brdp)
{
#if DEBUG
printf("stli_ecpreset(brdp=%x)\n", (int) brdp);
#endif
outb((brdp->iobase + ECP_ATCONFR), ECP_ATSTOP);
DELAY(10);
outb((brdp->iobase + ECP_ATCONFR), ECP_ATDISABLE);
DELAY(500);
}
/*****************************************************************************/
static void stli_ecpintr(stlibrd_t *brdp)
{
#if DEBUG
printf("stli_ecpintr(brdp=%x)\n", (int) brdp);
#endif
outb(brdp->iobase, 0x1);
}
/*****************************************************************************/
/*
* The following set of functions act on ECP EISA boards.
*/
static void stli_ecpeiinit(stlibrd_t *brdp)
{
unsigned long memconf;
#if DEBUG
printf("stli_ecpeiinit(brdp=%x)\n", (int) brdp);
#endif
outb((brdp->iobase + ECP_EIBRDENAB), 0x1);
outb((brdp->iobase + ECP_EICONFR), ECP_EISTOP);
DELAY(10);
outb((brdp->iobase + ECP_EICONFR), ECP_EIDISABLE);
DELAY(500);
memconf = (brdp->paddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
outb((brdp->iobase + ECP_EIMEMARL), memconf);
memconf = (brdp->paddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
outb((brdp->iobase + ECP_EIMEMARH), memconf);
}
/*****************************************************************************/
static void stli_ecpeienable(stlibrd_t *brdp)
{
outb((brdp->iobase + ECP_EICONFR), ECP_EIENABLE);
}
/*****************************************************************************/
static void stli_ecpeidisable(stlibrd_t *brdp)
{
outb((brdp->iobase + ECP_EICONFR), ECP_EIDISABLE);
}
/*****************************************************************************/
static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{
void *ptr;
unsigned char val;
#if DEBUG
printf("stli_ecpeigetmemptr(brdp=%x,offset=%x,line=%d)\n",
(int) brdp, (int) offset, line);
#endif
if (offset > brdp->memsize) {
printf("STALLION: shared memory pointer=%x out of range at "
"line=%d(%d), brd=%d\n", (int) offset, line,
__LINE__, brdp->brdnr);
ptr = 0;
val = 0;
} else {
ptr = (char *) brdp->vaddr + (offset % ECP_EIPAGESIZE);
if (offset < ECP_EIPAGESIZE)
val = ECP_EIENABLE;
else
val = ECP_EIENABLE | 0x40;
}
outb((brdp->iobase + ECP_EICONFR), val);
return(ptr);
}
/*****************************************************************************/
static void stli_ecpeireset(stlibrd_t *brdp)
{
outb((brdp->iobase + ECP_EICONFR), ECP_EISTOP);
DELAY(10);
outb((brdp->iobase + ECP_EICONFR), ECP_EIDISABLE);
DELAY(500);
}
/*****************************************************************************/
/*
* The following set of functions act on ECP MCA boards.
*/
static void stli_ecpmcenable(stlibrd_t *brdp)
{
outb((brdp->iobase + ECP_MCCONFR), ECP_MCENABLE);
}
/*****************************************************************************/
static void stli_ecpmcdisable(stlibrd_t *brdp)
{
outb((brdp->iobase + ECP_MCCONFR), ECP_MCDISABLE);
}
/*****************************************************************************/
static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{
void *ptr;
unsigned char val;
if (offset > brdp->memsize) {
printf("STALLION: shared memory pointer=%x out of range at "
"line=%d(%d), brd=%d\n", (int) offset, line,
__LINE__, brdp->brdnr);
ptr = 0;
val = 0;
} else {
ptr = (char *) brdp->vaddr + (offset % ECP_MCPAGESIZE);
val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
}
outb((brdp->iobase + ECP_MCCONFR), val);
return(ptr);
}
/*****************************************************************************/
static void stli_ecpmcreset(stlibrd_t *brdp)
{
outb((brdp->iobase + ECP_MCCONFR), ECP_MCSTOP);
DELAY(10);
outb((brdp->iobase + ECP_MCCONFR), ECP_MCDISABLE);
DELAY(500);
}
/*****************************************************************************/
/*
* The following routines act on ONboards.
*/
static void stli_onbinit(stlibrd_t *brdp)
{
unsigned long memconf;
int i;
#if DEBUG
printf("stli_onbinit(brdp=%d)\n", (int) brdp);
#endif
outb((brdp->iobase + ONB_ATCONFR), ONB_ATSTOP);
DELAY(10);
outb((brdp->iobase + ONB_ATCONFR), ONB_ATDISABLE);
for (i = 0; (i < 1000); i++)
DELAY(1000);
memconf = (brdp->paddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
outb((brdp->iobase + ONB_ATMEMAR), memconf);
outb(brdp->iobase, 0x1);
DELAY(1000);
}
/*****************************************************************************/
static void stli_onbenable(stlibrd_t *brdp)
{
#if DEBUG
printf("stli_onbenable(brdp=%x)\n", (int) brdp);
#endif
outb((brdp->iobase + ONB_ATCONFR), (ONB_ATENABLE | brdp->confbits));
}
/*****************************************************************************/
static void stli_onbdisable(stlibrd_t *brdp)
{
#if DEBUG
printf("stli_onbdisable(brdp=%x)\n", (int) brdp);
#endif
outb((brdp->iobase + ONB_ATCONFR), (ONB_ATDISABLE | brdp->confbits));
}
/*****************************************************************************/
static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{
void *ptr;
#if DEBUG
printf("stli_onbgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
(int) offset);
#endif
if (offset > brdp->memsize) {
printf("STALLION: shared memory pointer=%x out of range at "
"line=%d(%d), brd=%d\n", (int) offset, line,
__LINE__, brdp->brdnr);
ptr = 0;
} else {
ptr = (char *) brdp->vaddr + (offset % ONB_ATPAGESIZE);
}
return(ptr);
}
/*****************************************************************************/
static void stli_onbreset(stlibrd_t *brdp)
{
int i;
#if DEBUG
printf("stli_onbreset(brdp=%x)\n", (int) brdp);
#endif
outb((brdp->iobase + ONB_ATCONFR), ONB_ATSTOP);
DELAY(10);
outb((brdp->iobase + ONB_ATCONFR), ONB_ATDISABLE);
for (i = 0; (i < 1000); i++)
DELAY(1000);
}
/*****************************************************************************/
/*
* The following routines act on ONboard EISA.
*/
static void stli_onbeinit(stlibrd_t *brdp)
{
unsigned long memconf;
int i;
#if DEBUG
printf("stli_onbeinit(brdp=%d)\n", (int) brdp);
#endif
outb((brdp->iobase + ONB_EIBRDENAB), 0x1);
outb((brdp->iobase + ONB_EICONFR), ONB_EISTOP);
DELAY(10);
outb((brdp->iobase + ONB_EICONFR), ONB_EIDISABLE);
for (i = 0; (i < 1000); i++)
DELAY(1000);
memconf = (brdp->paddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
outb((brdp->iobase + ONB_EIMEMARL), memconf);
memconf = (brdp->paddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
outb((brdp->iobase + ONB_EIMEMARH), memconf);
outb(brdp->iobase, 0x1);
DELAY(1000);
}
/*****************************************************************************/
static void stli_onbeenable(stlibrd_t *brdp)
{
#if DEBUG
printf("stli_onbeenable(brdp=%x)\n", (int) brdp);
#endif
outb((brdp->iobase + ONB_EICONFR), ONB_EIENABLE);
}
/*****************************************************************************/
static void stli_onbedisable(stlibrd_t *brdp)
{
#if DEBUG
printf("stli_onbedisable(brdp=%x)\n", (int) brdp);
#endif
outb((brdp->iobase + ONB_EICONFR), ONB_EIDISABLE);
}
/*****************************************************************************/
static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{
void *ptr;
unsigned char val;
#if DEBUG
printf("stli_onbegetmemptr(brdp=%x,offset=%x,line=%d)\n", (int) brdp,
(int) offset, line);
#endif
if (offset > brdp->memsize) {
printf("STALLION: shared memory pointer=%x out of range at "
"line=%d(%d), brd=%d\n", (int) offset, line,
__LINE__, brdp->brdnr);
ptr = 0;
val = 0;
} else {
ptr = (char *) brdp->vaddr + (offset % ONB_EIPAGESIZE);
if (offset < ONB_EIPAGESIZE)
val = ONB_EIENABLE;
else
val = ONB_EIENABLE | 0x40;
}
outb((brdp->iobase + ONB_EICONFR), val);
return(ptr);
}
/*****************************************************************************/
static void stli_onbereset(stlibrd_t *brdp)
{
int i;
#if DEBUG
printf("stli_onbereset(brdp=%x)\n", (int) brdp);
#endif
outb((brdp->iobase + ONB_EICONFR), ONB_EISTOP);
DELAY(10);
outb((brdp->iobase + ONB_EICONFR), ONB_EIDISABLE);
for (i = 0; (i < 1000); i++)
DELAY(1000);
}
/*****************************************************************************/
/*
* The following routines act on Brumby boards.
*/
static void stli_bbyinit(stlibrd_t *brdp)
{
int i;
#if DEBUG
printf("stli_bbyinit(brdp=%d)\n", (int) brdp);
#endif
outb((brdp->iobase + BBY_ATCONFR), BBY_ATSTOP);
DELAY(10);
outb((brdp->iobase + BBY_ATCONFR), 0);
for (i = 0; (i < 1000); i++)
DELAY(1000);
outb(brdp->iobase, 0x1);
DELAY(1000);
}
/*****************************************************************************/
static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{
void *ptr;
unsigned char val;
#if DEBUG
printf("stli_bbygetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
(int) offset);
#endif
if (offset > brdp->memsize) {
printf("STALLION: shared memory pointer=%x out of range at "
"line=%d(%d), brd=%d\n", (int) offset, line,
__LINE__, brdp->brdnr);
ptr = 0;
val = 0;
} else {
ptr = (char *) brdp->vaddr + (offset % BBY_PAGESIZE);
val = (unsigned char) (offset / BBY_PAGESIZE);
}
outb((brdp->iobase + BBY_ATCONFR), val);
return(ptr);
}
/*****************************************************************************/
static void stli_bbyreset(stlibrd_t *brdp)
{
int i;
#if DEBUG
printf("stli_bbyreset(brdp=%x)\n", (int) brdp);
#endif
outb((brdp->iobase + BBY_ATCONFR), BBY_ATSTOP);
DELAY(10);
outb((brdp->iobase + BBY_ATCONFR), 0);
for (i = 0; (i < 1000); i++)
DELAY(1000);
}
/*****************************************************************************/
/*
* The following routines act on original old Stallion boards.
*/
static void stli_stalinit(stlibrd_t *brdp)
{
int i;
#if DEBUG
printf("stli_stalinit(brdp=%d)\n", (int) brdp);
#endif
outb(brdp->iobase, 0x1);
for (i = 0; (i < 1000); i++)
DELAY(1000);
}
/*****************************************************************************/
static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{
void *ptr;
#if DEBUG
printf("stli_stalgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
(int) offset);
#endif
if (offset > brdp->memsize) {
printf("STALLION: shared memory pointer=%x out of range at "
"line=%d(%d), brd=%d\n", (int) offset, line,
__LINE__, brdp->brdnr);
ptr = 0;
} else {
ptr = (char *) brdp->vaddr + (offset % STAL_PAGESIZE);
}
return(ptr);
}
/*****************************************************************************/
static void stli_stalreset(stlibrd_t *brdp)
{
volatile unsigned long *vecp;
int i;
#if DEBUG
printf("stli_stalreset(brdp=%x)\n", (int) brdp);
#endif
vecp = (volatile unsigned long *) ((char *) brdp->vaddr + 0x30);
*vecp = 0xffff0000;
outb(brdp->iobase, 0);
for (i = 0; (i < 1000); i++)
DELAY(1000);
}
/*****************************************************************************/
/*
* Try to find an ECP board and initialize it. This handles only ECP
* board types.
*/
static int stli_initecp(stlibrd_t *brdp)
{
cdkecpsig_t sig;
cdkecpsig_t *sigsp;
unsigned int status, nxtid;
int panelnr;
#if DEBUG
printf("stli_initecp(brdp=%x)\n", (int) brdp);
#endif
/*
* Do a basic sanity check on the IO and memory addresses.
*/
if ((brdp->iobase == 0) || (brdp->paddr == 0))
return(EINVAL);
/*
* Based on the specific board type setup the common vars to access
* and enable shared memory. Set all board specific information now
* as well.
*/
switch (brdp->brdtype) {
case BRD_ECP:
brdp->memsize = ECP_MEMSIZE;
brdp->pagesize = ECP_ATPAGESIZE;
brdp->init = stli_ecpinit;
brdp->enable = stli_ecpenable;
brdp->reenable = stli_ecpenable;
brdp->disable = stli_ecpdisable;
brdp->getmemptr = stli_ecpgetmemptr;
brdp->intr = stli_ecpintr;
brdp->reset = stli_ecpreset;
break;
case BRD_ECPE:
brdp->memsize = ECP_MEMSIZE;
brdp->pagesize = ECP_EIPAGESIZE;
brdp->init = stli_ecpeiinit;
brdp->enable = stli_ecpeienable;
brdp->reenable = stli_ecpeienable;
brdp->disable = stli_ecpeidisable;
brdp->getmemptr = stli_ecpeigetmemptr;
brdp->intr = stli_ecpintr;
brdp->reset = stli_ecpeireset;
break;
case BRD_ECPMC:
brdp->memsize = ECP_MEMSIZE;
brdp->pagesize = ECP_MCPAGESIZE;
brdp->init = NULL;
brdp->enable = stli_ecpmcenable;
brdp->reenable = stli_ecpmcenable;
brdp->disable = stli_ecpmcdisable;
brdp->getmemptr = stli_ecpmcgetmemptr;
brdp->intr = stli_ecpintr;
brdp->reset = stli_ecpmcreset;
break;
default:
return(EINVAL);
}
/*
* The per-board operations structure is all setup, so now lets go
* and get the board operational. Firstly initialize board configuration
* registers.
*/
EBRDINIT(brdp);
/*
* Now that all specific code is set up, enable the shared memory and
* look for the a signature area that will tell us exactly what board
* this is, and what it is connected to it.
*/
EBRDENABLE(brdp);
sigsp = (cdkecpsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
bcopy(sigsp, &sig, sizeof(cdkecpsig_t));
EBRDDISABLE(brdp);
#if 0
printf("%s(%d): sig-> magic=%x rom=%x panel=%x,%x,%x,%x,%x,%x,%x,%x\n",
__file__, __LINE__, (int) sig.magic, sig.romver,
sig.panelid[0], (int) sig.panelid[1], (int) sig.panelid[2],
(int) sig.panelid[3], (int) sig.panelid[4],
(int) sig.panelid[5], (int) sig.panelid[6],
(int) sig.panelid[7]);
#endif
if (sig.magic != ECP_MAGIC)
return(ENXIO);
/*
* Scan through the signature looking at the panels connected to the
* board. Calculate the total number of ports as we go.
*/
for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
status = sig.panelid[nxtid];
if ((status & ECH_PNLIDMASK) != nxtid)
break;
brdp->panelids[panelnr] = status;
if (status & ECH_PNL16PORT) {
brdp->panels[panelnr] = 16;
brdp->nrports += 16;
nxtid += 2;
} else {
brdp->panels[panelnr] = 8;
brdp->nrports += 8;
nxtid++;
}
brdp->nrpanels++;
}
brdp->state |= BST_FOUND;
return(0);
}
/*****************************************************************************/
/*
* Try to find an ONboard, Brumby or Stallion board and initialize it.
* This handles only these board types.
*/
static int stli_initonb(stlibrd_t *brdp)
{
cdkonbsig_t sig;
cdkonbsig_t *sigsp;
int i;
#if DEBUG
printf("stli_initonb(brdp=%x)\n", (int) brdp);
#endif
/*
* Do a basic sanity check on the IO and memory addresses.
*/
if ((brdp->iobase == 0) || (brdp->paddr == 0))
return(EINVAL);
/*
* Based on the specific board type setup the common vars to access
* and enable shared memory. Set all board specific information now
* as well.
*/
switch (brdp->brdtype) {
case BRD_ONBOARD:
case BRD_ONBOARD32:
case BRD_ONBOARD2:
case BRD_ONBOARD2_32:
case BRD_ONBOARDRS:
brdp->memsize = ONB_MEMSIZE;
brdp->pagesize = ONB_ATPAGESIZE;
brdp->init = stli_onbinit;
brdp->enable = stli_onbenable;
brdp->reenable = stli_onbenable;
brdp->disable = stli_onbdisable;
brdp->getmemptr = stli_onbgetmemptr;
brdp->intr = stli_ecpintr;
brdp->reset = stli_onbreset;
brdp->confbits = (brdp->paddr > 0x100000) ? ONB_HIMEMENAB : 0;
break;
case BRD_ONBOARDE:
brdp->memsize = ONB_EIMEMSIZE;
brdp->pagesize = ONB_EIPAGESIZE;
brdp->init = stli_onbeinit;
brdp->enable = stli_onbeenable;
brdp->reenable = stli_onbeenable;
brdp->disable = stli_onbedisable;
brdp->getmemptr = stli_onbegetmemptr;
brdp->intr = stli_ecpintr;
brdp->reset = stli_onbereset;
break;
case BRD_BRUMBY4:
case BRD_BRUMBY8:
case BRD_BRUMBY16:
brdp->memsize = BBY_MEMSIZE;
brdp->pagesize = BBY_PAGESIZE;
brdp->init = stli_bbyinit;
brdp->enable = NULL;
brdp->reenable = NULL;
brdp->disable = NULL;
brdp->getmemptr = stli_bbygetmemptr;
brdp->intr = stli_ecpintr;
brdp->reset = stli_bbyreset;
break;
case BRD_STALLION:
brdp->memsize = STAL_MEMSIZE;
brdp->pagesize = STAL_PAGESIZE;
brdp->init = stli_stalinit;
brdp->enable = NULL;
brdp->reenable = NULL;
brdp->disable = NULL;
brdp->getmemptr = stli_stalgetmemptr;
brdp->intr = stli_ecpintr;
brdp->reset = stli_stalreset;
break;
default:
return(EINVAL);
}
/*
* The per-board operations structure is all setup, so now lets go
* and get the board operational. Firstly initialize board configuration
* registers.
*/
EBRDINIT(brdp);
/*
* Now that all specific code is set up, enable the shared memory and
* look for the a signature area that will tell us exactly what board
* this is, and how many ports.
*/
EBRDENABLE(brdp);
sigsp = (cdkonbsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
bcopy(sigsp, &sig, sizeof(cdkonbsig_t));
EBRDDISABLE(brdp);
#if 0
printf("%s(%d): sig-> magic=%x:%x:%x:%x romver=%x amask=%x:%x:%x\n",
__file__, __LINE__, sig.magic0, sig.magic1, sig.magic2,
sig.magic3, sig.romver, sig.amask0, sig.amask1, sig.amask2);
#endif
if ((sig.magic0 != ONB_MAGIC0) || (sig.magic1 != ONB_MAGIC1) ||
(sig.magic2 != ONB_MAGIC2) || (sig.magic3 != ONB_MAGIC3))
return(ENXIO);
/*
* Scan through the signature alive mask and calculate how many ports
* there are on this board.
*/
brdp->nrpanels = 1;
if (sig.amask1) {
brdp->nrports = 32;
} else {
for (i = 0; (i < 16); i++) {
if (((sig.amask0 << i) & 0x8000) == 0)
break;
}
brdp->nrports = i;
}
brdp->panels[0] = brdp->nrports;
brdp->state |= BST_FOUND;
return(0);
}
/*****************************************************************************/
/*
* Start up a running board. This routine is only called after the
* code has been down loaded to the board and is operational. It will
* read in the memory map, and get the show on the road...
*/
static int stli_startbrd(stlibrd_t *brdp)
{
volatile cdkhdr_t *hdrp;
volatile cdkmem_t *memp;
volatile cdkasy_t *ap;
stliport_t *portp;
int portnr, nrdevs, i, rc, x;
#if DEBUG
printf("stli_startbrd(brdp=%x)\n", (int) brdp);
#endif
rc = 0;
x = spltty();
EBRDENABLE(brdp);
hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
nrdevs = hdrp->nrdevs;
#if 0
printf("%s(%d): CDK version %d.%d.%d --> nrdevs=%d memp=%x hostp=%x "
"slavep=%x\n", __file__, __LINE__, hdrp->ver_release,
hdrp->ver_modification, hdrp->ver_fix, nrdevs,
(int) hdrp->memp, (int) hdrp->hostp, (int) hdrp->slavep);
#endif
if (nrdevs < (brdp->nrports + 1)) {
printf("STALLION: slave failed to allocate memory for all "
"devices, devices=%d\n", nrdevs);
brdp->nrports = nrdevs - 1;
}
brdp->nrdevs = nrdevs;
brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
brdp->bitsize = (nrdevs + 7) / 8;
memp = (volatile cdkmem_t *) (void *) (uintptr_t) hdrp->memp;
if (((uintptr_t) (void *) memp) > brdp->memsize) {
printf("STALLION: corrupted shared memory region?\n");
rc = EIO;
goto stli_donestartup;
}
memp = (volatile cdkmem_t *) EBRDGETMEMPTR(brdp,
(uintptr_t) (void *) memp);
if (memp->dtype != TYP_ASYNCTRL) {
printf("STALLION: no slave control device found\n");
rc = EIO;
goto stli_donestartup;
}
memp++;
/*
* Cycle through memory allocation of each port. We are guaranteed to
* have all ports inside the first page of slave window, so no need to
* change pages while reading memory map.
*/
for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
if (memp->dtype != TYP_ASYNC)
break;
portp = brdp->ports[portnr];
if (portp == (stliport_t *) NULL)
break;
portp->devnr = i;
portp->addr = memp->offset;
portp->reqidx = (unsigned char) (i * 8 / nrdevs);
portp->reqbit = (unsigned char) (0x1 << portp->reqidx);
portp->portidx = (unsigned char) (i / 8);
portp->portbit = (unsigned char) (0x1 << (i % 8));
}
hdrp->slavereq = 0xff;
/*
* For each port setup a local copy of the RX and TX buffer offsets
* and sizes. We do this separate from the above, because we need to
* move the shared memory page...
*/
for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
portp = brdp->ports[portnr];
if (portp == (stliport_t *) NULL)
break;
if (portp->addr == 0)
break;
ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
if (ap != (volatile cdkasy_t *) NULL) {
portp->rxsize = ap->rxq.size;
portp->txsize = ap->txq.size;
portp->rxoffset = ap->rxq.offset;
portp->txoffset = ap->txq.offset;
}
}
stli_donestartup:
EBRDDISABLE(brdp);
splx(x);
if (rc == 0)
brdp->state |= BST_STARTED;
if (stli_doingtimeout == 0) {
timeout(stli_poll, 0, 1);
stli_doingtimeout++;
}
return(rc);
}
/*****************************************************************************/
/*
* Probe and initialize the specified board.
*/
static int stli_brdinit(stlibrd_t *brdp)
{
#if DEBUG
printf("stli_brdinit(brdp=%x)\n", (int) brdp);
#endif
stli_brds[brdp->brdnr] = brdp;
switch (brdp->brdtype) {
case BRD_ECP:
case BRD_ECPE:
case BRD_ECPMC:
stli_initecp(brdp);
break;
case BRD_ONBOARD:
case BRD_ONBOARDE:
case BRD_ONBOARD2:
case BRD_ONBOARD32:
case BRD_ONBOARD2_32:
case BRD_ONBOARDRS:
case BRD_BRUMBY4:
case BRD_BRUMBY8:
case BRD_BRUMBY16:
case BRD_STALLION:
stli_initonb(brdp);
break;
case BRD_EASYIO:
case BRD_ECH:
case BRD_ECHMC:
case BRD_ECHPCI:
printf("STALLION: %s board type not supported in this driver\n",
stli_brdnames[brdp->brdtype]);
return(ENODEV);
default:
printf("STALLION: unit=%d is unknown board type=%d\n",
brdp->brdnr, brdp->brdtype);
return(ENODEV);
}
return(0);
}
/*****************************************************************************/
/*
* Finish off the remaining initialization for a board.
*/
static int stli_brdattach(stlibrd_t *brdp)
{
#if DEBUG
printf("stli_brdattach(brdp=%x)\n", (int) brdp);
#endif
#if 0
if ((brdp->state & BST_FOUND) == 0) {
printf("STALLION: %s board not found, unit=%d io=%x mem=%x\n",
stli_brdnames[brdp->brdtype], brdp->brdnr,
brdp->iobase, (int) brdp->paddr);
return(ENXIO);
}
#endif
stli_initports(brdp);
printf("stli%d: %s (driver version %s), unit=%d nrpanels=%d "
"nrports=%d\n", brdp->unitid, stli_brdnames[brdp->brdtype],
stli_drvversion, brdp->brdnr, brdp->nrpanels, brdp->nrports);
return(0);
}
/*****************************************************************************/
/*
* Check for possible shared memory sharing between boards.
* FIX: need to start this optimization somewhere...
*/
static int stli_chksharemem()
{
stlibrd_t *brdp, *nxtbrdp;
int i, j;
#if DEBUG
printf("stli_chksharemem()\n");
#endif
/*
* All found boards are initialized. Now for a little optimization, if
* no boards are sharing the "shared memory" regions then we can just
* leave them all enabled. This is in fact the usual case.
*/
stli_shared = 0;
if (stli_nrbrds > 1) {
for (i = 0; (i < stli_nrbrds); i++) {
brdp = stli_brds[i];
if (brdp == (stlibrd_t *) NULL)
continue;
for (j = i + 1; (j < stli_nrbrds); j++) {
nxtbrdp = stli_brds[j];
if (nxtbrdp == (stlibrd_t *) NULL)
continue;
if ((brdp->paddr >= nxtbrdp->paddr) &&
(brdp->paddr <= (nxtbrdp->paddr +
nxtbrdp->memsize - 1))) {
stli_shared++;
break;
}
}
}
}
if (stli_shared == 0) {
for (i = 0; (i < stli_nrbrds); i++) {
brdp = stli_brds[i];
if (brdp == (stlibrd_t *) NULL)
continue;
if (brdp->state & BST_FOUND) {
EBRDENABLE(brdp);
brdp->enable = NULL;
brdp->disable = NULL;
}
}
}
return(0);
}
/*****************************************************************************/
/*
* Return the board stats structure to user app.
*/
static int stli_getbrdstats(caddr_t data)
{
stlibrd_t *brdp;
int i;
#if DEBUG
printf("stli_getbrdstats(data=%x)\n", data);
#endif
stli_brdstats = *((combrd_t *) data);
if (stli_brdstats.brd >= STL_MAXBRDS)
return(-ENODEV);
brdp = stli_brds[stli_brdstats.brd];
if (brdp == (stlibrd_t *) NULL)
return(-ENODEV);
bzero(&stli_brdstats, sizeof(combrd_t));
stli_brdstats.brd = brdp->brdnr;
stli_brdstats.type = brdp->brdtype;
stli_brdstats.hwid = 0;
stli_brdstats.state = brdp->state;
stli_brdstats.ioaddr = brdp->iobase;
stli_brdstats.memaddr = brdp->paddr;
stli_brdstats.nrpanels = brdp->nrpanels;
stli_brdstats.nrports = brdp->nrports;
for (i = 0; (i < brdp->nrpanels); i++) {
stli_brdstats.panels[i].panel = i;
stli_brdstats.panels[i].hwid = brdp->panelids[i];
stli_brdstats.panels[i].nrports = brdp->panels[i];
}
*((combrd_t *) data) = stli_brdstats;
return(0);
}
/*****************************************************************************/
/*
* Resolve the referenced port number into a port struct pointer.
*/
static stliport_t *stli_getport(int brdnr, int panelnr, int portnr)
{
stlibrd_t *brdp;
int i;
if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
return((stliport_t *) NULL);
brdp = stli_brds[brdnr];
if (brdp == (stlibrd_t *) NULL)
return((stliport_t *) NULL);
for (i = 0; (i < panelnr); i++)
portnr += brdp->panels[i];
if ((portnr < 0) || (portnr >= brdp->nrports))
return((stliport_t *) NULL);
return(brdp->ports[portnr]);
}
/*****************************************************************************/
/*
* Return the port stats structure to user app. A NULL port struct
* pointer passed in means that we need to find out from the app
* what port to get stats for (used through board control device).
*/
static int stli_getportstats(stliport_t *portp, caddr_t data)
{
stlibrd_t *brdp;
int rc;
if (portp == (stliport_t *) NULL) {
stli_comstats = *((comstats_t *) data);
portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
stli_comstats.port);
if (portp == (stliport_t *) NULL)
return(-ENODEV);
}
brdp = stli_brds[portp->brdnr];
if (brdp == (stlibrd_t *) NULL)
return(-ENODEV);
if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS, &stli_cdkstats,
sizeof(asystats_t), 1)) < 0)
return(rc);
stli_comstats.brd = portp->brdnr;
stli_comstats.panel = portp->panelnr;
stli_comstats.port = portp->portnr;
stli_comstats.state = portp->state;
/*stli_comstats.flags = portp->flags;*/
stli_comstats.ttystate = portp->tty.t_state;
stli_comstats.cflags = portp->tty.t_cflag;
stli_comstats.iflags = portp->tty.t_iflag;
stli_comstats.oflags = portp->tty.t_oflag;
stli_comstats.lflags = portp->tty.t_lflag;
stli_comstats.txtotal = stli_cdkstats.txchars;
stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
stli_comstats.txbuffered = stli_cdkstats.txringq;
stli_comstats.rxbuffered = stli_cdkstats.rxringq;
stli_comstats.rxoverrun = stli_cdkstats.overruns;
stli_comstats.rxparity = stli_cdkstats.parity;
stli_comstats.rxframing = stli_cdkstats.framing;
stli_comstats.rxlost = stli_cdkstats.ringover + portp->rxlost;
stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
stli_comstats.txbreaks = stli_cdkstats.txbreaks;
stli_comstats.txxon = stli_cdkstats.txstart;
stli_comstats.txxoff = stli_cdkstats.txstop;
stli_comstats.rxxon = stli_cdkstats.rxstart;
stli_comstats.rxxoff = stli_cdkstats.rxstop;
stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
stli_comstats.modem = stli_cdkstats.dcdcnt;
stli_comstats.hwid = stli_cdkstats.hwid;
stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
*((comstats_t *) data) = stli_comstats;;
return(0);
}
/*****************************************************************************/
/*
* Clear the port stats structure. We also return it zeroed out...
*/
static int stli_clrportstats(stliport_t *portp, caddr_t data)
{
stlibrd_t *brdp;
int rc;
if (portp == (stliport_t *) NULL) {
stli_comstats = *((comstats_t *) data);
portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
stli_comstats.port);
if (portp == (stliport_t *) NULL)
return(-ENODEV);
}
brdp = stli_brds[portp->brdnr];
if (brdp == (stlibrd_t *) NULL)
return(-ENODEV);
if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, 0, 0, 0)) < 0)
return(rc);
portp->rxlost = 0;
bzero(&stli_comstats, sizeof(comstats_t));
stli_comstats.brd = portp->brdnr;
stli_comstats.panel = portp->panelnr;
stli_comstats.port = portp->portnr;
*((comstats_t *) data) = stli_comstats;;
return(0);
}
/*****************************************************************************/
/*
* Code to handle an "staliomem" read and write operations. This device
* is the contents of the board shared memory. It is used for down
* loading the slave image (and debugging :-)
*/
STATIC int stli_memrw(dev_t dev, struct uio *uiop, int flag)
{
stlibrd_t *brdp;
void *memptr;
int brdnr, size, n, error, x;
#if DEBUG
printf("stli_memrw(dev=%x,uiop=%x,flag=%x)\n", (int) dev,
(int) uiop, flag);
#endif
brdnr = dev & 0x7;
brdp = stli_brds[brdnr];
if (brdp == (stlibrd_t *) NULL)
return(ENODEV);
if (brdp->state == 0)
return(ENODEV);
if (uiop->uio_offset >= brdp->memsize)
return(0);
error = 0;
size = brdp->memsize - uiop->uio_offset;
x = spltty();
EBRDENABLE(brdp);
while (size > 0) {
memptr = (void *) EBRDGETMEMPTR(brdp, uiop->uio_offset);
n = MIN(size, (brdp->pagesize -
(((unsigned long) uiop->uio_offset) % brdp->pagesize)));
error = uiomove(memptr, n, uiop);
if ((uiop->uio_resid == 0) || error)
break;
}
EBRDDISABLE(brdp);
splx(x);
return(error);
}
/*****************************************************************************/
/*
* The "staliomem" device is also required to do some special operations
* on the board. We need to be able to send an interrupt to the board,
* reset it, and start/stop it.
*/
static int stli_memioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
{
stlibrd_t *brdp;
int brdnr, rc;
#if DEBUG
printf("stli_memioctl(dev=%x,cmd=%x,data=%x,flag=%x)\n", (int) dev,
cmd, (int) data, flag);
#endif
brdnr = dev & 0x7;
brdp = stli_brds[brdnr];
if (brdp == (stlibrd_t *) NULL)
return(ENODEV);
if (brdp->state == 0)
return(ENODEV);
rc = 0;
switch (cmd) {
case STL_BINTR:
EBRDINTR(brdp);
break;
case STL_BSTART:
rc = stli_startbrd(brdp);
break;
case STL_BSTOP:
brdp->state &= ~BST_STARTED;
break;
case STL_BRESET:
brdp->state &= ~BST_STARTED;
EBRDRESET(brdp);
if (stli_shared == 0) {
if (brdp->reenable != NULL)
(* brdp->reenable)(brdp);
}
break;
case COM_GETPORTSTATS:
rc = stli_getportstats((stliport_t *) NULL, data);
break;
case COM_CLRPORTSTATS:
rc = stli_clrportstats((stliport_t *) NULL, data);
break;
case COM_GETBRDSTATS:
rc = stli_getbrdstats(data);
break;
default:
rc = ENOTTY;
break;
}
return(rc);
}
/*****************************************************************************/