freebsd-dev/sys/powerpc/mpc85xx/fsl_sata.c
Justin Hibbits e64428edf7 Make fsl_sata driver work on P1022
P1022 SATA controller may set the wrong CCR bit for a command completion.
This would previously cause an interrupt storm.  Solve this by marking all
commands complete, and letting the end_transaction deal with the successes.
Causes no problems on P5020.

While here, fix a minor bug in collision detection.  The Freescale SATA
controller only has 16 slots, not 32.
2018-01-16 04:50:23 +00:00

1922 lines
58 KiB
C

/*-
* Copyright (c) 2009-2012 Alexander Motin <mav@FreeBSD.org>
* Copyright (c) 2017 Justin Hibbits <jhibbits@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/module.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/endian.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include "fsl_sata.h"
struct fsl_sata_channel;
struct fsl_sata_slot;
enum fsl_sata_err_type;
struct fsl_sata_cmd_tab;
/* local prototypes */
static int fsl_sata_init(device_t dev);
static int fsl_sata_deinit(device_t dev);
static int fsl_sata_suspend(device_t dev);
static int fsl_sata_resume(device_t dev);
static void fsl_sata_pm(void *arg);
static void fsl_sata_intr(void *arg);
static void fsl_sata_intr_main(struct fsl_sata_channel *ch, uint32_t istatus);
static void fsl_sata_begin_transaction(struct fsl_sata_channel *ch, union ccb *ccb);
static void fsl_sata_dmasetprd(void *arg, bus_dma_segment_t *segs, int nsegs, int error);
static void fsl_sata_execute_transaction(struct fsl_sata_slot *slot);
static void fsl_sata_timeout(struct fsl_sata_slot *slot);
static void fsl_sata_end_transaction(struct fsl_sata_slot *slot, enum fsl_sata_err_type et);
static int fsl_sata_setup_fis(struct fsl_sata_channel *ch, struct fsl_sata_cmd_tab *ctp, union ccb *ccb, int tag);
static void fsl_sata_dmainit(device_t dev);
static void fsl_sata_dmasetupc_cb(void *xsc, bus_dma_segment_t *segs, int nsegs, int error);
static void fsl_sata_dmafini(device_t dev);
static void fsl_sata_slotsalloc(device_t dev);
static void fsl_sata_slotsfree(device_t dev);
static void fsl_sata_reset(struct fsl_sata_channel *ch);
static void fsl_sata_start(struct fsl_sata_channel *ch);
static void fsl_sata_stop(struct fsl_sata_channel *ch);
static void fsl_sata_issue_recovery(struct fsl_sata_channel *ch);
static void fsl_sata_process_read_log(struct fsl_sata_channel *ch, union ccb *ccb);
static void fsl_sata_process_request_sense(struct fsl_sata_channel *ch, union ccb *ccb);
static void fsl_sataaction(struct cam_sim *sim, union ccb *ccb);
static void fsl_satapoll(struct cam_sim *sim);
static MALLOC_DEFINE(M_FSL_SATA, "FSL SATA driver", "FSL SATA driver data buffers");
#define recovery_type spriv_field0
#define RECOVERY_NONE 0
#define RECOVERY_READ_LOG 1
#define RECOVERY_REQUEST_SENSE 2
#define recovery_slot spriv_field1
#define FSL_SATA_P_CQR 0x0
#define FSL_SATA_P_CAR 0x4
#define FSL_SATA_P_CCR 0x10
#define FSL_SATA_P_CER 0x18
#define FSL_SATA_P_DER 0x20
#define FSL_SATA_P_CHBA 0x24
#define FSL_SATA_P_HSTS 0x28
#define FSL_SATA_P_HSTS_HS_ON 0x80000000
#define FSL_SATA_P_HSTS_ME 0x00040000
#define FSL_SATA_P_HSTS_DLM 0x00001000
#define FSL_SATA_P_HSTS_FOT 0x00000200
#define FSL_SATA_P_HSTS_FOR 0x00000100
#define FSL_SATA_P_HSTS_FE 0x00000020
#define FSL_SATA_P_HSTS_PR 0x00000010
#define FSL_SATA_P_HSTS_SNTFU 0x00000004
#define FSL_SATA_P_HSTS_DE 0x00000002
#define FSL_SATA_P_HCTRL 0x2c
#define FSL_SATA_P_HCTRL_HC_ON 0x80000000
#define FSL_SATA_P_HCTRL_HC_FORCE_OFF 0x40000000
#define FSL_SATA_P_HCTRL_ENT 0x10000000
#define FSL_SATA_P_HCTRL_SNOOP 0x00000400
#define FSL_SATA_P_HCTRL_PM 0x00000200
#define FSL_SATA_P_HCTRL_FATAL 0x00000020
#define FSL_SATA_P_HCTRL_PHYRDY 0x00000010
#define FSL_SATA_P_HCTRL_SIG 0x00000008
#define FSL_SATA_P_HCTRL_SNTFY 0x00000004
#define FSL_SATA_P_HCTRL_DE 0x00000002
#define FSL_SATA_P_HCTRL_CC 0x00000001
#define FSL_SATA_P_HCTRL_INT_MASK 0x0000003f
#define FSL_SATA_P_CQPMP 0x30
#define FSL_SATA_P_SIG 0x34
#define FSL_SATA_P_ICC 0x38
#define FSL_SATA_P_ICC_ITC_M 0x1f000000
#define FSL_SATA_P_ICC_ITC_S 24
#define FSL_SATA_P_ICC_ITTCV_M 0x0007ffff
#define FSL_SATA_P_PCC 0x15c
#define FSL_SATA_P_PCC_SLUMBER 0x0000000c
#define FSL_SATA_P_PCC_PARTIAL 0x0000000a
#define FSL_SATA_PCC_LPB_EN 0x0000000e
#define FSL_SATA_MAX_SLOTS 16
/* FSL_SATA register defines */
#define FSL_SATA_P_SSTS 0x100
#define FSL_SATA_P_SERR 0x104
#define FSL_SATA_P_SCTL 0x108
#define FSL_SATA_P_SNTF 0x10c
/* Pessimistic prognosis on number of required S/G entries */
#define FSL_SATA_SG_ENTRIES 63
/* Command list. 16 commands. First, 1Kbyte aligned. */
#define FSL_SATA_CL_OFFSET 0
#define FSL_SATA_CL_SIZE 16
/* Command tables. Up to 32 commands, Each, 4-byte aligned. */
#define FSL_SATA_CT_OFFSET (FSL_SATA_CL_OFFSET + FSL_SATA_CL_SIZE * FSL_SATA_MAX_SLOTS)
#define FSL_SATA_CT_SIZE (96 + FSL_SATA_SG_ENTRIES * 16)
/* Total main work area. */
#define FSL_SATA_WORK_SIZE (FSL_SATA_CT_OFFSET + FSL_SATA_CT_SIZE * FSL_SATA_MAX_SLOTS)
#define FSL_SATA_MAX_XFER (64 * 1024 * 1024)
/* Some convenience macros for getting the CTP and CLP */
#define FSL_SATA_CTP_BUS(ch, slot) \
((ch->dma.work_bus + FSL_SATA_CT_OFFSET + (FSL_SATA_CT_SIZE * slot->slot)))
#define FSL_SATA_PRD_OFFSET(prd) (96 + (prd) * 16)
#define FSL_SATA_CTP(ch, slot) \
((struct fsl_sata_cmd_tab *)(ch->dma.work + FSL_SATA_CT_OFFSET + \
(FSL_SATA_CT_SIZE * slot->slot)))
#define FSL_SATA_CLP(ch, slot) \
((struct fsl_sata_cmd_list *) (ch->dma.work + FSL_SATA_CL_OFFSET + \
(FSL_SATA_CL_SIZE * slot->slot)))
struct fsl_sata_dma_prd {
uint32_t dba;
uint32_t reserved;
uint32_t reserved2;
uint32_t dwc_flg; /* 0 based */
#define FSL_SATA_PRD_MASK 0x01fffffc /* max 32MB */
#define FSL_SATA_PRD_MAX (FSL_SATA_PRD_MASK + 4)
#define FSL_SATA_PRD_SNOOP 0x10000000
#define FSL_SATA_PRD_EXT 0x80000000
} __packed;
struct fsl_sata_cmd_tab {
uint8_t cfis[32];
uint8_t sfis[32];
uint8_t acmd[16];
uint8_t reserved[16];
struct fsl_sata_dma_prd prd_tab[FSL_SATA_SG_ENTRIES];
#define FSL_SATA_PRD_EXT_INDEX 15
#define FSL_SATA_PRD_MAX_DIRECT 16
} __packed;
struct fsl_sata_cmd_list {
uint32_t cda; /* word aligned */
uint16_t fis_length; /* length in bytes (aligned to words) */
uint16_t prd_length; /* PRD entries */
uint32_t ttl;
uint32_t cmd_flags;
#define FSL_SATA_CMD_TAG_MASK 0x001f
#define FSL_SATA_CMD_ATAPI 0x0020
#define FSL_SATA_CMD_BIST 0x0040
#define FSL_SATA_CMD_RESET 0x0080
#define FSL_SATA_CMD_QUEUED 0x0100
#define FSL_SATA_CMD_SNOOP 0x0200
#define FSL_SATA_CMD_VBIST 0x0400
#define FSL_SATA_CMD_WRITE 0x0800
} __packed;
/* misc defines */
#define ATA_IRQ_RID 0
#define ATA_INTR_FLAGS (INTR_MPSAFE|INTR_TYPE_BIO|INTR_ENTROPY)
struct ata_dmaslot {
bus_dmamap_t data_map; /* data DMA map */
int nsegs; /* Number of segs loaded */
};
/* structure holding DMA related information */
struct ata_dma {
bus_dma_tag_t work_tag; /* workspace DMA tag */
bus_dmamap_t work_map; /* workspace DMA map */
uint8_t *work; /* workspace */
bus_addr_t work_bus; /* bus address of work */
bus_dma_tag_t data_tag; /* data DMA tag */
};
enum fsl_sata_slot_states {
FSL_SATA_SLOT_EMPTY,
FSL_SATA_SLOT_LOADING,
FSL_SATA_SLOT_RUNNING,
FSL_SATA_SLOT_EXECUTING
};
struct fsl_sata_slot {
struct fsl_sata_channel *ch; /* Channel */
uint8_t slot; /* Number of this slot */
enum fsl_sata_slot_states state; /* Slot state */
union ccb *ccb; /* CCB occupying slot */
struct ata_dmaslot dma; /* DMA data of this slot */
struct callout timeout; /* Execution timeout */
uint32_t ttl;
};
struct fsl_sata_device {
int revision;
int mode;
u_int bytecount;
u_int atapi;
u_int tags;
u_int caps;
};
/* structure describing an ATA channel */
struct fsl_sata_channel {
device_t dev; /* Device handle */
int unit; /* Physical channel */
struct resource *r_mem; /* Memory of this channel */
struct resource *r_irq; /* Interrupt of this channel */
void *ih; /* Interrupt handle */
struct ata_dma dma; /* DMA data */
struct cam_sim *sim;
struct cam_path *path;
uint32_t caps; /* Controller capabilities */
int pm_level; /* power management level */
int devices; /* What is present */
int pm_present; /* PM presence reported */
union ccb *hold[FSL_SATA_MAX_SLOTS];
struct fsl_sata_slot slot[FSL_SATA_MAX_SLOTS];
uint32_t oslots; /* Occupied slots */
uint32_t rslots; /* Running slots */
uint32_t aslots; /* Slots with atomic commands */
uint32_t eslots; /* Slots in error */
uint32_t toslots; /* Slots in timeout */
int lastslot; /* Last used slot */
int taggedtarget; /* Last tagged target */
int numrslots; /* Number of running slots */
int numrslotspd[16];/* Number of running slots per dev */
int numtslots; /* Number of tagged slots */
int numtslotspd[16];/* Number of tagged slots per dev */
int numhslots; /* Number of held slots */
int recoverycmd; /* Our READ LOG active */
int fatalerr; /* Fatal error happend */
int resetting; /* Hard-reset in progress. */
int resetpolldiv; /* Hard-reset poll divider. */
union ccb *frozen; /* Frozen command */
struct callout pm_timer; /* Power management events */
struct callout reset_timer; /* Hard-reset timeout */
struct fsl_sata_device user[16]; /* User-specified settings */
struct fsl_sata_device curr[16]; /* Current settings */
struct mtx_padalign mtx; /* state lock */
STAILQ_HEAD(, ccb_hdr) doneq; /* queue of completed CCBs */
int batch; /* doneq is in use */
};
enum fsl_sata_err_type {
FSL_SATA_ERR_NONE, /* No error */
FSL_SATA_ERR_INVALID, /* Error detected by us before submitting. */
FSL_SATA_ERR_INNOCENT, /* Innocent victim. */
FSL_SATA_ERR_TFE, /* Task File Error. */
FSL_SATA_ERR_SATA, /* SATA error. */
FSL_SATA_ERR_TIMEOUT, /* Command execution timeout. */
FSL_SATA_ERR_NCQ, /* NCQ command error. CCB should be put on hold
* until READ LOG executed to reveal error. */
};
/* macros to hide busspace uglyness */
#define ATA_INB(res, offset) \
bus_read_1((res), (offset))
#define ATA_INW(res, offset) \
bus_read_2((res), (offset))
#define ATA_INL(res, offset) \
bus_read_4((res), (offset))
#define ATA_INSW(res, offset, addr, count) \
bus_read_multi_2((res), (offset), (addr), (count))
#define ATA_INSW_STRM(res, offset, addr, count) \
bus_read_multi_stream_2((res), (offset), (addr), (count))
#define ATA_INSL(res, offset, addr, count) \
bus_read_multi_4((res), (offset), (addr), (count))
#define ATA_INSL_STRM(res, offset, addr, count) \
bus_read_multi_stream_4((res), (offset), (addr), (count))
#define ATA_OUTB(res, offset, value) \
bus_write_1((res), (offset), (value))
#define ATA_OUTW(res, offset, value) \
bus_write_2((res), (offset), (value))
#define ATA_OUTL(res, offset, value) \
bus_write_4((res), (offset), (value))
#define ATA_OUTSW(res, offset, addr, count) \
bus_write_multi_2((res), (offset), (addr), (count))
#define ATA_OUTSW_STRM(res, offset, addr, count) \
bus_write_multi_stream_2((res), (offset), (addr), (count))
#define ATA_OUTSL(res, offset, addr, count) \
bus_write_multi_4((res), (offset), (addr), (count))
#define ATA_OUTSL_STRM(res, offset, addr, count) \
bus_write_multi_stream_4((res), (offset), (addr), (count))
static int
fsl_sata_probe(device_t dev)
{
if (!ofw_bus_is_compatible(dev, "fsl,pq-sata-v2") &&
!ofw_bus_is_compatible(dev, "fsl,pq-sata"))
return (ENXIO);
device_set_desc_copy(dev, "Freescale Integrated SATA Controller");
return (BUS_PROBE_DEFAULT);
}
static int
fsl_sata_attach(device_t dev)
{
struct fsl_sata_channel *ch = device_get_softc(dev);
struct cam_devq *devq;
int rid, error, i, sata_rev = 0;
ch->dev = dev;
ch->unit = (intptr_t)device_get_ivars(dev);
mtx_init(&ch->mtx, "FSL SATA channel lock", NULL, MTX_DEF);
ch->pm_level = 0;
resource_int_value(device_get_name(dev),
device_get_unit(dev), "pm_level", &ch->pm_level);
STAILQ_INIT(&ch->doneq);
if (ch->pm_level > 3)
callout_init_mtx(&ch->pm_timer, &ch->mtx, 0);
resource_int_value(device_get_name(dev),
device_get_unit(dev), "sata_rev", &sata_rev);
for (i = 0; i < 16; i++) {
ch->user[i].revision = sata_rev;
ch->user[i].mode = 0;
ch->user[i].bytecount = 8192;
ch->user[i].tags = FSL_SATA_MAX_SLOTS;
ch->user[i].caps = 0;
ch->curr[i] = ch->user[i];
if (ch->pm_level) {
ch->user[i].caps = CTS_SATA_CAPS_H_PMREQ |
CTS_SATA_CAPS_D_PMREQ;
}
ch->user[i].caps |= CTS_SATA_CAPS_H_AN;
}
rid = 0;
if (!(ch->r_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&rid, RF_ACTIVE)))
return (ENXIO);
rman_set_bustag(ch->r_mem, &bs_le_tag);
fsl_sata_dmainit(dev);
fsl_sata_slotsalloc(dev);
fsl_sata_init(dev);
rid = ATA_IRQ_RID;
if (!(ch->r_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&rid, RF_SHAREABLE | RF_ACTIVE))) {
device_printf(dev, "Unable to map interrupt\n");
error = ENXIO;
goto err0;
}
if ((bus_setup_intr(dev, ch->r_irq, ATA_INTR_FLAGS, NULL,
fsl_sata_intr, ch, &ch->ih))) {
device_printf(dev, "Unable to setup interrupt\n");
error = ENXIO;
goto err1;
}
mtx_lock(&ch->mtx);
/* Create the device queue for our SIM. */
devq = cam_simq_alloc(FSL_SATA_MAX_SLOTS);
if (devq == NULL) {
device_printf(dev, "Unable to allocate simq\n");
error = ENOMEM;
goto err1;
}
/* Construct SIM entry */
ch->sim = cam_sim_alloc(fsl_sataaction, fsl_satapoll, "fslsata", ch,
device_get_unit(dev), (struct mtx *)&ch->mtx, 2, FSL_SATA_MAX_SLOTS,
devq);
if (ch->sim == NULL) {
cam_simq_free(devq);
device_printf(dev, "unable to allocate sim\n");
error = ENOMEM;
goto err1;
}
if (xpt_bus_register(ch->sim, dev, 0) != CAM_SUCCESS) {
device_printf(dev, "unable to register xpt bus\n");
error = ENXIO;
goto err2;
}
if (xpt_create_path(&ch->path, /*periph*/NULL, cam_sim_path(ch->sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
device_printf(dev, "unable to create path\n");
error = ENXIO;
goto err3;
}
if (ch->pm_level > 3) {
callout_reset(&ch->pm_timer,
(ch->pm_level == 4) ? hz / 1000 : hz / 8,
fsl_sata_pm, ch);
}
mtx_unlock(&ch->mtx);
return (0);
err3:
xpt_bus_deregister(cam_sim_path(ch->sim));
err2:
cam_sim_free(ch->sim, /*free_devq*/TRUE);
err1:
mtx_unlock(&ch->mtx);
bus_release_resource(dev, SYS_RES_IRQ, ATA_IRQ_RID, ch->r_irq);
err0:
bus_release_resource(dev, SYS_RES_MEMORY, ch->unit, ch->r_mem);
mtx_destroy(&ch->mtx);
return (error);
}
static int
fsl_sata_detach(device_t dev)
{
struct fsl_sata_channel *ch = device_get_softc(dev);
mtx_lock(&ch->mtx);
xpt_async(AC_LOST_DEVICE, ch->path, NULL);
xpt_free_path(ch->path);
xpt_bus_deregister(cam_sim_path(ch->sim));
cam_sim_free(ch->sim, /*free_devq*/TRUE);
mtx_unlock(&ch->mtx);
if (ch->pm_level > 3)
callout_drain(&ch->pm_timer);
bus_teardown_intr(dev, ch->r_irq, ch->ih);
bus_release_resource(dev, SYS_RES_IRQ, ATA_IRQ_RID, ch->r_irq);
fsl_sata_deinit(dev);
fsl_sata_slotsfree(dev);
fsl_sata_dmafini(dev);
bus_release_resource(dev, SYS_RES_MEMORY, ch->unit, ch->r_mem);
mtx_destroy(&ch->mtx);
return (0);
}
static int
fsl_sata_wait_register(struct fsl_sata_channel *ch, bus_size_t off,
unsigned int mask, unsigned int val, int t)
{
int timeout = 0;
uint32_t rval;
while (((rval = ATA_INL(ch->r_mem, off)) & mask) != val) {
if (timeout > t) {
return (EBUSY);
}
DELAY(1000);
timeout++;
}
return (0);
}
static int
fsl_sata_init(device_t dev)
{
struct fsl_sata_channel *ch = device_get_softc(dev);
uint64_t work;
uint32_t r;
/* Disable port interrupts */
r = ATA_INL(ch->r_mem, FSL_SATA_P_HCTRL);
r &= ~FSL_SATA_P_HCTRL_HC_ON;
r |= FSL_SATA_P_HCTRL_HC_FORCE_OFF;
ATA_OUTL(ch->r_mem, FSL_SATA_P_HCTRL, r & ~FSL_SATA_P_HCTRL_INT_MASK);
fsl_sata_wait_register(ch, FSL_SATA_P_HSTS,
FSL_SATA_P_HSTS_HS_ON, 0, 1000);
/* Setup work areas */
work = ch->dma.work_bus + FSL_SATA_CL_OFFSET;
ATA_OUTL(ch->r_mem, FSL_SATA_P_CHBA, work);
r &= ~FSL_SATA_P_HCTRL_ENT;
r &= ~FSL_SATA_P_HCTRL_PM;
ATA_OUTL(ch->r_mem, FSL_SATA_P_HCTRL, r);
r = ATA_INL(ch->r_mem, FSL_SATA_P_PCC);
ATA_OUTL(ch->r_mem, FSL_SATA_P_PCC, r & ~FSL_SATA_PCC_LPB_EN);
ATA_OUTL(ch->r_mem, FSL_SATA_P_ICC, (1 << FSL_SATA_P_ICC_ITC_S));
fsl_sata_start(ch);
return (0);
}
static int
fsl_sata_deinit(device_t dev)
{
struct fsl_sata_channel *ch = device_get_softc(dev);
uint32_t r;
/* Disable port interrupts. */
r = ATA_INL(ch->r_mem, FSL_SATA_P_HCTRL);
ATA_OUTL(ch->r_mem, FSL_SATA_P_HCTRL, r & ~FSL_SATA_P_HCTRL_INT_MASK);
/* Reset command register. */
fsl_sata_stop(ch);
/* Allow everything, including partial and slumber modes. */
ATA_OUTL(ch->r_mem, FSL_SATA_P_SCTL, 0);
DELAY(100);
/* Disable PHY. */
ATA_OUTL(ch->r_mem, FSL_SATA_P_SCTL, ATA_SC_DET_DISABLE);
r = ATA_INL(ch->r_mem, FSL_SATA_P_HCTRL);
/* Turn off the controller. */
ATA_OUTL(ch->r_mem, FSL_SATA_P_HCTRL, r & ~FSL_SATA_P_HCTRL_HC_ON);
return (0);
}
static int
fsl_sata_suspend(device_t dev)
{
struct fsl_sata_channel *ch = device_get_softc(dev);
mtx_lock(&ch->mtx);
xpt_freeze_simq(ch->sim, 1);
while (ch->oslots)
msleep(ch, &ch->mtx, PRIBIO, "fsl_satasusp", hz/100);
fsl_sata_deinit(dev);
mtx_unlock(&ch->mtx);
return (0);
}
static int
fsl_sata_resume(device_t dev)
{
struct fsl_sata_channel *ch = device_get_softc(dev);
mtx_lock(&ch->mtx);
fsl_sata_init(dev);
fsl_sata_reset(ch);
xpt_release_simq(ch->sim, TRUE);
mtx_unlock(&ch->mtx);
return (0);
}
devclass_t fsl_satach_devclass;
static device_method_t fsl_satach_methods[] = {
DEVMETHOD(device_probe, fsl_sata_probe),
DEVMETHOD(device_attach, fsl_sata_attach),
DEVMETHOD(device_detach, fsl_sata_detach),
DEVMETHOD(device_suspend, fsl_sata_suspend),
DEVMETHOD(device_resume, fsl_sata_resume),
DEVMETHOD_END
};
static driver_t fsl_satach_driver = {
"fslsata",
fsl_satach_methods,
sizeof(struct fsl_sata_channel)
};
DRIVER_MODULE(fsl_satach, simplebus, fsl_satach_driver, fsl_satach_devclass, NULL, NULL);
struct fsl_sata_dc_cb_args {
bus_addr_t maddr;
int error;
};
static void
fsl_sata_dmainit(device_t dev)
{
struct fsl_sata_channel *ch = device_get_softc(dev);
struct fsl_sata_dc_cb_args dcba;
/* Command area. */
if (bus_dma_tag_create(bus_get_dma_tag(dev), 1024, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
NULL, NULL, FSL_SATA_WORK_SIZE, 1, FSL_SATA_WORK_SIZE,
0, NULL, NULL, &ch->dma.work_tag))
goto error;
if (bus_dmamem_alloc(ch->dma.work_tag, (void **)&ch->dma.work,
BUS_DMA_ZERO, &ch->dma.work_map))
goto error;
if (bus_dmamap_load(ch->dma.work_tag, ch->dma.work_map, ch->dma.work,
FSL_SATA_WORK_SIZE, fsl_sata_dmasetupc_cb, &dcba, 0) || dcba.error) {
bus_dmamem_free(ch->dma.work_tag, ch->dma.work, ch->dma.work_map);
goto error;
}
ch->dma.work_bus = dcba.maddr;
/* Data area. */
if (bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
NULL, NULL, FSL_SATA_MAX_XFER,
FSL_SATA_SG_ENTRIES - 1, FSL_SATA_PRD_MAX,
0, busdma_lock_mutex, &ch->mtx, &ch->dma.data_tag)) {
goto error;
}
if (bootverbose)
device_printf(dev, "work area: %p\n", ch->dma.work);
return;
error:
device_printf(dev, "WARNING - DMA initialization failed\n");
fsl_sata_dmafini(dev);
}
static void
fsl_sata_dmasetupc_cb(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
{
struct fsl_sata_dc_cb_args *dcba = (struct fsl_sata_dc_cb_args *)xsc;
if (!(dcba->error = error))
dcba->maddr = segs[0].ds_addr;
}
static void
fsl_sata_dmafini(device_t dev)
{
struct fsl_sata_channel *ch = device_get_softc(dev);
if (ch->dma.data_tag) {
bus_dma_tag_destroy(ch->dma.data_tag);
ch->dma.data_tag = NULL;
}
if (ch->dma.work_bus) {
bus_dmamap_unload(ch->dma.work_tag, ch->dma.work_map);
bus_dmamem_free(ch->dma.work_tag, ch->dma.work, ch->dma.work_map);
ch->dma.work_bus = 0;
ch->dma.work = NULL;
}
if (ch->dma.work_tag) {
bus_dma_tag_destroy(ch->dma.work_tag);
ch->dma.work_tag = NULL;
}
}
static void
fsl_sata_slotsalloc(device_t dev)
{
struct fsl_sata_channel *ch = device_get_softc(dev);
int i;
/* Alloc and setup command/dma slots */
bzero(ch->slot, sizeof(ch->slot));
for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) {
struct fsl_sata_slot *slot = &ch->slot[i];
slot->ch = ch;
slot->slot = i;
slot->state = FSL_SATA_SLOT_EMPTY;
slot->ccb = NULL;
callout_init_mtx(&slot->timeout, &ch->mtx, 0);
if (bus_dmamap_create(ch->dma.data_tag, 0, &slot->dma.data_map))
device_printf(ch->dev, "FAILURE - create data_map\n");
}
}
static void
fsl_sata_slotsfree(device_t dev)
{
struct fsl_sata_channel *ch = device_get_softc(dev);
int i;
/* Free all dma slots */
for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) {
struct fsl_sata_slot *slot = &ch->slot[i];
callout_drain(&slot->timeout);
if (slot->dma.data_map) {
bus_dmamap_destroy(ch->dma.data_tag, slot->dma.data_map);
slot->dma.data_map = NULL;
}
}
}
static int
fsl_sata_phy_check_events(struct fsl_sata_channel *ch, u_int32_t serr)
{
if (((ch->pm_level == 0) && (serr & ATA_SE_PHY_CHANGED)) ||
((ch->pm_level != 0) && (serr & ATA_SE_EXCHANGED))) {
u_int32_t status = ATA_INL(ch->r_mem, FSL_SATA_P_SSTS);
union ccb *ccb;
if (bootverbose) {
if ((status & ATA_SS_DET_MASK) != ATA_SS_DET_NO_DEVICE)
device_printf(ch->dev, "CONNECT requested\n");
else
device_printf(ch->dev, "DISCONNECT requested\n");
}
/* Issue soft reset */
xpt_async(AC_BUS_RESET, ch->path, NULL);
if ((ccb = xpt_alloc_ccb_nowait()) == NULL)
return (0);
if (xpt_create_path(&ccb->ccb_h.path, NULL,
cam_sim_path(ch->sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_free_ccb(ccb);
return (0);
}
xpt_rescan(ccb);
return (1);
}
return (0);
}
static void
fsl_sata_notify_events(struct fsl_sata_channel *ch, u_int32_t status)
{
struct cam_path *dpath;
int i;
ATA_OUTL(ch->r_mem, FSL_SATA_P_SNTF, status);
if (bootverbose)
device_printf(ch->dev, "SNTF 0x%04x\n", status);
for (i = 0; i < 16; i++) {
if ((status & (1 << i)) == 0)
continue;
if (xpt_create_path(&dpath, NULL,
xpt_path_path_id(ch->path), i, 0) == CAM_REQ_CMP) {
xpt_async(AC_SCSI_AEN, dpath, NULL);
xpt_free_path(dpath);
}
}
}
static void
fsl_sata_done(struct fsl_sata_channel *ch, union ccb *ccb)
{
mtx_assert(&ch->mtx, MA_OWNED);
if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0 ||
ch->batch == 0) {
xpt_done(ccb);
return;
}
STAILQ_INSERT_TAIL(&ch->doneq, &ccb->ccb_h, sim_links.stqe);
}
static void
fsl_sata_intr(void *arg)
{
struct fsl_sata_channel *ch = (struct fsl_sata_channel *)arg;
struct ccb_hdr *ccb_h;
uint32_t istatus;
STAILQ_HEAD(, ccb_hdr) tmp_doneq = STAILQ_HEAD_INITIALIZER(tmp_doneq);
/* Read interrupt statuses. */
istatus = ATA_INL(ch->r_mem, FSL_SATA_P_HSTS) & 0x7ffff;
if ((istatus & 0x3f) == 0)
return;
mtx_lock(&ch->mtx);
ch->batch = 1;
fsl_sata_intr_main(ch, istatus);
ch->batch = 0;
/*
* Prevent the possibility of issues caused by processing the queue
* while unlocked below by moving the contents to a local queue.
*/
STAILQ_CONCAT(&tmp_doneq, &ch->doneq);
mtx_unlock(&ch->mtx);
while ((ccb_h = STAILQ_FIRST(&tmp_doneq)) != NULL) {
STAILQ_REMOVE_HEAD(&tmp_doneq, sim_links.stqe);
xpt_done_direct((union ccb *)ccb_h);
}
/* Clear interrupt statuses. */
ATA_OUTL(ch->r_mem, FSL_SATA_P_HSTS, istatus & 0x3f);
}
static void
fsl_sata_pm(void *arg)
{
struct fsl_sata_channel *ch = (struct fsl_sata_channel *)arg;
uint32_t work;
if (ch->numrslots != 0)
return;
work = ATA_INL(ch->r_mem, FSL_SATA_P_PCC) & ~FSL_SATA_PCC_LPB_EN;
if (ch->pm_level == 4)
work |= FSL_SATA_P_PCC_PARTIAL;
else
work |= FSL_SATA_P_PCC_SLUMBER;
ATA_OUTL(ch->r_mem, FSL_SATA_P_PCC, work);
}
/* XXX: interrupt todo */
static void
fsl_sata_intr_main(struct fsl_sata_channel *ch, uint32_t istatus)
{
uint32_t cer, der, serr = 0, sntf = 0, ok, err;
enum fsl_sata_err_type et;
int i;
/* Complete all successful commands. */
ok = ATA_INL(ch->r_mem, FSL_SATA_P_CCR);
/* Mark all commands complete, to complete the interrupt. */
ATA_OUTL(ch->r_mem, FSL_SATA_P_CCR, ok);
if (ch->aslots == 0 && ok != 0) {
for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) {
if (((ok >> i) & 1) && ch->slot[i].ccb != NULL)
fsl_sata_end_transaction(&ch->slot[i],
FSL_SATA_ERR_NONE);
}
}
/* Read command statuses. */
if (istatus & FSL_SATA_P_HSTS_SNTFU)
sntf = ATA_INL(ch->r_mem, FSL_SATA_P_SNTF);
/* XXX: Process PHY events */
serr = ATA_INL(ch->r_mem, FSL_SATA_P_SERR);
ATA_OUTL(ch->r_mem, FSL_SATA_P_SERR, serr);
if (istatus & (FSL_SATA_P_HSTS_PR)) {
if (serr) {
fsl_sata_phy_check_events(ch, serr);
}
}
/* Process command errors */
err = (istatus & (FSL_SATA_P_HSTS_FE | FSL_SATA_P_HSTS_DE));
cer = ATA_INL(ch->r_mem, FSL_SATA_P_CER);
ATA_OUTL(ch->r_mem, FSL_SATA_P_CER, cer);
der = ATA_INL(ch->r_mem, FSL_SATA_P_DER);
ATA_OUTL(ch->r_mem, FSL_SATA_P_DER, der);
/* On error, complete the rest of commands with error statuses. */
if (err) {
if (ch->frozen) {
union ccb *fccb = ch->frozen;
ch->frozen = NULL;
fccb->ccb_h.status = CAM_REQUEUE_REQ | CAM_RELEASE_SIMQ;
if (!(fccb->ccb_h.status & CAM_DEV_QFRZN)) {
xpt_freeze_devq(fccb->ccb_h.path, 1);
fccb->ccb_h.status |= CAM_DEV_QFRZN;
}
fsl_sata_done(ch, fccb);
}
for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) {
if (ch->slot[i].ccb == NULL)
continue;
if ((cer & (1 << i)) != 0)
et = FSL_SATA_ERR_TFE;
else if ((der & (1 << ch->slot[i].ccb->ccb_h.target_id)) != 0)
et = FSL_SATA_ERR_SATA;
else
et = FSL_SATA_ERR_INVALID;
fsl_sata_end_transaction(&ch->slot[i], et);
}
}
/* Process NOTIFY events */
if (sntf)
fsl_sata_notify_events(ch, sntf);
}
/* Must be called with channel locked. */
static int
fsl_sata_check_collision(struct fsl_sata_channel *ch, union ccb *ccb)
{
int t = ccb->ccb_h.target_id;
if ((ccb->ccb_h.func_code == XPT_ATA_IO) &&
(ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA)) {
/* Tagged command while we have no supported tag free. */
if (((~ch->oslots) & (0xffff >> (16 - ch->curr[t].tags))) == 0)
return (1);
/* Tagged command while untagged are active. */
if (ch->numrslotspd[t] != 0 && ch->numtslotspd[t] == 0)
return (1);
} else {
/* Untagged command while tagged are active. */
if (ch->numrslotspd[t] != 0 && ch->numtslotspd[t] != 0)
return (1);
}
if ((ccb->ccb_h.func_code == XPT_ATA_IO) &&
(ccb->ataio.cmd.flags & (CAM_ATAIO_CONTROL | CAM_ATAIO_NEEDRESULT))) {
/* Atomic command while anything active. */
if (ch->numrslots != 0)
return (1);
}
/* We have some atomic command running. */
if (ch->aslots != 0)
return (1);
return (0);
}
/* Must be called with channel locked. */
static void
fsl_sata_begin_transaction(struct fsl_sata_channel *ch, union ccb *ccb)
{
struct fsl_sata_slot *slot;
int tag, tags;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
("fsl_sata_begin_transaction func_code=0x%x\n", ccb->ccb_h.func_code));
/* Choose empty slot. */
tags = FSL_SATA_MAX_SLOTS;
if ((ccb->ccb_h.func_code == XPT_ATA_IO) &&
(ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA))
tags = ch->curr[ccb->ccb_h.target_id].tags;
if (ch->lastslot + 1 < tags)
tag = ffs(~(ch->oslots >> (ch->lastslot + 1)));
else
tag = 0;
if (tag == 0 || tag + ch->lastslot >= tags)
tag = ffs(~ch->oslots) - 1;
else
tag += ch->lastslot;
ch->lastslot = tag;
/* Occupy chosen slot. */
slot = &ch->slot[tag];
slot->ccb = ccb;
slot->ttl = 0;
/* Stop PM timer. */
if (ch->numrslots == 0 && ch->pm_level > 3)
callout_stop(&ch->pm_timer);
/* Update channel stats. */
ch->oslots |= (1 << tag);
ch->numrslots++;
ch->numrslotspd[ccb->ccb_h.target_id]++;
if ((ccb->ccb_h.func_code == XPT_ATA_IO) &&
(ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA)) {
ch->numtslots++;
ch->numtslotspd[ccb->ccb_h.target_id]++;
ch->taggedtarget = ccb->ccb_h.target_id;
}
if ((ccb->ccb_h.func_code == XPT_ATA_IO) &&
(ccb->ataio.cmd.flags & (CAM_ATAIO_CONTROL | CAM_ATAIO_NEEDRESULT)))
ch->aslots |= (1 << tag);
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
slot->state = FSL_SATA_SLOT_LOADING;
bus_dmamap_load_ccb(ch->dma.data_tag, slot->dma.data_map, ccb,
fsl_sata_dmasetprd, slot, 0);
} else {
slot->dma.nsegs = 0;
fsl_sata_execute_transaction(slot);
}
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
("fsl_sata_begin_transaction exit\n"));
}
/* Locked by busdma engine. */
static void
fsl_sata_dmasetprd(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct fsl_sata_slot *slot = arg;
struct fsl_sata_channel *ch = slot->ch;
struct fsl_sata_cmd_tab *ctp;
struct fsl_sata_dma_prd *prd;
int i, j, len, extlen;
if (error) {
device_printf(ch->dev, "DMA load error %d\n", error);
fsl_sata_end_transaction(slot, FSL_SATA_ERR_INVALID);
return;
}
KASSERT(nsegs <= FSL_SATA_SG_ENTRIES - 1,
("too many DMA segment entries\n"));
/* Get a piece of the workspace for this request */
ctp = FSL_SATA_CTP(ch, slot);
/* Fill S/G table */
prd = &ctp->prd_tab[0];
for (i = 0, j = 0; i < nsegs; i++, j++) {
if (j == FSL_SATA_PRD_EXT_INDEX &&
FSL_SATA_PRD_MAX_DIRECT < nsegs) {
prd[j].dba = htole32(FSL_SATA_CTP_BUS(ch, slot) +
FSL_SATA_PRD_OFFSET(j+1));
j++;
extlen = 0;
}
len = segs[i].ds_len;
len = roundup2(len, sizeof(uint32_t));
prd[j].dba = htole32((uint32_t)segs[i].ds_addr);
prd[j].dwc_flg = htole32(FSL_SATA_PRD_SNOOP | len);
slot->ttl += len;
if (j > FSL_SATA_PRD_MAX_DIRECT)
extlen += len;
}
slot->dma.nsegs = j;
if (j > FSL_SATA_PRD_MAX_DIRECT)
prd[FSL_SATA_PRD_EXT_INDEX].dwc_flg =
htole32(FSL_SATA_PRD_SNOOP | FSL_SATA_PRD_EXT | extlen);
bus_dmamap_sync(ch->dma.data_tag, slot->dma.data_map,
((slot->ccb->ccb_h.flags & CAM_DIR_IN) ?
BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
fsl_sata_execute_transaction(slot);
}
/* Must be called with channel locked. */
static void
fsl_sata_execute_transaction(struct fsl_sata_slot *slot)
{
struct fsl_sata_channel *ch = slot->ch;
struct fsl_sata_cmd_tab *ctp;
struct fsl_sata_cmd_list *clp;
union ccb *ccb = slot->ccb;
int port = ccb->ccb_h.target_id & 0x0f;
int fis_size, i, softreset;
uint32_t tmp;
uint32_t cmd_flags = FSL_SATA_CMD_WRITE | FSL_SATA_CMD_SNOOP;
softreset = 0;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
("fsl_sata_execute_transaction func_code=0x%x\n", ccb->ccb_h.func_code));
/* Get a piece of the workspace for this request */
ctp = FSL_SATA_CTP(ch, slot);
/* Setup the FIS for this request */
if (!(fis_size = fsl_sata_setup_fis(ch, ctp, ccb, slot->slot))) {
device_printf(ch->dev, "Setting up SATA FIS failed\n");
fsl_sata_end_transaction(slot, FSL_SATA_ERR_INVALID);
return;
}
/* Setup the command list entry */
clp = FSL_SATA_CLP(ch, slot);
clp->fis_length = htole16(fis_size);
clp->prd_length = htole16(slot->dma.nsegs);
/* Special handling for Soft Reset command. */
if ((ccb->ccb_h.func_code == XPT_ATA_IO) &&
(ccb->ataio.cmd.flags & CAM_ATAIO_CONTROL)) {
if (ccb->ataio.cmd.control & ATA_A_RESET) {
softreset = 1;
cmd_flags |= FSL_SATA_CMD_RESET;
} else {
/* Prepare FIS receive area for check. */
for (i = 0; i < 32; i++)
ctp->sfis[i] = 0xff;
softreset = 2;
}
}
if (ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA)
cmd_flags |= FSL_SATA_CMD_QUEUED;
clp->cmd_flags = htole32(cmd_flags |
(ccb->ccb_h.func_code == XPT_SCSI_IO ? FSL_SATA_CMD_ATAPI : 0) |
slot->slot);
clp->ttl = htole32(slot->ttl);
clp->cda = htole32(FSL_SATA_CTP_BUS(ch, slot));
bus_dmamap_sync(ch->dma.work_tag, ch->dma.work_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Issue command to the controller. */
slot->state = FSL_SATA_SLOT_RUNNING;
ch->rslots |= (1 << slot->slot);
ATA_OUTL(ch->r_mem, FSL_SATA_P_CQPMP, port);
ATA_OUTL(ch->r_mem, FSL_SATA_P_CQR, (1 << slot->slot));
/* Device reset commands don't interrupt. Poll them. */
if (ccb->ccb_h.func_code == XPT_ATA_IO &&
(ccb->ataio.cmd.command == ATA_DEVICE_RESET || softreset)) {
int count, timeout = ccb->ccb_h.timeout * 100;
enum fsl_sata_err_type et = FSL_SATA_ERR_NONE;
for (count = 0; count < timeout; count++) {
DELAY(10);
tmp = 0;
if (softreset == 2) {
tmp = ATA_INL(ch->r_mem, FSL_SATA_P_SIG);
if (tmp != 0 && tmp != 0xffffffff)
break;
continue;
}
if ((ATA_INL(ch->r_mem, FSL_SATA_P_CCR) & (1 << slot->slot)) != 0)
break;
}
if (timeout && (count >= timeout)) {
device_printf(ch->dev, "Poll timeout on slot %d port %d (round %d)\n",
slot->slot, port, softreset);
device_printf(ch->dev, "hsts %08x cqr %08x ccr %08x ss %08x "
"rs %08x cer %08x der %08x serr %08x car %08x sig %08x\n",
ATA_INL(ch->r_mem, FSL_SATA_P_HSTS),
ATA_INL(ch->r_mem, FSL_SATA_P_CQR),
ATA_INL(ch->r_mem, FSL_SATA_P_CCR),
ATA_INL(ch->r_mem, FSL_SATA_P_SSTS), ch->rslots,
ATA_INL(ch->r_mem, FSL_SATA_P_CER),
ATA_INL(ch->r_mem, FSL_SATA_P_DER),
ATA_INL(ch->r_mem, FSL_SATA_P_SERR),
ATA_INL(ch->r_mem, FSL_SATA_P_CAR),
ATA_INL(ch->r_mem, FSL_SATA_P_SIG));
et = FSL_SATA_ERR_TIMEOUT;
}
fsl_sata_end_transaction(slot, et);
return;
}
/* Start command execution timeout */
callout_reset_sbt(&slot->timeout, SBT_1MS * ccb->ccb_h.timeout / 2,
0, (timeout_t*)fsl_sata_timeout, slot, 0);
return;
}
/* Must be called with channel locked. */
static void
fsl_sata_process_timeout(struct fsl_sata_channel *ch)
{
int i;
mtx_assert(&ch->mtx, MA_OWNED);
/* Handle the rest of commands. */
for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) {
/* Do we have a running request on slot? */
if (ch->slot[i].state < FSL_SATA_SLOT_RUNNING)
continue;
fsl_sata_end_transaction(&ch->slot[i], FSL_SATA_ERR_TIMEOUT);
}
}
/* Must be called with channel locked. */
static void
fsl_sata_rearm_timeout(struct fsl_sata_channel *ch)
{
int i;
mtx_assert(&ch->mtx, MA_OWNED);
for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) {
struct fsl_sata_slot *slot = &ch->slot[i];
/* Do we have a running request on slot? */
if (slot->state < FSL_SATA_SLOT_RUNNING)
continue;
if ((ch->toslots & (1 << i)) == 0)
continue;
callout_reset_sbt(&slot->timeout,
SBT_1MS * slot->ccb->ccb_h.timeout / 2, 0,
(timeout_t*)fsl_sata_timeout, slot, 0);
}
}
/* Locked by callout mechanism. */
static void
fsl_sata_timeout(struct fsl_sata_slot *slot)
{
struct fsl_sata_channel *ch = slot->ch;
device_t dev = ch->dev;
uint32_t sstatus;
/* Check for stale timeout. */
if (slot->state < FSL_SATA_SLOT_RUNNING)
return;
/* Check if slot was not being executed last time we checked. */
if (slot->state < FSL_SATA_SLOT_EXECUTING) {
/* Check if slot started executing. */
sstatus = ATA_INL(ch->r_mem, FSL_SATA_P_CAR);
if ((sstatus & (1 << slot->slot)) != 0)
slot->state = FSL_SATA_SLOT_EXECUTING;
callout_reset_sbt(&slot->timeout,
SBT_1MS * slot->ccb->ccb_h.timeout / 2, 0,
(timeout_t*)fsl_sata_timeout, slot, 0);
return;
}
device_printf(dev, "Timeout on slot %d port %d\n",
slot->slot, slot->ccb->ccb_h.target_id & 0x0f);
/* Handle frozen command. */
if (ch->frozen) {
union ccb *fccb = ch->frozen;
ch->frozen = NULL;
fccb->ccb_h.status = CAM_REQUEUE_REQ | CAM_RELEASE_SIMQ;
if (!(fccb->ccb_h.status & CAM_DEV_QFRZN)) {
xpt_freeze_devq(fccb->ccb_h.path, 1);
fccb->ccb_h.status |= CAM_DEV_QFRZN;
}
fsl_sata_done(ch, fccb);
}
if (ch->toslots == 0)
xpt_freeze_simq(ch->sim, 1);
ch->toslots |= (1 << slot->slot);
if ((ch->rslots & ~ch->toslots) == 0)
fsl_sata_process_timeout(ch);
else
device_printf(dev, " ... waiting for slots %08x\n",
ch->rslots & ~ch->toslots);
}
/* Must be called with channel locked. */
static void
fsl_sata_end_transaction(struct fsl_sata_slot *slot, enum fsl_sata_err_type et)
{
struct fsl_sata_channel *ch = slot->ch;
union ccb *ccb = slot->ccb;
struct fsl_sata_cmd_list *clp;
int lastto;
uint32_t sig;
bus_dmamap_sync(ch->dma.work_tag, ch->dma.work_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
clp = FSL_SATA_CLP(ch, slot);
/* Read result registers to the result struct */
if (ccb->ccb_h.func_code == XPT_ATA_IO) {
struct ata_res *res = &ccb->ataio.res;
if ((et == FSL_SATA_ERR_TFE) ||
(ccb->ataio.cmd.flags & CAM_ATAIO_NEEDRESULT)) {
struct fsl_sata_cmd_tab *ctp = FSL_SATA_CTP(ch, slot);
uint8_t *fis = ctp->sfis;
res->status = fis[2];
res->error = fis[3];
res->lba_low = fis[4];
res->lba_mid = fis[5];
res->lba_high = fis[6];
res->device = fis[7];
res->lba_low_exp = fis[8];
res->lba_mid_exp = fis[9];
res->lba_high_exp = fis[10];
res->sector_count = fis[12];
res->sector_count_exp = fis[13];
if ((ccb->ataio.cmd.flags & CAM_ATAIO_CONTROL) &&
(ccb->ataio.cmd.control & ATA_A_RESET) == 0) {
sig = ATA_INL(ch->r_mem, FSL_SATA_P_SIG);
res->lba_high = sig >> 24;
res->lba_mid = sig >> 16;
res->lba_low = sig >> 8;
res->sector_count = sig;
}
} else
bzero(res, sizeof(*res));
if ((ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA) == 0 &&
(ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
ccb->ataio.resid =
ccb->ataio.dxfer_len - le32toh(clp->ttl);
}
} else {
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
ccb->csio.resid =
ccb->csio.dxfer_len - le32toh(clp->ttl);
}
}
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
bus_dmamap_sync(ch->dma.data_tag, slot->dma.data_map,
(ccb->ccb_h.flags & CAM_DIR_IN) ?
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ch->dma.data_tag, slot->dma.data_map);
}
if (et != FSL_SATA_ERR_NONE)
ch->eslots |= (1 << slot->slot);
/* In case of error, freeze device for proper recovery. */
if ((et != FSL_SATA_ERR_NONE) && (!ch->recoverycmd) &&
!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
xpt_freeze_devq(ccb->ccb_h.path, 1);
ccb->ccb_h.status |= CAM_DEV_QFRZN;
}
/* Set proper result status. */
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
switch (et) {
case FSL_SATA_ERR_NONE:
ccb->ccb_h.status |= CAM_REQ_CMP;
if (ccb->ccb_h.func_code == XPT_SCSI_IO)
ccb->csio.scsi_status = SCSI_STATUS_OK;
break;
case FSL_SATA_ERR_INVALID:
ch->fatalerr = 1;
ccb->ccb_h.status |= CAM_REQ_INVALID;
break;
case FSL_SATA_ERR_INNOCENT:
ccb->ccb_h.status |= CAM_REQUEUE_REQ;
break;
case FSL_SATA_ERR_TFE:
case FSL_SATA_ERR_NCQ:
if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR;
ccb->csio.scsi_status = SCSI_STATUS_CHECK_COND;
} else {
ccb->ccb_h.status |= CAM_ATA_STATUS_ERROR;
}
break;
case FSL_SATA_ERR_SATA:
ch->fatalerr = 1;
if (!ch->recoverycmd) {
xpt_freeze_simq(ch->sim, 1);
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
}
ccb->ccb_h.status |= CAM_UNCOR_PARITY;
break;
case FSL_SATA_ERR_TIMEOUT:
if (!ch->recoverycmd) {
xpt_freeze_simq(ch->sim, 1);
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
}
ccb->ccb_h.status |= CAM_CMD_TIMEOUT;
break;
default:
ch->fatalerr = 1;
ccb->ccb_h.status |= CAM_REQ_CMP_ERR;
}
/* Free slot. */
ch->oslots &= ~(1 << slot->slot);
ch->rslots &= ~(1 << slot->slot);
ch->aslots &= ~(1 << slot->slot);
slot->state = FSL_SATA_SLOT_EMPTY;
slot->ccb = NULL;
/* Update channel stats. */
ch->numrslots--;
ch->numrslotspd[ccb->ccb_h.target_id]--;
ATA_OUTL(ch->r_mem, FSL_SATA_P_CCR, 1 << slot->slot);
if ((ccb->ccb_h.func_code == XPT_ATA_IO) &&
(ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA)) {
ch->numtslots--;
ch->numtslotspd[ccb->ccb_h.target_id]--;
}
/* Cancel timeout state if request completed normally. */
if (et != FSL_SATA_ERR_TIMEOUT) {
lastto = (ch->toslots == (1 << slot->slot));
ch->toslots &= ~(1 << slot->slot);
if (lastto)
xpt_release_simq(ch->sim, TRUE);
}
/* If it was first request of reset sequence and there is no error,
* proceed to second request. */
if ((ccb->ccb_h.func_code == XPT_ATA_IO) &&
(ccb->ataio.cmd.flags & CAM_ATAIO_CONTROL) &&
(ccb->ataio.cmd.control & ATA_A_RESET) &&
et == FSL_SATA_ERR_NONE) {
ccb->ataio.cmd.control &= ~ATA_A_RESET;
fsl_sata_begin_transaction(ch, ccb);
return;
}
/* If it was our READ LOG command - process it. */
if (ccb->ccb_h.recovery_type == RECOVERY_READ_LOG) {
fsl_sata_process_read_log(ch, ccb);
/* If it was our REQUEST SENSE command - process it. */
} else if (ccb->ccb_h.recovery_type == RECOVERY_REQUEST_SENSE) {
fsl_sata_process_request_sense(ch, ccb);
/* If it was NCQ or ATAPI command error, put result on hold. */
} else if (et == FSL_SATA_ERR_NCQ ||
((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_SCSI_STATUS_ERROR &&
(ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0)) {
ch->hold[slot->slot] = ccb;
ch->numhslots++;
} else
fsl_sata_done(ch, ccb);
/* If we have no other active commands, ... */
if (ch->rslots == 0) {
/* if there was fatal error - reset port. */
if (ch->toslots != 0 || ch->fatalerr) {
fsl_sata_reset(ch);
} else {
/* if we have slots in error, we can reinit port. */
if (ch->eslots != 0) {
fsl_sata_stop(ch);
fsl_sata_start(ch);
}
/* if there commands on hold, we can do READ LOG. */
if (!ch->recoverycmd && ch->numhslots)
fsl_sata_issue_recovery(ch);
}
/* If all the rest of commands are in timeout - give them chance. */
} else if ((ch->rslots & ~ch->toslots) == 0 &&
et != FSL_SATA_ERR_TIMEOUT)
fsl_sata_rearm_timeout(ch);
/* Unfreeze frozen command. */
if (ch->frozen && !fsl_sata_check_collision(ch, ch->frozen)) {
union ccb *fccb = ch->frozen;
ch->frozen = NULL;
fsl_sata_begin_transaction(ch, fccb);
xpt_release_simq(ch->sim, TRUE);
}
/* Start PM timer. */
if (ch->numrslots == 0 && ch->pm_level > 3 &&
(ch->curr[ch->pm_present ? 15 : 0].caps & CTS_SATA_CAPS_D_PMREQ)) {
callout_schedule(&ch->pm_timer,
(ch->pm_level == 4) ? hz / 1000 : hz / 8);
}
}
static void
fsl_sata_issue_recovery(struct fsl_sata_channel *ch)
{
union ccb *ccb;
struct ccb_ataio *ataio;
struct ccb_scsiio *csio;
int i;
/* Find some held command. */
for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) {
if (ch->hold[i])
break;
}
ccb = xpt_alloc_ccb_nowait();
if (ccb == NULL) {
device_printf(ch->dev, "Unable to allocate recovery command\n");
completeall:
/* We can't do anything -- complete held commands. */
for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) {
if (ch->hold[i] == NULL)
continue;
ch->hold[i]->ccb_h.status &= ~CAM_STATUS_MASK;
ch->hold[i]->ccb_h.status |= CAM_RESRC_UNAVAIL;
fsl_sata_done(ch, ch->hold[i]);
ch->hold[i] = NULL;
ch->numhslots--;
}
fsl_sata_reset(ch);
return;
}
ccb->ccb_h = ch->hold[i]->ccb_h; /* Reuse old header. */
if (ccb->ccb_h.func_code == XPT_ATA_IO) {
/* READ LOG */
ccb->ccb_h.recovery_type = RECOVERY_READ_LOG;
ccb->ccb_h.func_code = XPT_ATA_IO;
ccb->ccb_h.flags = CAM_DIR_IN;
ccb->ccb_h.timeout = 1000; /* 1s should be enough. */
ataio = &ccb->ataio;
ataio->data_ptr = malloc(512, M_FSL_SATA, M_NOWAIT);
if (ataio->data_ptr == NULL) {
xpt_free_ccb(ccb);
device_printf(ch->dev,
"Unable to allocate memory for READ LOG command\n");
goto completeall;
}
ataio->dxfer_len = 512;
bzero(&ataio->cmd, sizeof(ataio->cmd));
ataio->cmd.flags = CAM_ATAIO_48BIT;
ataio->cmd.command = 0x2F; /* READ LOG EXT */
ataio->cmd.sector_count = 1;
ataio->cmd.sector_count_exp = 0;
ataio->cmd.lba_low = 0x10;
ataio->cmd.lba_mid = 0;
ataio->cmd.lba_mid_exp = 0;
} else {
/* REQUEST SENSE */
ccb->ccb_h.recovery_type = RECOVERY_REQUEST_SENSE;
ccb->ccb_h.recovery_slot = i;
ccb->ccb_h.func_code = XPT_SCSI_IO;
ccb->ccb_h.flags = CAM_DIR_IN;
ccb->ccb_h.status = 0;
ccb->ccb_h.timeout = 1000; /* 1s should be enough. */
csio = &ccb->csio;
csio->data_ptr = (void *)&ch->hold[i]->csio.sense_data;
csio->dxfer_len = ch->hold[i]->csio.sense_len;
csio->cdb_len = 6;
bzero(&csio->cdb_io, sizeof(csio->cdb_io));
csio->cdb_io.cdb_bytes[0] = 0x03;
csio->cdb_io.cdb_bytes[4] = csio->dxfer_len;
}
/* Freeze SIM while doing recovery. */
ch->recoverycmd = 1;
xpt_freeze_simq(ch->sim, 1);
fsl_sata_begin_transaction(ch, ccb);
}
static void
fsl_sata_process_read_log(struct fsl_sata_channel *ch, union ccb *ccb)
{
uint8_t *data;
struct ata_res *res;
int i;
ch->recoverycmd = 0;
data = ccb->ataio.data_ptr;
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP &&
(data[0] & 0x80) == 0) {
for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) {
if (!ch->hold[i])
continue;
if (ch->hold[i]->ccb_h.func_code != XPT_ATA_IO)
continue;
if ((data[0] & 0x1F) == i) {
res = &ch->hold[i]->ataio.res;
res->status = data[2];
res->error = data[3];
res->lba_low = data[4];
res->lba_mid = data[5];
res->lba_high = data[6];
res->device = data[7];
res->lba_low_exp = data[8];
res->lba_mid_exp = data[9];
res->lba_high_exp = data[10];
res->sector_count = data[12];
res->sector_count_exp = data[13];
} else {
ch->hold[i]->ccb_h.status &= ~CAM_STATUS_MASK;
ch->hold[i]->ccb_h.status |= CAM_REQUEUE_REQ;
}
fsl_sata_done(ch, ch->hold[i]);
ch->hold[i] = NULL;
ch->numhslots--;
}
} else {
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
device_printf(ch->dev, "Error while READ LOG EXT\n");
else if ((data[0] & 0x80) == 0) {
device_printf(ch->dev, "Non-queued command error in READ LOG EXT\n");
}
for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) {
if (!ch->hold[i])
continue;
if (ch->hold[i]->ccb_h.func_code != XPT_ATA_IO)
continue;
fsl_sata_done(ch, ch->hold[i]);
ch->hold[i] = NULL;
ch->numhslots--;
}
}
free(ccb->ataio.data_ptr, M_FSL_SATA);
xpt_free_ccb(ccb);
xpt_release_simq(ch->sim, TRUE);
}
static void
fsl_sata_process_request_sense(struct fsl_sata_channel *ch, union ccb *ccb)
{
int i;
ch->recoverycmd = 0;
i = ccb->ccb_h.recovery_slot;
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
ch->hold[i]->ccb_h.status |= CAM_AUTOSNS_VALID;
} else {
ch->hold[i]->ccb_h.status &= ~CAM_STATUS_MASK;
ch->hold[i]->ccb_h.status |= CAM_AUTOSENSE_FAIL;
}
fsl_sata_done(ch, ch->hold[i]);
ch->hold[i] = NULL;
ch->numhslots--;
xpt_free_ccb(ccb);
xpt_release_simq(ch->sim, TRUE);
}
static void
fsl_sata_start(struct fsl_sata_channel *ch)
{
u_int32_t cmd;
/* Clear SATA error register */
ATA_OUTL(ch->r_mem, FSL_SATA_P_SERR, 0xFFFFFFFF);
/* Clear any interrupts pending on this channel */
ATA_OUTL(ch->r_mem, FSL_SATA_P_HSTS, 0x3F);
ATA_OUTL(ch->r_mem, FSL_SATA_P_CER, 0xFFFF);
ATA_OUTL(ch->r_mem, FSL_SATA_P_DER, 0xFFFF);
/* Start operations on this channel */
cmd = ATA_INL(ch->r_mem, FSL_SATA_P_HCTRL);
cmd |= FSL_SATA_P_HCTRL_HC_ON | FSL_SATA_P_HCTRL_SNOOP;
cmd &= ~FSL_SATA_P_HCTRL_HC_FORCE_OFF;
ATA_OUTL(ch->r_mem, FSL_SATA_P_HCTRL, cmd |
(ch->pm_present ? FSL_SATA_P_HCTRL_PM : 0));
fsl_sata_wait_register(ch, FSL_SATA_P_HSTS,
FSL_SATA_P_HSTS_PR, FSL_SATA_P_HSTS_PR, 500);
ATA_OUTL(ch->r_mem, FSL_SATA_P_HSTS,
ATA_INL(ch->r_mem, FSL_SATA_P_HSTS) & FSL_SATA_P_HSTS_PR);
}
static void
fsl_sata_stop(struct fsl_sata_channel *ch)
{
uint32_t cmd;
int i;
/* Kill all activity on this channel */
cmd = ATA_INL(ch->r_mem, FSL_SATA_P_HCTRL);
cmd &= ~FSL_SATA_P_HCTRL_HC_ON;
for (i = 0; i < 2; i++) {
ATA_OUTL(ch->r_mem, FSL_SATA_P_HCTRL, cmd);
if (fsl_sata_wait_register(ch, FSL_SATA_P_HSTS,
FSL_SATA_P_HSTS_HS_ON, 0, 500)) {
if (i != 0)
device_printf(ch->dev,
"stopping FSL SATA engine failed\n");
cmd |= FSL_SATA_P_HCTRL_HC_FORCE_OFF;
} else
break;
}
ch->eslots = 0;
}
static void
fsl_sata_reset(struct fsl_sata_channel *ch)
{
uint32_t ctrl;
int i;
xpt_freeze_simq(ch->sim, 1);
if (bootverbose)
device_printf(ch->dev, "FSL SATA reset...\n");
/* Requeue freezed command. */
if (ch->frozen) {
union ccb *fccb = ch->frozen;
ch->frozen = NULL;
fccb->ccb_h.status = CAM_REQUEUE_REQ | CAM_RELEASE_SIMQ;
if (!(fccb->ccb_h.status & CAM_DEV_QFRZN)) {
xpt_freeze_devq(fccb->ccb_h.path, 1);
fccb->ccb_h.status |= CAM_DEV_QFRZN;
}
fsl_sata_done(ch, fccb);
}
/* Kill the engine and requeue all running commands. */
fsl_sata_stop(ch);
DELAY(1000); /* sleep for 1ms */
for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) {
/* Do we have a running request on slot? */
if (ch->slot[i].state < FSL_SATA_SLOT_RUNNING)
continue;
/* XXX; Commands in loading state. */
fsl_sata_end_transaction(&ch->slot[i], FSL_SATA_ERR_INNOCENT);
}
for (i = 0; i < FSL_SATA_MAX_SLOTS; i++) {
if (!ch->hold[i])
continue;
fsl_sata_done(ch, ch->hold[i]);
ch->hold[i] = NULL;
ch->numhslots--;
}
if (ch->toslots != 0)
xpt_release_simq(ch->sim, TRUE);
ch->eslots = 0;
ch->toslots = 0;
ch->fatalerr = 0;
/* Tell the XPT about the event */
xpt_async(AC_BUS_RESET, ch->path, NULL);
/* Disable port interrupts */
ATA_OUTL(ch->r_mem, FSL_SATA_P_HCTRL,
ATA_INL(ch->r_mem, FSL_SATA_P_HCTRL) & ~0x3f);
/* Reset and reconnect PHY, */
fsl_sata_start(ch);
if (fsl_sata_wait_register(ch, FSL_SATA_P_HSTS, 0x08, 0x08, 500)) {
if (bootverbose)
device_printf(ch->dev,
"FSL SATA reset: device not found\n");
ch->devices = 0;
/* Enable wanted port interrupts */
ATA_OUTL(ch->r_mem, FSL_SATA_P_HCTRL,
ATA_INL(ch->r_mem, FSL_SATA_P_HCTRL) | FSL_SATA_P_HCTRL_PHYRDY);
xpt_release_simq(ch->sim, TRUE);
return;
}
if (bootverbose)
device_printf(ch->dev, "FSL SATA reset: device found\n");
ch->devices = 1;
/* Enable wanted port interrupts */
ctrl = ATA_INL(ch->r_mem, FSL_SATA_P_HCTRL) & ~0x3f;
ATA_OUTL(ch->r_mem, FSL_SATA_P_HCTRL,
ctrl | FSL_SATA_P_HCTRL_FATAL | FSL_SATA_P_HCTRL_PHYRDY |
FSL_SATA_P_HCTRL_SIG | FSL_SATA_P_HCTRL_SNTFY |
FSL_SATA_P_HCTRL_DE | FSL_SATA_P_HCTRL_CC);
xpt_release_simq(ch->sim, TRUE);
}
static int
fsl_sata_setup_fis(struct fsl_sata_channel *ch, struct fsl_sata_cmd_tab *ctp, union ccb *ccb, int tag)
{
uint8_t *fis = &ctp->cfis[0];
bzero(fis, 32);
fis[0] = 0x27; /* host to device */
fis[1] = (ccb->ccb_h.target_id & 0x0f);
if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
fis[1] |= 0x80;
fis[2] = ATA_PACKET_CMD;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE &&
ch->curr[ccb->ccb_h.target_id].mode >= ATA_DMA)
fis[3] = ATA_F_DMA;
else {
fis[5] = ccb->csio.dxfer_len;
fis[6] = ccb->csio.dxfer_len >> 8;
}
fis[7] = ATA_D_LBA;
fis[15] = ATA_A_4BIT;
bcopy((ccb->ccb_h.flags & CAM_CDB_POINTER) ?
ccb->csio.cdb_io.cdb_ptr : ccb->csio.cdb_io.cdb_bytes,
ctp->acmd, ccb->csio.cdb_len);
bzero(ctp->acmd + ccb->csio.cdb_len, 32 - ccb->csio.cdb_len);
} else if ((ccb->ataio.cmd.flags & CAM_ATAIO_CONTROL) == 0) {
fis[1] |= 0x80;
fis[2] = ccb->ataio.cmd.command;
fis[3] = ccb->ataio.cmd.features;
fis[4] = ccb->ataio.cmd.lba_low;
fis[5] = ccb->ataio.cmd.lba_mid;
fis[6] = ccb->ataio.cmd.lba_high;
fis[7] = ccb->ataio.cmd.device;
fis[8] = ccb->ataio.cmd.lba_low_exp;
fis[9] = ccb->ataio.cmd.lba_mid_exp;
fis[10] = ccb->ataio.cmd.lba_high_exp;
fis[11] = ccb->ataio.cmd.features_exp;
if (ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA) {
fis[12] = tag << 3;
fis[13] = 0;
} else {
fis[12] = ccb->ataio.cmd.sector_count;
fis[13] = ccb->ataio.cmd.sector_count_exp;
}
fis[15] = ATA_A_4BIT;
} else {
fis[15] = ccb->ataio.cmd.control;
}
return (20);
}
static int
fsl_sata_check_ids(struct fsl_sata_channel *ch, union ccb *ccb)
{
if (ccb->ccb_h.target_id > 15) {
ccb->ccb_h.status = CAM_TID_INVALID;
fsl_sata_done(ch, ccb);
return (-1);
}
if (ccb->ccb_h.target_lun != 0) {
ccb->ccb_h.status = CAM_LUN_INVALID;
fsl_sata_done(ch, ccb);
return (-1);
}
return (0);
}
static void
fsl_sataaction(struct cam_sim *sim, union ccb *ccb)
{
struct fsl_sata_channel *ch;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
("fsl_sataaction func_code=0x%x\n", ccb->ccb_h.func_code));
ch = (struct fsl_sata_channel *)cam_sim_softc(sim);
switch (ccb->ccb_h.func_code) {
/* Common cases first */
case XPT_ATA_IO: /* Execute the requested I/O operation */
case XPT_SCSI_IO:
if (fsl_sata_check_ids(ch, ccb))
return;
if (ch->devices == 0 ||
(ch->pm_present == 0 &&
ccb->ccb_h.target_id > 0 && ccb->ccb_h.target_id < 15)) {
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
break;
}
ccb->ccb_h.recovery_type = RECOVERY_NONE;
/* Check for command collision. */
if (fsl_sata_check_collision(ch, ccb)) {
/* Freeze command. */
ch->frozen = ccb;
/* We have only one frozen slot, so freeze simq also. */
xpt_freeze_simq(ch->sim, 1);
return;
}
fsl_sata_begin_transaction(ch, ccb);
return;
case XPT_ABORT: /* Abort the specified CCB */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
case XPT_SET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts = &ccb->cts;
struct fsl_sata_device *d;
if (fsl_sata_check_ids(ch, ccb))
return;
if (cts->type == CTS_TYPE_CURRENT_SETTINGS)
d = &ch->curr[ccb->ccb_h.target_id];
else
d = &ch->user[ccb->ccb_h.target_id];
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_REVISION)
d->revision = cts->xport_specific.sata.revision;
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_MODE)
d->mode = cts->xport_specific.sata.mode;
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_BYTECOUNT)
d->bytecount = min(8192, cts->xport_specific.sata.bytecount);
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_TAGS)
d->tags = min(FSL_SATA_MAX_SLOTS, cts->xport_specific.sata.tags);
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_PM)
ch->pm_present = cts->xport_specific.sata.pm_present;
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_ATAPI)
d->atapi = cts->xport_specific.sata.atapi;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_GET_TRAN_SETTINGS:
/* Get default/user set transfer settings for the target */
{
struct ccb_trans_settings *cts = &ccb->cts;
struct fsl_sata_device *d;
uint32_t status;
if (fsl_sata_check_ids(ch, ccb))
return;
if (cts->type == CTS_TYPE_CURRENT_SETTINGS)
d = &ch->curr[ccb->ccb_h.target_id];
else
d = &ch->user[ccb->ccb_h.target_id];
cts->protocol = PROTO_UNSPECIFIED;
cts->protocol_version = PROTO_VERSION_UNSPECIFIED;
cts->transport = XPORT_SATA;
cts->transport_version = XPORT_VERSION_UNSPECIFIED;
cts->proto_specific.valid = 0;
cts->xport_specific.sata.valid = 0;
if (cts->type == CTS_TYPE_CURRENT_SETTINGS &&
(ccb->ccb_h.target_id == 15 ||
(ccb->ccb_h.target_id == 0 && !ch->pm_present))) {
status = ATA_INL(ch->r_mem, FSL_SATA_P_SSTS) & ATA_SS_SPD_MASK;
if (status & 0x0f0) {
cts->xport_specific.sata.revision =
(status & 0x0f0) >> 4;
cts->xport_specific.sata.valid |=
CTS_SATA_VALID_REVISION;
}
cts->xport_specific.sata.caps = d->caps & CTS_SATA_CAPS_D;
if (ch->pm_level) {
cts->xport_specific.sata.caps |= CTS_SATA_CAPS_H_PMREQ;
}
cts->xport_specific.sata.caps |= CTS_SATA_CAPS_H_AN;
cts->xport_specific.sata.caps &=
ch->user[ccb->ccb_h.target_id].caps;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_CAPS;
} else {
cts->xport_specific.sata.revision = d->revision;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_REVISION;
cts->xport_specific.sata.caps = d->caps;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_CAPS;
}
cts->xport_specific.sata.mode = d->mode;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_MODE;
cts->xport_specific.sata.bytecount = d->bytecount;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_BYTECOUNT;
cts->xport_specific.sata.pm_present = ch->pm_present;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_PM;
cts->xport_specific.sata.tags = d->tags;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_TAGS;
cts->xport_specific.sata.atapi = d->atapi;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_ATAPI;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_RESET_BUS: /* Reset the specified SCSI bus */
case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
fsl_sata_reset(ch);
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_TERM_IO: /* Terminate the I/O process */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1; /* XXX??? */
cpi->hba_inquiry = PI_SDTR_ABLE;
cpi->hba_inquiry |= PI_TAG_ABLE;
#if 0
/*
* XXX: CAM tries to reset port 15 if it sees port multiplier
* support. Disable it for now.
*/
cpi->hba_inquiry |= PI_SATAPM;
#endif
cpi->target_sprt = 0;
cpi->hba_misc = PIM_SEQSCAN | PIM_UNMAPPED;
cpi->hba_eng_cnt = 0;
/*
* XXX: This should be 15, since hardware *does* support a port
* multiplier. See above.
*/
cpi->max_target = 0;
cpi->max_lun = 0;
cpi->initiator_id = 0;
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 150000;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "FSL SATA", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->transport = XPORT_SATA;
cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
cpi->protocol = PROTO_ATA;
cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
cpi->maxio = MAXPHYS;
cpi->ccb_h.status = CAM_REQ_CMP;
break;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
fsl_sata_done(ch, ccb);
}
static void
fsl_satapoll(struct cam_sim *sim)
{
struct fsl_sata_channel *ch = (struct fsl_sata_channel *)cam_sim_softc(sim);
uint32_t istatus;
/* Read interrupt statuses and process if any. */
istatus = ATA_INL(ch->r_mem, FSL_SATA_P_HSTS);
if (istatus != 0)
fsl_sata_intr_main(ch, istatus);
}
MODULE_VERSION(fsl_sata, 1);
MODULE_DEPEND(fsl_sata, cam, 1, 1, 1);