aa9bc17601
BMakefiles and other bits will follow. Requested by: Andrey Chernov Made world by: Chuck Robey
403 lines
12 KiB
C
403 lines
12 KiB
C
/* mpn/gcd.c: mpn_gcd for gcd of two odd integers.
|
|
|
|
Copyright (C) 1991, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
|
|
|
|
This file is part of the GNU MP Library.
|
|
|
|
The GNU MP Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Library General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MP Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public License
|
|
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
|
|
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
|
|
MA 02111-1307, USA. */
|
|
|
|
/* Integer greatest common divisor of two unsigned integers, using
|
|
the accelerated algorithm (see reference below).
|
|
|
|
mp_size_t mpn_gcd (vp, vsize, up, usize).
|
|
|
|
Preconditions [U = (up, usize) and V = (vp, vsize)]:
|
|
|
|
1. V is odd.
|
|
2. numbits(U) >= numbits(V).
|
|
|
|
Both U and V are destroyed by the operation. The result is left at vp,
|
|
and its size is returned.
|
|
|
|
Ken Weber (kweber@mat.ufrgs.br, kweber@mcs.kent.edu)
|
|
|
|
Funding for this work has been partially provided by Conselho Nacional
|
|
de Desenvolvimento Cienti'fico e Tecnolo'gico (CNPq) do Brazil, Grant
|
|
301314194-2, and was done while I was a visiting reseacher in the Instituto
|
|
de Matema'tica at Universidade Federal do Rio Grande do Sul (UFRGS).
|
|
|
|
Refer to
|
|
K. Weber, The accelerated integer GCD algorithm, ACM Transactions on
|
|
Mathematical Software, v. 21 (March), 1995, pp. 111-122. */
|
|
|
|
#include "gmp.h"
|
|
#include "gmp-impl.h"
|
|
#include "longlong.h"
|
|
|
|
/* If MIN (usize, vsize) > ACCEL_THRESHOLD, then the accelerated algorithm is
|
|
used, otherwise the binary algorithm is used. This may be adjusted for
|
|
different architectures. */
|
|
#ifndef ACCEL_THRESHOLD
|
|
#define ACCEL_THRESHOLD 4
|
|
#endif
|
|
|
|
/* When U and V differ in size by more than BMOD_THRESHOLD, the accelerated
|
|
algorithm reduces using the bmod operation. Otherwise, the k-ary reduction
|
|
is used. 0 <= BMOD_THRESHOLD < BITS_PER_MP_LIMB. */
|
|
enum
|
|
{
|
|
BMOD_THRESHOLD = BITS_PER_MP_LIMB/2
|
|
};
|
|
|
|
#define SIGN_BIT (~(~(mp_limb_t)0 >> 1))
|
|
|
|
|
|
#define SWAP_LIMB(UL, VL) do{mp_limb_t __l=(UL);(UL)=(VL);(VL)=__l;}while(0)
|
|
#define SWAP_PTR(UP, VP) do{mp_ptr __p=(UP);(UP)=(VP);(VP)=__p;}while(0)
|
|
#define SWAP_SZ(US, VS) do{mp_size_t __s=(US);(US)=(VS);(VS)=__s;}while(0)
|
|
#define SWAP_MPN(UP, US, VP, VS) do{SWAP_PTR(UP,VP);SWAP_SZ(US,VS);}while(0)
|
|
|
|
/* Use binary algorithm to compute V <-- GCD (V, U) for usize, vsize == 2.
|
|
Both U and V must be odd. */
|
|
static __gmp_inline mp_size_t
|
|
#if __STDC__
|
|
gcd_2 (mp_ptr vp, mp_srcptr up)
|
|
#else
|
|
gcd_2 (vp, up)
|
|
mp_ptr vp;
|
|
mp_srcptr up;
|
|
#endif
|
|
{
|
|
mp_limb_t u0, u1, v0, v1;
|
|
mp_size_t vsize;
|
|
|
|
u0 = up[0], u1 = up[1], v0 = vp[0], v1 = vp[1];
|
|
|
|
while (u1 != v1 && u0 != v0)
|
|
{
|
|
unsigned long int r;
|
|
if (u1 > v1)
|
|
{
|
|
u1 -= v1 + (u0 < v0), u0 -= v0;
|
|
count_trailing_zeros (r, u0);
|
|
u0 = u1 << (BITS_PER_MP_LIMB - r) | u0 >> r;
|
|
u1 >>= r;
|
|
}
|
|
else /* u1 < v1. */
|
|
{
|
|
v1 -= u1 + (v0 < u0), v0 -= u0;
|
|
count_trailing_zeros (r, v0);
|
|
v0 = v1 << (BITS_PER_MP_LIMB - r) | v0 >> r;
|
|
v1 >>= r;
|
|
}
|
|
}
|
|
|
|
vp[0] = v0, vp[1] = v1, vsize = 1 + (v1 != 0);
|
|
|
|
/* If U == V == GCD, done. Otherwise, compute GCD (V, |U - V|). */
|
|
if (u1 == v1 && u0 == v0)
|
|
return vsize;
|
|
|
|
v0 = (u0 == v0) ? (u1 > v1) ? u1-v1 : v1-u1 : (u0 > v0) ? u0-v0 : v0-u0;
|
|
vp[0] = mpn_gcd_1 (vp, vsize, v0);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* The function find_a finds 0 < N < 2^BITS_PER_MP_LIMB such that there exists
|
|
0 < |D| < 2^BITS_PER_MP_LIMB, and N == D * C mod 2^(2*BITS_PER_MP_LIMB).
|
|
In the reference article, D was computed along with N, but it is better to
|
|
compute D separately as D <-- N / C mod 2^(BITS_PER_MP_LIMB + 1), treating
|
|
the result as a twos' complement signed integer.
|
|
|
|
Initialize N1 to C mod 2^(2*BITS_PER_MP_LIMB). According to the reference
|
|
article, N2 should be initialized to 2^(2*BITS_PER_MP_LIMB), but we use
|
|
2^(2*BITS_PER_MP_LIMB) - N1 to start the calculations within double
|
|
precision. If N2 > N1 initially, the first iteration of the while loop
|
|
will swap them. In all other situations, N1 >= N2 is maintained. */
|
|
|
|
static __gmp_inline mp_limb_t
|
|
#if __STDC__
|
|
find_a (mp_srcptr cp)
|
|
#else
|
|
find_a (cp)
|
|
mp_srcptr cp;
|
|
#endif
|
|
{
|
|
unsigned long int leading_zero_bits = 0;
|
|
|
|
mp_limb_t n1_l = cp[0]; /* N1 == n1_h * 2^BITS_PER_MP_LIMB + n1_l. */
|
|
mp_limb_t n1_h = cp[1];
|
|
|
|
mp_limb_t n2_l = -n1_l; /* N2 == n2_h * 2^BITS_PER_MP_LIMB + n2_l. */
|
|
mp_limb_t n2_h = ~n1_h;
|
|
|
|
/* Main loop. */
|
|
while (n2_h) /* While N2 >= 2^BITS_PER_MP_LIMB. */
|
|
{
|
|
/* N1 <-- N1 % N2. */
|
|
if ((SIGN_BIT >> leading_zero_bits & n2_h) == 0)
|
|
{
|
|
unsigned long int i;
|
|
count_leading_zeros (i, n2_h);
|
|
i -= leading_zero_bits, leading_zero_bits += i;
|
|
n2_h = n2_h<<i | n2_l>>(BITS_PER_MP_LIMB - i), n2_l <<= i;
|
|
do
|
|
{
|
|
if (n1_h > n2_h || (n1_h == n2_h && n1_l >= n2_l))
|
|
n1_h -= n2_h + (n1_l < n2_l), n1_l -= n2_l;
|
|
n2_l = n2_l>>1 | n2_h<<(BITS_PER_MP_LIMB - 1), n2_h >>= 1;
|
|
i -= 1;
|
|
}
|
|
while (i);
|
|
}
|
|
if (n1_h > n2_h || (n1_h == n2_h && n1_l >= n2_l))
|
|
n1_h -= n2_h + (n1_l < n2_l), n1_l -= n2_l;
|
|
|
|
SWAP_LIMB (n1_h, n2_h);
|
|
SWAP_LIMB (n1_l, n2_l);
|
|
}
|
|
|
|
return n2_l;
|
|
}
|
|
|
|
mp_size_t
|
|
#if __STDC__
|
|
mpn_gcd (mp_ptr gp, mp_ptr vp, mp_size_t vsize, mp_ptr up, mp_size_t usize)
|
|
#else
|
|
mpn_gcd (gp, vp, vsize, up, usize)
|
|
mp_ptr gp;
|
|
mp_ptr vp;
|
|
mp_size_t vsize;
|
|
mp_ptr up;
|
|
mp_size_t usize;
|
|
#endif
|
|
{
|
|
mp_ptr orig_vp = vp;
|
|
mp_size_t orig_vsize = vsize;
|
|
int binary_gcd_ctr; /* Number of times binary gcd will execute. */
|
|
TMP_DECL (marker);
|
|
|
|
TMP_MARK (marker);
|
|
|
|
/* Use accelerated algorithm if vsize is over ACCEL_THRESHOLD.
|
|
Two EXTRA limbs for U and V are required for kary reduction. */
|
|
if (vsize > ACCEL_THRESHOLD)
|
|
{
|
|
unsigned long int vbitsize, d;
|
|
mp_ptr orig_up = up;
|
|
mp_size_t orig_usize = usize;
|
|
mp_ptr anchor_up = (mp_ptr) TMP_ALLOC ((usize + 2) * BYTES_PER_MP_LIMB);
|
|
|
|
MPN_COPY (anchor_up, orig_up, usize);
|
|
up = anchor_up;
|
|
|
|
count_leading_zeros (d, up[usize-1]);
|
|
d = usize * BITS_PER_MP_LIMB - d;
|
|
count_leading_zeros (vbitsize, vp[vsize-1]);
|
|
vbitsize = vsize * BITS_PER_MP_LIMB - vbitsize;
|
|
d = d - vbitsize + 1;
|
|
|
|
/* Use bmod reduction to quickly discover whether V divides U. */
|
|
up[usize++] = 0; /* Insert leading zero. */
|
|
mpn_bdivmod (up, up, usize, vp, vsize, d);
|
|
|
|
/* Now skip U/V mod 2^d and any low zero limbs. */
|
|
d /= BITS_PER_MP_LIMB, up += d, usize -= d;
|
|
while (usize != 0 && up[0] == 0)
|
|
up++, usize--;
|
|
|
|
if (usize == 0) /* GCD == ORIG_V. */
|
|
goto done;
|
|
|
|
vp = (mp_ptr) TMP_ALLOC ((vsize + 2) * BYTES_PER_MP_LIMB);
|
|
MPN_COPY (vp, orig_vp, vsize);
|
|
|
|
do /* Main loop. */
|
|
{
|
|
if (up[usize-1] & SIGN_BIT) /* U < 0; take twos' compl. */
|
|
{
|
|
mp_size_t i;
|
|
anchor_up[0] = -up[0];
|
|
for (i = 1; i < usize; i++)
|
|
anchor_up[i] = ~up[i];
|
|
up = anchor_up;
|
|
}
|
|
|
|
MPN_NORMALIZE_NOT_ZERO (up, usize);
|
|
|
|
if ((up[0] & 1) == 0) /* Result even; remove twos. */
|
|
{
|
|
unsigned long int r;
|
|
count_trailing_zeros (r, up[0]);
|
|
mpn_rshift (anchor_up, up, usize, r);
|
|
usize -= (anchor_up[usize-1] == 0);
|
|
}
|
|
else if (anchor_up != up)
|
|
MPN_COPY (anchor_up, up, usize);
|
|
|
|
SWAP_MPN (anchor_up, usize, vp, vsize);
|
|
up = anchor_up;
|
|
|
|
if (vsize <= 2) /* Kary can't handle < 2 limbs and */
|
|
break; /* isn't efficient for == 2 limbs. */
|
|
|
|
d = vbitsize;
|
|
count_leading_zeros (vbitsize, vp[vsize-1]);
|
|
vbitsize = vsize * BITS_PER_MP_LIMB - vbitsize;
|
|
d = d - vbitsize + 1;
|
|
|
|
if (d > BMOD_THRESHOLD) /* Bmod reduction. */
|
|
{
|
|
up[usize++] = 0;
|
|
mpn_bdivmod (up, up, usize, vp, vsize, d);
|
|
d /= BITS_PER_MP_LIMB, up += d, usize -= d;
|
|
}
|
|
else /* Kary reduction. */
|
|
{
|
|
mp_limb_t bp[2], cp[2];
|
|
|
|
/* C <-- V/U mod 2^(2*BITS_PER_MP_LIMB). */
|
|
cp[0] = vp[0], cp[1] = vp[1];
|
|
mpn_bdivmod (cp, cp, 2, up, 2, 2*BITS_PER_MP_LIMB);
|
|
|
|
/* U <-- find_a (C) * U. */
|
|
up[usize] = mpn_mul_1 (up, up, usize, find_a (cp));
|
|
usize++;
|
|
|
|
/* B <-- A/C == U/V mod 2^(BITS_PER_MP_LIMB + 1).
|
|
bp[0] <-- U/V mod 2^BITS_PER_MP_LIMB and
|
|
bp[1] <-- ( (U - bp[0] * V)/2^BITS_PER_MP_LIMB ) / V mod 2 */
|
|
bp[0] = up[0], bp[1] = up[1];
|
|
mpn_bdivmod (bp, bp, 2, vp, 2, BITS_PER_MP_LIMB);
|
|
bp[1] &= 1; /* Since V is odd, division is unnecessary. */
|
|
|
|
up[usize++] = 0;
|
|
if (bp[1]) /* B < 0: U <-- U + (-B) * V. */
|
|
{
|
|
mp_limb_t c = mpn_addmul_1 (up, vp, vsize, -bp[0]);
|
|
mpn_add_1 (up + vsize, up + vsize, usize - vsize, c);
|
|
}
|
|
else /* B >= 0: U <-- U - B * V. */
|
|
{
|
|
mp_limb_t b = mpn_submul_1 (up, vp, vsize, bp[0]);
|
|
mpn_sub_1 (up + vsize, up + vsize, usize - vsize, b);
|
|
}
|
|
|
|
up += 2, usize -= 2; /* At least two low limbs are zero. */
|
|
}
|
|
|
|
/* Must remove low zero limbs before complementing. */
|
|
while (usize != 0 && up[0] == 0)
|
|
up++, usize--;
|
|
}
|
|
while (usize);
|
|
|
|
/* Compute GCD (ORIG_V, GCD (ORIG_U, V)). Binary will execute twice. */
|
|
up = orig_up, usize = orig_usize;
|
|
binary_gcd_ctr = 2;
|
|
}
|
|
else
|
|
binary_gcd_ctr = 1;
|
|
|
|
/* Finish up with the binary algorithm. Executes once or twice. */
|
|
for ( ; binary_gcd_ctr--; up = orig_vp, usize = orig_vsize)
|
|
{
|
|
if (usize > 2) /* First make U close to V in size. */
|
|
{
|
|
unsigned long int vbitsize, d;
|
|
count_leading_zeros (d, up[usize-1]);
|
|
d = usize * BITS_PER_MP_LIMB - d;
|
|
count_leading_zeros (vbitsize, vp[vsize-1]);
|
|
vbitsize = vsize * BITS_PER_MP_LIMB - vbitsize;
|
|
d = d - vbitsize - 1;
|
|
if (d != -(unsigned long int)1 && d > 2)
|
|
{
|
|
mpn_bdivmod (up, up, usize, vp, vsize, d); /* Result > 0. */
|
|
d /= (unsigned long int)BITS_PER_MP_LIMB, up += d, usize -= d;
|
|
}
|
|
}
|
|
|
|
/* Start binary GCD. */
|
|
do
|
|
{
|
|
mp_size_t zeros;
|
|
|
|
/* Make sure U is odd. */
|
|
MPN_NORMALIZE (up, usize);
|
|
while (up[0] == 0)
|
|
up += 1, usize -= 1;
|
|
if ((up[0] & 1) == 0)
|
|
{
|
|
unsigned long int r;
|
|
count_trailing_zeros (r, up[0]);
|
|
mpn_rshift (up, up, usize, r);
|
|
usize -= (up[usize-1] == 0);
|
|
}
|
|
|
|
/* Keep usize >= vsize. */
|
|
if (usize < vsize)
|
|
SWAP_MPN (up, usize, vp, vsize);
|
|
|
|
if (usize <= 2) /* Double precision. */
|
|
{
|
|
if (vsize == 1)
|
|
vp[0] = mpn_gcd_1 (up, usize, vp[0]);
|
|
else
|
|
vsize = gcd_2 (vp, up);
|
|
break; /* Binary GCD done. */
|
|
}
|
|
|
|
/* Count number of low zero limbs of U - V. */
|
|
for (zeros = 0; up[zeros] == vp[zeros] && ++zeros != vsize; )
|
|
continue;
|
|
|
|
/* If U < V, swap U and V; in any case, subtract V from U. */
|
|
if (zeros == vsize) /* Subtract done. */
|
|
up += zeros, usize -= zeros;
|
|
else if (usize == vsize)
|
|
{
|
|
mp_size_t size = vsize;
|
|
do
|
|
size--;
|
|
while (up[size] == vp[size]);
|
|
if (up[size] < vp[size]) /* usize == vsize. */
|
|
SWAP_PTR (up, vp);
|
|
up += zeros, usize = size + 1 - zeros;
|
|
mpn_sub_n (up, up, vp + zeros, usize);
|
|
}
|
|
else
|
|
{
|
|
mp_size_t size = vsize - zeros;
|
|
up += zeros, usize -= zeros;
|
|
if (mpn_sub_n (up, up, vp + zeros, size))
|
|
{
|
|
while (up[size] == 0) /* Propagate borrow. */
|
|
up[size++] = -(mp_limb_t)1;
|
|
up[size] -= 1;
|
|
}
|
|
}
|
|
}
|
|
while (usize); /* End binary GCD. */
|
|
}
|
|
|
|
done:
|
|
if (vp != gp)
|
|
MPN_COPY (gp, vp, vsize);
|
|
TMP_FREE (marker);
|
|
return vsize;
|
|
}
|