freebsd-dev/sys/dev/usb/ukbd.c

1444 lines
36 KiB
C

/* $NetBSD: ukbd.c,v 1.22 1999/01/09 12:10:36 drochner Exp $ */
/* $FreeBSD$ */
/*
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (augustss@carlstedt.se) at
* Carlstedt Research & Technology.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* HID spec: http://www.usb.org/developers/data/usbhid10.pdf
*/
#include "ukbd.h"
#include "opt_kbd.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ioccom.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <machine/clock.h>
#include <sys/tty.h>
#include <sys/file.h>
#include <sys/select.h>
#include <sys/proc.h>
#include <sys/vnode.h>
#include <sys/poll.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbhid.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/usb_quirks.h>
#include <dev/usb/hid.h>
#include <sys/conf.h>
#include <dev/kbd/kbdreg.h>
#define UKBD_EMULATE_ATSCANCODE 1
#define DRIVER_NAME "ukbd"
#define delay(d) DELAY(d)
#ifdef UKBD_DEBUG
#define DPRINTF(x) if (ukbddebug) logprintf x
#define DPRINTFN(n,x) if (ukbddebug>(n)) logprintf x
int ukbddebug = 1;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
#define UPROTO_BOOT_KEYBOARD 1
#define NKEYCODE 6
struct ukbd_data {
u_int8_t modifiers;
#define MOD_CONTROL_L 0x01
#define MOD_CONTROL_R 0x10
#define MOD_SHIFT_L 0x02
#define MOD_SHIFT_R 0x20
#define MOD_ALT_L 0x04
#define MOD_ALT_R 0x40
#define MOD_WIN_L 0x08
#define MOD_WIN_R 0x80
u_int8_t reserved;
u_int8_t keycode[NKEYCODE];
};
#define MAXKEYS (NMOD+2*NKEYCODE)
typedef struct ukbd_softc {
bdevice sc_dev; /* base device */
} ukbd_softc_t;
#define UKBD_CHUNK 128 /* chunk size for read */
#define UKBD_BSIZE 1020 /* buffer size */
typedef void usbd_intr_t(usbd_request_handle, usbd_private_handle, usbd_status);
typedef void usbd_disco_t(void *);
static usbd_intr_t ukbd_intr;
static usbd_disco_t ukbd_disconnect;
USB_DECLARE_DRIVER(ukbd);
USB_MATCH(ukbd)
{
USB_MATCH_START(ukbd, uaa);
keyboard_switch_t *sw;
void *arg[3];
int unit = device_get_unit(self);
sw = kbd_get_switch(DRIVER_NAME);
if (sw == NULL)
return (UMATCH_NONE);
arg[0] = (void *)uaa;
arg[1] = (void *)ukbd_intr;
arg[2] = (void *)ukbd_disconnect;
if ((*sw->probe)(unit, (void *)arg, 0))
return (UMATCH_NONE);
return (UMATCH_IFACECLASS_IFACESUBCLASS_IFACEPROTO);
}
USB_ATTACH(ukbd)
{
USB_ATTACH_START(ukbd, sc, uaa);
usbd_interface_handle iface = uaa->iface;
usb_interface_descriptor_t *id;
char devinfo[1024];
keyboard_switch_t *sw;
keyboard_t *kbd;
void *arg[3];
int unit = device_get_unit(self);
sw = kbd_get_switch(DRIVER_NAME);
if (sw == NULL)
USB_ATTACH_ERROR_RETURN;
id = usbd_get_interface_descriptor(iface);
usbd_devinfo(uaa->device, 0, devinfo);
USB_ATTACH_SETUP;
printf("%s: %s, iclass %d/%d\n", USBDEVNAME(sc->sc_dev),
devinfo, id->bInterfaceClass, id->bInterfaceSubClass);
arg[0] = (void *)uaa;
arg[1] = (void *)ukbd_intr;
arg[2] = (void *)ukbd_disconnect;
kbd = NULL;
if ((*sw->probe)(unit, (void *)arg, 0))
USB_ATTACH_ERROR_RETURN;
if ((*sw->init)(unit, &kbd, (void *)arg, 0))
USB_ATTACH_ERROR_RETURN;
(*sw->enable)(kbd);
#ifdef KBD_INSTALL_CDEV
if (kbd_attach(kbd))
USB_ATTACH_ERROR_RETURN;
#endif
if (bootverbose)
(*sw->diag)(kbd, bootverbose);
USB_ATTACH_SUCCESS_RETURN;
}
int
ukbd_detach(device_t self)
{
keyboard_t *kbd;
int error;
kbd = kbd_get_keyboard(kbd_find_keyboard(DRIVER_NAME,
device_get_unit(self)));
if (kbd == NULL) {
DPRINTF(("%s: keyboard not attached!?\n", USBDEVNAME(self)));
return ENXIO;
}
#ifdef KBD_INSTALL_CDEV
error = kbd_detach(kbd);
if (error)
return error;
#endif
error = (*kbdsw[kbd->kb_index]->term)(kbd);
if (error)
return error;
DPRINTF(("%s: disconnected\n", USBDEVNAME(self)));
return (0);
}
static void
ukbd_disconnect(void *p)
{
keyboard_t *kbd = (keyboard_t *)p;
DPRINTF(("ukbd_disconnect: kbd:%p\n", kbd));
(*kbdsw[kbd->kb_index]->disable)(kbd);
}
void
ukbd_intr(usbd_request_handle reqh, usbd_private_handle addr, usbd_status status)
{
keyboard_t *kbd = (keyboard_t *)addr;
(*kbdsw[kbd->kb_index]->intr)(kbd, (void *)status);
}
DRIVER_MODULE(ukbd, uhub, ukbd_driver, ukbd_devclass, usbd_driver_load, 0);
#include <machine/limits.h>
#include <machine/console.h>
#include <machine/clock.h>
#define UKBD_DEFAULT 0
#define KEY_ERROR 0x01
#define KEY_PRESS 0
#define KEY_RELEASE 0x400
#define KEY_INDEX(c) ((c) & ~KEY_RELEASE)
#define SCAN_PRESS 0
#define SCAN_RELEASE 0x80
#define SCAN_PREFIX_E0 0x100
#define SCAN_PREFIX_E1 0x200
#define SCAN_PREFIX_CTL 0x400
#define SCAN_PREFIX_SHIFT 0x800
#define SCAN_PREFIX (SCAN_PREFIX_E0 | SCAN_PREFIX_E1 | SCAN_PREFIX_CTL \
| SCAN_PREFIX_SHIFT)
#define SCAN_CHAR(c) ((c) & 0x7f)
#define NMOD 8
static struct {
int mask, key;
} ukbd_mods[NMOD] = {
{ MOD_CONTROL_L, 0xe0 },
{ MOD_CONTROL_R, 0xe4 },
{ MOD_SHIFT_L, 0xe1 },
{ MOD_SHIFT_R, 0xe5 },
{ MOD_ALT_L, 0xe2 },
{ MOD_ALT_R, 0xe6 },
{ MOD_WIN_L, 0xe3 },
{ MOD_WIN_R, 0xe7 },
};
#define NN 0 /* no translation */
/*
* Translate USB keycodes to AT keyboard scancodes.
*/
/*
* FIXME: Mac USB keyboard generates:
* 0x53: keypad NumLock/Clear
* 0x66: Power
* 0x67: keypad =
* 0x68: F13
* 0x69: F14
* 0x6a: F15
*/
static u_int8_t ukbd_trtab[256] = {
0, 0, 0, 0, 30, 48, 46, 32, /* 00 - 07 */
18, 33, 34, 35, 23, 36, 37, 38, /* 08 - 0F */
50, 49, 24, 25, 16, 19, 31, 20, /* 10 - 17 */
22, 47, 17, 45, 21, 44, 2, 3, /* 18 - 1F */
4, 5, 6, 7, 8, 9, 10, 11, /* 20 - 27 */
28, 1, 14, 15, 57, 12, 13, 26, /* 28 - 2F */
27, 43, 43, 39, 40, 41, 51, 52, /* 30 - 37 */
53, 58, 59, 60, 61, 62, 63, 64, /* 38 - 3F */
65, 66, 67, 68, 87, 88, 92, 70, /* 40 - 47 */
104, 102, 94, 96, 103, 99, 101, 98, /* 48 - 4F */
97, 100, 95, 69, 91, 55, 74, 78, /* 50 - 57 */
89, 79, 80, 81, 75, 76, 77, 71, /* 58 - 5F */
72, 73, 82, 83, 86, 107, NN, NN, /* 60 - 67 */
NN, NN, NN, NN, NN, NN, NN, NN, /* 68 - 6F */
NN, NN, NN, NN, NN, NN, NN, NN, /* 70 - 77 */
NN, NN, NN, NN, NN, NN, NN, NN, /* 78 - 7F */
NN, NN, NN, NN, NN, NN, NN, 115, /* 80 - 87 */
112, 125, 121, 123, NN, NN, NN, NN, /* 88 - 8F */
NN, NN, NN, NN, NN, NN, NN, NN, /* 90 - 97 */
NN, NN, NN, NN, NN, NN, NN, NN, /* 98 - 9F */
NN, NN, NN, NN, NN, NN, NN, NN, /* A0 - A7 */
NN, NN, NN, NN, NN, NN, NN, NN, /* A8 - AF */
NN, NN, NN, NN, NN, NN, NN, NN, /* B0 - B7 */
NN, NN, NN, NN, NN, NN, NN, NN, /* B8 - BF */
NN, NN, NN, NN, NN, NN, NN, NN, /* C0 - C7 */
NN, NN, NN, NN, NN, NN, NN, NN, /* C8 - CF */
NN, NN, NN, NN, NN, NN, NN, NN, /* D0 - D7 */
NN, NN, NN, NN, NN, NN, NN, NN, /* D8 - DF */
29, 42, 56, 105, 90, 54, 93, 106, /* E0 - E7 */
NN, NN, NN, NN, NN, NN, NN, NN, /* E8 - EF */
NN, NN, NN, NN, NN, NN, NN, NN, /* F0 - F7 */
NN, NN, NN, NN, NN, NN, NN, NN, /* F8 - FF */
};
typedef struct ukbd_state {
usbd_interface_handle ks_iface; /* interface */
usbd_pipe_handle ks_intrpipe; /* interrupt pipe */
struct usb_attach_arg *ks_uaa;
int ks_ep_addr;
struct ukbd_data ks_ndata;
struct ukbd_data ks_odata;
u_long ks_ntime[NKEYCODE];
u_long ks_otime[NKEYCODE];
#define INPUTBUFSIZE (NMOD + 2*NKEYCODE)
u_int ks_input[INPUTBUFSIZE]; /* input buffer */
int ks_inputs;
int ks_inputhead;
int ks_inputtail;
int ks_ifstate;
#define INTRENABLED (1 << 0)
#define DISCONNECTED (1 << 1)
struct callout_handle ks_timeout_handle;
int ks_mode; /* input mode (K_XLATE,K_RAW,K_CODE) */
int ks_flags; /* flags */
#define COMPOSE (1 << 0)
int ks_polling;
int ks_state; /* shift/lock key state */
int ks_accents; /* accent key index (> 0) */
u_int ks_composed_char; /* composed char code (> 0) */
#ifdef UKBD_EMULATE_ATSCANCODE
u_int ks_buffered_char[2];
#endif
} ukbd_state_t;
/* keyboard driver declaration */
static int ukbd_configure(int flags);
static kbd_probe_t ukbd_probe;
static kbd_init_t ukbd_init;
static kbd_term_t ukbd_term;
static kbd_intr_t ukbd_interrupt;
static kbd_test_if_t ukbd_test_if;
static kbd_enable_t ukbd_enable;
static kbd_disable_t ukbd_disable;
static kbd_read_t ukbd_read;
static kbd_check_t ukbd_check;
static kbd_read_char_t ukbd_read_char;
static kbd_check_char_t ukbd_check_char;
static kbd_ioctl_t ukbd_ioctl;
static kbd_lock_t ukbd_lock;
static kbd_clear_state_t ukbd_clear_state;
static kbd_get_state_t ukbd_get_state;
static kbd_set_state_t ukbd_set_state;
static kbd_poll_mode_t ukbd_poll;
keyboard_switch_t ukbdsw = {
ukbd_probe,
ukbd_init,
ukbd_term,
ukbd_interrupt,
ukbd_test_if,
ukbd_enable,
ukbd_disable,
ukbd_read,
ukbd_check,
ukbd_read_char,
ukbd_check_char,
ukbd_ioctl,
ukbd_lock,
ukbd_clear_state,
ukbd_get_state,
ukbd_set_state,
genkbd_get_fkeystr,
ukbd_poll,
genkbd_diag,
};
KEYBOARD_DRIVER(ukbd, ukbdsw, ukbd_configure);
/* local functions */
static int ukbd_enable_intr(keyboard_t *kbd, int on,
usbd_intr_t *func);
static timeout_t ukbd_timeout;
static int ukbd_getc(ukbd_state_t *state);
static int probe_keyboard(struct usb_attach_arg *uaa, int flags);
static int init_keyboard(ukbd_state_t *state, int *type,
int flags);
static void set_leds(ukbd_state_t *state, int leds);
static int set_typematic(keyboard_t *kbd, int code);
#ifdef UKBD_EMULATE_ATSCANCODE
static int keycode2scancode(int keycode, int shift, int up);
#endif
/* local variables */
/* the initial key map, accent map and fkey strings */
#ifdef UKBD_DFLT_KEYMAP
#define KBD_DFLT_KEYMAP
#include "ukbdmap.h"
#endif
#include <dev/kbd/kbdtables.h>
/* structures for the default keyboard */
static keyboard_t default_kbd;
static ukbd_state_t default_kbd_state;
static keymap_t default_keymap;
static accentmap_t default_accentmap;
static fkeytab_t default_fkeytab[NUM_FKEYS];
/*
* The back door to the keyboard driver!
* This function is called by the console driver, via the kbdio module,
* to tickle keyboard drivers when the low-level console is being initialized.
* Almost nothing in the kernel has been initialied yet. Try to probe
* keyboards if possible.
* NOTE: because of the way the low-level conole is initialized, this routine
* may be called more than once!!
*/
static int
ukbd_configure(int flags)
{
return 0;
#if 0 /* not yet */
keyboard_t *kbd;
device_t device;
struct usb_attach_arg *uaa;
void *arg[3];
device = devclass_get_device(ukbd_devclass, UKBD_DEFAULT);
if (device == NULL)
return 0;
uaa = (struct usb_attach_arg *)device_get_ivars(device);
if (uaa == NULL)
return 0;
/* probe the default keyboard */
arg[0] = (void *)uaa;
arg[1] = (void *)ukbd_intr;
arg[2] = (void *)ukbd_disconnect;
kbd = NULL;
if (ukbd_probe(UKBD_DEFAULT, arg, flags))
return 0;
if (ukbd_init(UKBD_DEFAULT, &kbd, arg, flags))
return 0;
/* return the number of found keyboards */
return 1;
#endif
}
/* low-level functions */
/* detect a keyboard */
static int
ukbd_probe(int unit, void *arg, int flags)
{
void **data;
struct usb_attach_arg *uaa;
data = (void **)arg;
uaa = (struct usb_attach_arg *)data[0];
/* XXX */
if (unit == UKBD_DEFAULT) {
if (KBD_IS_PROBED(&default_kbd))
return 0;
}
if (probe_keyboard(uaa, flags))
return ENXIO;
return 0;
}
/* reset and initialize the device */
static int
ukbd_init(int unit, keyboard_t **kbdp, void *arg, int flags)
{
keyboard_t *kbd;
ukbd_state_t *state;
keymap_t *keymap;
accentmap_t *accmap;
fkeytab_t *fkeymap;
int fkeymap_size;
void **data = (void **)arg;
struct usb_attach_arg *uaa = (struct usb_attach_arg *)data[0];
/* XXX */
if (unit == UKBD_DEFAULT) {
*kbdp = kbd = &default_kbd;
if (KBD_IS_INITIALIZED(kbd) && KBD_IS_CONFIGURED(kbd))
return 0;
state = &default_kbd_state;
keymap = &default_keymap;
accmap = &default_accentmap;
fkeymap = default_fkeytab;
fkeymap_size =
sizeof(default_fkeytab)/sizeof(default_fkeytab[0]);
} else if (*kbdp == NULL) {
*kbdp = kbd = malloc(sizeof(*kbd), M_DEVBUF, M_NOWAIT);
if (kbd == NULL)
return ENOMEM;
bzero(kbd, sizeof(*kbd));
state = malloc(sizeof(*state), M_DEVBUF, M_NOWAIT);
keymap = malloc(sizeof(key_map), M_DEVBUF, M_NOWAIT);
accmap = malloc(sizeof(accent_map), M_DEVBUF, M_NOWAIT);
fkeymap = malloc(sizeof(fkey_tab), M_DEVBUF, M_NOWAIT);
fkeymap_size = sizeof(fkey_tab)/sizeof(fkey_tab[0]);
if ((state == NULL) || (keymap == NULL) || (accmap == NULL)
|| (fkeymap == NULL)) {
if (state != NULL)
free(state, M_DEVBUF);
if (keymap != NULL)
free(keymap, M_DEVBUF);
if (accmap != NULL)
free(accmap, M_DEVBUF);
if (fkeymap != NULL)
free(fkeymap, M_DEVBUF);
free(kbd, M_DEVBUF);
return ENOMEM;
}
} else if (KBD_IS_INITIALIZED(*kbdp) && KBD_IS_CONFIGURED(*kbdp)) {
return 0;
} else {
kbd = *kbdp;
state = (ukbd_state_t *)kbd->kb_data;
keymap = kbd->kb_keymap;
accmap = kbd->kb_accentmap;
fkeymap = kbd->kb_fkeytab;
fkeymap_size = kbd->kb_fkeytab_size;
}
if (!KBD_IS_PROBED(kbd)) {
kbd_init_struct(kbd, DRIVER_NAME, KB_OTHER, unit, flags, 0, 0);
bzero(state, sizeof(*state));
bcopy(&key_map, keymap, sizeof(key_map));
bcopy(&accent_map, accmap, sizeof(accent_map));
bcopy(fkey_tab, fkeymap,
imin(fkeymap_size*sizeof(fkeymap[0]), sizeof(fkey_tab)));
kbd_set_maps(kbd, keymap, accmap, fkeymap, fkeymap_size);
kbd->kb_data = (void *)state;
if (probe_keyboard(uaa, flags))
return ENXIO;
else
KBD_FOUND_DEVICE(kbd);
ukbd_clear_state(kbd);
state->ks_mode = K_XLATE;
state->ks_iface = uaa->iface;
state->ks_uaa = uaa;
state->ks_ifstate = 0;
callout_handle_init(&state->ks_timeout_handle);
/*
* FIXME: set the initial value for lock keys in ks_state
* according to the BIOS data?
*/
KBD_PROBE_DONE(kbd);
}
if (!KBD_IS_INITIALIZED(kbd) && !(flags & KB_CONF_PROBE_ONLY)) {
if (KBD_HAS_DEVICE(kbd)
&& init_keyboard((ukbd_state_t *)kbd->kb_data,
&kbd->kb_type, kbd->kb_flags))
return ENXIO;
ukbd_ioctl(kbd, KDSETLED, (caddr_t)&(state->ks_state));
KBD_INIT_DONE(kbd);
}
if (!KBD_IS_CONFIGURED(kbd)) {
if (kbd_register(kbd) < 0)
return ENXIO;
if (ukbd_enable_intr(kbd, TRUE, (usbd_intr_t *)data[1]) == 0) {
usbd_set_disco(state->ks_intrpipe,
(usbd_disco_t *)data[2], (void *)kbd);
ukbd_timeout((void *)kbd);
}
KBD_CONFIG_DONE(kbd);
}
return 0;
}
static int
ukbd_enable_intr(keyboard_t *kbd, int on, usbd_intr_t *func)
{
ukbd_state_t *state = (ukbd_state_t *)kbd->kb_data;
usbd_status r;
if (on) {
/* Set up interrupt pipe. */
if (state->ks_ifstate & INTRENABLED)
return EBUSY;
state->ks_ifstate |= INTRENABLED;
r = usbd_open_pipe_intr(state->ks_iface, state->ks_ep_addr,
USBD_SHORT_XFER_OK,
&state->ks_intrpipe, kbd,
&state->ks_ndata,
sizeof(state->ks_ndata), func);
if (r != USBD_NORMAL_COMPLETION)
return (EIO);
} else {
/* Disable interrupts. */
usbd_abort_pipe(state->ks_intrpipe);
usbd_close_pipe(state->ks_intrpipe);
state->ks_ifstate &= ~INTRENABLED;
}
return (0);
}
/* finish using this keyboard */
static int
ukbd_term(keyboard_t *kbd)
{
ukbd_state_t *state;
int error;
int s;
s = splusb();
state = (ukbd_state_t *)kbd->kb_data;
DPRINTF(("ukbd_term: ks_ifstate=0x%x\n", state->ks_ifstate));
untimeout(ukbd_timeout, (void *)kbd, state->ks_timeout_handle);
callout_handle_init(&state->ks_timeout_handle);
if (state->ks_ifstate & INTRENABLED)
ukbd_enable_intr(kbd, FALSE, NULL);
if (state->ks_ifstate & INTRENABLED) {
splx(s);
DPRINTF(("ukbd_term: INTRENABLED!\n"));
return ENXIO;
}
error = kbd_unregister(kbd);
DPRINTF(("ukbd_term: kbd_unregister() %d\n", error));
if (error == 0) {
kbd->kb_flags = 0;
if (kbd != &default_kbd) {
free(kbd->kb_keymap, M_DEVBUF);
free(kbd->kb_accentmap, M_DEVBUF);
free(kbd->kb_fkeytab, M_DEVBUF);
free(state, M_DEVBUF);
free(kbd, M_DEVBUF);
}
}
splx(s);
return error;
}
/* keyboard interrupt routine */
static void
ukbd_timeout(void *arg)
{
keyboard_t *kbd;
ukbd_state_t *state;
int s;
kbd = (keyboard_t *)arg;
state = (ukbd_state_t *)kbd->kb_data;
s = splusb();
(*kbdsw[kbd->kb_index]->intr)(kbd, (void *)USBD_NORMAL_COMPLETION);
state->ks_timeout_handle = timeout(ukbd_timeout, arg, hz/40);
splx(s);
}
static int
ukbd_interrupt(keyboard_t *kbd, void *arg)
{
usbd_status status = (usbd_status)arg;
ukbd_state_t *state = (ukbd_state_t *)kbd->kb_data;
struct ukbd_data *ud = &state->ks_ndata;
struct timeval tv;
u_long now;
int mod, omod;
int key, c;
int i, j;
#define ADDKEY1(c) \
if (state->ks_inputs < INPUTBUFSIZE) { \
state->ks_input[state->ks_inputtail] = (c); \
++state->ks_inputs; \
state->ks_inputtail = (state->ks_inputtail + 1)%INPUTBUFSIZE; \
}
DPRINTFN(5, ("ukbd_intr: status=%d\n", status));
if (status == USBD_CANCELLED)
return 0;
if (status != USBD_NORMAL_COMPLETION) {
DPRINTF(("ukbd_intr: status=%d\n", status));
usbd_clear_endpoint_stall_async(state->ks_intrpipe);
return 0;
}
if (ud->keycode[0] == KEY_ERROR)
return 0; /* ignore */
getmicrouptime(&tv);
now = (u_long)tv.tv_sec*1000 + (u_long)tv.tv_usec/1000;
mod = ud->modifiers;
omod = state->ks_odata.modifiers;
if (mod != omod) {
for (i = 0; i < NMOD; i++)
if (( mod & ukbd_mods[i].mask) !=
(omod & ukbd_mods[i].mask))
ADDKEY1(ukbd_mods[i].key |
(mod & ukbd_mods[i].mask
? KEY_PRESS : KEY_RELEASE));
}
/* Check for released keys. */
for (i = 0; i < NKEYCODE; i++) {
key = state->ks_odata.keycode[i];
if (key == 0)
break;
for (j = 0; j < NKEYCODE; j++) {
if (ud->keycode[j] == 0)
break;
if (key == ud->keycode[j])
goto rfound;
}
ADDKEY1(key | KEY_RELEASE);
rfound:
;
}
/* Check for pressed keys. */
for (i = 0; i < NKEYCODE; i++) {
key = ud->keycode[i];
if (key == 0)
break;
state->ks_ntime[i] = now + kbd->kb_delay1;
for (j = 0; j < NKEYCODE; j++) {
if (state->ks_odata.keycode[j] == 0)
break;
if (key == state->ks_odata.keycode[j]) {
state->ks_ntime[i] = state->ks_otime[j];
if (state->ks_otime[j] > now)
goto pfound;
state->ks_ntime[i] = now + kbd->kb_delay2;
break;
}
}
ADDKEY1(key | KEY_PRESS);
pfound:
;
}
state->ks_odata = *ud;
bcopy(state->ks_ntime, state->ks_otime, sizeof(state->ks_ntime));
if (state->ks_inputs <= 0)
return 0;
#ifdef UKBD_DEBUG
for (i = state->ks_inputhead, j = 0; j < state->ks_inputs; ++j,
i = (i + 1)%INPUTBUFSIZE) {
c = state->ks_input[i];
printf("0x%x (%d) %s\n", c, c,
(c & KEY_RELEASE) ? "released":"pressed");
}
if (ud->modifiers)
printf("mod:0x%04x ", ud->modifiers);
for (i = 0; i < NKEYCODE; i++) {
if (ud->keycode[i])
printf("%d ", ud->keycode[i]);
}
printf("\n");
#endif /* UKBD_DEBUG */
if (state->ks_polling)
return 0;
if (KBD_IS_ACTIVE(kbd) && KBD_IS_BUSY(kbd)) {
/* let the callback function to process the input */
(*kbd->kb_callback.kc_func)(kbd, KBDIO_KEYINPUT,
kbd->kb_callback.kc_arg);
} else {
/* read and discard the input; no one is waiting for it */
do {
c = ukbd_read_char(kbd, FALSE);
} while (c != NOKEY);
}
return 0;
}
static int
ukbd_getc(ukbd_state_t *state)
{
usbd_lock_token l;
int c;
int s;
if (state->ks_polling) {
DPRINTFN(1,("ukbd_getc: polling\n"));
l = usbd_lock();
while (state->ks_inputs <= 0)
usbd_dopoll(state->ks_iface);
usbd_unlock(l);
}
s = splusb();
if (state->ks_inputs <= 0) {
c = -1;
} else {
c = state->ks_input[state->ks_inputhead];
--state->ks_inputs;
state->ks_inputhead = (state->ks_inputhead + 1)%INPUTBUFSIZE;
}
splx(s);
return c;
}
/* test the interface to the device */
static int
ukbd_test_if(keyboard_t *kbd)
{
return 0;
}
/*
* Enable the access to the device; until this function is called,
* the client cannot read from the keyboard.
*/
static int
ukbd_enable(keyboard_t *kbd)
{
int s;
s = splusb();
KBD_ACTIVATE(kbd);
splx(s);
return 0;
}
/* disallow the access to the device */
static int
ukbd_disable(keyboard_t *kbd)
{
int s;
s = splusb();
KBD_DEACTIVATE(kbd);
splx(s);
return 0;
}
/* read one byte from the keyboard if it's allowed */
static int
ukbd_read(keyboard_t *kbd, int wait)
{
ukbd_state_t *state;
int usbcode;
#ifdef UKBD_EMULATE_ATSCANCODE
int keycode;
int scancode;
#endif
state = (ukbd_state_t *)kbd->kb_data;
#ifdef UKBD_EMULATE_ATSCANCODE
if (state->ks_buffered_char[0]) {
scancode = state->ks_buffered_char[0];
if (scancode & SCAN_PREFIX) {
state->ks_buffered_char[0] = scancode & ~SCAN_PREFIX;
return ((scancode & SCAN_PREFIX_E0) ? 0xe0 : 0xe1);
} else {
state->ks_buffered_char[0] = state->ks_buffered_char[1];
state->ks_buffered_char[1] = 0;
return scancode;
}
}
#endif /* UKBD_EMULATE_ATSCANCODE */
/* XXX */
usbcode = ukbd_getc(state);
if (!KBD_IS_ACTIVE(kbd) || (usbcode == -1))
return -1;
#ifdef UKBD_EMULATE_ATSCANCODE
keycode = ukbd_trtab[KEY_INDEX(usbcode)];
if (keycode == NN)
return -1;
scancode = keycode2scancode(keycode, state->ks_ndata.modifiers,
usbcode & KEY_RELEASE);
if (scancode & SCAN_PREFIX) {
if (scancode & SCAN_PREFIX_CTL) {
state->ks_buffered_char[0] =
0x1d | (scancode & SCAN_RELEASE); /* Ctrl */
state->ks_buffered_char[1] = scancode & ~SCAN_PREFIX;
} else if (scancode & SCAN_PREFIX_SHIFT) {
state->ks_buffered_char[0] =
0x2a | (scancode & SCAN_RELEASE); /* Shift */
state->ks_buffered_char[1] =
scancode & ~SCAN_PREFIX_SHIFT;
} else {
state->ks_buffered_char[0] = scancode & ~SCAN_PREFIX;
state->ks_buffered_char[1] = 0;
}
return ((scancode & SCAN_PREFIX_E0) ? 0xe0 : 0xe1);
}
return scancode;
#else /* !UKBD_EMULATE_ATSCANCODE */
return usbcode;
#endif /* UKBD_EMULATE_ATSCANCODE */
}
/* check if data is waiting */
static int
ukbd_check(keyboard_t *kbd)
{
if (!KBD_IS_ACTIVE(kbd))
return FALSE;
#ifdef UKBD_EMULATE_ATSCANCODE
if (((ukbd_state_t *)kbd->kb_data)->ks_buffered_char[0])
return TRUE;
#endif
if (((ukbd_state_t *)kbd->kb_data)->ks_inputs > 0)
return TRUE;
return FALSE;
}
/* read char from the keyboard */
static u_int
ukbd_read_char(keyboard_t *kbd, int wait)
{
ukbd_state_t *state;
u_int action;
int usbcode;
int keycode;
#ifdef UKBD_EMULATE_ATSCANCODE
int scancode;
#endif
state = (ukbd_state_t *)kbd->kb_data;
next_code:
/* do we have a composed char to return? */
if (!(state->ks_flags & COMPOSE) && (state->ks_composed_char > 0)) {
action = state->ks_composed_char;
state->ks_composed_char = 0;
if (action > UCHAR_MAX)
return ERRKEY;
return action;
}
#ifdef UKBD_EMULATE_ATSCANCODE
/* do we have a pending raw scan code? */
if (state->ks_mode == K_RAW) {
if (state->ks_buffered_char[0]) {
scancode = state->ks_buffered_char[0];
if (scancode & SCAN_PREFIX) {
state->ks_buffered_char[0] =
scancode & ~SCAN_PREFIX;
return ((scancode & SCAN_PREFIX_E0) ? 0xe0 : 0xe1);
} else {
state->ks_buffered_char[0] =
state->ks_buffered_char[1];
state->ks_buffered_char[1] = 0;
return scancode;
}
}
}
#endif /* UKBD_EMULATE_ATSCANCODE */
/* see if there is something in the keyboard port */
/* XXX */
usbcode = ukbd_getc(state);
if (usbcode == -1)
return NOKEY;
#ifdef UKBD_EMULATE_ATSCANCODE
/* USB key index -> key code -> AT scan code */
keycode = ukbd_trtab[KEY_INDEX(usbcode)];
if (keycode == NN)
return NOKEY;
/* return an AT scan code for the K_RAW mode */
if (state->ks_mode == K_RAW) {
scancode = keycode2scancode(keycode, state->ks_ndata.modifiers,
usbcode & KEY_RELEASE);
if (scancode & SCAN_PREFIX) {
if (scancode & SCAN_PREFIX_CTL) {
state->ks_buffered_char[0] =
0x1d | (scancode & SCAN_RELEASE);
state->ks_buffered_char[1] =
scancode & ~SCAN_PREFIX;
} else if (scancode & SCAN_PREFIX_SHIFT) {
state->ks_buffered_char[0] =
0x2a | (scancode & SCAN_RELEASE);
state->ks_buffered_char[1] =
scancode & ~SCAN_PREFIX_SHIFT;
} else {
state->ks_buffered_char[0] =
scancode & ~SCAN_PREFIX;
state->ks_buffered_char[1] = 0;
}
return ((scancode & SCAN_PREFIX_E0) ? 0xe0 : 0xe1);
}
return scancode;
}
#else /* !UKBD_EMULATE_ATSCANCODE */
/* return the byte as is for the K_RAW mode */
if (state->ks_mode == K_RAW)
return usbcode;
/* USB key index -> key code */
keycode = ukbd_trtab[KEY_INDEX(usbcode)];
if (keycode == NN)
return NOKEY;
#endif /* UKBD_EMULATE_ATSCANCODE */
switch (keycode) {
case 0x38: /* left alt (compose key) */
if (usbcode & KEY_RELEASE) {
if (state->ks_flags & COMPOSE) {
state->ks_flags &= ~COMPOSE;
if (state->ks_composed_char > UCHAR_MAX)
state->ks_composed_char = 0;
}
} else {
if (!(state->ks_flags & COMPOSE)) {
state->ks_flags |= COMPOSE;
state->ks_composed_char = 0;
}
}
break;
/* XXX: I don't like these... */
case 0x5c: /* print screen */
if (state->ks_flags & ALTS)
keycode = 0x54; /* sysrq */
break;
case 0x68: /* pause/break */
if (state->ks_flags & CTLS)
keycode = 0x6c; /* break */
break;
}
/* return the key code in the K_CODE mode */
if (usbcode & KEY_RELEASE)
keycode |= SCAN_RELEASE;
if (state->ks_mode == K_CODE)
return keycode;
/* compose a character code */
if (state->ks_flags & COMPOSE) {
switch (keycode) {
/* key pressed, process it */
case 0x47: case 0x48: case 0x49: /* keypad 7,8,9 */
state->ks_composed_char *= 10;
state->ks_composed_char += keycode - 0x40;
if (state->ks_composed_char > UCHAR_MAX)
return ERRKEY;
goto next_code;
case 0x4B: case 0x4C: case 0x4D: /* keypad 4,5,6 */
state->ks_composed_char *= 10;
state->ks_composed_char += keycode - 0x47;
if (state->ks_composed_char > UCHAR_MAX)
return ERRKEY;
goto next_code;
case 0x4F: case 0x50: case 0x51: /* keypad 1,2,3 */
state->ks_composed_char *= 10;
state->ks_composed_char += keycode - 0x4E;
if (state->ks_composed_char > UCHAR_MAX)
return ERRKEY;
goto next_code;
case 0x52: /* keypad 0 */
state->ks_composed_char *= 10;
if (state->ks_composed_char > UCHAR_MAX)
return ERRKEY;
goto next_code;
/* key released, no interest here */
case SCAN_RELEASE | 0x47:
case SCAN_RELEASE | 0x48:
case SCAN_RELEASE | 0x49: /* keypad 7,8,9 */
case SCAN_RELEASE | 0x4B:
case SCAN_RELEASE | 0x4C:
case SCAN_RELEASE | 0x4D: /* keypad 4,5,6 */
case SCAN_RELEASE | 0x4F:
case SCAN_RELEASE | 0x50:
case SCAN_RELEASE | 0x51: /* keypad 1,2,3 */
case SCAN_RELEASE | 0x52: /* keypad 0 */
goto next_code;
case 0x38: /* left alt key */
break;
default:
if (state->ks_composed_char > 0) {
state->ks_flags &= ~COMPOSE;
state->ks_composed_char = 0;
return ERRKEY;
}
break;
}
}
/* keycode to key action */
action = genkbd_keyaction(kbd, SCAN_CHAR(keycode),
keycode & SCAN_RELEASE, &state->ks_state,
&state->ks_accents);
if (action == NOKEY)
goto next_code;
else
return action;
}
/* check if char is waiting */
static int
ukbd_check_char(keyboard_t *kbd)
{
ukbd_state_t *state;
if (!KBD_IS_ACTIVE(kbd))
return FALSE;
state = (ukbd_state_t *)kbd->kb_data;
if (!(state->ks_flags & COMPOSE) && (state->ks_composed_char > 0))
return TRUE;
if (state->ks_inputs > 0)
return TRUE;
return FALSE;
}
/* some useful control functions */
static int
ukbd_ioctl(keyboard_t *kbd, u_long cmd, caddr_t arg)
{
/* trasnlate LED_XXX bits into the device specific bits */
static u_char ledmap[8] = {
0, 2, 1, 3, 4, 6, 5, 7,
};
ukbd_state_t *state = kbd->kb_data;
int s;
int i;
s = splusb();
switch (cmd) {
case KDGKBMODE: /* get keyboard mode */
*(int *)arg = state->ks_mode;
break;
case KDSKBMODE: /* set keyboard mode */
switch (*(int *)arg) {
case K_XLATE:
if (state->ks_mode != K_XLATE) {
/* make lock key state and LED state match */
state->ks_state &= ~LOCK_MASK;
state->ks_state |= KBD_LED_VAL(kbd);
}
/* FALL THROUGH */
case K_RAW:
case K_CODE:
if (state->ks_mode != *(int *)arg) {
ukbd_clear_state(kbd);
state->ks_mode = *(int *)arg;
}
break;
default:
splx(s);
return EINVAL;
}
break;
case KDGETLED: /* get keyboard LED */
*(int *)arg = KBD_LED_VAL(kbd);
break;
case KDSETLED: /* set keyboard LED */
/* NOTE: lock key state in ks_state won't be changed */
if (*(int *)arg & ~LOCK_MASK) {
splx(s);
return EINVAL;
}
i = *(int *)arg;
/* replace CAPS LED with ALTGR LED for ALTGR keyboards */
if (kbd->kb_keymap->n_keys > ALTGR_OFFSET) {
if (i & ALKED)
i |= CLKED;
else
i &= ~CLKED;
}
if (KBD_HAS_DEVICE(kbd)) {
set_leds(state, ledmap[i & LED_MASK]);
/* XXX: error check? */
}
KBD_LED_VAL(kbd) = *(int *)arg;
break;
case KDGKBSTATE: /* get lock key state */
*(int *)arg = state->ks_state & LOCK_MASK;
break;
case KDSKBSTATE: /* set lock key state */
if (*(int *)arg & ~LOCK_MASK) {
splx(s);
return EINVAL;
}
state->ks_state &= ~LOCK_MASK;
state->ks_state |= *(int *)arg;
splx(s);
/* set LEDs and quit */
return ukbd_ioctl(kbd, KDSETLED, arg);
case KDSETREPEAT: /* set keyboard repeat rate (new interface) */
splx(s);
if (!KBD_HAS_DEVICE(kbd))
return 0;
if (((int *)arg)[1] < 0)
return EINVAL;
if (((int *)arg)[0] < 0)
return EINVAL;
else if (((int *)arg)[0] == 0) /* fastest possible value */
kbd->kb_delay1 = 200;
else
kbd->kb_delay1 = ((int *)arg)[0];
kbd->kb_delay2 = ((int *)arg)[1];
return 0;
case KDSETRAD: /* set keyboard repeat rate (old interface) */
splx(s);
return set_typematic(kbd, *(int *)arg);
case PIO_KEYMAP: /* set keyboard translation table */
case PIO_KEYMAPENT: /* set keyboard translation table entry */
case PIO_DEADKEYMAP: /* set accent key translation table */
state->ks_accents = 0;
/* FALL THROUGH */
default:
splx(s);
return genkbd_commonioctl(kbd, cmd, arg);
}
splx(s);
return 0;
}
/* lock the access to the keyboard */
static int
ukbd_lock(keyboard_t *kbd, int lock)
{
/* XXX ? */
return TRUE;
}
/* clear the internal state of the keyboard */
static void
ukbd_clear_state(keyboard_t *kbd)
{
ukbd_state_t *state;
state = (ukbd_state_t *)kbd->kb_data;
state->ks_flags = 0;
state->ks_polling = 0;
state->ks_state &= LOCK_MASK; /* preserve locking key state */
state->ks_accents = 0;
state->ks_composed_char = 0;
#ifdef UKBD_EMULATE_ATSCANCODE
state->ks_buffered_char[0] = 0;
state->ks_buffered_char[1] = 0;
#endif
bzero(&state->ks_ndata, sizeof(state->ks_ndata));
bzero(&state->ks_odata, sizeof(state->ks_odata));
bzero(&state->ks_ntime, sizeof(state->ks_ntime));
bzero(&state->ks_otime, sizeof(state->ks_otime));
}
/* save the internal state */
static int
ukbd_get_state(keyboard_t *kbd, void *buf, size_t len)
{
if (len == 0)
return sizeof(ukbd_state_t);
if (len < sizeof(ukbd_state_t))
return -1;
bcopy(kbd->kb_data, buf, sizeof(ukbd_state_t));
return 0;
}
/* set the internal state */
static int
ukbd_set_state(keyboard_t *kbd, void *buf, size_t len)
{
if (len < sizeof(ukbd_state_t))
return ENOMEM;
bcopy(buf, kbd->kb_data, sizeof(ukbd_state_t));
return 0;
}
static int
ukbd_poll(keyboard_t *kbd, int on)
{
ukbd_state_t *state;
int s;
state = (ukbd_state_t *)kbd->kb_data;
s = splusb();
if (on) {
if (state->ks_polling == 0)
usbd_set_polling(state->ks_iface, on);
++state->ks_polling;
} else {
--state->ks_polling;
if (state->ks_polling == 0)
usbd_set_polling(state->ks_iface, on);
}
splx(s);
return 0;
}
/* local functions */
static int
probe_keyboard(struct usb_attach_arg *uaa, int flags)
{
usb_interface_descriptor_t *id;
if (!uaa->iface) /* we attach to ifaces only */
return EINVAL;
/* Check that this is a keyboard that speaks the boot protocol. */
id = usbd_get_interface_descriptor(uaa->iface);
if (id
&& id->bInterfaceClass == UCLASS_HID
&& id->bInterfaceSubClass == USUBCLASS_BOOT
&& id->bInterfaceProtocol == UPROTO_BOOT_KEYBOARD)
return 0; /* found it */
return EINVAL;
}
static int
init_keyboard(ukbd_state_t *state, int *type, int flags)
{
usb_endpoint_descriptor_t *ed;
usbd_status r;
*type = KB_OTHER;
state->ks_ifstate |= DISCONNECTED;
ed = usbd_interface2endpoint_descriptor(state->ks_iface, 0);
if (!ed) {
printf("ukbd: could not read endpoint descriptor\n");
return EIO;
}
DPRINTFN(10,("ukbd:init_keyboard: \
bLength=%d bDescriptorType=%d bEndpointAddress=%d-%s bmAttributes=%d wMaxPacketSize=%d bInterval=%d\n",
ed->bLength, ed->bDescriptorType, ed->bEndpointAddress & UE_ADDR,
ed->bEndpointAddress & UE_IN ? "in" : "out",
ed->bmAttributes & UE_XFERTYPE,
UGETW(ed->wMaxPacketSize), ed->bInterval));
if ((ed->bEndpointAddress & UE_IN) != UE_IN ||
(ed->bmAttributes & UE_XFERTYPE) != UE_INTERRUPT) {
printf("ukbd: unexpected endpoint\n");
return EINVAL;
}
if ((usbd_get_quirks(state->ks_uaa->device)->uq_flags & UQ_NO_SET_PROTO) == 0) {
r = usbd_set_protocol(state->ks_iface, 0);
DPRINTFN(5, ("ukbd:init_keyboard: protocol set\n"));
if (r != USBD_NORMAL_COMPLETION) {
printf("ukbd: set protocol failed\n");
return EIO;
}
}
/* Ignore if SETIDLE fails since it is not crucial. */
usbd_set_idle(state->ks_iface, 0, 0);
state->ks_ep_addr = ed->bEndpointAddress;
state->ks_ifstate &= ~DISCONNECTED;
return 0;
}
static void
set_leds(ukbd_state_t *state, int leds)
{
u_int8_t res = leds;
DPRINTF(("ukbd:set_leds: state=%p leds=%d\n", state, leds));
usbd_set_report_async(state->ks_iface, UHID_OUTPUT_REPORT, 0, &res, 1);
}
static int
set_typematic(keyboard_t *kbd, int code)
{
static int delays[] = { 250, 500, 750, 1000 };
static int rates[] = { 34, 38, 42, 46, 50, 55, 59, 63,
68, 76, 84, 92, 100, 110, 118, 126,
136, 152, 168, 184, 200, 220, 236, 252,
272, 304, 336, 368, 400, 440, 472, 504 };
if (code & ~0x7f)
return EINVAL;
kbd->kb_delay1 = delays[(code >> 5) & 3];
kbd->kb_delay2 = rates[code & 0x1f];
return 0;
}
#ifdef UKBD_EMULATE_ATSCANCODE
static int
keycode2scancode(int keycode, int shift, int up)
{
static int scan[] = {
0x1c, 0x1d, 0x35,
0x37 | SCAN_PREFIX_SHIFT, /* PrintScreen */
0x38, 0x47, 0x48, 0x49, 0x4b, 0x4d, 0x4f,
0x50, 0x51, 0x52, 0x53,
0x46, /* XXX Pause/Break */
0x5b, 0x5c, 0x5d,
};
int scancode;
scancode = keycode;
if ((keycode >= 89) && (keycode < 89 + sizeof(scan)/sizeof(scan[0])))
scancode = scan[keycode - 89] | SCAN_PREFIX_E0;
/* Pause/Break */
if ((keycode == 104) && !(shift & (MOD_CONTROL_L | MOD_CONTROL_R)))
scancode = 0x45 | SCAN_PREFIX_E1 | SCAN_PREFIX_CTL;
if (shift & (MOD_SHIFT_L | MOD_SHIFT_R))
scancode &= ~SCAN_PREFIX_SHIFT;
return (scancode | (up ? SCAN_RELEASE : SCAN_PRESS));
}
#endif /* UKBD_EMULATE_ATSCANCODE */