2d278bb89e
Apple GCC has extensions to support for both label attributes and an "unavailable" attribute. These are critical for objc but are also useful in regular C/C++. Apparently at least the label attributes might have found their way to upstream GCC but the code doesn't seem available on the GPLv2 tree so we are taking the code directly from Apple. To make this clearer we are preserving the annoying "APPLE LOCAL" tags and the ChangeLogs when they are available. Obtained from: Apple GCC 4.2 - 5531 MFC after: 3 weeks
3975 lines
110 KiB
C
3975 lines
110 KiB
C
/* Perform the semantic phase of parsing, i.e., the process of
|
||
building tree structure, checking semantic consistency, and
|
||
building RTL. These routines are used both during actual parsing
|
||
and during the instantiation of template functions.
|
||
|
||
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
|
||
Free Software Foundation, Inc.
|
||
Written by Mark Mitchell (mmitchell@usa.net) based on code found
|
||
formerly in parse.y and pt.c.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it
|
||
under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but
|
||
WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "tree.h"
|
||
#include "cp-tree.h"
|
||
#include "c-common.h"
|
||
#include "tree-inline.h"
|
||
#include "tree-mudflap.h"
|
||
#include "except.h"
|
||
#include "toplev.h"
|
||
#include "flags.h"
|
||
#include "rtl.h"
|
||
#include "expr.h"
|
||
#include "output.h"
|
||
#include "timevar.h"
|
||
#include "debug.h"
|
||
#include "diagnostic.h"
|
||
#include "cgraph.h"
|
||
#include "tree-iterator.h"
|
||
#include "vec.h"
|
||
#include "target.h"
|
||
|
||
/* There routines provide a modular interface to perform many parsing
|
||
operations. They may therefore be used during actual parsing, or
|
||
during template instantiation, which may be regarded as a
|
||
degenerate form of parsing. */
|
||
|
||
static tree maybe_convert_cond (tree);
|
||
static tree simplify_aggr_init_exprs_r (tree *, int *, void *);
|
||
static void emit_associated_thunks (tree);
|
||
static tree finalize_nrv_r (tree *, int *, void *);
|
||
|
||
|
||
/* Deferred Access Checking Overview
|
||
---------------------------------
|
||
|
||
Most C++ expressions and declarations require access checking
|
||
to be performed during parsing. However, in several cases,
|
||
this has to be treated differently.
|
||
|
||
For member declarations, access checking has to be deferred
|
||
until more information about the declaration is known. For
|
||
example:
|
||
|
||
class A {
|
||
typedef int X;
|
||
public:
|
||
X f();
|
||
};
|
||
|
||
A::X A::f();
|
||
A::X g();
|
||
|
||
When we are parsing the function return type `A::X', we don't
|
||
really know if this is allowed until we parse the function name.
|
||
|
||
Furthermore, some contexts require that access checking is
|
||
never performed at all. These include class heads, and template
|
||
instantiations.
|
||
|
||
Typical use of access checking functions is described here:
|
||
|
||
1. When we enter a context that requires certain access checking
|
||
mode, the function `push_deferring_access_checks' is called with
|
||
DEFERRING argument specifying the desired mode. Access checking
|
||
may be performed immediately (dk_no_deferred), deferred
|
||
(dk_deferred), or not performed (dk_no_check).
|
||
|
||
2. When a declaration such as a type, or a variable, is encountered,
|
||
the function `perform_or_defer_access_check' is called. It
|
||
maintains a VEC of all deferred checks.
|
||
|
||
3. The global `current_class_type' or `current_function_decl' is then
|
||
setup by the parser. `enforce_access' relies on these information
|
||
to check access.
|
||
|
||
4. Upon exiting the context mentioned in step 1,
|
||
`perform_deferred_access_checks' is called to check all declaration
|
||
stored in the VEC. `pop_deferring_access_checks' is then
|
||
called to restore the previous access checking mode.
|
||
|
||
In case of parsing error, we simply call `pop_deferring_access_checks'
|
||
without `perform_deferred_access_checks'. */
|
||
|
||
typedef struct deferred_access GTY(())
|
||
{
|
||
/* A VEC representing name-lookups for which we have deferred
|
||
checking access controls. We cannot check the accessibility of
|
||
names used in a decl-specifier-seq until we know what is being
|
||
declared because code like:
|
||
|
||
class A {
|
||
class B {};
|
||
B* f();
|
||
}
|
||
|
||
A::B* A::f() { return 0; }
|
||
|
||
is valid, even though `A::B' is not generally accessible. */
|
||
VEC (deferred_access_check,gc)* GTY(()) deferred_access_checks;
|
||
|
||
/* The current mode of access checks. */
|
||
enum deferring_kind deferring_access_checks_kind;
|
||
|
||
} deferred_access;
|
||
DEF_VEC_O (deferred_access);
|
||
DEF_VEC_ALLOC_O (deferred_access,gc);
|
||
|
||
/* Data for deferred access checking. */
|
||
static GTY(()) VEC(deferred_access,gc) *deferred_access_stack;
|
||
static GTY(()) unsigned deferred_access_no_check;
|
||
|
||
/* Save the current deferred access states and start deferred
|
||
access checking iff DEFER_P is true. */
|
||
|
||
void
|
||
push_deferring_access_checks (deferring_kind deferring)
|
||
{
|
||
/* For context like template instantiation, access checking
|
||
disabling applies to all nested context. */
|
||
if (deferred_access_no_check || deferring == dk_no_check)
|
||
deferred_access_no_check++;
|
||
else
|
||
{
|
||
deferred_access *ptr;
|
||
|
||
ptr = VEC_safe_push (deferred_access, gc, deferred_access_stack, NULL);
|
||
ptr->deferred_access_checks = NULL;
|
||
ptr->deferring_access_checks_kind = deferring;
|
||
}
|
||
}
|
||
|
||
/* Resume deferring access checks again after we stopped doing
|
||
this previously. */
|
||
|
||
void
|
||
resume_deferring_access_checks (void)
|
||
{
|
||
if (!deferred_access_no_check)
|
||
VEC_last (deferred_access, deferred_access_stack)
|
||
->deferring_access_checks_kind = dk_deferred;
|
||
}
|
||
|
||
/* Stop deferring access checks. */
|
||
|
||
void
|
||
stop_deferring_access_checks (void)
|
||
{
|
||
if (!deferred_access_no_check)
|
||
VEC_last (deferred_access, deferred_access_stack)
|
||
->deferring_access_checks_kind = dk_no_deferred;
|
||
}
|
||
|
||
/* Discard the current deferred access checks and restore the
|
||
previous states. */
|
||
|
||
void
|
||
pop_deferring_access_checks (void)
|
||
{
|
||
if (deferred_access_no_check)
|
||
deferred_access_no_check--;
|
||
else
|
||
VEC_pop (deferred_access, deferred_access_stack);
|
||
}
|
||
|
||
/* Returns a TREE_LIST representing the deferred checks.
|
||
The TREE_PURPOSE of each node is the type through which the
|
||
access occurred; the TREE_VALUE is the declaration named.
|
||
*/
|
||
|
||
VEC (deferred_access_check,gc)*
|
||
get_deferred_access_checks (void)
|
||
{
|
||
if (deferred_access_no_check)
|
||
return NULL;
|
||
else
|
||
return (VEC_last (deferred_access, deferred_access_stack)
|
||
->deferred_access_checks);
|
||
}
|
||
|
||
/* Take current deferred checks and combine with the
|
||
previous states if we also defer checks previously.
|
||
Otherwise perform checks now. */
|
||
|
||
void
|
||
pop_to_parent_deferring_access_checks (void)
|
||
{
|
||
if (deferred_access_no_check)
|
||
deferred_access_no_check--;
|
||
else
|
||
{
|
||
VEC (deferred_access_check,gc) *checks;
|
||
deferred_access *ptr;
|
||
|
||
checks = (VEC_last (deferred_access, deferred_access_stack)
|
||
->deferred_access_checks);
|
||
|
||
VEC_pop (deferred_access, deferred_access_stack);
|
||
ptr = VEC_last (deferred_access, deferred_access_stack);
|
||
if (ptr->deferring_access_checks_kind == dk_no_deferred)
|
||
{
|
||
/* Check access. */
|
||
perform_access_checks (checks);
|
||
}
|
||
else
|
||
{
|
||
/* Merge with parent. */
|
||
int i, j;
|
||
deferred_access_check *chk, *probe;
|
||
|
||
for (i = 0 ;
|
||
VEC_iterate (deferred_access_check, checks, i, chk) ;
|
||
++i)
|
||
{
|
||
for (j = 0 ;
|
||
VEC_iterate (deferred_access_check,
|
||
ptr->deferred_access_checks, j, probe) ;
|
||
++j)
|
||
{
|
||
if (probe->binfo == chk->binfo &&
|
||
probe->decl == chk->decl &&
|
||
probe->diag_decl == chk->diag_decl)
|
||
goto found;
|
||
}
|
||
/* Insert into parent's checks. */
|
||
VEC_safe_push (deferred_access_check, gc,
|
||
ptr->deferred_access_checks, chk);
|
||
found:;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Perform the access checks in CHECKS. The TREE_PURPOSE of each node
|
||
is the BINFO indicating the qualifying scope used to access the
|
||
DECL node stored in the TREE_VALUE of the node. */
|
||
|
||
void
|
||
perform_access_checks (VEC (deferred_access_check,gc)* checks)
|
||
{
|
||
int i;
|
||
deferred_access_check *chk;
|
||
|
||
if (!checks)
|
||
return;
|
||
|
||
for (i = 0 ; VEC_iterate (deferred_access_check, checks, i, chk) ; ++i)
|
||
enforce_access (chk->binfo, chk->decl, chk->diag_decl);
|
||
}
|
||
|
||
/* Perform the deferred access checks.
|
||
|
||
After performing the checks, we still have to keep the list
|
||
`deferred_access_stack->deferred_access_checks' since we may want
|
||
to check access for them again later in a different context.
|
||
For example:
|
||
|
||
class A {
|
||
typedef int X;
|
||
static X a;
|
||
};
|
||
A::X A::a, x; // No error for `A::a', error for `x'
|
||
|
||
We have to perform deferred access of `A::X', first with `A::a',
|
||
next with `x'. */
|
||
|
||
void
|
||
perform_deferred_access_checks (void)
|
||
{
|
||
perform_access_checks (get_deferred_access_checks ());
|
||
}
|
||
|
||
/* Defer checking the accessibility of DECL, when looked up in
|
||
BINFO. DIAG_DECL is the declaration to use to print diagnostics. */
|
||
|
||
void
|
||
perform_or_defer_access_check (tree binfo, tree decl, tree diag_decl)
|
||
{
|
||
int i;
|
||
deferred_access *ptr;
|
||
deferred_access_check *chk;
|
||
deferred_access_check *new_access;
|
||
|
||
|
||
/* Exit if we are in a context that no access checking is performed.
|
||
*/
|
||
if (deferred_access_no_check)
|
||
return;
|
||
|
||
gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
|
||
|
||
ptr = VEC_last (deferred_access, deferred_access_stack);
|
||
|
||
/* If we are not supposed to defer access checks, just check now. */
|
||
if (ptr->deferring_access_checks_kind == dk_no_deferred)
|
||
{
|
||
enforce_access (binfo, decl, diag_decl);
|
||
return;
|
||
}
|
||
|
||
/* See if we are already going to perform this check. */
|
||
for (i = 0 ;
|
||
VEC_iterate (deferred_access_check,
|
||
ptr->deferred_access_checks, i, chk) ;
|
||
++i)
|
||
{
|
||
if (chk->decl == decl && chk->binfo == binfo &&
|
||
chk->diag_decl == diag_decl)
|
||
{
|
||
return;
|
||
}
|
||
}
|
||
/* If not, record the check. */
|
||
new_access =
|
||
VEC_safe_push (deferred_access_check, gc,
|
||
ptr->deferred_access_checks, 0);
|
||
new_access->binfo = binfo;
|
||
new_access->decl = decl;
|
||
new_access->diag_decl = diag_decl;
|
||
}
|
||
|
||
/* Returns nonzero if the current statement is a full expression,
|
||
i.e. temporaries created during that statement should be destroyed
|
||
at the end of the statement. */
|
||
|
||
int
|
||
stmts_are_full_exprs_p (void)
|
||
{
|
||
return current_stmt_tree ()->stmts_are_full_exprs_p;
|
||
}
|
||
|
||
/* T is a statement. Add it to the statement-tree. This is the C++
|
||
version. The C/ObjC frontends have a slightly different version of
|
||
this function. */
|
||
|
||
tree
|
||
add_stmt (tree t)
|
||
{
|
||
enum tree_code code = TREE_CODE (t);
|
||
|
||
if (EXPR_P (t) && code != LABEL_EXPR)
|
||
{
|
||
if (!EXPR_HAS_LOCATION (t))
|
||
SET_EXPR_LOCATION (t, input_location);
|
||
|
||
/* When we expand a statement-tree, we must know whether or not the
|
||
statements are full-expressions. We record that fact here. */
|
||
STMT_IS_FULL_EXPR_P (t) = stmts_are_full_exprs_p ();
|
||
}
|
||
|
||
/* Add T to the statement-tree. Non-side-effect statements need to be
|
||
recorded during statement expressions. */
|
||
append_to_statement_list_force (t, &cur_stmt_list);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Returns the stmt_tree (if any) to which statements are currently
|
||
being added. If there is no active statement-tree, NULL is
|
||
returned. */
|
||
|
||
stmt_tree
|
||
current_stmt_tree (void)
|
||
{
|
||
return (cfun
|
||
? &cfun->language->base.x_stmt_tree
|
||
: &scope_chain->x_stmt_tree);
|
||
}
|
||
|
||
/* If statements are full expressions, wrap STMT in a CLEANUP_POINT_EXPR. */
|
||
|
||
static tree
|
||
maybe_cleanup_point_expr (tree expr)
|
||
{
|
||
if (!processing_template_decl && stmts_are_full_exprs_p ())
|
||
expr = fold_build_cleanup_point_expr (TREE_TYPE (expr), expr);
|
||
return expr;
|
||
}
|
||
|
||
/* Like maybe_cleanup_point_expr except have the type of the new expression be
|
||
void so we don't need to create a temporary variable to hold the inner
|
||
expression. The reason why we do this is because the original type might be
|
||
an aggregate and we cannot create a temporary variable for that type. */
|
||
|
||
static tree
|
||
maybe_cleanup_point_expr_void (tree expr)
|
||
{
|
||
if (!processing_template_decl && stmts_are_full_exprs_p ())
|
||
expr = fold_build_cleanup_point_expr (void_type_node, expr);
|
||
return expr;
|
||
}
|
||
|
||
|
||
|
||
/* Create a declaration statement for the declaration given by the DECL. */
|
||
|
||
void
|
||
add_decl_expr (tree decl)
|
||
{
|
||
tree r = build_stmt (DECL_EXPR, decl);
|
||
if (DECL_INITIAL (decl)
|
||
|| (DECL_SIZE (decl) && TREE_SIDE_EFFECTS (DECL_SIZE (decl))))
|
||
r = maybe_cleanup_point_expr_void (r);
|
||
add_stmt (r);
|
||
}
|
||
|
||
/* Nonzero if TYPE is an anonymous union or struct type. We have to use a
|
||
flag for this because "A union for which objects or pointers are
|
||
declared is not an anonymous union" [class.union]. */
|
||
|
||
int
|
||
anon_aggr_type_p (tree node)
|
||
{
|
||
return ANON_AGGR_TYPE_P (node);
|
||
}
|
||
|
||
/* Finish a scope. */
|
||
|
||
tree
|
||
do_poplevel (tree stmt_list)
|
||
{
|
||
tree block = NULL;
|
||
|
||
if (stmts_are_full_exprs_p ())
|
||
block = poplevel (kept_level_p (), 1, 0);
|
||
|
||
stmt_list = pop_stmt_list (stmt_list);
|
||
|
||
if (!processing_template_decl)
|
||
{
|
||
stmt_list = c_build_bind_expr (block, stmt_list);
|
||
/* ??? See c_end_compound_stmt re statement expressions. */
|
||
}
|
||
|
||
return stmt_list;
|
||
}
|
||
|
||
/* Begin a new scope. */
|
||
|
||
static tree
|
||
do_pushlevel (scope_kind sk)
|
||
{
|
||
tree ret = push_stmt_list ();
|
||
if (stmts_are_full_exprs_p ())
|
||
begin_scope (sk, NULL);
|
||
return ret;
|
||
}
|
||
|
||
/* Queue a cleanup. CLEANUP is an expression/statement to be executed
|
||
when the current scope is exited. EH_ONLY is true when this is not
|
||
meant to apply to normal control flow transfer. */
|
||
|
||
void
|
||
push_cleanup (tree decl, tree cleanup, bool eh_only)
|
||
{
|
||
tree stmt = build_stmt (CLEANUP_STMT, NULL, cleanup, decl);
|
||
CLEANUP_EH_ONLY (stmt) = eh_only;
|
||
add_stmt (stmt);
|
||
CLEANUP_BODY (stmt) = push_stmt_list ();
|
||
}
|
||
|
||
/* Begin a conditional that might contain a declaration. When generating
|
||
normal code, we want the declaration to appear before the statement
|
||
containing the conditional. When generating template code, we want the
|
||
conditional to be rendered as the raw DECL_EXPR. */
|
||
|
||
static void
|
||
begin_cond (tree *cond_p)
|
||
{
|
||
if (processing_template_decl)
|
||
*cond_p = push_stmt_list ();
|
||
}
|
||
|
||
/* Finish such a conditional. */
|
||
|
||
static void
|
||
finish_cond (tree *cond_p, tree expr)
|
||
{
|
||
if (processing_template_decl)
|
||
{
|
||
tree cond = pop_stmt_list (*cond_p);
|
||
if (TREE_CODE (cond) == DECL_EXPR)
|
||
expr = cond;
|
||
}
|
||
*cond_p = expr;
|
||
}
|
||
|
||
/* If *COND_P specifies a conditional with a declaration, transform the
|
||
loop such that
|
||
while (A x = 42) { }
|
||
for (; A x = 42;) { }
|
||
becomes
|
||
while (true) { A x = 42; if (!x) break; }
|
||
for (;;) { A x = 42; if (!x) break; }
|
||
The statement list for BODY will be empty if the conditional did
|
||
not declare anything. */
|
||
|
||
static void
|
||
simplify_loop_decl_cond (tree *cond_p, tree body)
|
||
{
|
||
tree cond, if_stmt;
|
||
|
||
if (!TREE_SIDE_EFFECTS (body))
|
||
return;
|
||
|
||
cond = *cond_p;
|
||
*cond_p = boolean_true_node;
|
||
|
||
if_stmt = begin_if_stmt ();
|
||
cond = build_unary_op (TRUTH_NOT_EXPR, cond, 0);
|
||
finish_if_stmt_cond (cond, if_stmt);
|
||
finish_break_stmt ();
|
||
finish_then_clause (if_stmt);
|
||
finish_if_stmt (if_stmt);
|
||
}
|
||
|
||
/* Finish a goto-statement. */
|
||
|
||
tree
|
||
finish_goto_stmt (tree destination)
|
||
{
|
||
if (TREE_CODE (destination) == IDENTIFIER_NODE)
|
||
destination = lookup_label (destination);
|
||
|
||
/* We warn about unused labels with -Wunused. That means we have to
|
||
mark the used labels as used. */
|
||
if (TREE_CODE (destination) == LABEL_DECL)
|
||
TREE_USED (destination) = 1;
|
||
else
|
||
{
|
||
/* The DESTINATION is being used as an rvalue. */
|
||
if (!processing_template_decl)
|
||
destination = decay_conversion (destination);
|
||
/* We don't inline calls to functions with computed gotos.
|
||
Those functions are typically up to some funny business,
|
||
and may be depending on the labels being at particular
|
||
addresses, or some such. */
|
||
DECL_UNINLINABLE (current_function_decl) = 1;
|
||
}
|
||
|
||
check_goto (destination);
|
||
|
||
return add_stmt (build_stmt (GOTO_EXPR, destination));
|
||
}
|
||
|
||
/* COND is the condition-expression for an if, while, etc.,
|
||
statement. Convert it to a boolean value, if appropriate. */
|
||
|
||
static tree
|
||
maybe_convert_cond (tree cond)
|
||
{
|
||
/* Empty conditions remain empty. */
|
||
if (!cond)
|
||
return NULL_TREE;
|
||
|
||
/* Wait until we instantiate templates before doing conversion. */
|
||
if (processing_template_decl)
|
||
return cond;
|
||
|
||
/* Do the conversion. */
|
||
cond = convert_from_reference (cond);
|
||
|
||
if (TREE_CODE (cond) == MODIFY_EXPR
|
||
&& !TREE_NO_WARNING (cond)
|
||
&& warn_parentheses)
|
||
{
|
||
warning (OPT_Wparentheses,
|
||
"suggest parentheses around assignment used as truth value");
|
||
TREE_NO_WARNING (cond) = 1;
|
||
}
|
||
|
||
return condition_conversion (cond);
|
||
}
|
||
|
||
/* Finish an expression-statement, whose EXPRESSION is as indicated. */
|
||
|
||
tree
|
||
finish_expr_stmt (tree expr)
|
||
{
|
||
tree r = NULL_TREE;
|
||
|
||
if (expr != NULL_TREE)
|
||
{
|
||
if (!processing_template_decl)
|
||
{
|
||
if (warn_sequence_point)
|
||
verify_sequence_points (expr);
|
||
expr = convert_to_void (expr, "statement");
|
||
}
|
||
else if (!type_dependent_expression_p (expr))
|
||
convert_to_void (build_non_dependent_expr (expr), "statement");
|
||
|
||
/* Simplification of inner statement expressions, compound exprs,
|
||
etc can result in us already having an EXPR_STMT. */
|
||
if (TREE_CODE (expr) != CLEANUP_POINT_EXPR)
|
||
{
|
||
if (TREE_CODE (expr) != EXPR_STMT)
|
||
expr = build_stmt (EXPR_STMT, expr);
|
||
expr = maybe_cleanup_point_expr_void (expr);
|
||
}
|
||
|
||
r = add_stmt (expr);
|
||
}
|
||
|
||
finish_stmt ();
|
||
|
||
return r;
|
||
}
|
||
|
||
|
||
/* Begin an if-statement. Returns a newly created IF_STMT if
|
||
appropriate. */
|
||
|
||
tree
|
||
begin_if_stmt (void)
|
||
{
|
||
tree r, scope;
|
||
scope = do_pushlevel (sk_block);
|
||
r = build_stmt (IF_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
|
||
TREE_CHAIN (r) = scope;
|
||
begin_cond (&IF_COND (r));
|
||
return r;
|
||
}
|
||
|
||
/* Process the COND of an if-statement, which may be given by
|
||
IF_STMT. */
|
||
|
||
void
|
||
finish_if_stmt_cond (tree cond, tree if_stmt)
|
||
{
|
||
finish_cond (&IF_COND (if_stmt), maybe_convert_cond (cond));
|
||
add_stmt (if_stmt);
|
||
THEN_CLAUSE (if_stmt) = push_stmt_list ();
|
||
}
|
||
|
||
/* Finish the then-clause of an if-statement, which may be given by
|
||
IF_STMT. */
|
||
|
||
tree
|
||
finish_then_clause (tree if_stmt)
|
||
{
|
||
THEN_CLAUSE (if_stmt) = pop_stmt_list (THEN_CLAUSE (if_stmt));
|
||
return if_stmt;
|
||
}
|
||
|
||
/* Begin the else-clause of an if-statement. */
|
||
|
||
void
|
||
begin_else_clause (tree if_stmt)
|
||
{
|
||
ELSE_CLAUSE (if_stmt) = push_stmt_list ();
|
||
}
|
||
|
||
/* Finish the else-clause of an if-statement, which may be given by
|
||
IF_STMT. */
|
||
|
||
void
|
||
finish_else_clause (tree if_stmt)
|
||
{
|
||
ELSE_CLAUSE (if_stmt) = pop_stmt_list (ELSE_CLAUSE (if_stmt));
|
||
}
|
||
|
||
/* Finish an if-statement. */
|
||
|
||
void
|
||
finish_if_stmt (tree if_stmt)
|
||
{
|
||
tree scope = TREE_CHAIN (if_stmt);
|
||
TREE_CHAIN (if_stmt) = NULL;
|
||
add_stmt (do_poplevel (scope));
|
||
finish_stmt ();
|
||
empty_body_warning (THEN_CLAUSE (if_stmt), ELSE_CLAUSE (if_stmt));
|
||
}
|
||
|
||
/* Begin a while-statement. Returns a newly created WHILE_STMT if
|
||
appropriate. */
|
||
|
||
tree
|
||
/* APPLE LOCAL begin for-fsf-4_4 3274130 5295549 */ \
|
||
begin_while_stmt (tree attribs)
|
||
/* APPLE LOCAL end for-fsf-4_4 3274130 5295549 */ \
|
||
{
|
||
tree r;
|
||
/* APPLE LOCAL begin for-fsf-4_4 3274130 5295549 */ \
|
||
r = build_stmt (WHILE_STMT, NULL_TREE, NULL_TREE, attribs);
|
||
/* APPLE LOCAL end for-fsf-4_4 3274130 5295549 */ \
|
||
add_stmt (r);
|
||
WHILE_BODY (r) = do_pushlevel (sk_block);
|
||
begin_cond (&WHILE_COND (r));
|
||
return r;
|
||
}
|
||
|
||
/* Process the COND of a while-statement, which may be given by
|
||
WHILE_STMT. */
|
||
|
||
void
|
||
finish_while_stmt_cond (tree cond, tree while_stmt)
|
||
{
|
||
finish_cond (&WHILE_COND (while_stmt), maybe_convert_cond (cond));
|
||
simplify_loop_decl_cond (&WHILE_COND (while_stmt), WHILE_BODY (while_stmt));
|
||
}
|
||
|
||
/* Finish a while-statement, which may be given by WHILE_STMT. */
|
||
|
||
void
|
||
finish_while_stmt (tree while_stmt)
|
||
{
|
||
WHILE_BODY (while_stmt) = do_poplevel (WHILE_BODY (while_stmt));
|
||
finish_stmt ();
|
||
}
|
||
|
||
/* Begin a do-statement. Returns a newly created DO_STMT if
|
||
appropriate. */
|
||
|
||
tree
|
||
/* APPLE LOCAL begin for-fsf-4_4 3274130 5295549 */ \
|
||
begin_do_stmt (tree attribs)
|
||
/* APPLE LOCAL end for-fsf-4_4 3274130 5295549 */ \
|
||
{
|
||
/* APPLE LOCAL radar 4445586 */
|
||
/* APPLE LOCAL begin for-fsf-4_4 3274130 5295549 */ \
|
||
tree r = build_stmt (DO_STMT, NULL_TREE, NULL_TREE, attribs, NULL_TREE);
|
||
/* APPLE LOCAL end for-fsf-4_4 3274130 5295549 */ \
|
||
add_stmt (r);
|
||
DO_BODY (r) = push_stmt_list ();
|
||
return r;
|
||
}
|
||
|
||
/* Finish the body of a do-statement, which may be given by DO_STMT. */
|
||
|
||
void
|
||
finish_do_body (tree do_stmt)
|
||
{
|
||
DO_BODY (do_stmt) = pop_stmt_list (DO_BODY (do_stmt));
|
||
}
|
||
|
||
/* Finish a do-statement, which may be given by DO_STMT, and whose
|
||
COND is as indicated. */
|
||
|
||
void
|
||
finish_do_stmt (tree cond, tree do_stmt)
|
||
{
|
||
cond = maybe_convert_cond (cond);
|
||
DO_COND (do_stmt) = cond;
|
||
finish_stmt ();
|
||
}
|
||
|
||
/* Finish a return-statement. The EXPRESSION returned, if any, is as
|
||
indicated. */
|
||
|
||
tree
|
||
finish_return_stmt (tree expr)
|
||
{
|
||
tree r;
|
||
bool no_warning;
|
||
|
||
expr = check_return_expr (expr, &no_warning);
|
||
|
||
if (flag_openmp && !check_omp_return ())
|
||
return error_mark_node;
|
||
if (!processing_template_decl)
|
||
{
|
||
if (DECL_DESTRUCTOR_P (current_function_decl)
|
||
|| (DECL_CONSTRUCTOR_P (current_function_decl)
|
||
&& targetm.cxx.cdtor_returns_this ()))
|
||
{
|
||
/* Similarly, all destructors must run destructors for
|
||
base-classes before returning. So, all returns in a
|
||
destructor get sent to the DTOR_LABEL; finish_function emits
|
||
code to return a value there. */
|
||
return finish_goto_stmt (cdtor_label);
|
||
}
|
||
}
|
||
|
||
r = build_stmt (RETURN_EXPR, expr);
|
||
TREE_NO_WARNING (r) |= no_warning;
|
||
r = maybe_cleanup_point_expr_void (r);
|
||
r = add_stmt (r);
|
||
finish_stmt ();
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Begin a for-statement. Returns a new FOR_STMT if appropriate. */
|
||
|
||
tree
|
||
/* APPLE LOCAL begin for-fsf-4_4 3274130 5295549 */ \
|
||
begin_for_stmt (tree attribs)
|
||
/* APPLE LOCAL end for-fsf-4_4 3274130 5295549 */ \
|
||
{
|
||
tree r;
|
||
|
||
r = build_stmt (FOR_STMT, NULL_TREE, NULL_TREE,
|
||
/* APPLE LOCAL begin for-fsf-4_4 3274130 5295549 */ \
|
||
NULL_TREE, NULL_TREE, attribs);
|
||
|
||
/* APPLE LOCAL end for-fsf-4_4 3274130 5295549 */ \
|
||
|
||
if (flag_new_for_scope > 0)
|
||
TREE_CHAIN (r) = do_pushlevel (sk_for);
|
||
|
||
if (processing_template_decl)
|
||
FOR_INIT_STMT (r) = push_stmt_list ();
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Finish the for-init-statement of a for-statement, which may be
|
||
given by FOR_STMT. */
|
||
|
||
void
|
||
finish_for_init_stmt (tree for_stmt)
|
||
{
|
||
if (processing_template_decl)
|
||
FOR_INIT_STMT (for_stmt) = pop_stmt_list (FOR_INIT_STMT (for_stmt));
|
||
add_stmt (for_stmt);
|
||
FOR_BODY (for_stmt) = do_pushlevel (sk_block);
|
||
begin_cond (&FOR_COND (for_stmt));
|
||
}
|
||
|
||
/* Finish the COND of a for-statement, which may be given by
|
||
FOR_STMT. */
|
||
|
||
void
|
||
finish_for_cond (tree cond, tree for_stmt)
|
||
{
|
||
finish_cond (&FOR_COND (for_stmt), maybe_convert_cond (cond));
|
||
simplify_loop_decl_cond (&FOR_COND (for_stmt), FOR_BODY (for_stmt));
|
||
}
|
||
|
||
/* Finish the increment-EXPRESSION in a for-statement, which may be
|
||
given by FOR_STMT. */
|
||
|
||
void
|
||
finish_for_expr (tree expr, tree for_stmt)
|
||
{
|
||
if (!expr)
|
||
return;
|
||
/* If EXPR is an overloaded function, issue an error; there is no
|
||
context available to use to perform overload resolution. */
|
||
if (type_unknown_p (expr))
|
||
{
|
||
cxx_incomplete_type_error (expr, TREE_TYPE (expr));
|
||
expr = error_mark_node;
|
||
}
|
||
if (!processing_template_decl)
|
||
{
|
||
if (warn_sequence_point)
|
||
verify_sequence_points (expr);
|
||
expr = convert_to_void (expr, "3rd expression in for");
|
||
}
|
||
else if (!type_dependent_expression_p (expr))
|
||
convert_to_void (build_non_dependent_expr (expr), "3rd expression in for");
|
||
expr = maybe_cleanup_point_expr_void (expr);
|
||
FOR_EXPR (for_stmt) = expr;
|
||
}
|
||
|
||
/* Finish the body of a for-statement, which may be given by
|
||
FOR_STMT. The increment-EXPR for the loop must be
|
||
provided. */
|
||
|
||
void
|
||
finish_for_stmt (tree for_stmt)
|
||
{
|
||
FOR_BODY (for_stmt) = do_poplevel (FOR_BODY (for_stmt));
|
||
|
||
/* Pop the scope for the body of the loop. */
|
||
if (flag_new_for_scope > 0)
|
||
{
|
||
tree scope = TREE_CHAIN (for_stmt);
|
||
TREE_CHAIN (for_stmt) = NULL;
|
||
add_stmt (do_poplevel (scope));
|
||
}
|
||
|
||
finish_stmt ();
|
||
}
|
||
|
||
/* Finish a break-statement. */
|
||
|
||
tree
|
||
finish_break_stmt (void)
|
||
{
|
||
return add_stmt (build_stmt (BREAK_STMT));
|
||
}
|
||
|
||
/* Finish a continue-statement. */
|
||
|
||
tree
|
||
finish_continue_stmt (void)
|
||
{
|
||
return add_stmt (build_stmt (CONTINUE_STMT));
|
||
}
|
||
|
||
/* Begin a switch-statement. Returns a new SWITCH_STMT if
|
||
appropriate. */
|
||
|
||
tree
|
||
begin_switch_stmt (void)
|
||
{
|
||
tree r, scope;
|
||
|
||
r = build_stmt (SWITCH_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
|
||
|
||
scope = do_pushlevel (sk_block);
|
||
TREE_CHAIN (r) = scope;
|
||
begin_cond (&SWITCH_STMT_COND (r));
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Finish the cond of a switch-statement. */
|
||
|
||
void
|
||
finish_switch_cond (tree cond, tree switch_stmt)
|
||
{
|
||
tree orig_type = NULL;
|
||
if (!processing_template_decl)
|
||
{
|
||
tree index;
|
||
|
||
/* Convert the condition to an integer or enumeration type. */
|
||
cond = build_expr_type_conversion (WANT_INT | WANT_ENUM, cond, true);
|
||
if (cond == NULL_TREE)
|
||
{
|
||
error ("switch quantity not an integer");
|
||
cond = error_mark_node;
|
||
}
|
||
orig_type = TREE_TYPE (cond);
|
||
if (cond != error_mark_node)
|
||
{
|
||
/* [stmt.switch]
|
||
|
||
Integral promotions are performed. */
|
||
cond = perform_integral_promotions (cond);
|
||
cond = maybe_cleanup_point_expr (cond);
|
||
}
|
||
|
||
if (cond != error_mark_node)
|
||
{
|
||
index = get_unwidened (cond, NULL_TREE);
|
||
/* We can't strip a conversion from a signed type to an unsigned,
|
||
because if we did, int_fits_type_p would do the wrong thing
|
||
when checking case values for being in range,
|
||
and it's too hard to do the right thing. */
|
||
if (TYPE_UNSIGNED (TREE_TYPE (cond))
|
||
== TYPE_UNSIGNED (TREE_TYPE (index)))
|
||
cond = index;
|
||
}
|
||
}
|
||
finish_cond (&SWITCH_STMT_COND (switch_stmt), cond);
|
||
SWITCH_STMT_TYPE (switch_stmt) = orig_type;
|
||
add_stmt (switch_stmt);
|
||
push_switch (switch_stmt);
|
||
SWITCH_STMT_BODY (switch_stmt) = push_stmt_list ();
|
||
}
|
||
|
||
/* Finish the body of a switch-statement, which may be given by
|
||
SWITCH_STMT. The COND to switch on is indicated. */
|
||
|
||
void
|
||
finish_switch_stmt (tree switch_stmt)
|
||
{
|
||
tree scope;
|
||
|
||
SWITCH_STMT_BODY (switch_stmt) =
|
||
pop_stmt_list (SWITCH_STMT_BODY (switch_stmt));
|
||
pop_switch ();
|
||
finish_stmt ();
|
||
|
||
scope = TREE_CHAIN (switch_stmt);
|
||
TREE_CHAIN (switch_stmt) = NULL;
|
||
add_stmt (do_poplevel (scope));
|
||
}
|
||
|
||
/* Begin a try-block. Returns a newly-created TRY_BLOCK if
|
||
appropriate. */
|
||
|
||
tree
|
||
begin_try_block (void)
|
||
{
|
||
tree r = build_stmt (TRY_BLOCK, NULL_TREE, NULL_TREE);
|
||
add_stmt (r);
|
||
TRY_STMTS (r) = push_stmt_list ();
|
||
return r;
|
||
}
|
||
|
||
/* Likewise, for a function-try-block. The block returned in
|
||
*COMPOUND_STMT is an artificial outer scope, containing the
|
||
function-try-block. */
|
||
|
||
tree
|
||
begin_function_try_block (tree *compound_stmt)
|
||
{
|
||
tree r;
|
||
/* This outer scope does not exist in the C++ standard, but we need
|
||
a place to put __FUNCTION__ and similar variables. */
|
||
*compound_stmt = begin_compound_stmt (0);
|
||
r = begin_try_block ();
|
||
FN_TRY_BLOCK_P (r) = 1;
|
||
return r;
|
||
}
|
||
|
||
/* Finish a try-block, which may be given by TRY_BLOCK. */
|
||
|
||
void
|
||
finish_try_block (tree try_block)
|
||
{
|
||
TRY_STMTS (try_block) = pop_stmt_list (TRY_STMTS (try_block));
|
||
TRY_HANDLERS (try_block) = push_stmt_list ();
|
||
}
|
||
|
||
/* Finish the body of a cleanup try-block, which may be given by
|
||
TRY_BLOCK. */
|
||
|
||
void
|
||
finish_cleanup_try_block (tree try_block)
|
||
{
|
||
TRY_STMTS (try_block) = pop_stmt_list (TRY_STMTS (try_block));
|
||
}
|
||
|
||
/* Finish an implicitly generated try-block, with a cleanup is given
|
||
by CLEANUP. */
|
||
|
||
void
|
||
finish_cleanup (tree cleanup, tree try_block)
|
||
{
|
||
TRY_HANDLERS (try_block) = cleanup;
|
||
CLEANUP_P (try_block) = 1;
|
||
}
|
||
|
||
/* Likewise, for a function-try-block. */
|
||
|
||
void
|
||
finish_function_try_block (tree try_block)
|
||
{
|
||
finish_try_block (try_block);
|
||
/* FIXME : something queer about CTOR_INITIALIZER somehow following
|
||
the try block, but moving it inside. */
|
||
in_function_try_handler = 1;
|
||
}
|
||
|
||
/* Finish a handler-sequence for a try-block, which may be given by
|
||
TRY_BLOCK. */
|
||
|
||
void
|
||
finish_handler_sequence (tree try_block)
|
||
{
|
||
TRY_HANDLERS (try_block) = pop_stmt_list (TRY_HANDLERS (try_block));
|
||
check_handlers (TRY_HANDLERS (try_block));
|
||
}
|
||
|
||
/* Finish the handler-seq for a function-try-block, given by
|
||
TRY_BLOCK. COMPOUND_STMT is the outer block created by
|
||
begin_function_try_block. */
|
||
|
||
void
|
||
finish_function_handler_sequence (tree try_block, tree compound_stmt)
|
||
{
|
||
in_function_try_handler = 0;
|
||
finish_handler_sequence (try_block);
|
||
finish_compound_stmt (compound_stmt);
|
||
}
|
||
|
||
/* Begin a handler. Returns a HANDLER if appropriate. */
|
||
|
||
tree
|
||
begin_handler (void)
|
||
{
|
||
tree r;
|
||
|
||
r = build_stmt (HANDLER, NULL_TREE, NULL_TREE);
|
||
add_stmt (r);
|
||
|
||
/* Create a binding level for the eh_info and the exception object
|
||
cleanup. */
|
||
HANDLER_BODY (r) = do_pushlevel (sk_catch);
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Finish the handler-parameters for a handler, which may be given by
|
||
HANDLER. DECL is the declaration for the catch parameter, or NULL
|
||
if this is a `catch (...)' clause. */
|
||
|
||
void
|
||
finish_handler_parms (tree decl, tree handler)
|
||
{
|
||
tree type = NULL_TREE;
|
||
if (processing_template_decl)
|
||
{
|
||
if (decl)
|
||
{
|
||
decl = pushdecl (decl);
|
||
decl = push_template_decl (decl);
|
||
HANDLER_PARMS (handler) = decl;
|
||
type = TREE_TYPE (decl);
|
||
}
|
||
}
|
||
else
|
||
type = expand_start_catch_block (decl);
|
||
HANDLER_TYPE (handler) = type;
|
||
if (!processing_template_decl && type)
|
||
mark_used (eh_type_info (type));
|
||
}
|
||
|
||
/* Finish a handler, which may be given by HANDLER. The BLOCKs are
|
||
the return value from the matching call to finish_handler_parms. */
|
||
|
||
void
|
||
finish_handler (tree handler)
|
||
{
|
||
if (!processing_template_decl)
|
||
expand_end_catch_block ();
|
||
HANDLER_BODY (handler) = do_poplevel (HANDLER_BODY (handler));
|
||
}
|
||
|
||
/* Begin a compound statement. FLAGS contains some bits that control the
|
||
behavior and context. If BCS_NO_SCOPE is set, the compound statement
|
||
does not define a scope. If BCS_FN_BODY is set, this is the outermost
|
||
block of a function. If BCS_TRY_BLOCK is set, this is the block
|
||
created on behalf of a TRY statement. Returns a token to be passed to
|
||
finish_compound_stmt. */
|
||
|
||
tree
|
||
begin_compound_stmt (unsigned int flags)
|
||
{
|
||
tree r;
|
||
|
||
if (flags & BCS_NO_SCOPE)
|
||
{
|
||
r = push_stmt_list ();
|
||
STATEMENT_LIST_NO_SCOPE (r) = 1;
|
||
|
||
/* Normally, we try hard to keep the BLOCK for a statement-expression.
|
||
But, if it's a statement-expression with a scopeless block, there's
|
||
nothing to keep, and we don't want to accidentally keep a block
|
||
*inside* the scopeless block. */
|
||
keep_next_level (false);
|
||
}
|
||
else
|
||
r = do_pushlevel (flags & BCS_TRY_BLOCK ? sk_try : sk_block);
|
||
|
||
/* When processing a template, we need to remember where the braces were,
|
||
so that we can set up identical scopes when instantiating the template
|
||
later. BIND_EXPR is a handy candidate for this.
|
||
Note that do_poplevel won't create a BIND_EXPR itself here (and thus
|
||
result in nested BIND_EXPRs), since we don't build BLOCK nodes when
|
||
processing templates. */
|
||
if (processing_template_decl)
|
||
{
|
||
r = build3 (BIND_EXPR, NULL, NULL, r, NULL);
|
||
BIND_EXPR_TRY_BLOCK (r) = (flags & BCS_TRY_BLOCK) != 0;
|
||
BIND_EXPR_BODY_BLOCK (r) = (flags & BCS_FN_BODY) != 0;
|
||
TREE_SIDE_EFFECTS (r) = 1;
|
||
}
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Finish a compound-statement, which is given by STMT. */
|
||
|
||
void
|
||
finish_compound_stmt (tree stmt)
|
||
{
|
||
if (TREE_CODE (stmt) == BIND_EXPR)
|
||
BIND_EXPR_BODY (stmt) = do_poplevel (BIND_EXPR_BODY (stmt));
|
||
else if (STATEMENT_LIST_NO_SCOPE (stmt))
|
||
stmt = pop_stmt_list (stmt);
|
||
else
|
||
{
|
||
/* Destroy any ObjC "super" receivers that may have been
|
||
created. */
|
||
objc_clear_super_receiver ();
|
||
|
||
stmt = do_poplevel (stmt);
|
||
}
|
||
|
||
/* ??? See c_end_compound_stmt wrt statement expressions. */
|
||
add_stmt (stmt);
|
||
finish_stmt ();
|
||
}
|
||
|
||
/* Finish an asm-statement, whose components are a STRING, some
|
||
OUTPUT_OPERANDS, some INPUT_OPERANDS, and some CLOBBERS. Also note
|
||
whether the asm-statement should be considered volatile. */
|
||
|
||
tree
|
||
finish_asm_stmt (int volatile_p, tree string, tree output_operands,
|
||
tree input_operands, tree clobbers)
|
||
{
|
||
tree r;
|
||
tree t;
|
||
int ninputs = list_length (input_operands);
|
||
int noutputs = list_length (output_operands);
|
||
|
||
if (!processing_template_decl)
|
||
{
|
||
const char *constraint;
|
||
const char **oconstraints;
|
||
bool allows_mem, allows_reg, is_inout;
|
||
tree operand;
|
||
int i;
|
||
|
||
oconstraints = (const char **) alloca (noutputs * sizeof (char *));
|
||
|
||
string = resolve_asm_operand_names (string, output_operands,
|
||
input_operands);
|
||
|
||
for (i = 0, t = output_operands; t; t = TREE_CHAIN (t), ++i)
|
||
{
|
||
operand = TREE_VALUE (t);
|
||
|
||
/* ??? Really, this should not be here. Users should be using a
|
||
proper lvalue, dammit. But there's a long history of using
|
||
casts in the output operands. In cases like longlong.h, this
|
||
becomes a primitive form of typechecking -- if the cast can be
|
||
removed, then the output operand had a type of the proper width;
|
||
otherwise we'll get an error. Gross, but ... */
|
||
STRIP_NOPS (operand);
|
||
|
||
if (!lvalue_or_else (operand, lv_asm))
|
||
operand = error_mark_node;
|
||
|
||
if (operand != error_mark_node
|
||
&& (TREE_READONLY (operand)
|
||
|| CP_TYPE_CONST_P (TREE_TYPE (operand))
|
||
/* Functions are not modifiable, even though they are
|
||
lvalues. */
|
||
|| TREE_CODE (TREE_TYPE (operand)) == FUNCTION_TYPE
|
||
|| TREE_CODE (TREE_TYPE (operand)) == METHOD_TYPE
|
||
/* If it's an aggregate and any field is const, then it is
|
||
effectively const. */
|
||
|| (CLASS_TYPE_P (TREE_TYPE (operand))
|
||
&& C_TYPE_FIELDS_READONLY (TREE_TYPE (operand)))))
|
||
readonly_error (operand, "assignment (via 'asm' output)", 0);
|
||
|
||
constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
|
||
oconstraints[i] = constraint;
|
||
|
||
if (parse_output_constraint (&constraint, i, ninputs, noutputs,
|
||
&allows_mem, &allows_reg, &is_inout))
|
||
{
|
||
/* If the operand is going to end up in memory,
|
||
mark it addressable. */
|
||
if (!allows_reg && !cxx_mark_addressable (operand))
|
||
operand = error_mark_node;
|
||
}
|
||
else
|
||
operand = error_mark_node;
|
||
|
||
TREE_VALUE (t) = operand;
|
||
}
|
||
|
||
for (i = 0, t = input_operands; t; ++i, t = TREE_CHAIN (t))
|
||
{
|
||
constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
|
||
operand = decay_conversion (TREE_VALUE (t));
|
||
|
||
/* If the type of the operand hasn't been determined (e.g.,
|
||
because it involves an overloaded function), then issue
|
||
an error message. There's no context available to
|
||
resolve the overloading. */
|
||
if (TREE_TYPE (operand) == unknown_type_node)
|
||
{
|
||
error ("type of asm operand %qE could not be determined",
|
||
TREE_VALUE (t));
|
||
operand = error_mark_node;
|
||
}
|
||
|
||
if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
|
||
oconstraints, &allows_mem, &allows_reg))
|
||
{
|
||
/* If the operand is going to end up in memory,
|
||
mark it addressable. */
|
||
if (!allows_reg && allows_mem)
|
||
{
|
||
/* Strip the nops as we allow this case. FIXME, this really
|
||
should be rejected or made deprecated. */
|
||
STRIP_NOPS (operand);
|
||
if (!cxx_mark_addressable (operand))
|
||
operand = error_mark_node;
|
||
}
|
||
}
|
||
else
|
||
operand = error_mark_node;
|
||
|
||
TREE_VALUE (t) = operand;
|
||
}
|
||
}
|
||
|
||
r = build_stmt (ASM_EXPR, string,
|
||
output_operands, input_operands,
|
||
clobbers);
|
||
ASM_VOLATILE_P (r) = volatile_p || noutputs == 0;
|
||
r = maybe_cleanup_point_expr_void (r);
|
||
return add_stmt (r);
|
||
}
|
||
|
||
/* Finish a label with the indicated NAME. */
|
||
|
||
tree
|
||
finish_label_stmt (tree name)
|
||
{
|
||
tree decl = define_label (input_location, name);
|
||
|
||
if (decl == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
return add_stmt (build_stmt (LABEL_EXPR, decl));
|
||
}
|
||
|
||
/* Finish a series of declarations for local labels. G++ allows users
|
||
to declare "local" labels, i.e., labels with scope. This extension
|
||
is useful when writing code involving statement-expressions. */
|
||
|
||
void
|
||
finish_label_decl (tree name)
|
||
{
|
||
if (!at_function_scope_p ())
|
||
{
|
||
error ("__label__ declarations are only allowed in function scopes");
|
||
return;
|
||
}
|
||
|
||
add_decl_expr (declare_local_label (name));
|
||
}
|
||
|
||
/* When DECL goes out of scope, make sure that CLEANUP is executed. */
|
||
|
||
void
|
||
finish_decl_cleanup (tree decl, tree cleanup)
|
||
{
|
||
push_cleanup (decl, cleanup, false);
|
||
}
|
||
|
||
/* If the current scope exits with an exception, run CLEANUP. */
|
||
|
||
void
|
||
finish_eh_cleanup (tree cleanup)
|
||
{
|
||
push_cleanup (NULL, cleanup, true);
|
||
}
|
||
|
||
/* The MEM_INITS is a list of mem-initializers, in reverse of the
|
||
order they were written by the user. Each node is as for
|
||
emit_mem_initializers. */
|
||
|
||
void
|
||
finish_mem_initializers (tree mem_inits)
|
||
{
|
||
/* Reorder the MEM_INITS so that they are in the order they appeared
|
||
in the source program. */
|
||
mem_inits = nreverse (mem_inits);
|
||
|
||
if (processing_template_decl)
|
||
add_stmt (build_min_nt (CTOR_INITIALIZER, mem_inits));
|
||
else
|
||
emit_mem_initializers (mem_inits);
|
||
}
|
||
|
||
/* Finish a parenthesized expression EXPR. */
|
||
|
||
tree
|
||
finish_parenthesized_expr (tree expr)
|
||
{
|
||
if (EXPR_P (expr))
|
||
/* This inhibits warnings in c_common_truthvalue_conversion. */
|
||
TREE_NO_WARNING (expr) = 1;
|
||
|
||
if (TREE_CODE (expr) == OFFSET_REF)
|
||
/* [expr.unary.op]/3 The qualified id of a pointer-to-member must not be
|
||
enclosed in parentheses. */
|
||
PTRMEM_OK_P (expr) = 0;
|
||
|
||
if (TREE_CODE (expr) == STRING_CST)
|
||
PAREN_STRING_LITERAL_P (expr) = 1;
|
||
|
||
return expr;
|
||
}
|
||
|
||
/* Finish a reference to a non-static data member (DECL) that is not
|
||
preceded by `.' or `->'. */
|
||
|
||
tree
|
||
finish_non_static_data_member (tree decl, tree object, tree qualifying_scope)
|
||
{
|
||
gcc_assert (TREE_CODE (decl) == FIELD_DECL);
|
||
|
||
if (!object)
|
||
{
|
||
if (current_function_decl
|
||
&& DECL_STATIC_FUNCTION_P (current_function_decl))
|
||
error ("invalid use of member %q+D in static member function", decl);
|
||
else
|
||
error ("invalid use of non-static data member %q+D", decl);
|
||
error ("from this location");
|
||
|
||
return error_mark_node;
|
||
}
|
||
TREE_USED (current_class_ptr) = 1;
|
||
if (processing_template_decl && !qualifying_scope)
|
||
{
|
||
tree type = TREE_TYPE (decl);
|
||
|
||
if (TREE_CODE (type) == REFERENCE_TYPE)
|
||
type = TREE_TYPE (type);
|
||
else
|
||
{
|
||
/* Set the cv qualifiers. */
|
||
int quals = cp_type_quals (TREE_TYPE (current_class_ref));
|
||
|
||
if (DECL_MUTABLE_P (decl))
|
||
quals &= ~TYPE_QUAL_CONST;
|
||
|
||
quals |= cp_type_quals (TREE_TYPE (decl));
|
||
type = cp_build_qualified_type (type, quals);
|
||
}
|
||
|
||
return build_min (COMPONENT_REF, type, object, decl, NULL_TREE);
|
||
}
|
||
else
|
||
{
|
||
tree access_type = TREE_TYPE (object);
|
||
tree lookup_context = context_for_name_lookup (decl);
|
||
|
||
while (!DERIVED_FROM_P (lookup_context, access_type))
|
||
{
|
||
access_type = TYPE_CONTEXT (access_type);
|
||
while (access_type && DECL_P (access_type))
|
||
access_type = DECL_CONTEXT (access_type);
|
||
|
||
if (!access_type)
|
||
{
|
||
error ("object missing in reference to %q+D", decl);
|
||
error ("from this location");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
/* If PROCESSING_TEMPLATE_DECL is nonzero here, then
|
||
QUALIFYING_SCOPE is also non-null. Wrap this in a SCOPE_REF
|
||
for now. */
|
||
if (processing_template_decl)
|
||
return build_qualified_name (TREE_TYPE (decl),
|
||
qualifying_scope,
|
||
DECL_NAME (decl),
|
||
/*template_p=*/false);
|
||
|
||
perform_or_defer_access_check (TYPE_BINFO (access_type), decl,
|
||
decl);
|
||
|
||
/* If the data member was named `C::M', convert `*this' to `C'
|
||
first. */
|
||
if (qualifying_scope)
|
||
{
|
||
tree binfo = NULL_TREE;
|
||
object = build_scoped_ref (object, qualifying_scope,
|
||
&binfo);
|
||
}
|
||
|
||
return build_class_member_access_expr (object, decl,
|
||
/*access_path=*/NULL_TREE,
|
||
/*preserve_reference=*/false);
|
||
}
|
||
}
|
||
|
||
/* DECL was the declaration to which a qualified-id resolved. Issue
|
||
an error message if it is not accessible. If OBJECT_TYPE is
|
||
non-NULL, we have just seen `x->' or `x.' and OBJECT_TYPE is the
|
||
type of `*x', or `x', respectively. If the DECL was named as
|
||
`A::B' then NESTED_NAME_SPECIFIER is `A'. */
|
||
|
||
void
|
||
check_accessibility_of_qualified_id (tree decl,
|
||
tree object_type,
|
||
tree nested_name_specifier)
|
||
{
|
||
tree scope;
|
||
tree qualifying_type = NULL_TREE;
|
||
|
||
/* If we're not checking, return immediately. */
|
||
if (deferred_access_no_check)
|
||
return;
|
||
|
||
/* Determine the SCOPE of DECL. */
|
||
scope = context_for_name_lookup (decl);
|
||
/* If the SCOPE is not a type, then DECL is not a member. */
|
||
if (!TYPE_P (scope))
|
||
return;
|
||
/* Compute the scope through which DECL is being accessed. */
|
||
if (object_type
|
||
/* OBJECT_TYPE might not be a class type; consider:
|
||
|
||
class A { typedef int I; };
|
||
I *p;
|
||
p->A::I::~I();
|
||
|
||
In this case, we will have "A::I" as the DECL, but "I" as the
|
||
OBJECT_TYPE. */
|
||
&& CLASS_TYPE_P (object_type)
|
||
&& DERIVED_FROM_P (scope, object_type))
|
||
/* If we are processing a `->' or `.' expression, use the type of the
|
||
left-hand side. */
|
||
qualifying_type = object_type;
|
||
else if (nested_name_specifier)
|
||
{
|
||
/* If the reference is to a non-static member of the
|
||
current class, treat it as if it were referenced through
|
||
`this'. */
|
||
if (DECL_NONSTATIC_MEMBER_P (decl)
|
||
&& current_class_ptr
|
||
&& DERIVED_FROM_P (scope, current_class_type))
|
||
qualifying_type = current_class_type;
|
||
/* Otherwise, use the type indicated by the
|
||
nested-name-specifier. */
|
||
else
|
||
qualifying_type = nested_name_specifier;
|
||
}
|
||
else
|
||
/* Otherwise, the name must be from the current class or one of
|
||
its bases. */
|
||
qualifying_type = currently_open_derived_class (scope);
|
||
|
||
if (qualifying_type
|
||
/* It is possible for qualifying type to be a TEMPLATE_TYPE_PARM
|
||
or similar in a default argument value. */
|
||
&& CLASS_TYPE_P (qualifying_type)
|
||
&& !dependent_type_p (qualifying_type))
|
||
perform_or_defer_access_check (TYPE_BINFO (qualifying_type), decl,
|
||
decl);
|
||
}
|
||
|
||
/* EXPR is the result of a qualified-id. The QUALIFYING_CLASS was the
|
||
class named to the left of the "::" operator. DONE is true if this
|
||
expression is a complete postfix-expression; it is false if this
|
||
expression is followed by '->', '[', '(', etc. ADDRESS_P is true
|
||
iff this expression is the operand of '&'. TEMPLATE_P is true iff
|
||
the qualified-id was of the form "A::template B". TEMPLATE_ARG_P
|
||
is true iff this qualified name appears as a template argument. */
|
||
|
||
tree
|
||
finish_qualified_id_expr (tree qualifying_class,
|
||
tree expr,
|
||
bool done,
|
||
bool address_p,
|
||
bool template_p,
|
||
bool template_arg_p)
|
||
{
|
||
gcc_assert (TYPE_P (qualifying_class));
|
||
|
||
if (error_operand_p (expr))
|
||
return error_mark_node;
|
||
|
||
if (DECL_P (expr) || BASELINK_P (expr))
|
||
mark_used (expr);
|
||
|
||
if (template_p)
|
||
check_template_keyword (expr);
|
||
|
||
/* If EXPR occurs as the operand of '&', use special handling that
|
||
permits a pointer-to-member. */
|
||
if (address_p && done)
|
||
{
|
||
if (TREE_CODE (expr) == SCOPE_REF)
|
||
expr = TREE_OPERAND (expr, 1);
|
||
expr = build_offset_ref (qualifying_class, expr,
|
||
/*address_p=*/true);
|
||
return expr;
|
||
}
|
||
|
||
/* Within the scope of a class, turn references to non-static
|
||
members into expression of the form "this->...". */
|
||
if (template_arg_p)
|
||
/* But, within a template argument, we do not want make the
|
||
transformation, as there is no "this" pointer. */
|
||
;
|
||
else if (TREE_CODE (expr) == FIELD_DECL)
|
||
expr = finish_non_static_data_member (expr, current_class_ref,
|
||
qualifying_class);
|
||
else if (BASELINK_P (expr) && !processing_template_decl)
|
||
{
|
||
tree fns;
|
||
|
||
/* See if any of the functions are non-static members. */
|
||
fns = BASELINK_FUNCTIONS (expr);
|
||
if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
|
||
fns = TREE_OPERAND (fns, 0);
|
||
/* If so, the expression may be relative to the current
|
||
class. */
|
||
if (!shared_member_p (fns)
|
||
&& current_class_type
|
||
&& DERIVED_FROM_P (qualifying_class, current_class_type))
|
||
expr = (build_class_member_access_expr
|
||
(maybe_dummy_object (qualifying_class, NULL),
|
||
expr,
|
||
BASELINK_ACCESS_BINFO (expr),
|
||
/*preserve_reference=*/false));
|
||
else if (done)
|
||
/* The expression is a qualified name whose address is not
|
||
being taken. */
|
||
expr = build_offset_ref (qualifying_class, expr, /*address_p=*/false);
|
||
}
|
||
|
||
return expr;
|
||
}
|
||
|
||
/* Begin a statement-expression. The value returned must be passed to
|
||
finish_stmt_expr. */
|
||
|
||
tree
|
||
begin_stmt_expr (void)
|
||
{
|
||
return push_stmt_list ();
|
||
}
|
||
|
||
/* Process the final expression of a statement expression. EXPR can be
|
||
NULL, if the final expression is empty. Return a STATEMENT_LIST
|
||
containing all the statements in the statement-expression, or
|
||
ERROR_MARK_NODE if there was an error. */
|
||
|
||
tree
|
||
finish_stmt_expr_expr (tree expr, tree stmt_expr)
|
||
{
|
||
if (error_operand_p (expr))
|
||
return error_mark_node;
|
||
|
||
/* If the last statement does not have "void" type, then the value
|
||
of the last statement is the value of the entire expression. */
|
||
if (expr)
|
||
{
|
||
tree type = TREE_TYPE (expr);
|
||
|
||
if (processing_template_decl)
|
||
{
|
||
expr = build_stmt (EXPR_STMT, expr);
|
||
expr = add_stmt (expr);
|
||
/* Mark the last statement so that we can recognize it as such at
|
||
template-instantiation time. */
|
||
EXPR_STMT_STMT_EXPR_RESULT (expr) = 1;
|
||
}
|
||
else if (VOID_TYPE_P (type))
|
||
{
|
||
/* Just treat this like an ordinary statement. */
|
||
expr = finish_expr_stmt (expr);
|
||
}
|
||
else
|
||
{
|
||
/* It actually has a value we need to deal with. First, force it
|
||
to be an rvalue so that we won't need to build up a copy
|
||
constructor call later when we try to assign it to something. */
|
||
expr = force_rvalue (expr);
|
||
if (error_operand_p (expr))
|
||
return error_mark_node;
|
||
|
||
/* Update for array-to-pointer decay. */
|
||
type = TREE_TYPE (expr);
|
||
|
||
/* Wrap it in a CLEANUP_POINT_EXPR and add it to the list like a
|
||
normal statement, but don't convert to void or actually add
|
||
the EXPR_STMT. */
|
||
if (TREE_CODE (expr) != CLEANUP_POINT_EXPR)
|
||
expr = maybe_cleanup_point_expr (expr);
|
||
add_stmt (expr);
|
||
}
|
||
|
||
/* The type of the statement-expression is the type of the last
|
||
expression. */
|
||
TREE_TYPE (stmt_expr) = type;
|
||
}
|
||
|
||
return stmt_expr;
|
||
}
|
||
|
||
/* Finish a statement-expression. EXPR should be the value returned
|
||
by the previous begin_stmt_expr. Returns an expression
|
||
representing the statement-expression. */
|
||
|
||
tree
|
||
finish_stmt_expr (tree stmt_expr, bool has_no_scope)
|
||
{
|
||
tree type;
|
||
tree result;
|
||
|
||
if (error_operand_p (stmt_expr))
|
||
return error_mark_node;
|
||
|
||
gcc_assert (TREE_CODE (stmt_expr) == STATEMENT_LIST);
|
||
|
||
type = TREE_TYPE (stmt_expr);
|
||
result = pop_stmt_list (stmt_expr);
|
||
TREE_TYPE (result) = type;
|
||
|
||
if (processing_template_decl)
|
||
{
|
||
result = build_min (STMT_EXPR, type, result);
|
||
TREE_SIDE_EFFECTS (result) = 1;
|
||
STMT_EXPR_NO_SCOPE (result) = has_no_scope;
|
||
}
|
||
else if (CLASS_TYPE_P (type))
|
||
{
|
||
/* Wrap the statement-expression in a TARGET_EXPR so that the
|
||
temporary object created by the final expression is destroyed at
|
||
the end of the full-expression containing the
|
||
statement-expression. */
|
||
result = force_target_expr (type, result);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Perform Koenig lookup. FN is the postfix-expression representing
|
||
the function (or functions) to call; ARGS are the arguments to the
|
||
call. Returns the functions to be considered by overload
|
||
resolution. */
|
||
|
||
tree
|
||
perform_koenig_lookup (tree fn, tree args)
|
||
{
|
||
tree identifier = NULL_TREE;
|
||
tree functions = NULL_TREE;
|
||
|
||
/* Find the name of the overloaded function. */
|
||
if (TREE_CODE (fn) == IDENTIFIER_NODE)
|
||
identifier = fn;
|
||
else if (is_overloaded_fn (fn))
|
||
{
|
||
functions = fn;
|
||
identifier = DECL_NAME (get_first_fn (functions));
|
||
}
|
||
else if (DECL_P (fn))
|
||
{
|
||
functions = fn;
|
||
identifier = DECL_NAME (fn);
|
||
}
|
||
|
||
/* A call to a namespace-scope function using an unqualified name.
|
||
|
||
Do Koenig lookup -- unless any of the arguments are
|
||
type-dependent. */
|
||
if (!any_type_dependent_arguments_p (args))
|
||
{
|
||
fn = lookup_arg_dependent (identifier, functions, args);
|
||
if (!fn)
|
||
/* The unqualified name could not be resolved. */
|
||
fn = unqualified_fn_lookup_error (identifier);
|
||
}
|
||
|
||
return fn;
|
||
}
|
||
|
||
/* Generate an expression for `FN (ARGS)'.
|
||
|
||
If DISALLOW_VIRTUAL is true, the call to FN will be not generated
|
||
as a virtual call, even if FN is virtual. (This flag is set when
|
||
encountering an expression where the function name is explicitly
|
||
qualified. For example a call to `X::f' never generates a virtual
|
||
call.)
|
||
|
||
Returns code for the call. */
|
||
|
||
tree
|
||
finish_call_expr (tree fn, tree args, bool disallow_virtual, bool koenig_p)
|
||
{
|
||
tree result;
|
||
tree orig_fn;
|
||
tree orig_args;
|
||
|
||
if (fn == error_mark_node || args == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* ARGS should be a list of arguments. */
|
||
gcc_assert (!args || TREE_CODE (args) == TREE_LIST);
|
||
gcc_assert (!TYPE_P (fn));
|
||
|
||
orig_fn = fn;
|
||
orig_args = args;
|
||
|
||
if (processing_template_decl)
|
||
{
|
||
if (type_dependent_expression_p (fn)
|
||
|| any_type_dependent_arguments_p (args))
|
||
{
|
||
result = build_nt (CALL_EXPR, fn, args, NULL_TREE);
|
||
KOENIG_LOOKUP_P (result) = koenig_p;
|
||
return result;
|
||
}
|
||
if (!BASELINK_P (fn)
|
||
&& TREE_CODE (fn) != PSEUDO_DTOR_EXPR
|
||
&& TREE_TYPE (fn) != unknown_type_node)
|
||
fn = build_non_dependent_expr (fn);
|
||
args = build_non_dependent_args (orig_args);
|
||
}
|
||
|
||
if (is_overloaded_fn (fn))
|
||
fn = baselink_for_fns (fn);
|
||
|
||
result = NULL_TREE;
|
||
if (BASELINK_P (fn))
|
||
{
|
||
tree object;
|
||
|
||
/* A call to a member function. From [over.call.func]:
|
||
|
||
If the keyword this is in scope and refers to the class of
|
||
that member function, or a derived class thereof, then the
|
||
function call is transformed into a qualified function call
|
||
using (*this) as the postfix-expression to the left of the
|
||
. operator.... [Otherwise] a contrived object of type T
|
||
becomes the implied object argument.
|
||
|
||
This paragraph is unclear about this situation:
|
||
|
||
struct A { void f(); };
|
||
struct B : public A {};
|
||
struct C : public A { void g() { B::f(); }};
|
||
|
||
In particular, for `B::f', this paragraph does not make clear
|
||
whether "the class of that member function" refers to `A' or
|
||
to `B'. We believe it refers to `B'. */
|
||
if (current_class_type
|
||
&& DERIVED_FROM_P (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)),
|
||
current_class_type)
|
||
&& current_class_ref)
|
||
object = maybe_dummy_object (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)),
|
||
NULL);
|
||
else
|
||
{
|
||
tree representative_fn;
|
||
|
||
representative_fn = BASELINK_FUNCTIONS (fn);
|
||
if (TREE_CODE (representative_fn) == TEMPLATE_ID_EXPR)
|
||
representative_fn = TREE_OPERAND (representative_fn, 0);
|
||
representative_fn = get_first_fn (representative_fn);
|
||
object = build_dummy_object (DECL_CONTEXT (representative_fn));
|
||
}
|
||
|
||
if (processing_template_decl)
|
||
{
|
||
if (type_dependent_expression_p (object))
|
||
return build_nt (CALL_EXPR, orig_fn, orig_args, NULL_TREE);
|
||
object = build_non_dependent_expr (object);
|
||
}
|
||
|
||
result = build_new_method_call (object, fn, args, NULL_TREE,
|
||
(disallow_virtual
|
||
? LOOKUP_NONVIRTUAL : 0),
|
||
/*fn_p=*/NULL);
|
||
}
|
||
else if (is_overloaded_fn (fn))
|
||
{
|
||
/* If the function is an overloaded builtin, resolve it. */
|
||
if (TREE_CODE (fn) == FUNCTION_DECL
|
||
&& (DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL
|
||
|| DECL_BUILT_IN_CLASS (fn) == BUILT_IN_MD))
|
||
result = resolve_overloaded_builtin (fn, args);
|
||
|
||
if (!result)
|
||
/* A call to a namespace-scope function. */
|
||
result = build_new_function_call (fn, args, koenig_p);
|
||
}
|
||
else if (TREE_CODE (fn) == PSEUDO_DTOR_EXPR)
|
||
{
|
||
if (args)
|
||
error ("arguments to destructor are not allowed");
|
||
/* Mark the pseudo-destructor call as having side-effects so
|
||
that we do not issue warnings about its use. */
|
||
result = build1 (NOP_EXPR,
|
||
void_type_node,
|
||
TREE_OPERAND (fn, 0));
|
||
TREE_SIDE_EFFECTS (result) = 1;
|
||
}
|
||
else if (CLASS_TYPE_P (TREE_TYPE (fn)))
|
||
/* If the "function" is really an object of class type, it might
|
||
have an overloaded `operator ()'. */
|
||
result = build_new_op (CALL_EXPR, LOOKUP_NORMAL, fn, args, NULL_TREE,
|
||
/*overloaded_p=*/NULL);
|
||
|
||
if (!result)
|
||
/* A call where the function is unknown. */
|
||
result = build_function_call (fn, args);
|
||
|
||
if (processing_template_decl)
|
||
{
|
||
result = build3 (CALL_EXPR, TREE_TYPE (result), orig_fn,
|
||
orig_args, NULL_TREE);
|
||
KOENIG_LOOKUP_P (result) = koenig_p;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/* Finish a call to a postfix increment or decrement or EXPR. (Which
|
||
is indicated by CODE, which should be POSTINCREMENT_EXPR or
|
||
POSTDECREMENT_EXPR.) */
|
||
|
||
tree
|
||
finish_increment_expr (tree expr, enum tree_code code)
|
||
{
|
||
return build_x_unary_op (code, expr);
|
||
}
|
||
|
||
/* Finish a use of `this'. Returns an expression for `this'. */
|
||
|
||
tree
|
||
finish_this_expr (void)
|
||
{
|
||
tree result;
|
||
|
||
if (current_class_ptr)
|
||
{
|
||
result = current_class_ptr;
|
||
}
|
||
else if (current_function_decl
|
||
&& DECL_STATIC_FUNCTION_P (current_function_decl))
|
||
{
|
||
error ("%<this%> is unavailable for static member functions");
|
||
result = error_mark_node;
|
||
}
|
||
else
|
||
{
|
||
if (current_function_decl)
|
||
error ("invalid use of %<this%> in non-member function");
|
||
else
|
||
error ("invalid use of %<this%> at top level");
|
||
result = error_mark_node;
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Finish a pseudo-destructor expression. If SCOPE is NULL, the
|
||
expression was of the form `OBJECT.~DESTRUCTOR' where DESTRUCTOR is
|
||
the TYPE for the type given. If SCOPE is non-NULL, the expression
|
||
was of the form `OBJECT.SCOPE::~DESTRUCTOR'. */
|
||
|
||
tree
|
||
finish_pseudo_destructor_expr (tree object, tree scope, tree destructor)
|
||
{
|
||
if (destructor == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
gcc_assert (TYPE_P (destructor));
|
||
|
||
if (!processing_template_decl)
|
||
{
|
||
if (scope == error_mark_node)
|
||
{
|
||
error ("invalid qualifying scope in pseudo-destructor name");
|
||
return error_mark_node;
|
||
}
|
||
if (scope && TYPE_P (scope) && !check_dtor_name (scope, destructor))
|
||
{
|
||
error ("qualified type %qT does not match destructor name ~%qT",
|
||
scope, destructor);
|
||
return error_mark_node;
|
||
}
|
||
|
||
|
||
/* [expr.pseudo] says both:
|
||
|
||
The type designated by the pseudo-destructor-name shall be
|
||
the same as the object type.
|
||
|
||
and:
|
||
|
||
The cv-unqualified versions of the object type and of the
|
||
type designated by the pseudo-destructor-name shall be the
|
||
same type.
|
||
|
||
We implement the more generous second sentence, since that is
|
||
what most other compilers do. */
|
||
if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (object),
|
||
destructor))
|
||
{
|
||
error ("%qE is not of type %qT", object, destructor);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
return build3 (PSEUDO_DTOR_EXPR, void_type_node, object, scope, destructor);
|
||
}
|
||
|
||
/* Finish an expression of the form CODE EXPR. */
|
||
|
||
tree
|
||
finish_unary_op_expr (enum tree_code code, tree expr)
|
||
{
|
||
tree result = build_x_unary_op (code, expr);
|
||
/* Inside a template, build_x_unary_op does not fold the
|
||
expression. So check whether the result is folded before
|
||
setting TREE_NEGATED_INT. */
|
||
if (code == NEGATE_EXPR && TREE_CODE (expr) == INTEGER_CST
|
||
&& TREE_CODE (result) == INTEGER_CST
|
||
&& !TYPE_UNSIGNED (TREE_TYPE (result))
|
||
&& INT_CST_LT (result, integer_zero_node))
|
||
{
|
||
/* RESULT may be a cached INTEGER_CST, so we must copy it before
|
||
setting TREE_NEGATED_INT. */
|
||
result = copy_node (result);
|
||
TREE_NEGATED_INT (result) = 1;
|
||
}
|
||
if (TREE_OVERFLOW_P (result) && !TREE_OVERFLOW_P (expr))
|
||
overflow_warning (result);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Finish a compound-literal expression. TYPE is the type to which
|
||
the INITIALIZER_LIST is being cast. */
|
||
|
||
tree
|
||
finish_compound_literal (tree type, VEC(constructor_elt,gc) *initializer_list)
|
||
{
|
||
tree var;
|
||
tree compound_literal;
|
||
|
||
if (!TYPE_OBJ_P (type))
|
||
{
|
||
error ("compound literal of non-object type %qT", type);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Build a CONSTRUCTOR for the INITIALIZER_LIST. */
|
||
compound_literal = build_constructor (NULL_TREE, initializer_list);
|
||
if (processing_template_decl)
|
||
{
|
||
TREE_TYPE (compound_literal) = type;
|
||
/* Mark the expression as a compound literal. */
|
||
TREE_HAS_CONSTRUCTOR (compound_literal) = 1;
|
||
return compound_literal;
|
||
}
|
||
|
||
/* Create a temporary variable to represent the compound literal. */
|
||
var = create_temporary_var (type);
|
||
if (!current_function_decl)
|
||
{
|
||
/* If this compound-literal appears outside of a function, then
|
||
the corresponding variable has static storage duration, just
|
||
like the variable in whose initializer it appears. */
|
||
TREE_STATIC (var) = 1;
|
||
/* The variable has internal linkage, since there is no need to
|
||
reference it from another translation unit. */
|
||
TREE_PUBLIC (var) = 0;
|
||
/* It must have a name, so that the name mangler can mangle it. */
|
||
DECL_NAME (var) = make_anon_name ();
|
||
}
|
||
/* We must call pushdecl, since the gimplifier complains if the
|
||
variable has not been declared via a BIND_EXPR. */
|
||
pushdecl (var);
|
||
/* Initialize the variable as we would any other variable with a
|
||
brace-enclosed initializer. */
|
||
cp_finish_decl (var, compound_literal,
|
||
/*init_const_expr_p=*/false,
|
||
/*asmspec_tree=*/NULL_TREE,
|
||
LOOKUP_ONLYCONVERTING);
|
||
return var;
|
||
}
|
||
|
||
/* Return the declaration for the function-name variable indicated by
|
||
ID. */
|
||
|
||
tree
|
||
finish_fname (tree id)
|
||
{
|
||
tree decl;
|
||
|
||
decl = fname_decl (C_RID_CODE (id), id);
|
||
if (processing_template_decl)
|
||
decl = DECL_NAME (decl);
|
||
return decl;
|
||
}
|
||
|
||
/* Finish a translation unit. */
|
||
|
||
void
|
||
finish_translation_unit (void)
|
||
{
|
||
/* In case there were missing closebraces,
|
||
get us back to the global binding level. */
|
||
pop_everything ();
|
||
while (current_namespace != global_namespace)
|
||
pop_namespace ();
|
||
|
||
/* Do file scope __FUNCTION__ et al. */
|
||
finish_fname_decls ();
|
||
}
|
||
|
||
/* Finish a template type parameter, specified as AGGR IDENTIFIER.
|
||
Returns the parameter. */
|
||
|
||
tree
|
||
finish_template_type_parm (tree aggr, tree identifier)
|
||
{
|
||
if (aggr != class_type_node)
|
||
{
|
||
pedwarn ("template type parameters must use the keyword %<class%> or %<typename%>");
|
||
aggr = class_type_node;
|
||
}
|
||
|
||
return build_tree_list (aggr, identifier);
|
||
}
|
||
|
||
/* Finish a template template parameter, specified as AGGR IDENTIFIER.
|
||
Returns the parameter. */
|
||
|
||
tree
|
||
finish_template_template_parm (tree aggr, tree identifier)
|
||
{
|
||
tree decl = build_decl (TYPE_DECL, identifier, NULL_TREE);
|
||
tree tmpl = build_lang_decl (TEMPLATE_DECL, identifier, NULL_TREE);
|
||
DECL_TEMPLATE_PARMS (tmpl) = current_template_parms;
|
||
DECL_TEMPLATE_RESULT (tmpl) = decl;
|
||
DECL_ARTIFICIAL (decl) = 1;
|
||
end_template_decl ();
|
||
|
||
gcc_assert (DECL_TEMPLATE_PARMS (tmpl));
|
||
|
||
return finish_template_type_parm (aggr, tmpl);
|
||
}
|
||
|
||
/* ARGUMENT is the default-argument value for a template template
|
||
parameter. If ARGUMENT is invalid, issue error messages and return
|
||
the ERROR_MARK_NODE. Otherwise, ARGUMENT itself is returned. */
|
||
|
||
tree
|
||
check_template_template_default_arg (tree argument)
|
||
{
|
||
if (TREE_CODE (argument) != TEMPLATE_DECL
|
||
&& TREE_CODE (argument) != TEMPLATE_TEMPLATE_PARM
|
||
&& TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
|
||
{
|
||
if (TREE_CODE (argument) == TYPE_DECL)
|
||
error ("invalid use of type %qT as a default value for a template "
|
||
"template-parameter", TREE_TYPE (argument));
|
||
else
|
||
error ("invalid default argument for a template template parameter");
|
||
return error_mark_node;
|
||
}
|
||
|
||
return argument;
|
||
}
|
||
|
||
/* Begin a class definition, as indicated by T. */
|
||
|
||
tree
|
||
begin_class_definition (tree t, tree attributes)
|
||
{
|
||
if (t == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (processing_template_parmlist)
|
||
{
|
||
error ("definition of %q#T inside template parameter list", t);
|
||
return error_mark_node;
|
||
}
|
||
/* A non-implicit typename comes from code like:
|
||
|
||
template <typename T> struct A {
|
||
template <typename U> struct A<T>::B ...
|
||
|
||
This is erroneous. */
|
||
else if (TREE_CODE (t) == TYPENAME_TYPE)
|
||
{
|
||
error ("invalid definition of qualified type %qT", t);
|
||
t = error_mark_node;
|
||
}
|
||
|
||
if (t == error_mark_node || ! IS_AGGR_TYPE (t))
|
||
{
|
||
t = make_aggr_type (RECORD_TYPE);
|
||
pushtag (make_anon_name (), t, /*tag_scope=*/ts_current);
|
||
}
|
||
|
||
/* Update the location of the decl. */
|
||
DECL_SOURCE_LOCATION (TYPE_NAME (t)) = input_location;
|
||
|
||
if (TYPE_BEING_DEFINED (t))
|
||
{
|
||
t = make_aggr_type (TREE_CODE (t));
|
||
pushtag (TYPE_IDENTIFIER (t), t, /*tag_scope=*/ts_current);
|
||
}
|
||
maybe_process_partial_specialization (t);
|
||
pushclass (t);
|
||
TYPE_BEING_DEFINED (t) = 1;
|
||
|
||
cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
|
||
|
||
if (flag_pack_struct)
|
||
{
|
||
tree v;
|
||
TYPE_PACKED (t) = 1;
|
||
/* Even though the type is being defined for the first time
|
||
here, there might have been a forward declaration, so there
|
||
might be cv-qualified variants of T. */
|
||
for (v = TYPE_NEXT_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v))
|
||
TYPE_PACKED (v) = 1;
|
||
}
|
||
/* Reset the interface data, at the earliest possible
|
||
moment, as it might have been set via a class foo;
|
||
before. */
|
||
if (! TYPE_ANONYMOUS_P (t))
|
||
{
|
||
struct c_fileinfo *finfo = get_fileinfo (input_filename);
|
||
CLASSTYPE_INTERFACE_ONLY (t) = finfo->interface_only;
|
||
SET_CLASSTYPE_INTERFACE_UNKNOWN_X
|
||
(t, finfo->interface_unknown);
|
||
}
|
||
reset_specialization();
|
||
|
||
/* Make a declaration for this class in its own scope. */
|
||
build_self_reference ();
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Finish the member declaration given by DECL. */
|
||
|
||
void
|
||
finish_member_declaration (tree decl)
|
||
{
|
||
if (decl == error_mark_node || decl == NULL_TREE)
|
||
return;
|
||
|
||
if (decl == void_type_node)
|
||
/* The COMPONENT was a friend, not a member, and so there's
|
||
nothing for us to do. */
|
||
return;
|
||
|
||
/* We should see only one DECL at a time. */
|
||
gcc_assert (TREE_CHAIN (decl) == NULL_TREE);
|
||
|
||
/* Set up access control for DECL. */
|
||
TREE_PRIVATE (decl)
|
||
= (current_access_specifier == access_private_node);
|
||
TREE_PROTECTED (decl)
|
||
= (current_access_specifier == access_protected_node);
|
||
if (TREE_CODE (decl) == TEMPLATE_DECL)
|
||
{
|
||
TREE_PRIVATE (DECL_TEMPLATE_RESULT (decl)) = TREE_PRIVATE (decl);
|
||
TREE_PROTECTED (DECL_TEMPLATE_RESULT (decl)) = TREE_PROTECTED (decl);
|
||
}
|
||
|
||
/* Mark the DECL as a member of the current class. */
|
||
DECL_CONTEXT (decl) = current_class_type;
|
||
|
||
/* [dcl.link]
|
||
|
||
A C language linkage is ignored for the names of class members
|
||
and the member function type of class member functions. */
|
||
if (DECL_LANG_SPECIFIC (decl) && DECL_LANGUAGE (decl) == lang_c)
|
||
SET_DECL_LANGUAGE (decl, lang_cplusplus);
|
||
|
||
/* Put functions on the TYPE_METHODS list and everything else on the
|
||
TYPE_FIELDS list. Note that these are built up in reverse order.
|
||
We reverse them (to obtain declaration order) in finish_struct. */
|
||
if (TREE_CODE (decl) == FUNCTION_DECL
|
||
|| DECL_FUNCTION_TEMPLATE_P (decl))
|
||
{
|
||
/* We also need to add this function to the
|
||
CLASSTYPE_METHOD_VEC. */
|
||
if (add_method (current_class_type, decl, NULL_TREE))
|
||
{
|
||
TREE_CHAIN (decl) = TYPE_METHODS (current_class_type);
|
||
TYPE_METHODS (current_class_type) = decl;
|
||
|
||
maybe_add_class_template_decl_list (current_class_type, decl,
|
||
/*friend_p=*/0);
|
||
}
|
||
}
|
||
/* Enter the DECL into the scope of the class. */
|
||
else if ((TREE_CODE (decl) == USING_DECL && !DECL_DEPENDENT_P (decl))
|
||
|| pushdecl_class_level (decl))
|
||
{
|
||
/* All TYPE_DECLs go at the end of TYPE_FIELDS. Ordinary fields
|
||
go at the beginning. The reason is that lookup_field_1
|
||
searches the list in order, and we want a field name to
|
||
override a type name so that the "struct stat hack" will
|
||
work. In particular:
|
||
|
||
struct S { enum E { }; int E } s;
|
||
s.E = 3;
|
||
|
||
is valid. In addition, the FIELD_DECLs must be maintained in
|
||
declaration order so that class layout works as expected.
|
||
However, we don't need that order until class layout, so we
|
||
save a little time by putting FIELD_DECLs on in reverse order
|
||
here, and then reversing them in finish_struct_1. (We could
|
||
also keep a pointer to the correct insertion points in the
|
||
list.) */
|
||
|
||
if (TREE_CODE (decl) == TYPE_DECL)
|
||
TYPE_FIELDS (current_class_type)
|
||
= chainon (TYPE_FIELDS (current_class_type), decl);
|
||
else
|
||
{
|
||
TREE_CHAIN (decl) = TYPE_FIELDS (current_class_type);
|
||
TYPE_FIELDS (current_class_type) = decl;
|
||
}
|
||
|
||
maybe_add_class_template_decl_list (current_class_type, decl,
|
||
/*friend_p=*/0);
|
||
}
|
||
|
||
if (pch_file)
|
||
note_decl_for_pch (decl);
|
||
}
|
||
|
||
/* DECL has been declared while we are building a PCH file. Perform
|
||
actions that we might normally undertake lazily, but which can be
|
||
performed now so that they do not have to be performed in
|
||
translation units which include the PCH file. */
|
||
|
||
void
|
||
note_decl_for_pch (tree decl)
|
||
{
|
||
gcc_assert (pch_file);
|
||
|
||
/* There's a good chance that we'll have to mangle names at some
|
||
point, even if only for emission in debugging information. */
|
||
if ((TREE_CODE (decl) == VAR_DECL
|
||
|| TREE_CODE (decl) == FUNCTION_DECL)
|
||
&& !processing_template_decl)
|
||
mangle_decl (decl);
|
||
}
|
||
|
||
/* Finish processing a complete template declaration. The PARMS are
|
||
the template parameters. */
|
||
|
||
void
|
||
finish_template_decl (tree parms)
|
||
{
|
||
if (parms)
|
||
end_template_decl ();
|
||
else
|
||
end_specialization ();
|
||
}
|
||
|
||
/* Finish processing a template-id (which names a type) of the form
|
||
NAME < ARGS >. Return the TYPE_DECL for the type named by the
|
||
template-id. If ENTERING_SCOPE is nonzero we are about to enter
|
||
the scope of template-id indicated. */
|
||
|
||
tree
|
||
finish_template_type (tree name, tree args, int entering_scope)
|
||
{
|
||
tree decl;
|
||
|
||
decl = lookup_template_class (name, args,
|
||
NULL_TREE, NULL_TREE, entering_scope,
|
||
tf_warning_or_error | tf_user);
|
||
if (decl != error_mark_node)
|
||
decl = TYPE_STUB_DECL (decl);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Finish processing a BASE_CLASS with the indicated ACCESS_SPECIFIER.
|
||
Return a TREE_LIST containing the ACCESS_SPECIFIER and the
|
||
BASE_CLASS, or NULL_TREE if an error occurred. The
|
||
ACCESS_SPECIFIER is one of
|
||
access_{default,public,protected_private}_node. For a virtual base
|
||
we set TREE_TYPE. */
|
||
|
||
tree
|
||
finish_base_specifier (tree base, tree access, bool virtual_p)
|
||
{
|
||
tree result;
|
||
|
||
if (base == error_mark_node)
|
||
{
|
||
error ("invalid base-class specification");
|
||
result = NULL_TREE;
|
||
}
|
||
else if (! is_aggr_type (base, 1))
|
||
result = NULL_TREE;
|
||
else
|
||
{
|
||
if (cp_type_quals (base) != 0)
|
||
{
|
||
error ("base class %qT has cv qualifiers", base);
|
||
base = TYPE_MAIN_VARIANT (base);
|
||
}
|
||
result = build_tree_list (access, base);
|
||
if (virtual_p)
|
||
TREE_TYPE (result) = integer_type_node;
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Issue a diagnostic that NAME cannot be found in SCOPE. DECL is
|
||
what we found when we tried to do the lookup. */
|
||
|
||
void
|
||
qualified_name_lookup_error (tree scope, tree name, tree decl)
|
||
{
|
||
if (scope == error_mark_node)
|
||
; /* We already complained. */
|
||
else if (TYPE_P (scope))
|
||
{
|
||
if (!COMPLETE_TYPE_P (scope))
|
||
error ("incomplete type %qT used in nested name specifier", scope);
|
||
else if (TREE_CODE (decl) == TREE_LIST)
|
||
{
|
||
error ("reference to %<%T::%D%> is ambiguous", scope, name);
|
||
print_candidates (decl);
|
||
}
|
||
else
|
||
error ("%qD is not a member of %qT", name, scope);
|
||
}
|
||
else if (scope != global_namespace)
|
||
error ("%qD is not a member of %qD", name, scope);
|
||
else
|
||
error ("%<::%D%> has not been declared", name);
|
||
}
|
||
|
||
/* If FNS is a member function, a set of member functions, or a
|
||
template-id referring to one or more member functions, return a
|
||
BASELINK for FNS, incorporating the current access context.
|
||
Otherwise, return FNS unchanged. */
|
||
|
||
tree
|
||
baselink_for_fns (tree fns)
|
||
{
|
||
tree fn;
|
||
tree cl;
|
||
|
||
if (BASELINK_P (fns)
|
||
|| error_operand_p (fns))
|
||
return fns;
|
||
|
||
fn = fns;
|
||
if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
|
||
fn = TREE_OPERAND (fn, 0);
|
||
fn = get_first_fn (fn);
|
||
if (!DECL_FUNCTION_MEMBER_P (fn))
|
||
return fns;
|
||
|
||
cl = currently_open_derived_class (DECL_CONTEXT (fn));
|
||
if (!cl)
|
||
cl = DECL_CONTEXT (fn);
|
||
cl = TYPE_BINFO (cl);
|
||
return build_baselink (cl, cl, fns, /*optype=*/NULL_TREE);
|
||
}
|
||
|
||
/* ID_EXPRESSION is a representation of parsed, but unprocessed,
|
||
id-expression. (See cp_parser_id_expression for details.) SCOPE,
|
||
if non-NULL, is the type or namespace used to explicitly qualify
|
||
ID_EXPRESSION. DECL is the entity to which that name has been
|
||
resolved.
|
||
|
||
*CONSTANT_EXPRESSION_P is true if we are presently parsing a
|
||
constant-expression. In that case, *NON_CONSTANT_EXPRESSION_P will
|
||
be set to true if this expression isn't permitted in a
|
||
constant-expression, but it is otherwise not set by this function.
|
||
*ALLOW_NON_CONSTANT_EXPRESSION_P is true if we are parsing a
|
||
constant-expression, but a non-constant expression is also
|
||
permissible.
|
||
|
||
DONE is true if this expression is a complete postfix-expression;
|
||
it is false if this expression is followed by '->', '[', '(', etc.
|
||
ADDRESS_P is true iff this expression is the operand of '&'.
|
||
TEMPLATE_P is true iff the qualified-id was of the form
|
||
"A::template B". TEMPLATE_ARG_P is true iff this qualified name
|
||
appears as a template argument.
|
||
|
||
If an error occurs, and it is the kind of error that might cause
|
||
the parser to abort a tentative parse, *ERROR_MSG is filled in. It
|
||
is the caller's responsibility to issue the message. *ERROR_MSG
|
||
will be a string with static storage duration, so the caller need
|
||
not "free" it.
|
||
|
||
Return an expression for the entity, after issuing appropriate
|
||
diagnostics. This function is also responsible for transforming a
|
||
reference to a non-static member into a COMPONENT_REF that makes
|
||
the use of "this" explicit.
|
||
|
||
Upon return, *IDK will be filled in appropriately. */
|
||
|
||
tree
|
||
finish_id_expression (tree id_expression,
|
||
tree decl,
|
||
tree scope,
|
||
cp_id_kind *idk,
|
||
bool integral_constant_expression_p,
|
||
bool allow_non_integral_constant_expression_p,
|
||
bool *non_integral_constant_expression_p,
|
||
bool template_p,
|
||
bool done,
|
||
bool address_p,
|
||
bool template_arg_p,
|
||
const char **error_msg)
|
||
{
|
||
/* Initialize the output parameters. */
|
||
*idk = CP_ID_KIND_NONE;
|
||
*error_msg = NULL;
|
||
|
||
if (id_expression == error_mark_node)
|
||
return error_mark_node;
|
||
/* If we have a template-id, then no further lookup is
|
||
required. If the template-id was for a template-class, we
|
||
will sometimes have a TYPE_DECL at this point. */
|
||
else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
|
||
|| TREE_CODE (decl) == TYPE_DECL)
|
||
;
|
||
/* Look up the name. */
|
||
else
|
||
{
|
||
if (decl == error_mark_node)
|
||
{
|
||
/* Name lookup failed. */
|
||
if (scope
|
||
&& (!TYPE_P (scope)
|
||
|| (!dependent_type_p (scope)
|
||
&& !(TREE_CODE (id_expression) == IDENTIFIER_NODE
|
||
&& IDENTIFIER_TYPENAME_P (id_expression)
|
||
&& dependent_type_p (TREE_TYPE (id_expression))))))
|
||
{
|
||
/* If the qualifying type is non-dependent (and the name
|
||
does not name a conversion operator to a dependent
|
||
type), issue an error. */
|
||
qualified_name_lookup_error (scope, id_expression, decl);
|
||
return error_mark_node;
|
||
}
|
||
else if (!scope)
|
||
{
|
||
/* It may be resolved via Koenig lookup. */
|
||
*idk = CP_ID_KIND_UNQUALIFIED;
|
||
return id_expression;
|
||
}
|
||
else
|
||
decl = id_expression;
|
||
}
|
||
/* If DECL is a variable that would be out of scope under
|
||
ANSI/ISO rules, but in scope in the ARM, name lookup
|
||
will succeed. Issue a diagnostic here. */
|
||
else
|
||
decl = check_for_out_of_scope_variable (decl);
|
||
|
||
/* Remember that the name was used in the definition of
|
||
the current class so that we can check later to see if
|
||
the meaning would have been different after the class
|
||
was entirely defined. */
|
||
if (!scope && decl != error_mark_node)
|
||
maybe_note_name_used_in_class (id_expression, decl);
|
||
|
||
/* Disallow uses of local variables from containing functions. */
|
||
if (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL)
|
||
{
|
||
tree context = decl_function_context (decl);
|
||
if (context != NULL_TREE && context != current_function_decl
|
||
&& ! TREE_STATIC (decl))
|
||
{
|
||
error (TREE_CODE (decl) == VAR_DECL
|
||
? "use of %<auto%> variable from containing function"
|
||
: "use of parameter from containing function");
|
||
error (" %q+#D declared here", decl);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we didn't find anything, or what we found was a type,
|
||
then this wasn't really an id-expression. */
|
||
if (TREE_CODE (decl) == TEMPLATE_DECL
|
||
&& !DECL_FUNCTION_TEMPLATE_P (decl))
|
||
{
|
||
*error_msg = "missing template arguments";
|
||
return error_mark_node;
|
||
}
|
||
else if (TREE_CODE (decl) == TYPE_DECL
|
||
|| TREE_CODE (decl) == NAMESPACE_DECL)
|
||
{
|
||
*error_msg = "expected primary-expression";
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* If the name resolved to a template parameter, there is no
|
||
need to look it up again later. */
|
||
if ((TREE_CODE (decl) == CONST_DECL && DECL_TEMPLATE_PARM_P (decl))
|
||
|| TREE_CODE (decl) == TEMPLATE_PARM_INDEX)
|
||
{
|
||
tree r;
|
||
|
||
*idk = CP_ID_KIND_NONE;
|
||
if (TREE_CODE (decl) == TEMPLATE_PARM_INDEX)
|
||
decl = TEMPLATE_PARM_DECL (decl);
|
||
r = convert_from_reference (DECL_INITIAL (decl));
|
||
|
||
if (integral_constant_expression_p
|
||
&& !dependent_type_p (TREE_TYPE (decl))
|
||
&& !(INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (r))))
|
||
{
|
||
if (!allow_non_integral_constant_expression_p)
|
||
error ("template parameter %qD of type %qT is not allowed in "
|
||
"an integral constant expression because it is not of "
|
||
"integral or enumeration type", decl, TREE_TYPE (decl));
|
||
*non_integral_constant_expression_p = true;
|
||
}
|
||
return r;
|
||
}
|
||
/* Similarly, we resolve enumeration constants to their
|
||
underlying values. */
|
||
else if (TREE_CODE (decl) == CONST_DECL)
|
||
{
|
||
*idk = CP_ID_KIND_NONE;
|
||
if (!processing_template_decl)
|
||
{
|
||
used_types_insert (TREE_TYPE (decl));
|
||
return DECL_INITIAL (decl);
|
||
}
|
||
return decl;
|
||
}
|
||
else
|
||
{
|
||
bool dependent_p;
|
||
|
||
/* If the declaration was explicitly qualified indicate
|
||
that. The semantics of `A::f(3)' are different than
|
||
`f(3)' if `f' is virtual. */
|
||
*idk = (scope
|
||
? CP_ID_KIND_QUALIFIED
|
||
: (TREE_CODE (decl) == TEMPLATE_ID_EXPR
|
||
? CP_ID_KIND_TEMPLATE_ID
|
||
: CP_ID_KIND_UNQUALIFIED));
|
||
|
||
|
||
/* [temp.dep.expr]
|
||
|
||
An id-expression is type-dependent if it contains an
|
||
identifier that was declared with a dependent type.
|
||
|
||
The standard is not very specific about an id-expression that
|
||
names a set of overloaded functions. What if some of them
|
||
have dependent types and some of them do not? Presumably,
|
||
such a name should be treated as a dependent name. */
|
||
/* Assume the name is not dependent. */
|
||
dependent_p = false;
|
||
if (!processing_template_decl)
|
||
/* No names are dependent outside a template. */
|
||
;
|
||
/* A template-id where the name of the template was not resolved
|
||
is definitely dependent. */
|
||
else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
|
||
&& (TREE_CODE (TREE_OPERAND (decl, 0))
|
||
== IDENTIFIER_NODE))
|
||
dependent_p = true;
|
||
/* For anything except an overloaded function, just check its
|
||
type. */
|
||
else if (!is_overloaded_fn (decl))
|
||
dependent_p
|
||
= dependent_type_p (TREE_TYPE (decl));
|
||
/* For a set of overloaded functions, check each of the
|
||
functions. */
|
||
else
|
||
{
|
||
tree fns = decl;
|
||
|
||
if (BASELINK_P (fns))
|
||
fns = BASELINK_FUNCTIONS (fns);
|
||
|
||
/* For a template-id, check to see if the template
|
||
arguments are dependent. */
|
||
if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
|
||
{
|
||
tree args = TREE_OPERAND (fns, 1);
|
||
dependent_p = any_dependent_template_arguments_p (args);
|
||
/* The functions are those referred to by the
|
||
template-id. */
|
||
fns = TREE_OPERAND (fns, 0);
|
||
}
|
||
|
||
/* If there are no dependent template arguments, go through
|
||
the overloaded functions. */
|
||
while (fns && !dependent_p)
|
||
{
|
||
tree fn = OVL_CURRENT (fns);
|
||
|
||
/* Member functions of dependent classes are
|
||
dependent. */
|
||
if (TREE_CODE (fn) == FUNCTION_DECL
|
||
&& type_dependent_expression_p (fn))
|
||
dependent_p = true;
|
||
else if (TREE_CODE (fn) == TEMPLATE_DECL
|
||
&& dependent_template_p (fn))
|
||
dependent_p = true;
|
||
|
||
fns = OVL_NEXT (fns);
|
||
}
|
||
}
|
||
|
||
/* If the name was dependent on a template parameter, we will
|
||
resolve the name at instantiation time. */
|
||
if (dependent_p)
|
||
{
|
||
/* Create a SCOPE_REF for qualified names, if the scope is
|
||
dependent. */
|
||
if (scope)
|
||
{
|
||
/* Since this name was dependent, the expression isn't
|
||
constant -- yet. No error is issued because it might
|
||
be constant when things are instantiated. */
|
||
if (integral_constant_expression_p)
|
||
*non_integral_constant_expression_p = true;
|
||
if (TYPE_P (scope))
|
||
{
|
||
if (address_p && done)
|
||
decl = finish_qualified_id_expr (scope, decl,
|
||
done, address_p,
|
||
template_p,
|
||
template_arg_p);
|
||
else if (dependent_type_p (scope))
|
||
decl = build_qualified_name (/*type=*/NULL_TREE,
|
||
scope,
|
||
id_expression,
|
||
template_p);
|
||
else if (DECL_P (decl))
|
||
decl = build_qualified_name (TREE_TYPE (decl),
|
||
scope,
|
||
id_expression,
|
||
template_p);
|
||
}
|
||
if (TREE_TYPE (decl))
|
||
decl = convert_from_reference (decl);
|
||
return decl;
|
||
}
|
||
/* A TEMPLATE_ID already contains all the information we
|
||
need. */
|
||
if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR)
|
||
return id_expression;
|
||
*idk = CP_ID_KIND_UNQUALIFIED_DEPENDENT;
|
||
/* If we found a variable, then name lookup during the
|
||
instantiation will always resolve to the same VAR_DECL
|
||
(or an instantiation thereof). */
|
||
if (TREE_CODE (decl) == VAR_DECL
|
||
|| TREE_CODE (decl) == PARM_DECL)
|
||
return convert_from_reference (decl);
|
||
/* The same is true for FIELD_DECL, but we also need to
|
||
make sure that the syntax is correct. */
|
||
else if (TREE_CODE (decl) == FIELD_DECL)
|
||
{
|
||
/* Since SCOPE is NULL here, this is an unqualified name.
|
||
Access checking has been performed during name lookup
|
||
already. Turn off checking to avoid duplicate errors. */
|
||
push_deferring_access_checks (dk_no_check);
|
||
decl = finish_non_static_data_member
|
||
(decl, current_class_ref,
|
||
/*qualifying_scope=*/NULL_TREE);
|
||
pop_deferring_access_checks ();
|
||
return decl;
|
||
}
|
||
return id_expression;
|
||
}
|
||
|
||
/* Only certain kinds of names are allowed in constant
|
||
expression. Enumerators and template parameters have already
|
||
been handled above. */
|
||
if (integral_constant_expression_p
|
||
&& ! DECL_INTEGRAL_CONSTANT_VAR_P (decl)
|
||
&& ! builtin_valid_in_constant_expr_p (decl))
|
||
{
|
||
if (!allow_non_integral_constant_expression_p)
|
||
{
|
||
error ("%qD cannot appear in a constant-expression", decl);
|
||
return error_mark_node;
|
||
}
|
||
*non_integral_constant_expression_p = true;
|
||
}
|
||
|
||
if (TREE_CODE (decl) == NAMESPACE_DECL)
|
||
{
|
||
error ("use of namespace %qD as expression", decl);
|
||
return error_mark_node;
|
||
}
|
||
else if (DECL_CLASS_TEMPLATE_P (decl))
|
||
{
|
||
error ("use of class template %qT as expression", decl);
|
||
return error_mark_node;
|
||
}
|
||
else if (TREE_CODE (decl) == TREE_LIST)
|
||
{
|
||
/* Ambiguous reference to base members. */
|
||
error ("request for member %qD is ambiguous in "
|
||
"multiple inheritance lattice", id_expression);
|
||
print_candidates (decl);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Mark variable-like entities as used. Functions are similarly
|
||
marked either below or after overload resolution. */
|
||
if (TREE_CODE (decl) == VAR_DECL
|
||
|| TREE_CODE (decl) == PARM_DECL
|
||
|| TREE_CODE (decl) == RESULT_DECL)
|
||
mark_used (decl);
|
||
|
||
if (scope)
|
||
{
|
||
decl = (adjust_result_of_qualified_name_lookup
|
||
(decl, scope, current_class_type));
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL)
|
||
mark_used (decl);
|
||
|
||
if (TREE_CODE (decl) == FIELD_DECL || BASELINK_P (decl))
|
||
decl = finish_qualified_id_expr (scope,
|
||
decl,
|
||
done,
|
||
address_p,
|
||
template_p,
|
||
template_arg_p);
|
||
else
|
||
{
|
||
tree r = convert_from_reference (decl);
|
||
|
||
if (processing_template_decl && TYPE_P (scope))
|
||
r = build_qualified_name (TREE_TYPE (r),
|
||
scope, decl,
|
||
template_p);
|
||
decl = r;
|
||
}
|
||
}
|
||
else if (TREE_CODE (decl) == FIELD_DECL)
|
||
{
|
||
/* Since SCOPE is NULL here, this is an unqualified name.
|
||
Access checking has been performed during name lookup
|
||
already. Turn off checking to avoid duplicate errors. */
|
||
push_deferring_access_checks (dk_no_check);
|
||
decl = finish_non_static_data_member (decl, current_class_ref,
|
||
/*qualifying_scope=*/NULL_TREE);
|
||
pop_deferring_access_checks ();
|
||
}
|
||
else if (is_overloaded_fn (decl))
|
||
{
|
||
tree first_fn;
|
||
|
||
first_fn = decl;
|
||
if (TREE_CODE (first_fn) == TEMPLATE_ID_EXPR)
|
||
first_fn = TREE_OPERAND (first_fn, 0);
|
||
first_fn = get_first_fn (first_fn);
|
||
if (TREE_CODE (first_fn) == TEMPLATE_DECL)
|
||
first_fn = DECL_TEMPLATE_RESULT (first_fn);
|
||
|
||
if (!really_overloaded_fn (decl))
|
||
mark_used (first_fn);
|
||
|
||
if (!template_arg_p
|
||
&& TREE_CODE (first_fn) == FUNCTION_DECL
|
||
&& DECL_FUNCTION_MEMBER_P (first_fn)
|
||
&& !shared_member_p (decl))
|
||
{
|
||
/* A set of member functions. */
|
||
decl = maybe_dummy_object (DECL_CONTEXT (first_fn), 0);
|
||
return finish_class_member_access_expr (decl, id_expression,
|
||
/*template_p=*/false);
|
||
}
|
||
|
||
decl = baselink_for_fns (decl);
|
||
}
|
||
else
|
||
{
|
||
if (DECL_P (decl) && DECL_NONLOCAL (decl)
|
||
&& DECL_CLASS_SCOPE_P (decl)
|
||
&& DECL_CONTEXT (decl) != current_class_type)
|
||
{
|
||
tree path;
|
||
|
||
path = currently_open_derived_class (DECL_CONTEXT (decl));
|
||
perform_or_defer_access_check (TYPE_BINFO (path), decl, decl);
|
||
}
|
||
|
||
decl = convert_from_reference (decl);
|
||
}
|
||
}
|
||
|
||
if (TREE_DEPRECATED (decl))
|
||
warn_deprecated_use (decl);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Implement the __typeof keyword: Return the type of EXPR, suitable for
|
||
use as a type-specifier. */
|
||
|
||
tree
|
||
finish_typeof (tree expr)
|
||
{
|
||
tree type;
|
||
|
||
if (type_dependent_expression_p (expr))
|
||
{
|
||
type = make_aggr_type (TYPEOF_TYPE);
|
||
TYPEOF_TYPE_EXPR (type) = expr;
|
||
|
||
return type;
|
||
}
|
||
|
||
type = unlowered_expr_type (expr);
|
||
|
||
if (!type || type == unknown_type_node)
|
||
{
|
||
error ("type of %qE is unknown", expr);
|
||
return error_mark_node;
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Perform C++-specific checks for __builtin_offsetof before calling
|
||
fold_offsetof. */
|
||
|
||
tree
|
||
finish_offsetof (tree expr)
|
||
{
|
||
if (TREE_CODE (expr) == PSEUDO_DTOR_EXPR)
|
||
{
|
||
error ("cannot apply %<offsetof%> to destructor %<~%T%>",
|
||
TREE_OPERAND (expr, 2));
|
||
return error_mark_node;
|
||
}
|
||
if (TREE_CODE (TREE_TYPE (expr)) == FUNCTION_TYPE
|
||
|| TREE_CODE (TREE_TYPE (expr)) == METHOD_TYPE
|
||
|| TREE_CODE (TREE_TYPE (expr)) == UNKNOWN_TYPE)
|
||
{
|
||
if (TREE_CODE (expr) == COMPONENT_REF
|
||
|| TREE_CODE (expr) == COMPOUND_EXPR)
|
||
expr = TREE_OPERAND (expr, 1);
|
||
error ("cannot apply %<offsetof%> to member function %qD", expr);
|
||
return error_mark_node;
|
||
}
|
||
return fold_offsetof (expr, NULL_TREE);
|
||
}
|
||
|
||
/* Called from expand_body via walk_tree. Replace all AGGR_INIT_EXPRs
|
||
with equivalent CALL_EXPRs. */
|
||
|
||
static tree
|
||
simplify_aggr_init_exprs_r (tree* tp,
|
||
int* walk_subtrees,
|
||
void* data ATTRIBUTE_UNUSED)
|
||
{
|
||
/* We don't need to walk into types; there's nothing in a type that
|
||
needs simplification. (And, furthermore, there are places we
|
||
actively don't want to go. For example, we don't want to wander
|
||
into the default arguments for a FUNCTION_DECL that appears in a
|
||
CALL_EXPR.) */
|
||
if (TYPE_P (*tp))
|
||
{
|
||
*walk_subtrees = 0;
|
||
return NULL_TREE;
|
||
}
|
||
/* Only AGGR_INIT_EXPRs are interesting. */
|
||
else if (TREE_CODE (*tp) != AGGR_INIT_EXPR)
|
||
return NULL_TREE;
|
||
|
||
simplify_aggr_init_expr (tp);
|
||
|
||
/* Keep iterating. */
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Replace the AGGR_INIT_EXPR at *TP with an equivalent CALL_EXPR. This
|
||
function is broken out from the above for the benefit of the tree-ssa
|
||
project. */
|
||
|
||
void
|
||
simplify_aggr_init_expr (tree *tp)
|
||
{
|
||
tree aggr_init_expr = *tp;
|
||
|
||
/* Form an appropriate CALL_EXPR. */
|
||
tree fn = TREE_OPERAND (aggr_init_expr, 0);
|
||
tree args = TREE_OPERAND (aggr_init_expr, 1);
|
||
tree slot = TREE_OPERAND (aggr_init_expr, 2);
|
||
tree type = TREE_TYPE (slot);
|
||
|
||
tree call_expr;
|
||
enum style_t { ctor, arg, pcc } style;
|
||
|
||
if (AGGR_INIT_VIA_CTOR_P (aggr_init_expr))
|
||
style = ctor;
|
||
#ifdef PCC_STATIC_STRUCT_RETURN
|
||
else if (1)
|
||
style = pcc;
|
||
#endif
|
||
else
|
||
{
|
||
gcc_assert (TREE_ADDRESSABLE (type));
|
||
style = arg;
|
||
}
|
||
|
||
if (style == ctor)
|
||
{
|
||
/* Replace the first argument to the ctor with the address of the
|
||
slot. */
|
||
tree addr;
|
||
|
||
args = TREE_CHAIN (args);
|
||
cxx_mark_addressable (slot);
|
||
addr = build1 (ADDR_EXPR, build_pointer_type (type), slot);
|
||
args = tree_cons (NULL_TREE, addr, args);
|
||
}
|
||
|
||
call_expr = build3 (CALL_EXPR,
|
||
TREE_TYPE (TREE_TYPE (TREE_TYPE (fn))),
|
||
fn, args, NULL_TREE);
|
||
|
||
if (style == arg)
|
||
{
|
||
/* Just mark it addressable here, and leave the rest to
|
||
expand_call{,_inline}. */
|
||
cxx_mark_addressable (slot);
|
||
CALL_EXPR_RETURN_SLOT_OPT (call_expr) = true;
|
||
call_expr = build2 (MODIFY_EXPR, TREE_TYPE (call_expr), slot, call_expr);
|
||
}
|
||
else if (style == pcc)
|
||
{
|
||
/* If we're using the non-reentrant PCC calling convention, then we
|
||
need to copy the returned value out of the static buffer into the
|
||
SLOT. */
|
||
push_deferring_access_checks (dk_no_check);
|
||
call_expr = build_aggr_init (slot, call_expr,
|
||
DIRECT_BIND | LOOKUP_ONLYCONVERTING);
|
||
pop_deferring_access_checks ();
|
||
call_expr = build2 (COMPOUND_EXPR, TREE_TYPE (slot), call_expr, slot);
|
||
}
|
||
|
||
*tp = call_expr;
|
||
}
|
||
|
||
/* Emit all thunks to FN that should be emitted when FN is emitted. */
|
||
|
||
static void
|
||
emit_associated_thunks (tree fn)
|
||
{
|
||
/* When we use vcall offsets, we emit thunks with the virtual
|
||
functions to which they thunk. The whole point of vcall offsets
|
||
is so that you can know statically the entire set of thunks that
|
||
will ever be needed for a given virtual function, thereby
|
||
enabling you to output all the thunks with the function itself. */
|
||
if (DECL_VIRTUAL_P (fn))
|
||
{
|
||
tree thunk;
|
||
|
||
for (thunk = DECL_THUNKS (fn); thunk; thunk = TREE_CHAIN (thunk))
|
||
{
|
||
if (!THUNK_ALIAS (thunk))
|
||
{
|
||
use_thunk (thunk, /*emit_p=*/1);
|
||
if (DECL_RESULT_THUNK_P (thunk))
|
||
{
|
||
tree probe;
|
||
|
||
for (probe = DECL_THUNKS (thunk);
|
||
probe; probe = TREE_CHAIN (probe))
|
||
use_thunk (probe, /*emit_p=*/1);
|
||
}
|
||
}
|
||
else
|
||
gcc_assert (!DECL_THUNKS (thunk));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Generate RTL for FN. */
|
||
|
||
void
|
||
expand_body (tree fn)
|
||
{
|
||
tree saved_function;
|
||
|
||
/* Compute the appropriate object-file linkage for inline
|
||
functions. */
|
||
if (DECL_DECLARED_INLINE_P (fn))
|
||
import_export_decl (fn);
|
||
|
||
/* If FN is external, then there's no point in generating RTL for
|
||
it. This situation can arise with an inline function under
|
||
`-fexternal-templates'; we instantiate the function, even though
|
||
we're not planning on emitting it, in case we get a chance to
|
||
inline it. */
|
||
if (DECL_EXTERNAL (fn))
|
||
return;
|
||
|
||
/* ??? When is this needed? */
|
||
saved_function = current_function_decl;
|
||
|
||
/* Emit any thunks that should be emitted at the same time as FN. */
|
||
emit_associated_thunks (fn);
|
||
|
||
/* This function is only called from cgraph, or recursively from
|
||
emit_associated_thunks. In neither case should we be currently
|
||
generating trees for a function. */
|
||
gcc_assert (function_depth == 0);
|
||
|
||
tree_rest_of_compilation (fn);
|
||
|
||
current_function_decl = saved_function;
|
||
|
||
if (DECL_CLONED_FUNCTION_P (fn))
|
||
{
|
||
/* If this is a clone, go through the other clones now and mark
|
||
their parameters used. We have to do that here, as we don't
|
||
know whether any particular clone will be expanded, and
|
||
therefore cannot pick one arbitrarily. */
|
||
tree probe;
|
||
|
||
for (probe = TREE_CHAIN (DECL_CLONED_FUNCTION (fn));
|
||
probe && DECL_CLONED_FUNCTION_P (probe);
|
||
probe = TREE_CHAIN (probe))
|
||
{
|
||
tree parms;
|
||
|
||
for (parms = DECL_ARGUMENTS (probe);
|
||
parms; parms = TREE_CHAIN (parms))
|
||
TREE_USED (parms) = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Generate RTL for FN. */
|
||
|
||
void
|
||
expand_or_defer_fn (tree fn)
|
||
{
|
||
/* When the parser calls us after finishing the body of a template
|
||
function, we don't really want to expand the body. */
|
||
if (processing_template_decl)
|
||
{
|
||
/* Normally, collection only occurs in rest_of_compilation. So,
|
||
if we don't collect here, we never collect junk generated
|
||
during the processing of templates until we hit a
|
||
non-template function. It's not safe to do this inside a
|
||
nested class, though, as the parser may have local state that
|
||
is not a GC root. */
|
||
if (!function_depth)
|
||
ggc_collect ();
|
||
return;
|
||
}
|
||
|
||
/* Replace AGGR_INIT_EXPRs with appropriate CALL_EXPRs. */
|
||
walk_tree_without_duplicates (&DECL_SAVED_TREE (fn),
|
||
simplify_aggr_init_exprs_r,
|
||
NULL);
|
||
|
||
/* If this is a constructor or destructor body, we have to clone
|
||
it. */
|
||
if (maybe_clone_body (fn))
|
||
{
|
||
/* We don't want to process FN again, so pretend we've written
|
||
it out, even though we haven't. */
|
||
TREE_ASM_WRITTEN (fn) = 1;
|
||
return;
|
||
}
|
||
|
||
/* If this function is marked with the constructor attribute, add it
|
||
to the list of functions to be called along with constructors
|
||
from static duration objects. */
|
||
if (DECL_STATIC_CONSTRUCTOR (fn))
|
||
static_ctors = tree_cons (NULL_TREE, fn, static_ctors);
|
||
|
||
/* If this function is marked with the destructor attribute, add it
|
||
to the list of functions to be called along with destructors from
|
||
static duration objects. */
|
||
if (DECL_STATIC_DESTRUCTOR (fn))
|
||
static_dtors = tree_cons (NULL_TREE, fn, static_dtors);
|
||
|
||
/* We make a decision about linkage for these functions at the end
|
||
of the compilation. Until that point, we do not want the back
|
||
end to output them -- but we do want it to see the bodies of
|
||
these functions so that it can inline them as appropriate. */
|
||
if (DECL_DECLARED_INLINE_P (fn) || DECL_IMPLICIT_INSTANTIATION (fn))
|
||
{
|
||
if (DECL_INTERFACE_KNOWN (fn))
|
||
/* We've already made a decision as to how this function will
|
||
be handled. */;
|
||
else if (!at_eof)
|
||
{
|
||
DECL_EXTERNAL (fn) = 1;
|
||
DECL_NOT_REALLY_EXTERN (fn) = 1;
|
||
note_vague_linkage_fn (fn);
|
||
/* A non-template inline function with external linkage will
|
||
always be COMDAT. As we must eventually determine the
|
||
linkage of all functions, and as that causes writes to
|
||
the data mapped in from the PCH file, it's advantageous
|
||
to mark the functions at this point. */
|
||
if (!DECL_IMPLICIT_INSTANTIATION (fn))
|
||
{
|
||
/* This function must have external linkage, as
|
||
otherwise DECL_INTERFACE_KNOWN would have been
|
||
set. */
|
||
gcc_assert (TREE_PUBLIC (fn));
|
||
comdat_linkage (fn);
|
||
DECL_INTERFACE_KNOWN (fn) = 1;
|
||
}
|
||
}
|
||
else
|
||
import_export_decl (fn);
|
||
|
||
/* If the user wants us to keep all inline functions, then mark
|
||
this function as needed so that finish_file will make sure to
|
||
output it later. */
|
||
if (flag_keep_inline_functions && DECL_DECLARED_INLINE_P (fn))
|
||
mark_needed (fn);
|
||
}
|
||
|
||
/* There's no reason to do any of the work here if we're only doing
|
||
semantic analysis; this code just generates RTL. */
|
||
if (flag_syntax_only)
|
||
return;
|
||
|
||
function_depth++;
|
||
|
||
/* Expand or defer, at the whim of the compilation unit manager. */
|
||
cgraph_finalize_function (fn, function_depth > 1);
|
||
|
||
function_depth--;
|
||
}
|
||
|
||
struct nrv_data
|
||
{
|
||
tree var;
|
||
tree result;
|
||
htab_t visited;
|
||
};
|
||
|
||
/* Helper function for walk_tree, used by finalize_nrv below. */
|
||
|
||
static tree
|
||
finalize_nrv_r (tree* tp, int* walk_subtrees, void* data)
|
||
{
|
||
struct nrv_data *dp = (struct nrv_data *)data;
|
||
void **slot;
|
||
|
||
/* No need to walk into types. There wouldn't be any need to walk into
|
||
non-statements, except that we have to consider STMT_EXPRs. */
|
||
if (TYPE_P (*tp))
|
||
*walk_subtrees = 0;
|
||
/* Change all returns to just refer to the RESULT_DECL; this is a nop,
|
||
but differs from using NULL_TREE in that it indicates that we care
|
||
about the value of the RESULT_DECL. */
|
||
else if (TREE_CODE (*tp) == RETURN_EXPR)
|
||
TREE_OPERAND (*tp, 0) = dp->result;
|
||
/* Change all cleanups for the NRV to only run when an exception is
|
||
thrown. */
|
||
else if (TREE_CODE (*tp) == CLEANUP_STMT
|
||
&& CLEANUP_DECL (*tp) == dp->var)
|
||
CLEANUP_EH_ONLY (*tp) = 1;
|
||
/* Replace the DECL_EXPR for the NRV with an initialization of the
|
||
RESULT_DECL, if needed. */
|
||
else if (TREE_CODE (*tp) == DECL_EXPR
|
||
&& DECL_EXPR_DECL (*tp) == dp->var)
|
||
{
|
||
tree init;
|
||
if (DECL_INITIAL (dp->var)
|
||
&& DECL_INITIAL (dp->var) != error_mark_node)
|
||
{
|
||
init = build2 (INIT_EXPR, void_type_node, dp->result,
|
||
DECL_INITIAL (dp->var));
|
||
DECL_INITIAL (dp->var) = error_mark_node;
|
||
}
|
||
else
|
||
init = build_empty_stmt ();
|
||
SET_EXPR_LOCUS (init, EXPR_LOCUS (*tp));
|
||
*tp = init;
|
||
}
|
||
/* And replace all uses of the NRV with the RESULT_DECL. */
|
||
else if (*tp == dp->var)
|
||
*tp = dp->result;
|
||
|
||
/* Avoid walking into the same tree more than once. Unfortunately, we
|
||
can't just use walk_tree_without duplicates because it would only call
|
||
us for the first occurrence of dp->var in the function body. */
|
||
slot = htab_find_slot (dp->visited, *tp, INSERT);
|
||
if (*slot)
|
||
*walk_subtrees = 0;
|
||
else
|
||
*slot = *tp;
|
||
|
||
/* Keep iterating. */
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Called from finish_function to implement the named return value
|
||
optimization by overriding all the RETURN_EXPRs and pertinent
|
||
CLEANUP_STMTs and replacing all occurrences of VAR with RESULT, the
|
||
RESULT_DECL for the function. */
|
||
|
||
void
|
||
finalize_nrv (tree *tp, tree var, tree result)
|
||
{
|
||
struct nrv_data data;
|
||
|
||
/* Copy debugging information from VAR to RESULT. */
|
||
DECL_NAME (result) = DECL_NAME (var);
|
||
DECL_ARTIFICIAL (result) = DECL_ARTIFICIAL (var);
|
||
DECL_IGNORED_P (result) = DECL_IGNORED_P (var);
|
||
DECL_SOURCE_LOCATION (result) = DECL_SOURCE_LOCATION (var);
|
||
DECL_ABSTRACT_ORIGIN (result) = DECL_ABSTRACT_ORIGIN (var);
|
||
/* Don't forget that we take its address. */
|
||
TREE_ADDRESSABLE (result) = TREE_ADDRESSABLE (var);
|
||
|
||
data.var = var;
|
||
data.result = result;
|
||
data.visited = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
|
||
walk_tree (tp, finalize_nrv_r, &data, 0);
|
||
htab_delete (data.visited);
|
||
}
|
||
|
||
/* For all elements of CLAUSES, validate them vs OpenMP constraints.
|
||
Remove any elements from the list that are invalid. */
|
||
|
||
tree
|
||
finish_omp_clauses (tree clauses)
|
||
{
|
||
bitmap_head generic_head, firstprivate_head, lastprivate_head;
|
||
tree c, t, *pc = &clauses;
|
||
const char *name;
|
||
|
||
bitmap_obstack_initialize (NULL);
|
||
bitmap_initialize (&generic_head, &bitmap_default_obstack);
|
||
bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
|
||
bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
|
||
|
||
for (pc = &clauses, c = clauses; c ; c = *pc)
|
||
{
|
||
bool remove = false;
|
||
|
||
switch (OMP_CLAUSE_CODE (c))
|
||
{
|
||
case OMP_CLAUSE_SHARED:
|
||
name = "shared";
|
||
goto check_dup_generic;
|
||
case OMP_CLAUSE_PRIVATE:
|
||
name = "private";
|
||
goto check_dup_generic;
|
||
case OMP_CLAUSE_REDUCTION:
|
||
name = "reduction";
|
||
goto check_dup_generic;
|
||
case OMP_CLAUSE_COPYPRIVATE:
|
||
name = "copyprivate";
|
||
goto check_dup_generic;
|
||
case OMP_CLAUSE_COPYIN:
|
||
name = "copyin";
|
||
goto check_dup_generic;
|
||
check_dup_generic:
|
||
t = OMP_CLAUSE_DECL (c);
|
||
if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
|
||
{
|
||
if (processing_template_decl)
|
||
break;
|
||
if (DECL_P (t))
|
||
error ("%qD is not a variable in clause %qs", t, name);
|
||
else
|
||
error ("%qE is not a variable in clause %qs", t, name);
|
||
remove = true;
|
||
}
|
||
else if (bitmap_bit_p (&generic_head, DECL_UID (t))
|
||
|| bitmap_bit_p (&firstprivate_head, DECL_UID (t))
|
||
|| bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
|
||
{
|
||
error ("%qD appears more than once in data clauses", t);
|
||
remove = true;
|
||
}
|
||
else
|
||
bitmap_set_bit (&generic_head, DECL_UID (t));
|
||
break;
|
||
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
t = OMP_CLAUSE_DECL (c);
|
||
if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
|
||
{
|
||
if (processing_template_decl)
|
||
break;
|
||
error ("%qE is not a variable in clause %<firstprivate%>", t);
|
||
remove = true;
|
||
}
|
||
else if (bitmap_bit_p (&generic_head, DECL_UID (t))
|
||
|| bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
|
||
{
|
||
error ("%qE appears more than once in data clauses", t);
|
||
remove = true;
|
||
}
|
||
else
|
||
bitmap_set_bit (&firstprivate_head, DECL_UID (t));
|
||
break;
|
||
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
t = OMP_CLAUSE_DECL (c);
|
||
if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
|
||
{
|
||
if (processing_template_decl)
|
||
break;
|
||
error ("%qE is not a variable in clause %<lastprivate%>", t);
|
||
remove = true;
|
||
}
|
||
else if (bitmap_bit_p (&generic_head, DECL_UID (t))
|
||
|| bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
|
||
{
|
||
error ("%qE appears more than once in data clauses", t);
|
||
remove = true;
|
||
}
|
||
else
|
||
bitmap_set_bit (&lastprivate_head, DECL_UID (t));
|
||
break;
|
||
|
||
case OMP_CLAUSE_IF:
|
||
t = OMP_CLAUSE_IF_EXPR (c);
|
||
t = maybe_convert_cond (t);
|
||
if (t == error_mark_node)
|
||
remove = true;
|
||
OMP_CLAUSE_IF_EXPR (c) = t;
|
||
break;
|
||
|
||
case OMP_CLAUSE_NUM_THREADS:
|
||
t = OMP_CLAUSE_NUM_THREADS_EXPR (c);
|
||
if (t == error_mark_node)
|
||
remove = true;
|
||
else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
|
||
&& !type_dependent_expression_p (t))
|
||
{
|
||
error ("num_threads expression must be integral");
|
||
remove = true;
|
||
}
|
||
break;
|
||
|
||
case OMP_CLAUSE_SCHEDULE:
|
||
t = OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (c);
|
||
if (t == NULL)
|
||
;
|
||
else if (t == error_mark_node)
|
||
remove = true;
|
||
else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
|
||
&& !type_dependent_expression_p (t))
|
||
{
|
||
error ("schedule chunk size expression must be integral");
|
||
remove = true;
|
||
}
|
||
break;
|
||
|
||
case OMP_CLAUSE_NOWAIT:
|
||
case OMP_CLAUSE_ORDERED:
|
||
case OMP_CLAUSE_DEFAULT:
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (remove)
|
||
*pc = OMP_CLAUSE_CHAIN (c);
|
||
else
|
||
pc = &OMP_CLAUSE_CHAIN (c);
|
||
}
|
||
|
||
for (pc = &clauses, c = clauses; c ; c = *pc)
|
||
{
|
||
enum tree_code c_kind = OMP_CLAUSE_CODE (c);
|
||
bool remove = false;
|
||
bool need_complete_non_reference = false;
|
||
bool need_default_ctor = false;
|
||
bool need_copy_ctor = false;
|
||
bool need_copy_assignment = false;
|
||
bool need_implicitly_determined = false;
|
||
tree type, inner_type;
|
||
|
||
switch (c_kind)
|
||
{
|
||
case OMP_CLAUSE_SHARED:
|
||
name = "shared";
|
||
need_implicitly_determined = true;
|
||
break;
|
||
case OMP_CLAUSE_PRIVATE:
|
||
name = "private";
|
||
need_complete_non_reference = true;
|
||
need_default_ctor = true;
|
||
need_implicitly_determined = true;
|
||
break;
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
name = "firstprivate";
|
||
need_complete_non_reference = true;
|
||
need_copy_ctor = true;
|
||
need_implicitly_determined = true;
|
||
break;
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
name = "lastprivate";
|
||
need_complete_non_reference = true;
|
||
need_copy_assignment = true;
|
||
need_implicitly_determined = true;
|
||
break;
|
||
case OMP_CLAUSE_REDUCTION:
|
||
name = "reduction";
|
||
need_implicitly_determined = true;
|
||
break;
|
||
case OMP_CLAUSE_COPYPRIVATE:
|
||
name = "copyprivate";
|
||
need_copy_assignment = true;
|
||
break;
|
||
case OMP_CLAUSE_COPYIN:
|
||
name = "copyin";
|
||
need_copy_assignment = true;
|
||
break;
|
||
default:
|
||
pc = &OMP_CLAUSE_CHAIN (c);
|
||
continue;
|
||
}
|
||
|
||
t = OMP_CLAUSE_DECL (c);
|
||
if (processing_template_decl
|
||
&& TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
|
||
{
|
||
pc = &OMP_CLAUSE_CHAIN (c);
|
||
continue;
|
||
}
|
||
|
||
switch (c_kind)
|
||
{
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
if (!bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
|
||
need_default_ctor = true;
|
||
break;
|
||
|
||
case OMP_CLAUSE_REDUCTION:
|
||
if (AGGREGATE_TYPE_P (TREE_TYPE (t))
|
||
|| POINTER_TYPE_P (TREE_TYPE (t)))
|
||
{
|
||
error ("%qE has invalid type for %<reduction%>", t);
|
||
remove = true;
|
||
}
|
||
else if (FLOAT_TYPE_P (TREE_TYPE (t)))
|
||
{
|
||
enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
|
||
switch (r_code)
|
||
{
|
||
case PLUS_EXPR:
|
||
case MULT_EXPR:
|
||
case MINUS_EXPR:
|
||
break;
|
||
default:
|
||
error ("%qE has invalid type for %<reduction(%s)%>",
|
||
t, operator_name_info[r_code].name);
|
||
remove = true;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case OMP_CLAUSE_COPYIN:
|
||
if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
|
||
{
|
||
error ("%qE must be %<threadprivate%> for %<copyin%>", t);
|
||
remove = true;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (need_complete_non_reference)
|
||
{
|
||
t = require_complete_type (t);
|
||
if (t == error_mark_node)
|
||
remove = true;
|
||
else if (TREE_CODE (TREE_TYPE (t)) == REFERENCE_TYPE)
|
||
{
|
||
error ("%qE has reference type for %qs", t, name);
|
||
remove = true;
|
||
}
|
||
}
|
||
if (need_implicitly_determined)
|
||
{
|
||
const char *share_name = NULL;
|
||
|
||
if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
|
||
share_name = "threadprivate";
|
||
else switch (cxx_omp_predetermined_sharing (t))
|
||
{
|
||
case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
|
||
break;
|
||
case OMP_CLAUSE_DEFAULT_SHARED:
|
||
share_name = "shared";
|
||
break;
|
||
case OMP_CLAUSE_DEFAULT_PRIVATE:
|
||
share_name = "private";
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
if (share_name)
|
||
{
|
||
error ("%qE is predetermined %qs for %qs",
|
||
t, share_name, name);
|
||
remove = true;
|
||
}
|
||
}
|
||
|
||
/* We're interested in the base element, not arrays. */
|
||
inner_type = type = TREE_TYPE (t);
|
||
while (TREE_CODE (inner_type) == ARRAY_TYPE)
|
||
inner_type = TREE_TYPE (inner_type);
|
||
|
||
/* Check for special function availability by building a call to one.
|
||
Save the results, because later we won't be in the right context
|
||
for making these queries. */
|
||
if (CLASS_TYPE_P (inner_type)
|
||
&& (need_default_ctor || need_copy_ctor || need_copy_assignment)
|
||
&& !type_dependent_expression_p (t))
|
||
{
|
||
int save_errorcount = errorcount;
|
||
tree info;
|
||
|
||
/* Always allocate 3 elements for simplicity. These are the
|
||
function decls for the ctor, dtor, and assignment op.
|
||
This layout is known to the three lang hooks,
|
||
cxx_omp_clause_default_init, cxx_omp_clause_copy_init,
|
||
and cxx_omp_clause_assign_op. */
|
||
info = make_tree_vec (3);
|
||
CP_OMP_CLAUSE_INFO (c) = info;
|
||
|
||
if (need_default_ctor
|
||
|| (need_copy_ctor
|
||
&& !TYPE_HAS_TRIVIAL_INIT_REF (inner_type)))
|
||
{
|
||
if (need_default_ctor)
|
||
t = NULL;
|
||
else
|
||
{
|
||
t = build_int_cst (build_pointer_type (inner_type), 0);
|
||
t = build1 (INDIRECT_REF, inner_type, t);
|
||
t = build_tree_list (NULL, t);
|
||
}
|
||
t = build_special_member_call (NULL_TREE,
|
||
complete_ctor_identifier,
|
||
t, inner_type, LOOKUP_NORMAL);
|
||
t = get_callee_fndecl (t);
|
||
TREE_VEC_ELT (info, 0) = t;
|
||
}
|
||
|
||
if ((need_default_ctor || need_copy_ctor)
|
||
&& TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_type))
|
||
{
|
||
t = build_int_cst (build_pointer_type (inner_type), 0);
|
||
t = build1 (INDIRECT_REF, inner_type, t);
|
||
t = build_special_member_call (t, complete_dtor_identifier,
|
||
NULL, inner_type, LOOKUP_NORMAL);
|
||
t = get_callee_fndecl (t);
|
||
TREE_VEC_ELT (info, 1) = t;
|
||
}
|
||
|
||
if (need_copy_assignment
|
||
&& !TYPE_HAS_TRIVIAL_ASSIGN_REF (inner_type))
|
||
{
|
||
t = build_int_cst (build_pointer_type (inner_type), 0);
|
||
t = build1 (INDIRECT_REF, inner_type, t);
|
||
t = build_special_member_call (t, ansi_assopname (NOP_EXPR),
|
||
build_tree_list (NULL, t),
|
||
inner_type, LOOKUP_NORMAL);
|
||
|
||
/* We'll have called convert_from_reference on the call, which
|
||
may well have added an indirect_ref. It's unneeded here,
|
||
and in the way, so kill it. */
|
||
if (TREE_CODE (t) == INDIRECT_REF)
|
||
t = TREE_OPERAND (t, 0);
|
||
|
||
t = get_callee_fndecl (t);
|
||
TREE_VEC_ELT (info, 2) = t;
|
||
}
|
||
|
||
if (errorcount != save_errorcount)
|
||
remove = true;
|
||
}
|
||
|
||
if (remove)
|
||
*pc = OMP_CLAUSE_CHAIN (c);
|
||
else
|
||
pc = &OMP_CLAUSE_CHAIN (c);
|
||
}
|
||
|
||
bitmap_obstack_release (NULL);
|
||
return clauses;
|
||
}
|
||
|
||
/* For all variables in the tree_list VARS, mark them as thread local. */
|
||
|
||
void
|
||
finish_omp_threadprivate (tree vars)
|
||
{
|
||
tree t;
|
||
|
||
/* Mark every variable in VARS to be assigned thread local storage. */
|
||
for (t = vars; t; t = TREE_CHAIN (t))
|
||
{
|
||
tree v = TREE_PURPOSE (t);
|
||
|
||
/* If V had already been marked threadprivate, it doesn't matter
|
||
whether it had been used prior to this point. */
|
||
if (TREE_USED (v)
|
||
&& (DECL_LANG_SPECIFIC (v) == NULL
|
||
|| !CP_DECL_THREADPRIVATE_P (v)))
|
||
error ("%qE declared %<threadprivate%> after first use", v);
|
||
else if (! TREE_STATIC (v) && ! DECL_EXTERNAL (v))
|
||
error ("automatic variable %qE cannot be %<threadprivate%>", v);
|
||
else if (! COMPLETE_TYPE_P (TREE_TYPE (v)))
|
||
error ("%<threadprivate%> %qE has incomplete type", v);
|
||
else if (TREE_STATIC (v) && TYPE_P (CP_DECL_CONTEXT (v)))
|
||
error ("%<threadprivate%> %qE is not file, namespace "
|
||
"or block scope variable", v);
|
||
else
|
||
{
|
||
/* Allocate a LANG_SPECIFIC structure for V, if needed. */
|
||
if (DECL_LANG_SPECIFIC (v) == NULL)
|
||
{
|
||
retrofit_lang_decl (v);
|
||
|
||
/* Make sure that DECL_DISCRIMINATOR_P continues to be true
|
||
after the allocation of the lang_decl structure. */
|
||
if (DECL_DISCRIMINATOR_P (v))
|
||
DECL_LANG_SPECIFIC (v)->decl_flags.u2sel = 1;
|
||
}
|
||
|
||
if (! DECL_THREAD_LOCAL_P (v))
|
||
{
|
||
DECL_TLS_MODEL (v) = decl_default_tls_model (v);
|
||
/* If rtl has been already set for this var, call
|
||
make_decl_rtl once again, so that encode_section_info
|
||
has a chance to look at the new decl flags. */
|
||
if (DECL_RTL_SET_P (v))
|
||
make_decl_rtl (v);
|
||
}
|
||
CP_DECL_THREADPRIVATE_P (v) = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Build an OpenMP structured block. */
|
||
|
||
tree
|
||
begin_omp_structured_block (void)
|
||
{
|
||
return do_pushlevel (sk_omp);
|
||
}
|
||
|
||
tree
|
||
finish_omp_structured_block (tree block)
|
||
{
|
||
return do_poplevel (block);
|
||
}
|
||
|
||
/* Similarly, except force the retention of the BLOCK. */
|
||
|
||
tree
|
||
begin_omp_parallel (void)
|
||
{
|
||
keep_next_level (true);
|
||
return begin_omp_structured_block ();
|
||
}
|
||
|
||
tree
|
||
finish_omp_parallel (tree clauses, tree body)
|
||
{
|
||
tree stmt;
|
||
|
||
body = finish_omp_structured_block (body);
|
||
|
||
stmt = make_node (OMP_PARALLEL);
|
||
TREE_TYPE (stmt) = void_type_node;
|
||
OMP_PARALLEL_CLAUSES (stmt) = clauses;
|
||
OMP_PARALLEL_BODY (stmt) = body;
|
||
|
||
return add_stmt (stmt);
|
||
}
|
||
|
||
/* Build and validate an OMP_FOR statement. CLAUSES, BODY, COND, INCR
|
||
are directly for their associated operands in the statement. DECL
|
||
and INIT are a combo; if DECL is NULL then INIT ought to be a
|
||
MODIFY_EXPR, and the DECL should be extracted. PRE_BODY are
|
||
optional statements that need to go before the loop into its
|
||
sk_omp scope. */
|
||
|
||
tree
|
||
finish_omp_for (location_t locus, tree decl, tree init, tree cond,
|
||
tree incr, tree body, tree pre_body)
|
||
{
|
||
if (decl == NULL)
|
||
{
|
||
if (init != NULL)
|
||
switch (TREE_CODE (init))
|
||
{
|
||
case MODIFY_EXPR:
|
||
decl = TREE_OPERAND (init, 0);
|
||
init = TREE_OPERAND (init, 1);
|
||
break;
|
||
case MODOP_EXPR:
|
||
if (TREE_CODE (TREE_OPERAND (init, 1)) == NOP_EXPR)
|
||
{
|
||
decl = TREE_OPERAND (init, 0);
|
||
init = TREE_OPERAND (init, 2);
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (decl == NULL)
|
||
{
|
||
error ("expected iteration declaration or initialization");
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
if (type_dependent_expression_p (decl)
|
||
|| type_dependent_expression_p (init)
|
||
|| (cond && type_dependent_expression_p (cond))
|
||
|| (incr && type_dependent_expression_p (incr)))
|
||
{
|
||
tree stmt;
|
||
|
||
if (cond == NULL)
|
||
{
|
||
error ("%Hmissing controlling predicate", &locus);
|
||
return NULL;
|
||
}
|
||
|
||
if (incr == NULL)
|
||
{
|
||
error ("%Hmissing increment expression", &locus);
|
||
return NULL;
|
||
}
|
||
|
||
stmt = make_node (OMP_FOR);
|
||
|
||
/* This is really just a place-holder. We'll be decomposing this
|
||
again and going through the build_modify_expr path below when
|
||
we instantiate the thing. */
|
||
init = build2 (MODIFY_EXPR, void_type_node, decl, init);
|
||
|
||
TREE_TYPE (stmt) = void_type_node;
|
||
OMP_FOR_INIT (stmt) = init;
|
||
OMP_FOR_COND (stmt) = cond;
|
||
OMP_FOR_INCR (stmt) = incr;
|
||
OMP_FOR_BODY (stmt) = body;
|
||
OMP_FOR_PRE_BODY (stmt) = pre_body;
|
||
|
||
SET_EXPR_LOCATION (stmt, locus);
|
||
return add_stmt (stmt);
|
||
}
|
||
|
||
if (!DECL_P (decl))
|
||
{
|
||
error ("expected iteration declaration or initialization");
|
||
return NULL;
|
||
}
|
||
|
||
if (pre_body == NULL || IS_EMPTY_STMT (pre_body))
|
||
pre_body = NULL;
|
||
else if (! processing_template_decl)
|
||
{
|
||
add_stmt (pre_body);
|
||
pre_body = NULL;
|
||
}
|
||
init = build_modify_expr (decl, NOP_EXPR, init);
|
||
return c_finish_omp_for (locus, decl, init, cond, incr, body, pre_body);
|
||
}
|
||
|
||
void
|
||
finish_omp_atomic (enum tree_code code, tree lhs, tree rhs)
|
||
{
|
||
tree orig_lhs;
|
||
tree orig_rhs;
|
||
bool dependent_p;
|
||
tree stmt;
|
||
|
||
orig_lhs = lhs;
|
||
orig_rhs = rhs;
|
||
dependent_p = false;
|
||
stmt = NULL_TREE;
|
||
|
||
/* Even in a template, we can detect invalid uses of the atomic
|
||
pragma if neither LHS nor RHS is type-dependent. */
|
||
if (processing_template_decl)
|
||
{
|
||
dependent_p = (type_dependent_expression_p (lhs)
|
||
|| type_dependent_expression_p (rhs));
|
||
if (!dependent_p)
|
||
{
|
||
lhs = build_non_dependent_expr (lhs);
|
||
rhs = build_non_dependent_expr (rhs);
|
||
}
|
||
}
|
||
if (!dependent_p)
|
||
{
|
||
stmt = c_finish_omp_atomic (code, lhs, rhs);
|
||
if (stmt == error_mark_node)
|
||
return;
|
||
}
|
||
if (processing_template_decl)
|
||
{
|
||
stmt = build2 (OMP_ATOMIC, void_type_node, orig_lhs, orig_rhs);
|
||
OMP_ATOMIC_DEPENDENT_P (stmt) = 1;
|
||
OMP_ATOMIC_CODE (stmt) = code;
|
||
}
|
||
add_stmt (stmt);
|
||
}
|
||
|
||
void
|
||
finish_omp_barrier (void)
|
||
{
|
||
tree fn = built_in_decls[BUILT_IN_GOMP_BARRIER];
|
||
tree stmt = finish_call_expr (fn, NULL, false, false);
|
||
finish_expr_stmt (stmt);
|
||
}
|
||
|
||
void
|
||
finish_omp_flush (void)
|
||
{
|
||
tree fn = built_in_decls[BUILT_IN_SYNCHRONIZE];
|
||
tree stmt = finish_call_expr (fn, NULL, false, false);
|
||
finish_expr_stmt (stmt);
|
||
}
|
||
|
||
/* True if OpenMP sharing attribute of DECL is predetermined. */
|
||
|
||
enum omp_clause_default_kind
|
||
cxx_omp_predetermined_sharing (tree decl)
|
||
{
|
||
enum omp_clause_default_kind kind;
|
||
|
||
kind = c_omp_predetermined_sharing (decl);
|
||
if (kind != OMP_CLAUSE_DEFAULT_UNSPECIFIED)
|
||
return kind;
|
||
|
||
/* Static data members are predetermined as shared. */
|
||
if (TREE_STATIC (decl))
|
||
{
|
||
tree ctx = CP_DECL_CONTEXT (decl);
|
||
if (TYPE_P (ctx) && IS_AGGR_TYPE (ctx))
|
||
return OMP_CLAUSE_DEFAULT_SHARED;
|
||
}
|
||
|
||
return OMP_CLAUSE_DEFAULT_UNSPECIFIED;
|
||
}
|
||
|
||
void
|
||
init_cp_semantics (void)
|
||
{
|
||
}
|
||
|
||
#include "gt-cp-semantics.h"
|