ff9b61ca07
The variables that are extern in the netmap header file should be defined in ixl_txrx.c (the file that is included in both ixl(4)/ixlv(4), not in the main driver source files. Reported by: ed@, dim@, ngie@
1847 lines
47 KiB
C
1847 lines
47 KiB
C
/******************************************************************************
|
|
|
|
Copyright (c) 2013-2015, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. Neither the name of the Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
******************************************************************************/
|
|
/*$FreeBSD$*/
|
|
|
|
/*
|
|
** IXL driver TX/RX Routines:
|
|
** This was seperated to allow usage by
|
|
** both the PF and VF drivers.
|
|
*/
|
|
|
|
#ifndef IXL_STANDALONE_BUILD
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_rss.h"
|
|
#endif
|
|
|
|
#include "ixl.h"
|
|
|
|
#ifdef RSS
|
|
#include <net/rss_config.h>
|
|
#endif
|
|
|
|
/* Local Prototypes */
|
|
static void ixl_rx_checksum(struct mbuf *, u32, u32, u8);
|
|
static void ixl_refresh_mbufs(struct ixl_queue *, int);
|
|
static int ixl_xmit(struct ixl_queue *, struct mbuf **);
|
|
static int ixl_tx_setup_offload(struct ixl_queue *,
|
|
struct mbuf *, u32 *, u32 *);
|
|
static bool ixl_tso_setup(struct ixl_queue *, struct mbuf *);
|
|
|
|
static inline void ixl_rx_discard(struct rx_ring *, int);
|
|
static inline void ixl_rx_input(struct rx_ring *, struct ifnet *,
|
|
struct mbuf *, u8);
|
|
|
|
static inline bool ixl_tso_detect_sparse(struct mbuf *mp);
|
|
static int ixl_tx_setup_offload(struct ixl_queue *que,
|
|
struct mbuf *mp, u32 *cmd, u32 *off);
|
|
static inline u32 ixl_get_tx_head(struct ixl_queue *que);
|
|
|
|
#ifdef DEV_NETMAP
|
|
#include <dev/netmap/if_ixl_netmap.h>
|
|
int ixl_rx_miss, ixl_rx_miss_bufs, ixl_crcstrip = 1;
|
|
#endif /* DEV_NETMAP */
|
|
|
|
/*
|
|
* @key key is saved into this parameter
|
|
*/
|
|
void
|
|
ixl_get_default_rss_key(u32 *key)
|
|
{
|
|
MPASS(key != NULL);
|
|
|
|
u32 rss_seed[IXL_RSS_KEY_SIZE_REG] = {0x41b01687,
|
|
0x183cfd8c, 0xce880440, 0x580cbc3c,
|
|
0x35897377, 0x328b25e1, 0x4fa98922,
|
|
0xb7d90c14, 0xd5bad70d, 0xcd15a2c1,
|
|
0x0, 0x0, 0x0};
|
|
|
|
bcopy(rss_seed, key, IXL_RSS_KEY_SIZE);
|
|
}
|
|
|
|
/*
|
|
** Multiqueue Transmit driver
|
|
*/
|
|
int
|
|
ixl_mq_start(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct ixl_vsi *vsi = ifp->if_softc;
|
|
struct ixl_queue *que;
|
|
struct tx_ring *txr;
|
|
int err, i;
|
|
#ifdef RSS
|
|
u32 bucket_id;
|
|
#endif
|
|
|
|
/*
|
|
** Which queue to use:
|
|
**
|
|
** When doing RSS, map it to the same outbound
|
|
** queue as the incoming flow would be mapped to.
|
|
** If everything is setup correctly, it should be
|
|
** the same bucket that the current CPU we're on is.
|
|
*/
|
|
if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
|
|
#ifdef RSS
|
|
if (rss_hash2bucket(m->m_pkthdr.flowid,
|
|
M_HASHTYPE_GET(m), &bucket_id) == 0) {
|
|
i = bucket_id % vsi->num_queues;
|
|
} else
|
|
#endif
|
|
i = m->m_pkthdr.flowid % vsi->num_queues;
|
|
} else
|
|
i = curcpu % vsi->num_queues;
|
|
|
|
que = &vsi->queues[i];
|
|
txr = &que->txr;
|
|
|
|
err = drbr_enqueue(ifp, txr->br, m);
|
|
if (err)
|
|
return (err);
|
|
if (IXL_TX_TRYLOCK(txr)) {
|
|
ixl_mq_start_locked(ifp, txr);
|
|
IXL_TX_UNLOCK(txr);
|
|
} else
|
|
taskqueue_enqueue(que->tq, &que->tx_task);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ixl_mq_start_locked(struct ifnet *ifp, struct tx_ring *txr)
|
|
{
|
|
struct ixl_queue *que = txr->que;
|
|
struct ixl_vsi *vsi = que->vsi;
|
|
struct mbuf *next;
|
|
int err = 0;
|
|
|
|
|
|
if (((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) ||
|
|
vsi->link_active == 0)
|
|
return (ENETDOWN);
|
|
|
|
/* Process the transmit queue */
|
|
while ((next = drbr_peek(ifp, txr->br)) != NULL) {
|
|
if ((err = ixl_xmit(que, &next)) != 0) {
|
|
if (next == NULL)
|
|
drbr_advance(ifp, txr->br);
|
|
else
|
|
drbr_putback(ifp, txr->br, next);
|
|
break;
|
|
}
|
|
drbr_advance(ifp, txr->br);
|
|
/* Send a copy of the frame to the BPF listener */
|
|
ETHER_BPF_MTAP(ifp, next);
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
break;
|
|
}
|
|
|
|
if (txr->avail < IXL_TX_CLEANUP_THRESHOLD)
|
|
ixl_txeof(que);
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Called from a taskqueue to drain queued transmit packets.
|
|
*/
|
|
void
|
|
ixl_deferred_mq_start(void *arg, int pending)
|
|
{
|
|
struct ixl_queue *que = arg;
|
|
struct tx_ring *txr = &que->txr;
|
|
struct ixl_vsi *vsi = que->vsi;
|
|
struct ifnet *ifp = vsi->ifp;
|
|
|
|
IXL_TX_LOCK(txr);
|
|
if (!drbr_empty(ifp, txr->br))
|
|
ixl_mq_start_locked(ifp, txr);
|
|
IXL_TX_UNLOCK(txr);
|
|
}
|
|
|
|
/*
|
|
** Flush all queue ring buffers
|
|
*/
|
|
void
|
|
ixl_qflush(struct ifnet *ifp)
|
|
{
|
|
struct ixl_vsi *vsi = ifp->if_softc;
|
|
|
|
for (int i = 0; i < vsi->num_queues; i++) {
|
|
struct ixl_queue *que = &vsi->queues[i];
|
|
struct tx_ring *txr = &que->txr;
|
|
struct mbuf *m;
|
|
IXL_TX_LOCK(txr);
|
|
while ((m = buf_ring_dequeue_sc(txr->br)) != NULL)
|
|
m_freem(m);
|
|
IXL_TX_UNLOCK(txr);
|
|
}
|
|
if_qflush(ifp);
|
|
}
|
|
|
|
/*
|
|
** Find mbuf chains passed to the driver
|
|
** that are 'sparse', using more than 8
|
|
** mbufs to deliver an mss-size chunk of data
|
|
*/
|
|
static inline bool
|
|
ixl_tso_detect_sparse(struct mbuf *mp)
|
|
{
|
|
struct mbuf *m;
|
|
int num = 0, mss;
|
|
bool ret = FALSE;
|
|
|
|
mss = mp->m_pkthdr.tso_segsz;
|
|
for (m = mp->m_next; m != NULL; m = m->m_next) {
|
|
num++;
|
|
mss -= m->m_len;
|
|
if (mss < 1)
|
|
break;
|
|
if (m->m_next == NULL)
|
|
break;
|
|
}
|
|
if (num > IXL_SPARSE_CHAIN)
|
|
ret = TRUE;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine maps the mbufs to tx descriptors, allowing the
|
|
* TX engine to transmit the packets.
|
|
* - return 0 on success, positive on failure
|
|
*
|
|
**********************************************************************/
|
|
#define IXL_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
|
|
|
|
static int
|
|
ixl_xmit(struct ixl_queue *que, struct mbuf **m_headp)
|
|
{
|
|
struct ixl_vsi *vsi = que->vsi;
|
|
struct i40e_hw *hw = vsi->hw;
|
|
struct tx_ring *txr = &que->txr;
|
|
struct ixl_tx_buf *buf;
|
|
struct i40e_tx_desc *txd = NULL;
|
|
struct mbuf *m_head, *m;
|
|
int i, j, error, nsegs;
|
|
int first, last = 0;
|
|
u16 vtag = 0;
|
|
u32 cmd, off;
|
|
bus_dmamap_t map;
|
|
bus_dma_tag_t tag;
|
|
bus_dma_segment_t segs[IXL_MAX_TSO_SEGS];
|
|
|
|
cmd = off = 0;
|
|
m_head = *m_headp;
|
|
|
|
/*
|
|
* Important to capture the first descriptor
|
|
* used because it will contain the index of
|
|
* the one we tell the hardware to report back
|
|
*/
|
|
first = txr->next_avail;
|
|
buf = &txr->buffers[first];
|
|
map = buf->map;
|
|
tag = txr->tx_tag;
|
|
|
|
if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
|
|
/* Use larger mapping for TSO */
|
|
tag = txr->tso_tag;
|
|
if (ixl_tso_detect_sparse(m_head)) {
|
|
m = m_defrag(m_head, M_NOWAIT);
|
|
if (m == NULL) {
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_headp = m;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map the packet for DMA.
|
|
*/
|
|
error = bus_dmamap_load_mbuf_sg(tag, map,
|
|
*m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
|
|
if (error == EFBIG) {
|
|
struct mbuf *m;
|
|
|
|
m = m_defrag(*m_headp, M_NOWAIT);
|
|
if (m == NULL) {
|
|
que->mbuf_defrag_failed++;
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_headp = m;
|
|
|
|
/* Try it again */
|
|
error = bus_dmamap_load_mbuf_sg(tag, map,
|
|
*m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
|
|
if (error == ENOMEM) {
|
|
que->tx_dmamap_failed++;
|
|
return (error);
|
|
} else if (error != 0) {
|
|
que->tx_dmamap_failed++;
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error == ENOMEM) {
|
|
que->tx_dmamap_failed++;
|
|
return (error);
|
|
} else if (error != 0) {
|
|
que->tx_dmamap_failed++;
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (error);
|
|
}
|
|
|
|
/* Make certain there are enough descriptors */
|
|
if (nsegs > txr->avail - 2) {
|
|
txr->no_desc++;
|
|
error = ENOBUFS;
|
|
goto xmit_fail;
|
|
}
|
|
m_head = *m_headp;
|
|
|
|
/* Set up the TSO/CSUM offload */
|
|
if (m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD) {
|
|
error = ixl_tx_setup_offload(que, m_head, &cmd, &off);
|
|
if (error)
|
|
goto xmit_fail;
|
|
}
|
|
|
|
cmd |= I40E_TX_DESC_CMD_ICRC;
|
|
/* Grab the VLAN tag */
|
|
if (m_head->m_flags & M_VLANTAG) {
|
|
cmd |= I40E_TX_DESC_CMD_IL2TAG1;
|
|
vtag = htole16(m_head->m_pkthdr.ether_vtag);
|
|
}
|
|
|
|
i = txr->next_avail;
|
|
for (j = 0; j < nsegs; j++) {
|
|
bus_size_t seglen;
|
|
|
|
buf = &txr->buffers[i];
|
|
buf->tag = tag; /* Keep track of the type tag */
|
|
txd = &txr->base[i];
|
|
seglen = segs[j].ds_len;
|
|
|
|
txd->buffer_addr = htole64(segs[j].ds_addr);
|
|
txd->cmd_type_offset_bsz =
|
|
htole64(I40E_TX_DESC_DTYPE_DATA
|
|
| ((u64)cmd << I40E_TXD_QW1_CMD_SHIFT)
|
|
| ((u64)off << I40E_TXD_QW1_OFFSET_SHIFT)
|
|
| ((u64)seglen << I40E_TXD_QW1_TX_BUF_SZ_SHIFT)
|
|
| ((u64)vtag << I40E_TXD_QW1_L2TAG1_SHIFT));
|
|
|
|
last = i; /* descriptor that will get completion IRQ */
|
|
|
|
if (++i == que->num_desc)
|
|
i = 0;
|
|
|
|
buf->m_head = NULL;
|
|
buf->eop_index = -1;
|
|
}
|
|
/* Set the last descriptor for report */
|
|
txd->cmd_type_offset_bsz |=
|
|
htole64(((u64)IXL_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT));
|
|
txr->avail -= nsegs;
|
|
txr->next_avail = i;
|
|
|
|
buf->m_head = m_head;
|
|
/* Swap the dma map between the first and last descriptor */
|
|
txr->buffers[first].map = buf->map;
|
|
buf->map = map;
|
|
bus_dmamap_sync(tag, map, BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Set the index of the descriptor that will be marked done */
|
|
buf = &txr->buffers[first];
|
|
buf->eop_index = last;
|
|
|
|
bus_dmamap_sync(txr->dma.tag, txr->dma.map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
/*
|
|
* Advance the Transmit Descriptor Tail (Tdt), this tells the
|
|
* hardware that this frame is available to transmit.
|
|
*/
|
|
++txr->total_packets;
|
|
wr32(hw, txr->tail, i);
|
|
|
|
/* Mark outstanding work */
|
|
if (que->busy == 0)
|
|
que->busy = 1;
|
|
return (0);
|
|
|
|
xmit_fail:
|
|
bus_dmamap_unload(tag, buf->map);
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Allocate memory for tx_buffer structures. The tx_buffer stores all
|
|
* the information needed to transmit a packet on the wire. This is
|
|
* called only once at attach, setup is done every reset.
|
|
*
|
|
**********************************************************************/
|
|
int
|
|
ixl_allocate_tx_data(struct ixl_queue *que)
|
|
{
|
|
struct tx_ring *txr = &que->txr;
|
|
struct ixl_vsi *vsi = que->vsi;
|
|
device_t dev = vsi->dev;
|
|
struct ixl_tx_buf *buf;
|
|
int error = 0;
|
|
|
|
/*
|
|
* Setup DMA descriptor areas.
|
|
*/
|
|
if ((error = bus_dma_tag_create(NULL, /* parent */
|
|
1, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
IXL_TSO_SIZE, /* maxsize */
|
|
IXL_MAX_TX_SEGS, /* nsegments */
|
|
PAGE_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockfuncarg */
|
|
&txr->tx_tag))) {
|
|
device_printf(dev,"Unable to allocate TX DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Make a special tag for TSO */
|
|
if ((error = bus_dma_tag_create(NULL, /* parent */
|
|
1, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
IXL_TSO_SIZE, /* maxsize */
|
|
IXL_MAX_TSO_SEGS, /* nsegments */
|
|
PAGE_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockfuncarg */
|
|
&txr->tso_tag))) {
|
|
device_printf(dev,"Unable to allocate TX TSO DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (!(txr->buffers =
|
|
(struct ixl_tx_buf *) malloc(sizeof(struct ixl_tx_buf) *
|
|
que->num_desc, M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate tx_buffer memory\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/* Create the descriptor buffer default dma maps */
|
|
buf = txr->buffers;
|
|
for (int i = 0; i < que->num_desc; i++, buf++) {
|
|
buf->tag = txr->tx_tag;
|
|
error = bus_dmamap_create(buf->tag, 0, &buf->map);
|
|
if (error != 0) {
|
|
device_printf(dev, "Unable to create TX DMA map\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
fail:
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* (Re)Initialize a queue transmit ring.
|
|
* - called by init, it clears the descriptor ring,
|
|
* and frees any stale mbufs
|
|
*
|
|
**********************************************************************/
|
|
void
|
|
ixl_init_tx_ring(struct ixl_queue *que)
|
|
{
|
|
#ifdef DEV_NETMAP
|
|
struct netmap_adapter *na = NA(que->vsi->ifp);
|
|
struct netmap_slot *slot;
|
|
#endif /* DEV_NETMAP */
|
|
struct tx_ring *txr = &que->txr;
|
|
struct ixl_tx_buf *buf;
|
|
|
|
/* Clear the old ring contents */
|
|
IXL_TX_LOCK(txr);
|
|
|
|
#ifdef DEV_NETMAP
|
|
/*
|
|
* (under lock): if in netmap mode, do some consistency
|
|
* checks and set slot to entry 0 of the netmap ring.
|
|
*/
|
|
slot = netmap_reset(na, NR_TX, que->me, 0);
|
|
#endif /* DEV_NETMAP */
|
|
|
|
bzero((void *)txr->base,
|
|
(sizeof(struct i40e_tx_desc)) * que->num_desc);
|
|
|
|
/* Reset indices */
|
|
txr->next_avail = 0;
|
|
txr->next_to_clean = 0;
|
|
|
|
#ifdef IXL_FDIR
|
|
/* Initialize flow director */
|
|
txr->atr_rate = ixl_atr_rate;
|
|
txr->atr_count = 0;
|
|
#endif
|
|
|
|
/* Free any existing tx mbufs. */
|
|
buf = txr->buffers;
|
|
for (int i = 0; i < que->num_desc; i++, buf++) {
|
|
if (buf->m_head != NULL) {
|
|
bus_dmamap_sync(buf->tag, buf->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(buf->tag, buf->map);
|
|
m_freem(buf->m_head);
|
|
buf->m_head = NULL;
|
|
}
|
|
#ifdef DEV_NETMAP
|
|
/*
|
|
* In netmap mode, set the map for the packet buffer.
|
|
* NOTE: Some drivers (not this one) also need to set
|
|
* the physical buffer address in the NIC ring.
|
|
* netmap_idx_n2k() maps a nic index, i, into the corresponding
|
|
* netmap slot index, si
|
|
*/
|
|
if (slot) {
|
|
int si = netmap_idx_n2k(&na->tx_rings[que->me], i);
|
|
netmap_load_map(na, buf->tag, buf->map, NMB(na, slot + si));
|
|
}
|
|
#endif /* DEV_NETMAP */
|
|
/* Clear the EOP index */
|
|
buf->eop_index = -1;
|
|
}
|
|
|
|
/* Set number of descriptors available */
|
|
txr->avail = que->num_desc;
|
|
|
|
bus_dmamap_sync(txr->dma.tag, txr->dma.map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
IXL_TX_UNLOCK(txr);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free transmit ring related data structures.
|
|
*
|
|
**********************************************************************/
|
|
void
|
|
ixl_free_que_tx(struct ixl_queue *que)
|
|
{
|
|
struct tx_ring *txr = &que->txr;
|
|
struct ixl_tx_buf *buf;
|
|
|
|
INIT_DBG_IF(que->vsi->ifp, "queue %d: begin", que->me);
|
|
|
|
for (int i = 0; i < que->num_desc; i++) {
|
|
buf = &txr->buffers[i];
|
|
if (buf->m_head != NULL) {
|
|
bus_dmamap_sync(buf->tag, buf->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(buf->tag,
|
|
buf->map);
|
|
m_freem(buf->m_head);
|
|
buf->m_head = NULL;
|
|
if (buf->map != NULL) {
|
|
bus_dmamap_destroy(buf->tag,
|
|
buf->map);
|
|
buf->map = NULL;
|
|
}
|
|
} else if (buf->map != NULL) {
|
|
bus_dmamap_unload(buf->tag,
|
|
buf->map);
|
|
bus_dmamap_destroy(buf->tag,
|
|
buf->map);
|
|
buf->map = NULL;
|
|
}
|
|
}
|
|
if (txr->br != NULL)
|
|
buf_ring_free(txr->br, M_DEVBUF);
|
|
if (txr->buffers != NULL) {
|
|
free(txr->buffers, M_DEVBUF);
|
|
txr->buffers = NULL;
|
|
}
|
|
if (txr->tx_tag != NULL) {
|
|
bus_dma_tag_destroy(txr->tx_tag);
|
|
txr->tx_tag = NULL;
|
|
}
|
|
if (txr->tso_tag != NULL) {
|
|
bus_dma_tag_destroy(txr->tso_tag);
|
|
txr->tso_tag = NULL;
|
|
}
|
|
|
|
INIT_DBG_IF(que->vsi->ifp, "queue %d: end", que->me);
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Setup descriptor for hw offloads
|
|
*
|
|
**********************************************************************/
|
|
|
|
static int
|
|
ixl_tx_setup_offload(struct ixl_queue *que,
|
|
struct mbuf *mp, u32 *cmd, u32 *off)
|
|
{
|
|
struct ether_vlan_header *eh;
|
|
#ifdef INET
|
|
struct ip *ip = NULL;
|
|
#endif
|
|
struct tcphdr *th = NULL;
|
|
#ifdef INET6
|
|
struct ip6_hdr *ip6;
|
|
#endif
|
|
int elen, ip_hlen = 0, tcp_hlen;
|
|
u16 etype;
|
|
u8 ipproto = 0;
|
|
bool tso = FALSE;
|
|
|
|
/* Set up the TSO context descriptor if required */
|
|
if (mp->m_pkthdr.csum_flags & CSUM_TSO) {
|
|
tso = ixl_tso_setup(que, mp);
|
|
if (tso)
|
|
++que->tso;
|
|
else
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Determine where frame payload starts.
|
|
* Jump over vlan headers if already present,
|
|
* helpful for QinQ too.
|
|
*/
|
|
eh = mtod(mp, struct ether_vlan_header *);
|
|
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
|
|
etype = ntohs(eh->evl_proto);
|
|
elen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
|
|
} else {
|
|
etype = ntohs(eh->evl_encap_proto);
|
|
elen = ETHER_HDR_LEN;
|
|
}
|
|
|
|
switch (etype) {
|
|
#ifdef INET
|
|
case ETHERTYPE_IP:
|
|
ip = (struct ip *)(mp->m_data + elen);
|
|
ip_hlen = ip->ip_hl << 2;
|
|
ipproto = ip->ip_p;
|
|
th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
|
|
/* The IP checksum must be recalculated with TSO */
|
|
if (tso)
|
|
*cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
|
|
else
|
|
*cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
|
|
break;
|
|
#endif
|
|
#ifdef INET6
|
|
case ETHERTYPE_IPV6:
|
|
ip6 = (struct ip6_hdr *)(mp->m_data + elen);
|
|
ip_hlen = sizeof(struct ip6_hdr);
|
|
ipproto = ip6->ip6_nxt;
|
|
th = (struct tcphdr *)((caddr_t)ip6 + ip_hlen);
|
|
*cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
|
|
break;
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
|
|
*off |= (elen >> 1) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
|
|
*off |= (ip_hlen >> 2) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
|
|
|
|
switch (ipproto) {
|
|
case IPPROTO_TCP:
|
|
tcp_hlen = th->th_off << 2;
|
|
if (mp->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_TCP_IPV6)) {
|
|
*cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
|
|
*off |= (tcp_hlen >> 2) <<
|
|
I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
}
|
|
#ifdef IXL_FDIR
|
|
ixl_atr(que, th, etype);
|
|
#endif
|
|
break;
|
|
case IPPROTO_UDP:
|
|
if (mp->m_pkthdr.csum_flags & (CSUM_UDP|CSUM_UDP_IPV6)) {
|
|
*cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
|
|
*off |= (sizeof(struct udphdr) >> 2) <<
|
|
I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
}
|
|
break;
|
|
|
|
case IPPROTO_SCTP:
|
|
if (mp->m_pkthdr.csum_flags & (CSUM_SCTP|CSUM_SCTP_IPV6)) {
|
|
*cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
|
|
*off |= (sizeof(struct sctphdr) >> 2) <<
|
|
I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
}
|
|
/* Fall Thru */
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Setup context for hardware segmentation offload (TSO)
|
|
*
|
|
**********************************************************************/
|
|
static bool
|
|
ixl_tso_setup(struct ixl_queue *que, struct mbuf *mp)
|
|
{
|
|
struct tx_ring *txr = &que->txr;
|
|
struct i40e_tx_context_desc *TXD;
|
|
struct ixl_tx_buf *buf;
|
|
u32 cmd, mss, type, tsolen;
|
|
u16 etype;
|
|
int idx, elen, ip_hlen, tcp_hlen;
|
|
struct ether_vlan_header *eh;
|
|
#ifdef INET
|
|
struct ip *ip;
|
|
#endif
|
|
#ifdef INET6
|
|
struct ip6_hdr *ip6;
|
|
#endif
|
|
#if defined(INET6) || defined(INET)
|
|
struct tcphdr *th;
|
|
#endif
|
|
u64 type_cmd_tso_mss;
|
|
|
|
/*
|
|
* Determine where frame payload starts.
|
|
* Jump over vlan headers if already present
|
|
*/
|
|
eh = mtod(mp, struct ether_vlan_header *);
|
|
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
|
|
elen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
|
|
etype = eh->evl_proto;
|
|
} else {
|
|
elen = ETHER_HDR_LEN;
|
|
etype = eh->evl_encap_proto;
|
|
}
|
|
|
|
switch (ntohs(etype)) {
|
|
#ifdef INET6
|
|
case ETHERTYPE_IPV6:
|
|
ip6 = (struct ip6_hdr *)(mp->m_data + elen);
|
|
if (ip6->ip6_nxt != IPPROTO_TCP)
|
|
return (ENXIO);
|
|
ip_hlen = sizeof(struct ip6_hdr);
|
|
th = (struct tcphdr *)((caddr_t)ip6 + ip_hlen);
|
|
th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0);
|
|
tcp_hlen = th->th_off << 2;
|
|
/*
|
|
* The corresponding flag is set by the stack in the IPv4
|
|
* TSO case, but not in IPv6 (at least in FreeBSD 10.2).
|
|
* So, set it here because the rest of the flow requires it.
|
|
*/
|
|
mp->m_pkthdr.csum_flags |= CSUM_TCP_IPV6;
|
|
break;
|
|
#endif
|
|
#ifdef INET
|
|
case ETHERTYPE_IP:
|
|
ip = (struct ip *)(mp->m_data + elen);
|
|
if (ip->ip_p != IPPROTO_TCP)
|
|
return (ENXIO);
|
|
ip->ip_sum = 0;
|
|
ip_hlen = ip->ip_hl << 2;
|
|
th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
|
|
th->th_sum = in_pseudo(ip->ip_src.s_addr,
|
|
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
|
|
tcp_hlen = th->th_off << 2;
|
|
break;
|
|
#endif
|
|
default:
|
|
printf("%s: CSUM_TSO but no supported IP version (0x%04x)",
|
|
__func__, ntohs(etype));
|
|
return FALSE;
|
|
}
|
|
|
|
/* Ensure we have at least the IP+TCP header in the first mbuf. */
|
|
if (mp->m_len < elen + ip_hlen + sizeof(struct tcphdr))
|
|
return FALSE;
|
|
|
|
idx = txr->next_avail;
|
|
buf = &txr->buffers[idx];
|
|
TXD = (struct i40e_tx_context_desc *) &txr->base[idx];
|
|
tsolen = mp->m_pkthdr.len - (elen + ip_hlen + tcp_hlen);
|
|
|
|
type = I40E_TX_DESC_DTYPE_CONTEXT;
|
|
cmd = I40E_TX_CTX_DESC_TSO;
|
|
/* ERJ: this must not be less than 64 */
|
|
mss = mp->m_pkthdr.tso_segsz;
|
|
|
|
type_cmd_tso_mss = ((u64)type << I40E_TXD_CTX_QW1_DTYPE_SHIFT) |
|
|
((u64)cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
|
|
((u64)tsolen << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
|
|
((u64)mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
|
|
TXD->type_cmd_tso_mss = htole64(type_cmd_tso_mss);
|
|
|
|
TXD->tunneling_params = htole32(0);
|
|
buf->m_head = NULL;
|
|
buf->eop_index = -1;
|
|
|
|
if (++idx == que->num_desc)
|
|
idx = 0;
|
|
|
|
txr->avail--;
|
|
txr->next_avail = idx;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
** ixl_get_tx_head - Retrieve the value from the
|
|
** location the HW records its HEAD index
|
|
*/
|
|
static inline u32
|
|
ixl_get_tx_head(struct ixl_queue *que)
|
|
{
|
|
struct tx_ring *txr = &que->txr;
|
|
void *head = &txr->base[que->num_desc];
|
|
return LE32_TO_CPU(*(volatile __le32 *)head);
|
|
}
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Examine each tx_buffer in the used queue. If the hardware is done
|
|
* processing the packet then free associated resources. The
|
|
* tx_buffer is put back on the free queue.
|
|
*
|
|
**********************************************************************/
|
|
bool
|
|
ixl_txeof(struct ixl_queue *que)
|
|
{
|
|
struct tx_ring *txr = &que->txr;
|
|
u32 first, last, head, done, processed;
|
|
struct ixl_tx_buf *buf;
|
|
struct i40e_tx_desc *tx_desc, *eop_desc;
|
|
|
|
|
|
mtx_assert(&txr->mtx, MA_OWNED);
|
|
|
|
#ifdef DEV_NETMAP
|
|
// XXX todo: implement moderation
|
|
if (netmap_tx_irq(que->vsi->ifp, que->me))
|
|
return FALSE;
|
|
#endif /* DEF_NETMAP */
|
|
|
|
/* These are not the descriptors you seek, move along :) */
|
|
if (txr->avail == que->num_desc) {
|
|
que->busy = 0;
|
|
return FALSE;
|
|
}
|
|
|
|
processed = 0;
|
|
first = txr->next_to_clean;
|
|
buf = &txr->buffers[first];
|
|
tx_desc = (struct i40e_tx_desc *)&txr->base[first];
|
|
last = buf->eop_index;
|
|
if (last == -1)
|
|
return FALSE;
|
|
eop_desc = (struct i40e_tx_desc *)&txr->base[last];
|
|
|
|
/* Get the Head WB value */
|
|
head = ixl_get_tx_head(que);
|
|
|
|
/*
|
|
** Get the index of the first descriptor
|
|
** BEYOND the EOP and call that 'done'.
|
|
** I do this so the comparison in the
|
|
** inner while loop below can be simple
|
|
*/
|
|
if (++last == que->num_desc) last = 0;
|
|
done = last;
|
|
|
|
bus_dmamap_sync(txr->dma.tag, txr->dma.map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
/*
|
|
** The HEAD index of the ring is written in a
|
|
** defined location, this rather than a done bit
|
|
** is what is used to keep track of what must be
|
|
** 'cleaned'.
|
|
*/
|
|
while (first != head) {
|
|
/* We clean the range of the packet */
|
|
while (first != done) {
|
|
++txr->avail;
|
|
++processed;
|
|
|
|
if (buf->m_head) {
|
|
txr->bytes += /* for ITR adjustment */
|
|
buf->m_head->m_pkthdr.len;
|
|
txr->tx_bytes += /* for TX stats */
|
|
buf->m_head->m_pkthdr.len;
|
|
bus_dmamap_sync(buf->tag,
|
|
buf->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(buf->tag,
|
|
buf->map);
|
|
m_freem(buf->m_head);
|
|
buf->m_head = NULL;
|
|
buf->map = NULL;
|
|
}
|
|
buf->eop_index = -1;
|
|
|
|
if (++first == que->num_desc)
|
|
first = 0;
|
|
|
|
buf = &txr->buffers[first];
|
|
tx_desc = &txr->base[first];
|
|
}
|
|
++txr->packets;
|
|
/* See if there is more work now */
|
|
last = buf->eop_index;
|
|
if (last != -1) {
|
|
eop_desc = &txr->base[last];
|
|
/* Get next done point */
|
|
if (++last == que->num_desc) last = 0;
|
|
done = last;
|
|
} else
|
|
break;
|
|
}
|
|
bus_dmamap_sync(txr->dma.tag, txr->dma.map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
txr->next_to_clean = first;
|
|
|
|
|
|
/*
|
|
** Hang detection, we know there's
|
|
** work outstanding or the first return
|
|
** would have been taken, so indicate an
|
|
** unsuccessful pass, in local_timer if
|
|
** the value is too great the queue will
|
|
** be considered hung. If anything has been
|
|
** cleaned then reset the state.
|
|
*/
|
|
if ((processed == 0) && (que->busy != IXL_QUEUE_HUNG))
|
|
++que->busy;
|
|
|
|
if (processed)
|
|
que->busy = 1; /* Note this turns off HUNG */
|
|
|
|
/*
|
|
* If there are no pending descriptors, clear the timeout.
|
|
*/
|
|
if (txr->avail == que->num_desc) {
|
|
que->busy = 0;
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Refresh mbuf buffers for RX descriptor rings
|
|
* - now keeps its own state so discards due to resource
|
|
* exhaustion are unnecessary, if an mbuf cannot be obtained
|
|
* it just returns, keeping its placeholder, thus it can simply
|
|
* be recalled to try again.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
ixl_refresh_mbufs(struct ixl_queue *que, int limit)
|
|
{
|
|
struct ixl_vsi *vsi = que->vsi;
|
|
struct rx_ring *rxr = &que->rxr;
|
|
bus_dma_segment_t hseg[1];
|
|
bus_dma_segment_t pseg[1];
|
|
struct ixl_rx_buf *buf;
|
|
struct mbuf *mh, *mp;
|
|
int i, j, nsegs, error;
|
|
bool refreshed = FALSE;
|
|
|
|
i = j = rxr->next_refresh;
|
|
/* Control the loop with one beyond */
|
|
if (++j == que->num_desc)
|
|
j = 0;
|
|
|
|
while (j != limit) {
|
|
buf = &rxr->buffers[i];
|
|
if (rxr->hdr_split == FALSE)
|
|
goto no_split;
|
|
|
|
if (buf->m_head == NULL) {
|
|
mh = m_gethdr(M_NOWAIT, MT_DATA);
|
|
if (mh == NULL)
|
|
goto update;
|
|
} else
|
|
mh = buf->m_head;
|
|
|
|
mh->m_pkthdr.len = mh->m_len = MHLEN;
|
|
mh->m_len = MHLEN;
|
|
mh->m_flags |= M_PKTHDR;
|
|
/* Get the memory mapping */
|
|
error = bus_dmamap_load_mbuf_sg(rxr->htag,
|
|
buf->hmap, mh, hseg, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
printf("Refresh mbufs: hdr dmamap load"
|
|
" failure - %d\n", error);
|
|
m_free(mh);
|
|
buf->m_head = NULL;
|
|
goto update;
|
|
}
|
|
buf->m_head = mh;
|
|
bus_dmamap_sync(rxr->htag, buf->hmap,
|
|
BUS_DMASYNC_PREREAD);
|
|
rxr->base[i].read.hdr_addr =
|
|
htole64(hseg[0].ds_addr);
|
|
|
|
no_split:
|
|
if (buf->m_pack == NULL) {
|
|
mp = m_getjcl(M_NOWAIT, MT_DATA,
|
|
M_PKTHDR, rxr->mbuf_sz);
|
|
if (mp == NULL)
|
|
goto update;
|
|
} else
|
|
mp = buf->m_pack;
|
|
|
|
mp->m_pkthdr.len = mp->m_len = rxr->mbuf_sz;
|
|
/* Get the memory mapping */
|
|
error = bus_dmamap_load_mbuf_sg(rxr->ptag,
|
|
buf->pmap, mp, pseg, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
printf("Refresh mbufs: payload dmamap load"
|
|
" failure - %d\n", error);
|
|
m_free(mp);
|
|
buf->m_pack = NULL;
|
|
goto update;
|
|
}
|
|
buf->m_pack = mp;
|
|
bus_dmamap_sync(rxr->ptag, buf->pmap,
|
|
BUS_DMASYNC_PREREAD);
|
|
rxr->base[i].read.pkt_addr =
|
|
htole64(pseg[0].ds_addr);
|
|
/* Used only when doing header split */
|
|
rxr->base[i].read.hdr_addr = 0;
|
|
|
|
refreshed = TRUE;
|
|
/* Next is precalculated */
|
|
i = j;
|
|
rxr->next_refresh = i;
|
|
if (++j == que->num_desc)
|
|
j = 0;
|
|
}
|
|
update:
|
|
if (refreshed) /* Update hardware tail index */
|
|
wr32(vsi->hw, rxr->tail, rxr->next_refresh);
|
|
return;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Allocate memory for rx_buffer structures. Since we use one
|
|
* rx_buffer per descriptor, the maximum number of rx_buffer's
|
|
* that we'll need is equal to the number of receive descriptors
|
|
* that we've defined.
|
|
*
|
|
**********************************************************************/
|
|
int
|
|
ixl_allocate_rx_data(struct ixl_queue *que)
|
|
{
|
|
struct rx_ring *rxr = &que->rxr;
|
|
struct ixl_vsi *vsi = que->vsi;
|
|
device_t dev = vsi->dev;
|
|
struct ixl_rx_buf *buf;
|
|
int i, bsize, error;
|
|
|
|
bsize = sizeof(struct ixl_rx_buf) * que->num_desc;
|
|
if (!(rxr->buffers =
|
|
(struct ixl_rx_buf *) malloc(bsize,
|
|
M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate rx_buffer memory\n");
|
|
error = ENOMEM;
|
|
return (error);
|
|
}
|
|
|
|
if ((error = bus_dma_tag_create(NULL, /* parent */
|
|
1, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MSIZE, /* maxsize */
|
|
1, /* nsegments */
|
|
MSIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockfuncarg */
|
|
&rxr->htag))) {
|
|
device_printf(dev, "Unable to create RX DMA htag\n");
|
|
return (error);
|
|
}
|
|
|
|
if ((error = bus_dma_tag_create(NULL, /* parent */
|
|
1, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MJUM16BYTES, /* maxsize */
|
|
1, /* nsegments */
|
|
MJUM16BYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockfuncarg */
|
|
&rxr->ptag))) {
|
|
device_printf(dev, "Unable to create RX DMA ptag\n");
|
|
return (error);
|
|
}
|
|
|
|
for (i = 0; i < que->num_desc; i++) {
|
|
buf = &rxr->buffers[i];
|
|
error = bus_dmamap_create(rxr->htag,
|
|
BUS_DMA_NOWAIT, &buf->hmap);
|
|
if (error) {
|
|
device_printf(dev, "Unable to create RX head map\n");
|
|
break;
|
|
}
|
|
error = bus_dmamap_create(rxr->ptag,
|
|
BUS_DMA_NOWAIT, &buf->pmap);
|
|
if (error) {
|
|
device_printf(dev, "Unable to create RX pkt map\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* (Re)Initialize the queue receive ring and its buffers.
|
|
*
|
|
**********************************************************************/
|
|
int
|
|
ixl_init_rx_ring(struct ixl_queue *que)
|
|
{
|
|
struct rx_ring *rxr = &que->rxr;
|
|
struct ixl_vsi *vsi = que->vsi;
|
|
#if defined(INET6) || defined(INET)
|
|
struct ifnet *ifp = vsi->ifp;
|
|
struct lro_ctrl *lro = &rxr->lro;
|
|
#endif
|
|
struct ixl_rx_buf *buf;
|
|
bus_dma_segment_t pseg[1], hseg[1];
|
|
int rsize, nsegs, error = 0;
|
|
#ifdef DEV_NETMAP
|
|
struct netmap_adapter *na = NA(que->vsi->ifp);
|
|
struct netmap_slot *slot;
|
|
#endif /* DEV_NETMAP */
|
|
|
|
IXL_RX_LOCK(rxr);
|
|
#ifdef DEV_NETMAP
|
|
/* same as in ixl_init_tx_ring() */
|
|
slot = netmap_reset(na, NR_RX, que->me, 0);
|
|
#endif /* DEV_NETMAP */
|
|
/* Clear the ring contents */
|
|
rsize = roundup2(que->num_desc *
|
|
sizeof(union i40e_rx_desc), DBA_ALIGN);
|
|
bzero((void *)rxr->base, rsize);
|
|
/* Cleanup any existing buffers */
|
|
for (int i = 0; i < que->num_desc; i++) {
|
|
buf = &rxr->buffers[i];
|
|
if (buf->m_head != NULL) {
|
|
bus_dmamap_sync(rxr->htag, buf->hmap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(rxr->htag, buf->hmap);
|
|
buf->m_head->m_flags |= M_PKTHDR;
|
|
m_freem(buf->m_head);
|
|
}
|
|
if (buf->m_pack != NULL) {
|
|
bus_dmamap_sync(rxr->ptag, buf->pmap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(rxr->ptag, buf->pmap);
|
|
buf->m_pack->m_flags |= M_PKTHDR;
|
|
m_freem(buf->m_pack);
|
|
}
|
|
buf->m_head = NULL;
|
|
buf->m_pack = NULL;
|
|
}
|
|
|
|
/* header split is off */
|
|
rxr->hdr_split = FALSE;
|
|
|
|
/* Now replenish the mbufs */
|
|
for (int j = 0; j != que->num_desc; ++j) {
|
|
struct mbuf *mh, *mp;
|
|
|
|
buf = &rxr->buffers[j];
|
|
#ifdef DEV_NETMAP
|
|
/*
|
|
* In netmap mode, fill the map and set the buffer
|
|
* address in the NIC ring, considering the offset
|
|
* between the netmap and NIC rings (see comment in
|
|
* ixgbe_setup_transmit_ring() ). No need to allocate
|
|
* an mbuf, so end the block with a continue;
|
|
*/
|
|
if (slot) {
|
|
int sj = netmap_idx_n2k(&na->rx_rings[que->me], j);
|
|
uint64_t paddr;
|
|
void *addr;
|
|
|
|
addr = PNMB(na, slot + sj, &paddr);
|
|
netmap_load_map(na, rxr->dma.tag, buf->pmap, addr);
|
|
/* Update descriptor and the cached value */
|
|
rxr->base[j].read.pkt_addr = htole64(paddr);
|
|
rxr->base[j].read.hdr_addr = 0;
|
|
continue;
|
|
}
|
|
#endif /* DEV_NETMAP */
|
|
/*
|
|
** Don't allocate mbufs if not
|
|
** doing header split, its wasteful
|
|
*/
|
|
if (rxr->hdr_split == FALSE)
|
|
goto skip_head;
|
|
|
|
/* First the header */
|
|
buf->m_head = m_gethdr(M_NOWAIT, MT_DATA);
|
|
if (buf->m_head == NULL) {
|
|
error = ENOBUFS;
|
|
goto fail;
|
|
}
|
|
m_adj(buf->m_head, ETHER_ALIGN);
|
|
mh = buf->m_head;
|
|
mh->m_len = mh->m_pkthdr.len = MHLEN;
|
|
mh->m_flags |= M_PKTHDR;
|
|
/* Get the memory mapping */
|
|
error = bus_dmamap_load_mbuf_sg(rxr->htag,
|
|
buf->hmap, buf->m_head, hseg,
|
|
&nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) /* Nothing elegant to do here */
|
|
goto fail;
|
|
bus_dmamap_sync(rxr->htag,
|
|
buf->hmap, BUS_DMASYNC_PREREAD);
|
|
/* Update descriptor */
|
|
rxr->base[j].read.hdr_addr = htole64(hseg[0].ds_addr);
|
|
|
|
skip_head:
|
|
/* Now the payload cluster */
|
|
buf->m_pack = m_getjcl(M_NOWAIT, MT_DATA,
|
|
M_PKTHDR, rxr->mbuf_sz);
|
|
if (buf->m_pack == NULL) {
|
|
error = ENOBUFS;
|
|
goto fail;
|
|
}
|
|
mp = buf->m_pack;
|
|
mp->m_pkthdr.len = mp->m_len = rxr->mbuf_sz;
|
|
/* Get the memory mapping */
|
|
error = bus_dmamap_load_mbuf_sg(rxr->ptag,
|
|
buf->pmap, mp, pseg,
|
|
&nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0)
|
|
goto fail;
|
|
bus_dmamap_sync(rxr->ptag,
|
|
buf->pmap, BUS_DMASYNC_PREREAD);
|
|
/* Update descriptor */
|
|
rxr->base[j].read.pkt_addr = htole64(pseg[0].ds_addr);
|
|
rxr->base[j].read.hdr_addr = 0;
|
|
}
|
|
|
|
|
|
/* Setup our descriptor indices */
|
|
rxr->next_check = 0;
|
|
rxr->next_refresh = 0;
|
|
rxr->lro_enabled = FALSE;
|
|
rxr->split = 0;
|
|
rxr->bytes = 0;
|
|
rxr->discard = FALSE;
|
|
|
|
wr32(vsi->hw, rxr->tail, que->num_desc - 1);
|
|
ixl_flush(vsi->hw);
|
|
|
|
#if defined(INET6) || defined(INET)
|
|
/*
|
|
** Now set up the LRO interface:
|
|
*/
|
|
if (ifp->if_capenable & IFCAP_LRO) {
|
|
int err = tcp_lro_init(lro);
|
|
if (err) {
|
|
if_printf(ifp, "queue %d: LRO Initialization failed!\n", que->me);
|
|
goto fail;
|
|
}
|
|
INIT_DBG_IF(ifp, "queue %d: RX Soft LRO Initialized", que->me);
|
|
rxr->lro_enabled = TRUE;
|
|
lro->ifp = vsi->ifp;
|
|
}
|
|
#endif
|
|
|
|
bus_dmamap_sync(rxr->dma.tag, rxr->dma.map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
fail:
|
|
IXL_RX_UNLOCK(rxr);
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free station receive ring data structures
|
|
*
|
|
**********************************************************************/
|
|
void
|
|
ixl_free_que_rx(struct ixl_queue *que)
|
|
{
|
|
struct rx_ring *rxr = &que->rxr;
|
|
struct ixl_rx_buf *buf;
|
|
|
|
INIT_DBG_IF(que->vsi->ifp, "queue %d: begin", que->me);
|
|
|
|
/* Cleanup any existing buffers */
|
|
if (rxr->buffers != NULL) {
|
|
for (int i = 0; i < que->num_desc; i++) {
|
|
buf = &rxr->buffers[i];
|
|
if (buf->m_head != NULL) {
|
|
bus_dmamap_sync(rxr->htag, buf->hmap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(rxr->htag, buf->hmap);
|
|
buf->m_head->m_flags |= M_PKTHDR;
|
|
m_freem(buf->m_head);
|
|
}
|
|
if (buf->m_pack != NULL) {
|
|
bus_dmamap_sync(rxr->ptag, buf->pmap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(rxr->ptag, buf->pmap);
|
|
buf->m_pack->m_flags |= M_PKTHDR;
|
|
m_freem(buf->m_pack);
|
|
}
|
|
buf->m_head = NULL;
|
|
buf->m_pack = NULL;
|
|
if (buf->hmap != NULL) {
|
|
bus_dmamap_destroy(rxr->htag, buf->hmap);
|
|
buf->hmap = NULL;
|
|
}
|
|
if (buf->pmap != NULL) {
|
|
bus_dmamap_destroy(rxr->ptag, buf->pmap);
|
|
buf->pmap = NULL;
|
|
}
|
|
}
|
|
if (rxr->buffers != NULL) {
|
|
free(rxr->buffers, M_DEVBUF);
|
|
rxr->buffers = NULL;
|
|
}
|
|
}
|
|
|
|
if (rxr->htag != NULL) {
|
|
bus_dma_tag_destroy(rxr->htag);
|
|
rxr->htag = NULL;
|
|
}
|
|
if (rxr->ptag != NULL) {
|
|
bus_dma_tag_destroy(rxr->ptag);
|
|
rxr->ptag = NULL;
|
|
}
|
|
|
|
INIT_DBG_IF(que->vsi->ifp, "queue %d: end", que->me);
|
|
return;
|
|
}
|
|
|
|
static inline void
|
|
ixl_rx_input(struct rx_ring *rxr, struct ifnet *ifp, struct mbuf *m, u8 ptype)
|
|
{
|
|
|
|
#if defined(INET6) || defined(INET)
|
|
/*
|
|
* ATM LRO is only for IPv4/TCP packets and TCP checksum of the packet
|
|
* should be computed by hardware. Also it should not have VLAN tag in
|
|
* ethernet header.
|
|
*/
|
|
if (rxr->lro_enabled &&
|
|
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
|
|
(m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
|
|
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) {
|
|
/*
|
|
* Send to the stack if:
|
|
** - LRO not enabled, or
|
|
** - no LRO resources, or
|
|
** - lro enqueue fails
|
|
*/
|
|
if (rxr->lro.lro_cnt != 0)
|
|
if (tcp_lro_rx(&rxr->lro, m, 0) == 0)
|
|
return;
|
|
}
|
|
#endif
|
|
IXL_RX_UNLOCK(rxr);
|
|
(*ifp->if_input)(ifp, m);
|
|
IXL_RX_LOCK(rxr);
|
|
}
|
|
|
|
|
|
static inline void
|
|
ixl_rx_discard(struct rx_ring *rxr, int i)
|
|
{
|
|
struct ixl_rx_buf *rbuf;
|
|
|
|
rbuf = &rxr->buffers[i];
|
|
|
|
if (rbuf->fmp != NULL) {/* Partial chain ? */
|
|
rbuf->fmp->m_flags |= M_PKTHDR;
|
|
m_freem(rbuf->fmp);
|
|
rbuf->fmp = NULL;
|
|
}
|
|
|
|
/*
|
|
** With advanced descriptors the writeback
|
|
** clobbers the buffer addrs, so its easier
|
|
** to just free the existing mbufs and take
|
|
** the normal refresh path to get new buffers
|
|
** and mapping.
|
|
*/
|
|
if (rbuf->m_head) {
|
|
m_free(rbuf->m_head);
|
|
rbuf->m_head = NULL;
|
|
}
|
|
|
|
if (rbuf->m_pack) {
|
|
m_free(rbuf->m_pack);
|
|
rbuf->m_pack = NULL;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
#ifdef RSS
|
|
/*
|
|
** i40e_ptype_to_hash: parse the packet type
|
|
** to determine the appropriate hash.
|
|
*/
|
|
static inline int
|
|
ixl_ptype_to_hash(u8 ptype)
|
|
{
|
|
struct i40e_rx_ptype_decoded decoded;
|
|
u8 ex = 0;
|
|
|
|
decoded = decode_rx_desc_ptype(ptype);
|
|
ex = decoded.outer_frag;
|
|
|
|
if (!decoded.known)
|
|
return M_HASHTYPE_OPAQUE_HASH;
|
|
|
|
if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_L2)
|
|
return M_HASHTYPE_OPAQUE_HASH;
|
|
|
|
/* Note: anything that gets to this point is IP */
|
|
if (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6) {
|
|
switch (decoded.inner_prot) {
|
|
case I40E_RX_PTYPE_INNER_PROT_TCP:
|
|
if (ex)
|
|
return M_HASHTYPE_RSS_TCP_IPV6_EX;
|
|
else
|
|
return M_HASHTYPE_RSS_TCP_IPV6;
|
|
case I40E_RX_PTYPE_INNER_PROT_UDP:
|
|
if (ex)
|
|
return M_HASHTYPE_RSS_UDP_IPV6_EX;
|
|
else
|
|
return M_HASHTYPE_RSS_UDP_IPV6;
|
|
default:
|
|
if (ex)
|
|
return M_HASHTYPE_RSS_IPV6_EX;
|
|
else
|
|
return M_HASHTYPE_RSS_IPV6;
|
|
}
|
|
}
|
|
if (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4) {
|
|
switch (decoded.inner_prot) {
|
|
case I40E_RX_PTYPE_INNER_PROT_TCP:
|
|
return M_HASHTYPE_RSS_TCP_IPV4;
|
|
case I40E_RX_PTYPE_INNER_PROT_UDP:
|
|
if (ex)
|
|
return M_HASHTYPE_RSS_UDP_IPV4_EX;
|
|
else
|
|
return M_HASHTYPE_RSS_UDP_IPV4;
|
|
default:
|
|
return M_HASHTYPE_RSS_IPV4;
|
|
}
|
|
}
|
|
/* We should never get here!! */
|
|
return M_HASHTYPE_OPAQUE_HASH;
|
|
}
|
|
#endif /* RSS */
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine executes in interrupt context. It replenishes
|
|
* the mbufs in the descriptor and sends data which has been
|
|
* dma'ed into host memory to upper layer.
|
|
*
|
|
* We loop at most count times if count is > 0, or until done if
|
|
* count < 0.
|
|
*
|
|
* Return TRUE for more work, FALSE for all clean.
|
|
*********************************************************************/
|
|
bool
|
|
ixl_rxeof(struct ixl_queue *que, int count)
|
|
{
|
|
struct ixl_vsi *vsi = que->vsi;
|
|
struct rx_ring *rxr = &que->rxr;
|
|
struct ifnet *ifp = vsi->ifp;
|
|
#if defined(INET6) || defined(INET)
|
|
struct lro_ctrl *lro = &rxr->lro;
|
|
#endif
|
|
int i, nextp, processed = 0;
|
|
union i40e_rx_desc *cur;
|
|
struct ixl_rx_buf *rbuf, *nbuf;
|
|
|
|
|
|
IXL_RX_LOCK(rxr);
|
|
|
|
#ifdef DEV_NETMAP
|
|
if (netmap_rx_irq(ifp, que->me, &count)) {
|
|
IXL_RX_UNLOCK(rxr);
|
|
return (FALSE);
|
|
}
|
|
#endif /* DEV_NETMAP */
|
|
|
|
for (i = rxr->next_check; count != 0;) {
|
|
struct mbuf *sendmp, *mh, *mp;
|
|
u32 status, error;
|
|
u16 hlen, plen, vtag;
|
|
u64 qword;
|
|
u8 ptype;
|
|
bool eop;
|
|
|
|
/* Sync the ring. */
|
|
bus_dmamap_sync(rxr->dma.tag, rxr->dma.map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
cur = &rxr->base[i];
|
|
qword = le64toh(cur->wb.qword1.status_error_len);
|
|
status = (qword & I40E_RXD_QW1_STATUS_MASK)
|
|
>> I40E_RXD_QW1_STATUS_SHIFT;
|
|
error = (qword & I40E_RXD_QW1_ERROR_MASK)
|
|
>> I40E_RXD_QW1_ERROR_SHIFT;
|
|
plen = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK)
|
|
>> I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
|
|
hlen = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK)
|
|
>> I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
|
|
ptype = (qword & I40E_RXD_QW1_PTYPE_MASK)
|
|
>> I40E_RXD_QW1_PTYPE_SHIFT;
|
|
|
|
if ((status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) == 0) {
|
|
++rxr->not_done;
|
|
break;
|
|
}
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
break;
|
|
|
|
count--;
|
|
sendmp = NULL;
|
|
nbuf = NULL;
|
|
cur->wb.qword1.status_error_len = 0;
|
|
rbuf = &rxr->buffers[i];
|
|
mh = rbuf->m_head;
|
|
mp = rbuf->m_pack;
|
|
eop = (status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT));
|
|
if (status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT))
|
|
vtag = le16toh(cur->wb.qword0.lo_dword.l2tag1);
|
|
else
|
|
vtag = 0;
|
|
|
|
/*
|
|
** Make sure bad packets are discarded,
|
|
** note that only EOP descriptor has valid
|
|
** error results.
|
|
*/
|
|
if (eop && (error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
|
|
rxr->desc_errs++;
|
|
ixl_rx_discard(rxr, i);
|
|
goto next_desc;
|
|
}
|
|
|
|
/* Prefetch the next buffer */
|
|
if (!eop) {
|
|
nextp = i + 1;
|
|
if (nextp == que->num_desc)
|
|
nextp = 0;
|
|
nbuf = &rxr->buffers[nextp];
|
|
prefetch(nbuf);
|
|
}
|
|
|
|
/*
|
|
** The header mbuf is ONLY used when header
|
|
** split is enabled, otherwise we get normal
|
|
** behavior, ie, both header and payload
|
|
** are DMA'd into the payload buffer.
|
|
**
|
|
** Rather than using the fmp/lmp global pointers
|
|
** we now keep the head of a packet chain in the
|
|
** buffer struct and pass this along from one
|
|
** descriptor to the next, until we get EOP.
|
|
*/
|
|
if (rxr->hdr_split && (rbuf->fmp == NULL)) {
|
|
if (hlen > IXL_RX_HDR)
|
|
hlen = IXL_RX_HDR;
|
|
mh->m_len = hlen;
|
|
mh->m_flags |= M_PKTHDR;
|
|
mh->m_next = NULL;
|
|
mh->m_pkthdr.len = mh->m_len;
|
|
/* Null buf pointer so it is refreshed */
|
|
rbuf->m_head = NULL;
|
|
/*
|
|
** Check the payload length, this
|
|
** could be zero if its a small
|
|
** packet.
|
|
*/
|
|
if (plen > 0) {
|
|
mp->m_len = plen;
|
|
mp->m_next = NULL;
|
|
mp->m_flags &= ~M_PKTHDR;
|
|
mh->m_next = mp;
|
|
mh->m_pkthdr.len += mp->m_len;
|
|
/* Null buf pointer so it is refreshed */
|
|
rbuf->m_pack = NULL;
|
|
rxr->split++;
|
|
}
|
|
/*
|
|
** Now create the forward
|
|
** chain so when complete
|
|
** we wont have to.
|
|
*/
|
|
if (eop == 0) {
|
|
/* stash the chain head */
|
|
nbuf->fmp = mh;
|
|
/* Make forward chain */
|
|
if (plen)
|
|
mp->m_next = nbuf->m_pack;
|
|
else
|
|
mh->m_next = nbuf->m_pack;
|
|
} else {
|
|
/* Singlet, prepare to send */
|
|
sendmp = mh;
|
|
if (vtag) {
|
|
sendmp->m_pkthdr.ether_vtag = vtag;
|
|
sendmp->m_flags |= M_VLANTAG;
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
** Either no header split, or a
|
|
** secondary piece of a fragmented
|
|
** split packet.
|
|
*/
|
|
mp->m_len = plen;
|
|
/*
|
|
** See if there is a stored head
|
|
** that determines what we are
|
|
*/
|
|
sendmp = rbuf->fmp;
|
|
rbuf->m_pack = rbuf->fmp = NULL;
|
|
|
|
if (sendmp != NULL) /* secondary frag */
|
|
sendmp->m_pkthdr.len += mp->m_len;
|
|
else {
|
|
/* first desc of a non-ps chain */
|
|
sendmp = mp;
|
|
sendmp->m_flags |= M_PKTHDR;
|
|
sendmp->m_pkthdr.len = mp->m_len;
|
|
}
|
|
/* Pass the head pointer on */
|
|
if (eop == 0) {
|
|
nbuf->fmp = sendmp;
|
|
sendmp = NULL;
|
|
mp->m_next = nbuf->m_pack;
|
|
}
|
|
}
|
|
++processed;
|
|
/* Sending this frame? */
|
|
if (eop) {
|
|
sendmp->m_pkthdr.rcvif = ifp;
|
|
/* gather stats */
|
|
rxr->rx_packets++;
|
|
rxr->rx_bytes += sendmp->m_pkthdr.len;
|
|
/* capture data for dynamic ITR adjustment */
|
|
rxr->packets++;
|
|
rxr->bytes += sendmp->m_pkthdr.len;
|
|
/* Set VLAN tag (field only valid in eop desc) */
|
|
if (vtag) {
|
|
sendmp->m_pkthdr.ether_vtag = vtag;
|
|
sendmp->m_flags |= M_VLANTAG;
|
|
}
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
|
|
ixl_rx_checksum(sendmp, status, error, ptype);
|
|
#ifdef RSS
|
|
sendmp->m_pkthdr.flowid =
|
|
le32toh(cur->wb.qword0.hi_dword.rss);
|
|
M_HASHTYPE_SET(sendmp, ixl_ptype_to_hash(ptype));
|
|
#else
|
|
sendmp->m_pkthdr.flowid = que->msix;
|
|
M_HASHTYPE_SET(sendmp, M_HASHTYPE_OPAQUE);
|
|
#endif
|
|
}
|
|
next_desc:
|
|
bus_dmamap_sync(rxr->dma.tag, rxr->dma.map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Advance our pointers to the next descriptor. */
|
|
if (++i == que->num_desc)
|
|
i = 0;
|
|
|
|
/* Now send to the stack or do LRO */
|
|
if (sendmp != NULL) {
|
|
rxr->next_check = i;
|
|
ixl_rx_input(rxr, ifp, sendmp, ptype);
|
|
i = rxr->next_check;
|
|
}
|
|
|
|
/* Every 8 descriptors we go to refresh mbufs */
|
|
if (processed == 8) {
|
|
ixl_refresh_mbufs(que, i);
|
|
processed = 0;
|
|
}
|
|
}
|
|
|
|
/* Refresh any remaining buf structs */
|
|
if (ixl_rx_unrefreshed(que))
|
|
ixl_refresh_mbufs(que, i);
|
|
|
|
rxr->next_check = i;
|
|
|
|
#if defined(INET6) || defined(INET)
|
|
/*
|
|
* Flush any outstanding LRO work
|
|
*/
|
|
tcp_lro_flush_all(lro);
|
|
#endif
|
|
|
|
IXL_RX_UNLOCK(rxr);
|
|
return (FALSE);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Verify that the hardware indicated that the checksum is valid.
|
|
* Inform the stack about the status of checksum so that stack
|
|
* doesn't spend time verifying the checksum.
|
|
*
|
|
*********************************************************************/
|
|
static void
|
|
ixl_rx_checksum(struct mbuf * mp, u32 status, u32 error, u8 ptype)
|
|
{
|
|
struct i40e_rx_ptype_decoded decoded;
|
|
|
|
decoded = decode_rx_desc_ptype(ptype);
|
|
|
|
/* Errors? */
|
|
if (error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
|
|
(1 << I40E_RX_DESC_ERROR_L4E_SHIFT))) {
|
|
mp->m_pkthdr.csum_flags = 0;
|
|
return;
|
|
}
|
|
|
|
/* IPv6 with extension headers likely have bad csum */
|
|
if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
|
|
decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
|
|
if (status &
|
|
(1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT)) {
|
|
mp->m_pkthdr.csum_flags = 0;
|
|
return;
|
|
}
|
|
|
|
|
|
/* IP Checksum Good */
|
|
mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
|
|
mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
|
|
if (status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)) {
|
|
mp->m_pkthdr.csum_flags |=
|
|
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
|
|
mp->m_pkthdr.csum_data |= htons(0xffff);
|
|
}
|
|
return;
|
|
}
|
|
|
|
#if __FreeBSD_version >= 1100000
|
|
uint64_t
|
|
ixl_get_counter(if_t ifp, ift_counter cnt)
|
|
{
|
|
struct ixl_vsi *vsi;
|
|
|
|
vsi = if_getsoftc(ifp);
|
|
|
|
switch (cnt) {
|
|
case IFCOUNTER_IPACKETS:
|
|
return (vsi->ipackets);
|
|
case IFCOUNTER_IERRORS:
|
|
return (vsi->ierrors);
|
|
case IFCOUNTER_OPACKETS:
|
|
return (vsi->opackets);
|
|
case IFCOUNTER_OERRORS:
|
|
return (vsi->oerrors);
|
|
case IFCOUNTER_COLLISIONS:
|
|
/* Collisions are by standard impossible in 40G/10G Ethernet */
|
|
return (0);
|
|
case IFCOUNTER_IBYTES:
|
|
return (vsi->ibytes);
|
|
case IFCOUNTER_OBYTES:
|
|
return (vsi->obytes);
|
|
case IFCOUNTER_IMCASTS:
|
|
return (vsi->imcasts);
|
|
case IFCOUNTER_OMCASTS:
|
|
return (vsi->omcasts);
|
|
case IFCOUNTER_IQDROPS:
|
|
return (vsi->iqdrops);
|
|
case IFCOUNTER_OQDROPS:
|
|
return (vsi->oqdrops);
|
|
case IFCOUNTER_NOPROTO:
|
|
return (vsi->noproto);
|
|
default:
|
|
return (if_get_counter_default(ifp, cnt));
|
|
}
|
|
}
|
|
#endif
|
|
|