79d80af216
From the paper "Incremental calculation of weighted mean and variance" by Tony Finch Februrary 2009, retrieved from http://people.ds.cam.ac.uk/fanf2/hermes/doc/antiforgery/stats.pdf converted to use shifting.
1692 lines
47 KiB
C
1692 lines
47 KiB
C
/*-
|
|
* CAM IO Scheduler Interface
|
|
*
|
|
* Copyright (c) 2015 Netflix, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification, immediately at the beginning of the file.
|
|
* 2. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "opt_cam.h"
|
|
#include "opt_ddb.h"
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <cam/cam.h>
|
|
#include <cam/cam_ccb.h>
|
|
#include <cam/cam_periph.h>
|
|
#include <cam/cam_xpt_periph.h>
|
|
#include <cam/cam_xpt_internal.h>
|
|
#include <cam/cam_iosched.h>
|
|
|
|
#include <ddb/ddb.h>
|
|
|
|
static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler",
|
|
"CAM I/O Scheduler buffers");
|
|
|
|
/*
|
|
* Default I/O scheduler for FreeBSD. This implementation is just a thin-vineer
|
|
* over the bioq_* interface, with notions of separate calls for normal I/O and
|
|
* for trims.
|
|
*
|
|
* When CAM_IOSCHED_DYNAMIC is defined, the scheduler is enhanced to dynamically
|
|
* steer the rate of one type of traffic to help other types of traffic (eg
|
|
* limit writes when read latency deteriorates on SSDs).
|
|
*/
|
|
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
|
|
static int do_dynamic_iosched = 1;
|
|
TUNABLE_INT("kern.cam.do_dynamic_iosched", &do_dynamic_iosched);
|
|
SYSCTL_INT(_kern_cam, OID_AUTO, do_dynamic_iosched, CTLFLAG_RD,
|
|
&do_dynamic_iosched, 1,
|
|
"Enable Dynamic I/O scheduler optimizations.");
|
|
|
|
/*
|
|
* For an EMA, with an alpha of alpha, we know
|
|
* alpha = 2 / (N + 1)
|
|
* or
|
|
* N = 1 + (2 / alpha)
|
|
* where N is the number of samples that 86% of the current
|
|
* EMA is derived from.
|
|
*
|
|
* So we invent[*] alpha_bits:
|
|
* alpha_bits = -log_2(alpha)
|
|
* alpha = 2^-alpha_bits
|
|
* So
|
|
* N = 1 + 2^(alpha_bits + 1)
|
|
*
|
|
* The default 9 gives a 1025 lookback for 86% of the data.
|
|
* For a brief intro: https://en.wikipedia.org/wiki/Moving_average
|
|
*
|
|
* [*] Steal from the load average code and many other places.
|
|
* Note: See computation of EMA and EMVAR for acceptable ranges of alpha.
|
|
*/
|
|
static int alpha_bits = 9;
|
|
TUNABLE_INT("kern.cam.iosched_alpha_bits", &alpha_bits);
|
|
SYSCTL_INT(_kern_cam, OID_AUTO, iosched_alpha_bits, CTLFLAG_RW,
|
|
&alpha_bits, 1,
|
|
"Bits in EMA's alpha.");
|
|
|
|
struct iop_stats;
|
|
struct cam_iosched_softc;
|
|
|
|
int iosched_debug = 0;
|
|
|
|
typedef enum {
|
|
none = 0, /* No limits */
|
|
queue_depth, /* Limit how many ops we queue to SIM */
|
|
iops, /* Limit # of IOPS to the drive */
|
|
bandwidth, /* Limit bandwidth to the drive */
|
|
limiter_max
|
|
} io_limiter;
|
|
|
|
static const char *cam_iosched_limiter_names[] =
|
|
{ "none", "queue_depth", "iops", "bandwidth" };
|
|
|
|
/*
|
|
* Called to initialize the bits of the iop_stats structure relevant to the
|
|
* limiter. Called just after the limiter is set.
|
|
*/
|
|
typedef int l_init_t(struct iop_stats *);
|
|
|
|
/*
|
|
* Called every tick.
|
|
*/
|
|
typedef int l_tick_t(struct iop_stats *);
|
|
|
|
/*
|
|
* Called to see if the limiter thinks this IOP can be allowed to
|
|
* proceed. If so, the limiter assumes that the while IOP proceeded
|
|
* and makes any accounting of it that's needed.
|
|
*/
|
|
typedef int l_iop_t(struct iop_stats *, struct bio *);
|
|
|
|
/*
|
|
* Called when an I/O completes so the limiter can updates its
|
|
* accounting. Pending I/Os may complete in any order (even when
|
|
* sent to the hardware at the same time), so the limiter may not
|
|
* make any assumptions other than this I/O has completed. If it
|
|
* returns 1, then xpt_schedule() needs to be called again.
|
|
*/
|
|
typedef int l_iodone_t(struct iop_stats *, struct bio *);
|
|
|
|
static l_iop_t cam_iosched_qd_iop;
|
|
static l_iop_t cam_iosched_qd_caniop;
|
|
static l_iodone_t cam_iosched_qd_iodone;
|
|
|
|
static l_init_t cam_iosched_iops_init;
|
|
static l_tick_t cam_iosched_iops_tick;
|
|
static l_iop_t cam_iosched_iops_caniop;
|
|
static l_iop_t cam_iosched_iops_iop;
|
|
|
|
static l_init_t cam_iosched_bw_init;
|
|
static l_tick_t cam_iosched_bw_tick;
|
|
static l_iop_t cam_iosched_bw_caniop;
|
|
static l_iop_t cam_iosched_bw_iop;
|
|
|
|
struct limswitch {
|
|
l_init_t *l_init;
|
|
l_tick_t *l_tick;
|
|
l_iop_t *l_iop;
|
|
l_iop_t *l_caniop;
|
|
l_iodone_t *l_iodone;
|
|
} limsw[] =
|
|
{
|
|
{ /* none */
|
|
.l_init = NULL,
|
|
.l_tick = NULL,
|
|
.l_iop = NULL,
|
|
.l_iodone= NULL,
|
|
},
|
|
{ /* queue_depth */
|
|
.l_init = NULL,
|
|
.l_tick = NULL,
|
|
.l_caniop = cam_iosched_qd_caniop,
|
|
.l_iop = cam_iosched_qd_iop,
|
|
.l_iodone= cam_iosched_qd_iodone,
|
|
},
|
|
{ /* iops */
|
|
.l_init = cam_iosched_iops_init,
|
|
.l_tick = cam_iosched_iops_tick,
|
|
.l_caniop = cam_iosched_iops_caniop,
|
|
.l_iop = cam_iosched_iops_iop,
|
|
.l_iodone= NULL,
|
|
},
|
|
{ /* bandwidth */
|
|
.l_init = cam_iosched_bw_init,
|
|
.l_tick = cam_iosched_bw_tick,
|
|
.l_caniop = cam_iosched_bw_caniop,
|
|
.l_iop = cam_iosched_bw_iop,
|
|
.l_iodone= NULL,
|
|
},
|
|
};
|
|
|
|
struct iop_stats {
|
|
/*
|
|
* sysctl state for this subnode.
|
|
*/
|
|
struct sysctl_ctx_list sysctl_ctx;
|
|
struct sysctl_oid *sysctl_tree;
|
|
|
|
/*
|
|
* Information about the current rate limiters, if any
|
|
*/
|
|
io_limiter limiter; /* How are I/Os being limited */
|
|
int min; /* Low range of limit */
|
|
int max; /* High range of limit */
|
|
int current; /* Current rate limiter */
|
|
int l_value1; /* per-limiter scratch value 1. */
|
|
int l_value2; /* per-limiter scratch value 2. */
|
|
|
|
/*
|
|
* Debug information about counts of I/Os that have gone through the
|
|
* scheduler.
|
|
*/
|
|
int pending; /* I/Os pending in the hardware */
|
|
int queued; /* number currently in the queue */
|
|
int total; /* Total for all time -- wraps */
|
|
int in; /* number queued all time -- wraps */
|
|
int out; /* number completed all time -- wraps */
|
|
|
|
/*
|
|
* Statistics on different bits of the process.
|
|
*/
|
|
/* Exp Moving Average, see alpha_bits for more details */
|
|
sbintime_t ema;
|
|
sbintime_t emvar;
|
|
sbintime_t sd; /* Last computed sd */
|
|
|
|
uint32_t state_flags;
|
|
#define IOP_RATE_LIMITED 1u
|
|
|
|
#define LAT_BUCKETS 12 /* < 1ms < 2ms ... 512ms < 1024ms > 1024ms */
|
|
uint64_t latencies[LAT_BUCKETS];
|
|
|
|
struct cam_iosched_softc *softc;
|
|
};
|
|
|
|
|
|
typedef enum {
|
|
set_max = 0, /* current = max */
|
|
read_latency, /* Steer read latency by throttling writes */
|
|
cl_max /* Keep last */
|
|
} control_type;
|
|
|
|
static const char *cam_iosched_control_type_names[] =
|
|
{ "set_max", "read_latency" };
|
|
|
|
struct control_loop {
|
|
/*
|
|
* sysctl state for this subnode.
|
|
*/
|
|
struct sysctl_ctx_list sysctl_ctx;
|
|
struct sysctl_oid *sysctl_tree;
|
|
|
|
sbintime_t next_steer; /* Time of next steer */
|
|
sbintime_t steer_interval; /* How often do we steer? */
|
|
sbintime_t lolat;
|
|
sbintime_t hilat;
|
|
int alpha;
|
|
control_type type; /* What type of control? */
|
|
int last_count; /* Last I/O count */
|
|
|
|
struct cam_iosched_softc *softc;
|
|
};
|
|
|
|
#endif
|
|
|
|
struct cam_iosched_softc {
|
|
struct bio_queue_head bio_queue;
|
|
struct bio_queue_head trim_queue;
|
|
/* scheduler flags < 16, user flags >= 16 */
|
|
uint32_t flags;
|
|
int sort_io_queue;
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
int read_bias; /* Read bias setting */
|
|
int current_read_bias; /* Current read bias state */
|
|
int total_ticks;
|
|
int load; /* EMA of 'load average' of disk / 2^16 */
|
|
|
|
struct bio_queue_head write_queue;
|
|
struct iop_stats read_stats, write_stats, trim_stats;
|
|
struct sysctl_ctx_list sysctl_ctx;
|
|
struct sysctl_oid *sysctl_tree;
|
|
|
|
int quanta; /* Number of quanta per second */
|
|
struct callout ticker; /* Callout for our quota system */
|
|
struct cam_periph *periph; /* cam periph associated with this device */
|
|
uint32_t this_frac; /* Fraction of a second (1024ths) for this tick */
|
|
sbintime_t last_time; /* Last time we ticked */
|
|
struct control_loop cl;
|
|
#endif
|
|
};
|
|
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
/*
|
|
* helper functions to call the limsw functions.
|
|
*/
|
|
static int
|
|
cam_iosched_limiter_init(struct iop_stats *ios)
|
|
{
|
|
int lim = ios->limiter;
|
|
|
|
/* maybe this should be a kassert */
|
|
if (lim < none || lim >= limiter_max)
|
|
return EINVAL;
|
|
|
|
if (limsw[lim].l_init)
|
|
return limsw[lim].l_init(ios);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cam_iosched_limiter_tick(struct iop_stats *ios)
|
|
{
|
|
int lim = ios->limiter;
|
|
|
|
/* maybe this should be a kassert */
|
|
if (lim < none || lim >= limiter_max)
|
|
return EINVAL;
|
|
|
|
if (limsw[lim].l_tick)
|
|
return limsw[lim].l_tick(ios);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cam_iosched_limiter_iop(struct iop_stats *ios, struct bio *bp)
|
|
{
|
|
int lim = ios->limiter;
|
|
|
|
/* maybe this should be a kassert */
|
|
if (lim < none || lim >= limiter_max)
|
|
return EINVAL;
|
|
|
|
if (limsw[lim].l_iop)
|
|
return limsw[lim].l_iop(ios, bp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cam_iosched_limiter_caniop(struct iop_stats *ios, struct bio *bp)
|
|
{
|
|
int lim = ios->limiter;
|
|
|
|
/* maybe this should be a kassert */
|
|
if (lim < none || lim >= limiter_max)
|
|
return EINVAL;
|
|
|
|
if (limsw[lim].l_caniop)
|
|
return limsw[lim].l_caniop(ios, bp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cam_iosched_limiter_iodone(struct iop_stats *ios, struct bio *bp)
|
|
{
|
|
int lim = ios->limiter;
|
|
|
|
/* maybe this should be a kassert */
|
|
if (lim < none || lim >= limiter_max)
|
|
return 0;
|
|
|
|
if (limsw[lim].l_iodone)
|
|
return limsw[lim].l_iodone(ios, bp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Functions to implement the different kinds of limiters
|
|
*/
|
|
|
|
static int
|
|
cam_iosched_qd_iop(struct iop_stats *ios, struct bio *bp)
|
|
{
|
|
|
|
if (ios->current <= 0 || ios->pending < ios->current)
|
|
return 0;
|
|
|
|
return EAGAIN;
|
|
}
|
|
|
|
static int
|
|
cam_iosched_qd_caniop(struct iop_stats *ios, struct bio *bp)
|
|
{
|
|
|
|
if (ios->current <= 0 || ios->pending < ios->current)
|
|
return 0;
|
|
|
|
return EAGAIN;
|
|
}
|
|
|
|
static int
|
|
cam_iosched_qd_iodone(struct iop_stats *ios, struct bio *bp)
|
|
{
|
|
|
|
if (ios->current <= 0 || ios->pending != ios->current)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
cam_iosched_iops_init(struct iop_stats *ios)
|
|
{
|
|
|
|
ios->l_value1 = ios->current / ios->softc->quanta;
|
|
if (ios->l_value1 <= 0)
|
|
ios->l_value1 = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cam_iosched_iops_tick(struct iop_stats *ios)
|
|
{
|
|
|
|
ios->l_value1 = (int)((ios->current * (uint64_t)ios->softc->this_frac) >> 16);
|
|
if (ios->l_value1 <= 0)
|
|
ios->l_value1 = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cam_iosched_iops_caniop(struct iop_stats *ios, struct bio *bp)
|
|
{
|
|
|
|
/*
|
|
* So if we have any more IOPs left, allow it,
|
|
* otherwise wait.
|
|
*/
|
|
if (ios->l_value1 <= 0)
|
|
return EAGAIN;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cam_iosched_iops_iop(struct iop_stats *ios, struct bio *bp)
|
|
{
|
|
int rv;
|
|
|
|
rv = cam_iosched_limiter_caniop(ios, bp);
|
|
if (rv == 0)
|
|
ios->l_value1--;
|
|
|
|
return rv;
|
|
}
|
|
|
|
static int
|
|
cam_iosched_bw_init(struct iop_stats *ios)
|
|
{
|
|
|
|
/* ios->current is in kB/s, so scale to bytes */
|
|
ios->l_value1 = ios->current * 1000 / ios->softc->quanta;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cam_iosched_bw_tick(struct iop_stats *ios)
|
|
{
|
|
int bw;
|
|
|
|
/*
|
|
* If we're in the hole for available quota from
|
|
* the last time, then add the quantum for this.
|
|
* If we have any left over from last quantum,
|
|
* then too bad, that's lost. Also, ios->current
|
|
* is in kB/s, so scale.
|
|
*
|
|
* We also allow up to 4 quanta of credits to
|
|
* accumulate to deal with burstiness. 4 is extremely
|
|
* arbitrary.
|
|
*/
|
|
bw = (int)((ios->current * 1000ull * (uint64_t)ios->softc->this_frac) >> 16);
|
|
if (ios->l_value1 < bw * 4)
|
|
ios->l_value1 += bw;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cam_iosched_bw_caniop(struct iop_stats *ios, struct bio *bp)
|
|
{
|
|
/*
|
|
* So if we have any more bw quota left, allow it,
|
|
* otherwise wait. Not, we'll go negative and that's
|
|
* OK. We'll just get a lettle less next quota.
|
|
*
|
|
* Note on going negative: that allows us to process
|
|
* requests in order better, since we won't allow
|
|
* shorter reads to get around the long one that we
|
|
* don't have the quota to do just yet. It also prevents
|
|
* starvation by being a little more permissive about
|
|
* what we let through this quantum (to prevent the
|
|
* starvation), at the cost of getting a little less
|
|
* next quantum.
|
|
*/
|
|
if (ios->l_value1 <= 0)
|
|
return EAGAIN;
|
|
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cam_iosched_bw_iop(struct iop_stats *ios, struct bio *bp)
|
|
{
|
|
int rv;
|
|
|
|
rv = cam_iosched_limiter_caniop(ios, bp);
|
|
if (rv == 0)
|
|
ios->l_value1 -= bp->bio_length;
|
|
|
|
return rv;
|
|
}
|
|
|
|
static void cam_iosched_cl_maybe_steer(struct control_loop *clp);
|
|
|
|
static void
|
|
cam_iosched_ticker(void *arg)
|
|
{
|
|
struct cam_iosched_softc *isc = arg;
|
|
sbintime_t now, delta;
|
|
int pending;
|
|
|
|
callout_reset(&isc->ticker, hz / isc->quanta - 1, cam_iosched_ticker, isc);
|
|
|
|
now = sbinuptime();
|
|
delta = now - isc->last_time;
|
|
isc->this_frac = (uint32_t)delta >> 16; /* Note: discards seconds -- should be 0 harmless if not */
|
|
isc->last_time = now;
|
|
|
|
cam_iosched_cl_maybe_steer(&isc->cl);
|
|
|
|
cam_iosched_limiter_tick(&isc->read_stats);
|
|
cam_iosched_limiter_tick(&isc->write_stats);
|
|
cam_iosched_limiter_tick(&isc->trim_stats);
|
|
|
|
cam_iosched_schedule(isc, isc->periph);
|
|
|
|
/*
|
|
* isc->load is an EMA of the pending I/Os at each tick. The number of
|
|
* pending I/Os is the sum of the I/Os queued to the hardware, and those
|
|
* in the software queue that could be queued to the hardware if there
|
|
* were slots.
|
|
*
|
|
* ios_stats.pending is a count of requests in the SIM right now for
|
|
* each of these types of I/O. So the total pending count is the sum of
|
|
* these I/Os and the sum of the queued I/Os still in the software queue
|
|
* for those operations that aren't being rate limited at the moment.
|
|
*
|
|
* The reason for the rate limiting bit is because those I/Os
|
|
* aren't part of the software queued load (since we could
|
|
* give them to hardware, but choose not to).
|
|
*
|
|
* Note: due to a bug in counting pending TRIM in the device, we
|
|
* don't include them in this count. We count each BIO_DELETE in
|
|
* the pending count, but the periph drivers collapse them down
|
|
* into one TRIM command. That one trim command gets the completion
|
|
* so the counts get off.
|
|
*/
|
|
pending = isc->read_stats.pending + isc->write_stats.pending /* + isc->trim_stats.pending */;
|
|
pending += !!(isc->read_stats.state_flags & IOP_RATE_LIMITED) * isc->read_stats.queued +
|
|
!!(isc->write_stats.state_flags & IOP_RATE_LIMITED) * isc->write_stats.queued /* +
|
|
!!(isc->trim_stats.state_flags & IOP_RATE_LIMITED) * isc->trim_stats.queued */ ;
|
|
pending <<= 16;
|
|
pending /= isc->periph->path->device->ccbq.total_openings;
|
|
|
|
isc->load = (pending + (isc->load << 13) - isc->load) >> 13; /* see above: 13 -> 16139 / 200/s = ~81s ~1 minute */
|
|
|
|
isc->total_ticks++;
|
|
}
|
|
|
|
|
|
static void
|
|
cam_iosched_cl_init(struct control_loop *clp, struct cam_iosched_softc *isc)
|
|
{
|
|
|
|
clp->next_steer = sbinuptime();
|
|
clp->softc = isc;
|
|
clp->steer_interval = SBT_1S * 5; /* Let's start out steering every 5s */
|
|
clp->lolat = 5 * SBT_1MS;
|
|
clp->hilat = 15 * SBT_1MS;
|
|
clp->alpha = 20; /* Alpha == gain. 20 = .2 */
|
|
clp->type = set_max;
|
|
}
|
|
|
|
static void
|
|
cam_iosched_cl_maybe_steer(struct control_loop *clp)
|
|
{
|
|
struct cam_iosched_softc *isc;
|
|
sbintime_t now, lat;
|
|
int old;
|
|
|
|
isc = clp->softc;
|
|
now = isc->last_time;
|
|
if (now < clp->next_steer)
|
|
return;
|
|
|
|
clp->next_steer = now + clp->steer_interval;
|
|
switch (clp->type) {
|
|
case set_max:
|
|
if (isc->write_stats.current != isc->write_stats.max)
|
|
printf("Steering write from %d kBps to %d kBps\n",
|
|
isc->write_stats.current, isc->write_stats.max);
|
|
isc->read_stats.current = isc->read_stats.max;
|
|
isc->write_stats.current = isc->write_stats.max;
|
|
isc->trim_stats.current = isc->trim_stats.max;
|
|
break;
|
|
case read_latency:
|
|
old = isc->write_stats.current;
|
|
lat = isc->read_stats.ema;
|
|
/*
|
|
* Simple PLL-like engine. Since we're steering to a range for
|
|
* the SP (set point) that makes things a little more
|
|
* complicated. In addition, we're not directly controlling our
|
|
* PV (process variable), the read latency, but instead are
|
|
* manipulating the write bandwidth limit for our MV
|
|
* (manipulation variable), analysis of this code gets a bit
|
|
* messy. Also, the MV is a very noisy control surface for read
|
|
* latency since it is affected by many hidden processes inside
|
|
* the device which change how responsive read latency will be
|
|
* in reaction to changes in write bandwidth. Unlike the classic
|
|
* boiler control PLL. this may result in over-steering while
|
|
* the SSD takes its time to react to the new, lower load. This
|
|
* is why we use a relatively low alpha of between .1 and .25 to
|
|
* compensate for this effect. At .1, it takes ~22 steering
|
|
* intervals to back off by a factor of 10. At .2 it only takes
|
|
* ~10. At .25 it only takes ~8. However some preliminary data
|
|
* from the SSD drives suggests a reasponse time in 10's of
|
|
* seconds before latency drops regardless of the new write
|
|
* rate. Careful observation will be reqiured to tune this
|
|
* effectively.
|
|
*
|
|
* Also, when there's no read traffic, we jack up the write
|
|
* limit too regardless of the last read latency. 10 is
|
|
* somewhat arbitrary.
|
|
*/
|
|
if (lat < clp->lolat || isc->read_stats.total - clp->last_count < 10)
|
|
isc->write_stats.current = isc->write_stats.current *
|
|
(100 + clp->alpha) / 100; /* Scale up */
|
|
else if (lat > clp->hilat)
|
|
isc->write_stats.current = isc->write_stats.current *
|
|
(100 - clp->alpha) / 100; /* Scale down */
|
|
clp->last_count = isc->read_stats.total;
|
|
|
|
/*
|
|
* Even if we don't steer, per se, enforce the min/max limits as
|
|
* those may have changed.
|
|
*/
|
|
if (isc->write_stats.current < isc->write_stats.min)
|
|
isc->write_stats.current = isc->write_stats.min;
|
|
if (isc->write_stats.current > isc->write_stats.max)
|
|
isc->write_stats.current = isc->write_stats.max;
|
|
if (old != isc->write_stats.current && iosched_debug)
|
|
printf("Steering write from %d kBps to %d kBps due to latency of %jdus\n",
|
|
old, isc->write_stats.current,
|
|
(uintmax_t)((uint64_t)1000000 * (uint32_t)lat) >> 32);
|
|
break;
|
|
case cl_max:
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Trim or similar currently pending completion */
|
|
#define CAM_IOSCHED_FLAG_TRIM_ACTIVE (1ul << 0)
|
|
/* Callout active, and needs to be torn down */
|
|
#define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE (1ul << 1)
|
|
|
|
/* Periph drivers set these flags to indicate work */
|
|
#define CAM_IOSCHED_FLAG_WORK_FLAGS ((0xffffu) << 16)
|
|
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
static void
|
|
cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
|
|
sbintime_t sim_latency, int cmd, size_t size);
|
|
#endif
|
|
|
|
static inline int
|
|
cam_iosched_has_flagged_work(struct cam_iosched_softc *isc)
|
|
{
|
|
return !!(isc->flags & CAM_IOSCHED_FLAG_WORK_FLAGS);
|
|
}
|
|
|
|
static inline int
|
|
cam_iosched_has_io(struct cam_iosched_softc *isc)
|
|
{
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
if (do_dynamic_iosched) {
|
|
struct bio *rbp = bioq_first(&isc->bio_queue);
|
|
struct bio *wbp = bioq_first(&isc->write_queue);
|
|
int can_write = wbp != NULL &&
|
|
cam_iosched_limiter_caniop(&isc->write_stats, wbp) == 0;
|
|
int can_read = rbp != NULL &&
|
|
cam_iosched_limiter_caniop(&isc->read_stats, rbp) == 0;
|
|
if (iosched_debug > 2) {
|
|
printf("can write %d: pending_writes %d max_writes %d\n", can_write, isc->write_stats.pending, isc->write_stats.max);
|
|
printf("can read %d: read_stats.pending %d max_reads %d\n", can_read, isc->read_stats.pending, isc->read_stats.max);
|
|
printf("Queued reads %d writes %d\n", isc->read_stats.queued, isc->write_stats.queued);
|
|
}
|
|
return can_read || can_write;
|
|
}
|
|
#endif
|
|
return bioq_first(&isc->bio_queue) != NULL;
|
|
}
|
|
|
|
static inline int
|
|
cam_iosched_has_more_trim(struct cam_iosched_softc *isc)
|
|
{
|
|
return !(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) &&
|
|
bioq_first(&isc->trim_queue);
|
|
}
|
|
|
|
#define cam_iosched_sort_queue(isc) ((isc)->sort_io_queue >= 0 ? \
|
|
(isc)->sort_io_queue : cam_sort_io_queues)
|
|
|
|
|
|
static inline int
|
|
cam_iosched_has_work(struct cam_iosched_softc *isc)
|
|
{
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
if (iosched_debug > 2)
|
|
printf("has work: %d %d %d\n", cam_iosched_has_io(isc),
|
|
cam_iosched_has_more_trim(isc),
|
|
cam_iosched_has_flagged_work(isc));
|
|
#endif
|
|
|
|
return cam_iosched_has_io(isc) ||
|
|
cam_iosched_has_more_trim(isc) ||
|
|
cam_iosched_has_flagged_work(isc);
|
|
}
|
|
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
static void
|
|
cam_iosched_iop_stats_init(struct cam_iosched_softc *isc, struct iop_stats *ios)
|
|
{
|
|
|
|
ios->limiter = none;
|
|
cam_iosched_limiter_init(ios);
|
|
ios->in = 0;
|
|
ios->max = 300000;
|
|
ios->min = 1;
|
|
ios->out = 0;
|
|
ios->pending = 0;
|
|
ios->queued = 0;
|
|
ios->total = 0;
|
|
ios->ema = 0;
|
|
ios->emvar = 0;
|
|
ios->softc = isc;
|
|
}
|
|
|
|
static int
|
|
cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
char buf[16];
|
|
struct iop_stats *ios;
|
|
struct cam_iosched_softc *isc;
|
|
int value, i, error;
|
|
const char *p;
|
|
|
|
ios = arg1;
|
|
isc = ios->softc;
|
|
value = ios->limiter;
|
|
if (value < none || value >= limiter_max)
|
|
p = "UNKNOWN";
|
|
else
|
|
p = cam_iosched_limiter_names[value];
|
|
|
|
strlcpy(buf, p, sizeof(buf));
|
|
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return error;
|
|
|
|
cam_periph_lock(isc->periph);
|
|
|
|
for (i = none; i < limiter_max; i++) {
|
|
if (strcmp(buf, cam_iosched_limiter_names[i]) != 0)
|
|
continue;
|
|
ios->limiter = i;
|
|
error = cam_iosched_limiter_init(ios);
|
|
if (error != 0) {
|
|
ios->limiter = value;
|
|
cam_periph_unlock(isc->periph);
|
|
return error;
|
|
}
|
|
/* Note: disk load averate requires ticker to be always running */
|
|
callout_reset(&isc->ticker, hz / isc->quanta - 1, cam_iosched_ticker, isc);
|
|
isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
|
|
|
|
cam_periph_unlock(isc->periph);
|
|
return 0;
|
|
}
|
|
|
|
cam_periph_unlock(isc->periph);
|
|
return EINVAL;
|
|
}
|
|
|
|
static int
|
|
cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
char buf[16];
|
|
struct control_loop *clp;
|
|
struct cam_iosched_softc *isc;
|
|
int value, i, error;
|
|
const char *p;
|
|
|
|
clp = arg1;
|
|
isc = clp->softc;
|
|
value = clp->type;
|
|
if (value < none || value >= cl_max)
|
|
p = "UNKNOWN";
|
|
else
|
|
p = cam_iosched_control_type_names[value];
|
|
|
|
strlcpy(buf, p, sizeof(buf));
|
|
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return error;
|
|
|
|
for (i = set_max; i < cl_max; i++) {
|
|
if (strcmp(buf, cam_iosched_control_type_names[i]) != 0)
|
|
continue;
|
|
cam_periph_lock(isc->periph);
|
|
clp->type = i;
|
|
cam_periph_unlock(isc->periph);
|
|
return 0;
|
|
}
|
|
|
|
return EINVAL;
|
|
}
|
|
|
|
static int
|
|
cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
char buf[16];
|
|
sbintime_t value;
|
|
int error;
|
|
uint64_t us;
|
|
|
|
value = *(sbintime_t *)arg1;
|
|
us = (uint64_t)value / SBT_1US;
|
|
snprintf(buf, sizeof(buf), "%ju", (intmax_t)us);
|
|
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return error;
|
|
us = strtoul(buf, NULL, 10);
|
|
if (us == 0)
|
|
return EINVAL;
|
|
*(sbintime_t *)arg1 = us * SBT_1US;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cam_iosched_sysctl_latencies(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int i, error;
|
|
struct sbuf sb;
|
|
uint64_t *latencies;
|
|
|
|
latencies = arg1;
|
|
sbuf_new_for_sysctl(&sb, NULL, LAT_BUCKETS * 16, req);
|
|
|
|
for (i = 0; i < LAT_BUCKETS - 1; i++)
|
|
sbuf_printf(&sb, "%jd,", (intmax_t)latencies[i]);
|
|
sbuf_printf(&sb, "%jd", (intmax_t)latencies[LAT_BUCKETS - 1]);
|
|
error = sbuf_finish(&sb);
|
|
sbuf_delete(&sb);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc *isc, struct iop_stats *ios, char *name)
|
|
{
|
|
struct sysctl_oid_list *n;
|
|
struct sysctl_ctx_list *ctx;
|
|
|
|
ios->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
|
|
SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, name,
|
|
CTLFLAG_RD, 0, name);
|
|
n = SYSCTL_CHILDREN(ios->sysctl_tree);
|
|
ctx = &ios->sysctl_ctx;
|
|
|
|
SYSCTL_ADD_UQUAD(ctx, n,
|
|
OID_AUTO, "ema", CTLFLAG_RD,
|
|
&ios->ema,
|
|
"Fast Exponentially Weighted Moving Average");
|
|
SYSCTL_ADD_UQUAD(ctx, n,
|
|
OID_AUTO, "emvar", CTLFLAG_RD,
|
|
&ios->emvar,
|
|
"Fast Exponentially Weighted Moving Variance");
|
|
|
|
SYSCTL_ADD_INT(ctx, n,
|
|
OID_AUTO, "pending", CTLFLAG_RD,
|
|
&ios->pending, 0,
|
|
"Instantaneous # of pending transactions");
|
|
SYSCTL_ADD_INT(ctx, n,
|
|
OID_AUTO, "count", CTLFLAG_RD,
|
|
&ios->total, 0,
|
|
"# of transactions submitted to hardware");
|
|
SYSCTL_ADD_INT(ctx, n,
|
|
OID_AUTO, "queued", CTLFLAG_RD,
|
|
&ios->queued, 0,
|
|
"# of transactions in the queue");
|
|
SYSCTL_ADD_INT(ctx, n,
|
|
OID_AUTO, "in", CTLFLAG_RD,
|
|
&ios->in, 0,
|
|
"# of transactions queued to driver");
|
|
SYSCTL_ADD_INT(ctx, n,
|
|
OID_AUTO, "out", CTLFLAG_RD,
|
|
&ios->out, 0,
|
|
"# of transactions completed");
|
|
|
|
SYSCTL_ADD_PROC(ctx, n,
|
|
OID_AUTO, "limiter", CTLTYPE_STRING | CTLFLAG_RW,
|
|
ios, 0, cam_iosched_limiter_sysctl, "A",
|
|
"Current limiting type.");
|
|
SYSCTL_ADD_INT(ctx, n,
|
|
OID_AUTO, "min", CTLFLAG_RW,
|
|
&ios->min, 0,
|
|
"min resource");
|
|
SYSCTL_ADD_INT(ctx, n,
|
|
OID_AUTO, "max", CTLFLAG_RW,
|
|
&ios->max, 0,
|
|
"max resource");
|
|
SYSCTL_ADD_INT(ctx, n,
|
|
OID_AUTO, "current", CTLFLAG_RW,
|
|
&ios->current, 0,
|
|
"current resource");
|
|
|
|
SYSCTL_ADD_PROC(ctx, n,
|
|
OID_AUTO, "latencies", CTLTYPE_STRING | CTLFLAG_RD,
|
|
&ios->latencies, 0,
|
|
cam_iosched_sysctl_latencies, "A",
|
|
"Array of power of 2 latency from 1ms to 1.024s");
|
|
}
|
|
|
|
static void
|
|
cam_iosched_iop_stats_fini(struct iop_stats *ios)
|
|
{
|
|
if (ios->sysctl_tree)
|
|
if (sysctl_ctx_free(&ios->sysctl_ctx) != 0)
|
|
printf("can't remove iosched sysctl stats context\n");
|
|
}
|
|
|
|
static void
|
|
cam_iosched_cl_sysctl_init(struct cam_iosched_softc *isc)
|
|
{
|
|
struct sysctl_oid_list *n;
|
|
struct sysctl_ctx_list *ctx;
|
|
struct control_loop *clp;
|
|
|
|
clp = &isc->cl;
|
|
clp->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
|
|
SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, "control",
|
|
CTLFLAG_RD, 0, "Control loop info");
|
|
n = SYSCTL_CHILDREN(clp->sysctl_tree);
|
|
ctx = &clp->sysctl_ctx;
|
|
|
|
SYSCTL_ADD_PROC(ctx, n,
|
|
OID_AUTO, "type", CTLTYPE_STRING | CTLFLAG_RW,
|
|
clp, 0, cam_iosched_control_type_sysctl, "A",
|
|
"Control loop algorithm");
|
|
SYSCTL_ADD_PROC(ctx, n,
|
|
OID_AUTO, "steer_interval", CTLTYPE_STRING | CTLFLAG_RW,
|
|
&clp->steer_interval, 0, cam_iosched_sbintime_sysctl, "A",
|
|
"How often to steer (in us)");
|
|
SYSCTL_ADD_PROC(ctx, n,
|
|
OID_AUTO, "lolat", CTLTYPE_STRING | CTLFLAG_RW,
|
|
&clp->lolat, 0, cam_iosched_sbintime_sysctl, "A",
|
|
"Low water mark for Latency (in us)");
|
|
SYSCTL_ADD_PROC(ctx, n,
|
|
OID_AUTO, "hilat", CTLTYPE_STRING | CTLFLAG_RW,
|
|
&clp->hilat, 0, cam_iosched_sbintime_sysctl, "A",
|
|
"Hi water mark for Latency (in us)");
|
|
SYSCTL_ADD_INT(ctx, n,
|
|
OID_AUTO, "alpha", CTLFLAG_RW,
|
|
&clp->alpha, 0,
|
|
"Alpha for PLL (x100) aka gain");
|
|
}
|
|
|
|
static void
|
|
cam_iosched_cl_sysctl_fini(struct control_loop *clp)
|
|
{
|
|
if (clp->sysctl_tree)
|
|
if (sysctl_ctx_free(&clp->sysctl_ctx) != 0)
|
|
printf("can't remove iosched sysctl control loop context\n");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Allocate the iosched structure. This also insulates callers from knowing
|
|
* sizeof struct cam_iosched_softc.
|
|
*/
|
|
int
|
|
cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph)
|
|
{
|
|
|
|
*iscp = malloc(sizeof(**iscp), M_CAMSCHED, M_NOWAIT | M_ZERO);
|
|
if (*iscp == NULL)
|
|
return ENOMEM;
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
if (iosched_debug)
|
|
printf("CAM IOSCHEDULER Allocating entry at %p\n", *iscp);
|
|
#endif
|
|
(*iscp)->sort_io_queue = -1;
|
|
bioq_init(&(*iscp)->bio_queue);
|
|
bioq_init(&(*iscp)->trim_queue);
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
if (do_dynamic_iosched) {
|
|
bioq_init(&(*iscp)->write_queue);
|
|
(*iscp)->read_bias = 100;
|
|
(*iscp)->current_read_bias = 100;
|
|
(*iscp)->quanta = 200;
|
|
cam_iosched_iop_stats_init(*iscp, &(*iscp)->read_stats);
|
|
cam_iosched_iop_stats_init(*iscp, &(*iscp)->write_stats);
|
|
cam_iosched_iop_stats_init(*iscp, &(*iscp)->trim_stats);
|
|
(*iscp)->trim_stats.max = 1; /* Trims are special: one at a time for now */
|
|
(*iscp)->last_time = sbinuptime();
|
|
callout_init_mtx(&(*iscp)->ticker, cam_periph_mtx(periph), 0);
|
|
(*iscp)->periph = periph;
|
|
cam_iosched_cl_init(&(*iscp)->cl, *iscp);
|
|
callout_reset(&(*iscp)->ticker, hz / (*iscp)->quanta - 1, cam_iosched_ticker, *iscp);
|
|
(*iscp)->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reclaim all used resources. This assumes that other folks have
|
|
* drained the requests in the hardware. Maybe an unwise assumption.
|
|
*/
|
|
void
|
|
cam_iosched_fini(struct cam_iosched_softc *isc)
|
|
{
|
|
if (isc) {
|
|
cam_iosched_flush(isc, NULL, ENXIO);
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
cam_iosched_iop_stats_fini(&isc->read_stats);
|
|
cam_iosched_iop_stats_fini(&isc->write_stats);
|
|
cam_iosched_iop_stats_fini(&isc->trim_stats);
|
|
cam_iosched_cl_sysctl_fini(&isc->cl);
|
|
if (isc->sysctl_tree)
|
|
if (sysctl_ctx_free(&isc->sysctl_ctx) != 0)
|
|
printf("can't remove iosched sysctl stats context\n");
|
|
if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) {
|
|
callout_drain(&isc->ticker);
|
|
isc->flags &= ~ CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
|
|
}
|
|
#endif
|
|
free(isc, M_CAMSCHED);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* After we're sure we're attaching a device, go ahead and add
|
|
* hooks for any sysctl we may wish to honor.
|
|
*/
|
|
void cam_iosched_sysctl_init(struct cam_iosched_softc *isc,
|
|
struct sysctl_ctx_list *ctx, struct sysctl_oid *node)
|
|
{
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
struct sysctl_oid_list *n;
|
|
#endif
|
|
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(node),
|
|
OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE,
|
|
&isc->sort_io_queue, 0,
|
|
"Sort IO queue to try and optimise disk access patterns");
|
|
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
if (!do_dynamic_iosched)
|
|
return;
|
|
|
|
isc->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
|
|
SYSCTL_CHILDREN(node), OID_AUTO, "iosched",
|
|
CTLFLAG_RD, 0, "I/O scheduler statistics");
|
|
n = SYSCTL_CHILDREN(isc->sysctl_tree);
|
|
ctx = &isc->sysctl_ctx;
|
|
|
|
cam_iosched_iop_stats_sysctl_init(isc, &isc->read_stats, "read");
|
|
cam_iosched_iop_stats_sysctl_init(isc, &isc->write_stats, "write");
|
|
cam_iosched_iop_stats_sysctl_init(isc, &isc->trim_stats, "trim");
|
|
cam_iosched_cl_sysctl_init(isc);
|
|
|
|
SYSCTL_ADD_INT(ctx, n,
|
|
OID_AUTO, "read_bias", CTLFLAG_RW,
|
|
&isc->read_bias, 100,
|
|
"How biased towards read should we be independent of limits");
|
|
|
|
SYSCTL_ADD_INT(ctx, n,
|
|
OID_AUTO, "quanta", CTLFLAG_RW,
|
|
&isc->quanta, 200,
|
|
"How many quanta per second do we slice the I/O up into");
|
|
|
|
SYSCTL_ADD_INT(ctx, n,
|
|
OID_AUTO, "total_ticks", CTLFLAG_RD,
|
|
&isc->total_ticks, 0,
|
|
"Total number of ticks we've done");
|
|
|
|
SYSCTL_ADD_INT(ctx, n,
|
|
OID_AUTO, "load", CTLFLAG_RD,
|
|
&isc->load, 0,
|
|
"scaled load average / 100");
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Flush outstanding I/O. Consumers of this library don't know all the
|
|
* queues we may keep, so this allows all I/O to be flushed in one
|
|
* convenient call.
|
|
*/
|
|
void
|
|
cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err)
|
|
{
|
|
bioq_flush(&isc->bio_queue, stp, err);
|
|
bioq_flush(&isc->trim_queue, stp, err);
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
if (do_dynamic_iosched)
|
|
bioq_flush(&isc->write_queue, stp, err);
|
|
#endif
|
|
}
|
|
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
static struct bio *
|
|
cam_iosched_get_write(struct cam_iosched_softc *isc)
|
|
{
|
|
struct bio *bp;
|
|
|
|
/*
|
|
* We control the write rate by controlling how many requests we send
|
|
* down to the drive at any one time. Fewer requests limits the
|
|
* effects of both starvation when the requests take a while and write
|
|
* amplification when each request is causing more than one write to
|
|
* the NAND media. Limiting the queue depth like this will also limit
|
|
* the write throughput and give and reads that want to compete to
|
|
* compete unfairly.
|
|
*/
|
|
bp = bioq_first(&isc->write_queue);
|
|
if (bp == NULL) {
|
|
if (iosched_debug > 3)
|
|
printf("No writes present in write_queue\n");
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If pending read, prefer that based on current read bias
|
|
* setting.
|
|
*/
|
|
if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
|
|
if (iosched_debug)
|
|
printf("Reads present and current_read_bias is %d queued writes %d queued reads %d\n", isc->current_read_bias, isc->write_stats.queued, isc->read_stats.queued);
|
|
isc->current_read_bias--;
|
|
/* We're not limiting writes, per se, just doing reads first */
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* See if our current limiter allows this I/O.
|
|
*/
|
|
if (cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
|
|
if (iosched_debug)
|
|
printf("Can't write because limiter says no.\n");
|
|
isc->write_stats.state_flags |= IOP_RATE_LIMITED;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Let's do this: We've passed all the gates and we're a go
|
|
* to schedule the I/O in the SIM.
|
|
*/
|
|
isc->current_read_bias = isc->read_bias;
|
|
bioq_remove(&isc->write_queue, bp);
|
|
if (bp->bio_cmd == BIO_WRITE) {
|
|
isc->write_stats.queued--;
|
|
isc->write_stats.total++;
|
|
isc->write_stats.pending++;
|
|
}
|
|
if (iosched_debug > 9)
|
|
printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
|
|
isc->write_stats.state_flags &= ~IOP_RATE_LIMITED;
|
|
return bp;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Put back a trim that you weren't able to actually schedule this time.
|
|
*/
|
|
void
|
|
cam_iosched_put_back_trim(struct cam_iosched_softc *isc, struct bio *bp)
|
|
{
|
|
bioq_insert_head(&isc->trim_queue, bp);
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
isc->trim_stats.queued++;
|
|
isc->trim_stats.total--; /* since we put it back, don't double count */
|
|
isc->trim_stats.pending--;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* gets the next trim from the trim queue.
|
|
*
|
|
* Assumes we're called with the periph lock held. It removes this
|
|
* trim from the queue and the device must explicitly reinstert it
|
|
* should the need arise.
|
|
*/
|
|
struct bio *
|
|
cam_iosched_next_trim(struct cam_iosched_softc *isc)
|
|
{
|
|
struct bio *bp;
|
|
|
|
bp = bioq_first(&isc->trim_queue);
|
|
if (bp == NULL)
|
|
return NULL;
|
|
bioq_remove(&isc->trim_queue, bp);
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
isc->trim_stats.queued--;
|
|
isc->trim_stats.total++;
|
|
isc->trim_stats.pending++;
|
|
#endif
|
|
return bp;
|
|
}
|
|
|
|
/*
|
|
* gets the an available trim from the trim queue, if there's no trim
|
|
* already pending. It removes this trim from the queue and the device
|
|
* must explicitly reinstert it should the need arise.
|
|
*
|
|
* Assumes we're called with the periph lock held.
|
|
*/
|
|
struct bio *
|
|
cam_iosched_get_trim(struct cam_iosched_softc *isc)
|
|
{
|
|
|
|
if (!cam_iosched_has_more_trim(isc))
|
|
return NULL;
|
|
|
|
return cam_iosched_next_trim(isc);
|
|
}
|
|
|
|
/*
|
|
* Determine what the next bit of work to do is for the periph. The
|
|
* default implementation looks to see if we have trims to do, but no
|
|
* trims outstanding. If so, we do that. Otherwise we see if we have
|
|
* other work. If we do, then we do that. Otherwise why were we called?
|
|
*/
|
|
struct bio *
|
|
cam_iosched_next_bio(struct cam_iosched_softc *isc)
|
|
{
|
|
struct bio *bp;
|
|
|
|
/*
|
|
* See if we have a trim that can be scheduled. We can only send one
|
|
* at a time down, so this takes that into account.
|
|
*
|
|
* XXX newer TRIM commands are queueable. Revisit this when we
|
|
* implement them.
|
|
*/
|
|
if ((bp = cam_iosched_get_trim(isc)) != NULL)
|
|
return bp;
|
|
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
/*
|
|
* See if we have any pending writes, and room in the queue for them,
|
|
* and if so, those are next.
|
|
*/
|
|
if (do_dynamic_iosched) {
|
|
if ((bp = cam_iosched_get_write(isc)) != NULL)
|
|
return bp;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* next, see if there's other, normal I/O waiting. If so return that.
|
|
*/
|
|
if ((bp = bioq_first(&isc->bio_queue)) == NULL)
|
|
return NULL;
|
|
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
/*
|
|
* For the dynamic scheduler, bio_queue is only for reads, so enforce
|
|
* the limits here. Enforce only for reads.
|
|
*/
|
|
if (do_dynamic_iosched) {
|
|
if (bp->bio_cmd == BIO_READ &&
|
|
cam_iosched_limiter_iop(&isc->read_stats, bp) != 0) {
|
|
isc->read_stats.state_flags |= IOP_RATE_LIMITED;
|
|
return NULL;
|
|
}
|
|
}
|
|
isc->read_stats.state_flags &= ~IOP_RATE_LIMITED;
|
|
#endif
|
|
bioq_remove(&isc->bio_queue, bp);
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
if (do_dynamic_iosched) {
|
|
if (bp->bio_cmd == BIO_READ) {
|
|
isc->read_stats.queued--;
|
|
isc->read_stats.total++;
|
|
isc->read_stats.pending++;
|
|
} else
|
|
printf("Found bio_cmd = %#x\n", bp->bio_cmd);
|
|
}
|
|
if (iosched_debug > 9)
|
|
printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
|
|
#endif
|
|
return bp;
|
|
}
|
|
|
|
/*
|
|
* Driver has been given some work to do by the block layer. Tell the
|
|
* scheduler about it and have it queue the work up. The scheduler module
|
|
* will then return the currently most useful bit of work later, possibly
|
|
* deferring work for various reasons.
|
|
*/
|
|
void
|
|
cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp)
|
|
{
|
|
|
|
/*
|
|
* Put all trims on the trim queue sorted, since we know
|
|
* that the collapsing code requires this. Otherwise put
|
|
* the work on the bio queue.
|
|
*/
|
|
if (bp->bio_cmd == BIO_DELETE) {
|
|
bioq_disksort(&isc->trim_queue, bp);
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
isc->trim_stats.in++;
|
|
isc->trim_stats.queued++;
|
|
#endif
|
|
}
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
else if (do_dynamic_iosched &&
|
|
(bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_FLUSH)) {
|
|
if (cam_iosched_sort_queue(isc))
|
|
bioq_disksort(&isc->write_queue, bp);
|
|
else
|
|
bioq_insert_tail(&isc->write_queue, bp);
|
|
if (iosched_debug > 9)
|
|
printf("Qw : %p %#x\n", bp, bp->bio_cmd);
|
|
if (bp->bio_cmd == BIO_WRITE) {
|
|
isc->write_stats.in++;
|
|
isc->write_stats.queued++;
|
|
}
|
|
}
|
|
#endif
|
|
else {
|
|
if (cam_iosched_sort_queue(isc))
|
|
bioq_disksort(&isc->bio_queue, bp);
|
|
else
|
|
bioq_insert_tail(&isc->bio_queue, bp);
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
if (iosched_debug > 9)
|
|
printf("Qr : %p %#x\n", bp, bp->bio_cmd);
|
|
if (bp->bio_cmd == BIO_READ) {
|
|
isc->read_stats.in++;
|
|
isc->read_stats.queued++;
|
|
} else if (bp->bio_cmd == BIO_WRITE) {
|
|
isc->write_stats.in++;
|
|
isc->write_stats.queued++;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we have work, get it scheduled. Called with the periph lock held.
|
|
*/
|
|
void
|
|
cam_iosched_schedule(struct cam_iosched_softc *isc, struct cam_periph *periph)
|
|
{
|
|
|
|
if (cam_iosched_has_work(isc))
|
|
xpt_schedule(periph, CAM_PRIORITY_NORMAL);
|
|
}
|
|
|
|
/*
|
|
* Complete a trim request
|
|
*/
|
|
void
|
|
cam_iosched_trim_done(struct cam_iosched_softc *isc)
|
|
{
|
|
|
|
isc->flags &= ~CAM_IOSCHED_FLAG_TRIM_ACTIVE;
|
|
}
|
|
|
|
/*
|
|
* Complete a bio. Called before we release the ccb with xpt_release_ccb so we
|
|
* might use notes in the ccb for statistics.
|
|
*/
|
|
int
|
|
cam_iosched_bio_complete(struct cam_iosched_softc *isc, struct bio *bp,
|
|
union ccb *done_ccb)
|
|
{
|
|
int retval = 0;
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
if (!do_dynamic_iosched)
|
|
return retval;
|
|
|
|
if (iosched_debug > 10)
|
|
printf("done: %p %#x\n", bp, bp->bio_cmd);
|
|
if (bp->bio_cmd == BIO_WRITE) {
|
|
retval = cam_iosched_limiter_iodone(&isc->write_stats, bp);
|
|
isc->write_stats.out++;
|
|
isc->write_stats.pending--;
|
|
} else if (bp->bio_cmd == BIO_READ) {
|
|
retval = cam_iosched_limiter_iodone(&isc->read_stats, bp);
|
|
isc->read_stats.out++;
|
|
isc->read_stats.pending--;
|
|
} else if (bp->bio_cmd == BIO_DELETE) {
|
|
isc->trim_stats.out++;
|
|
isc->trim_stats.pending--;
|
|
} else if (bp->bio_cmd != BIO_FLUSH) {
|
|
if (iosched_debug)
|
|
printf("Completing command with bio_cmd == %#x\n", bp->bio_cmd);
|
|
}
|
|
|
|
if (!(bp->bio_flags & BIO_ERROR))
|
|
cam_iosched_io_metric_update(isc, done_ccb->ccb_h.qos.sim_data,
|
|
bp->bio_cmd, bp->bio_bcount);
|
|
#endif
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Tell the io scheduler that you've pushed a trim down into the sim.
|
|
* xxx better place for this?
|
|
*/
|
|
void
|
|
cam_iosched_submit_trim(struct cam_iosched_softc *isc)
|
|
{
|
|
|
|
isc->flags |= CAM_IOSCHED_FLAG_TRIM_ACTIVE;
|
|
}
|
|
|
|
/*
|
|
* Change the sorting policy hint for I/O transactions for this device.
|
|
*/
|
|
void
|
|
cam_iosched_set_sort_queue(struct cam_iosched_softc *isc, int val)
|
|
{
|
|
|
|
isc->sort_io_queue = val;
|
|
}
|
|
|
|
int
|
|
cam_iosched_has_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
|
|
{
|
|
return isc->flags & flags;
|
|
}
|
|
|
|
void
|
|
cam_iosched_set_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
|
|
{
|
|
isc->flags |= flags;
|
|
}
|
|
|
|
void
|
|
cam_iosched_clr_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
|
|
{
|
|
isc->flags &= ~flags;
|
|
}
|
|
|
|
#ifdef CAM_IOSCHED_DYNAMIC
|
|
/*
|
|
* After the method presented in Jack Crenshaw's 1998 article "Integer
|
|
* Suqare Roots," reprinted at
|
|
* http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots
|
|
* and well worth the read. Briefly, we find the power of 4 that's the
|
|
* largest smaller than val. We then check each smaller power of 4 to
|
|
* see if val is still bigger. The right shifts at each step divide
|
|
* the result by 2 which after successive application winds up
|
|
* accumulating the right answer. It could also have been accumulated
|
|
* using a separate root counter, but this code is smaller and faster
|
|
* than that method. This method is also integer size invariant.
|
|
* It returns floor(sqrt((float)val)), or the larget integer less than
|
|
* or equal to the square root.
|
|
*/
|
|
static uint64_t
|
|
isqrt64(uint64_t val)
|
|
{
|
|
uint64_t res = 0;
|
|
uint64_t bit = 1ULL << (sizeof(uint64_t) * NBBY - 2);
|
|
|
|
/*
|
|
* Find the largest power of 4 smaller than val.
|
|
*/
|
|
while (bit > val)
|
|
bit >>= 2;
|
|
|
|
/*
|
|
* Accumulate the answer, one bit at a time (we keep moving
|
|
* them over since 2 is the square root of 4 and we test
|
|
* powers of 4). We accumulate where we find the bit, but
|
|
* the successive shifts land the bit in the right place
|
|
* by the end.
|
|
*/
|
|
while (bit != 0) {
|
|
if (val >= res + bit) {
|
|
val -= res + bit;
|
|
res = (res >> 1) + bit;
|
|
} else
|
|
res >>= 1;
|
|
bit >>= 2;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static sbintime_t latencies[] = {
|
|
SBT_1MS << 0,
|
|
SBT_1MS << 1,
|
|
SBT_1MS << 2,
|
|
SBT_1MS << 3,
|
|
SBT_1MS << 4,
|
|
SBT_1MS << 5,
|
|
SBT_1MS << 6,
|
|
SBT_1MS << 7,
|
|
SBT_1MS << 8,
|
|
SBT_1MS << 9,
|
|
SBT_1MS << 10
|
|
};
|
|
|
|
static void
|
|
cam_iosched_update(struct iop_stats *iop, sbintime_t sim_latency)
|
|
{
|
|
sbintime_t y, deltasq, delta;
|
|
int i;
|
|
|
|
/*
|
|
* Keep counts for latency. We do it by power of two buckets.
|
|
* This helps us spot outlier behavior obscured by averages.
|
|
*/
|
|
for (i = 0; i < LAT_BUCKETS - 1; i++) {
|
|
if (sim_latency < latencies[i]) {
|
|
iop->latencies[i]++;
|
|
break;
|
|
}
|
|
}
|
|
if (i == LAT_BUCKETS - 1)
|
|
iop->latencies[i]++; /* Put all > 1024ms values into the last bucket. */
|
|
|
|
/*
|
|
* Classic expoentially decaying average with a tiny alpha
|
|
* (2 ^ -alpha_bits). For more info see the NIST statistical
|
|
* handbook.
|
|
*
|
|
* ema_t = y_t * alpha + ema_t-1 * (1 - alpha) [nist]
|
|
* ema_t = y_t * alpha + ema_t-1 - alpha * ema_t-1
|
|
* ema_t = alpha * y_t - alpha * ema_t-1 + ema_t-1
|
|
* alpha = 1 / (1 << alpha_bits)
|
|
* sub e == ema_t-1, b == 1/alpha (== 1 << alpha_bits), d == y_t - ema_t-1
|
|
* = y_t/b - e/b + be/b
|
|
* = (y_t - e + be) / b
|
|
* = (e + d) / b
|
|
*
|
|
* Since alpha is a power of two, we can compute this w/o any mult or
|
|
* division.
|
|
*
|
|
* Variance can also be computed. Usually, it would be expressed as follows:
|
|
* diff_t = y_t - ema_t-1
|
|
* emvar_t = (1 - alpha) * (emavar_t-1 + diff_t^2 * alpha)
|
|
* = emavar_t-1 - alpha * emavar_t-1 + delta_t^2 * alpha - (delta_t * alpha)^2
|
|
* sub b == 1/alpha (== 1 << alpha_bits), e == emavar_t-1, d = delta_t^2
|
|
* = e - e/b + dd/b + dd/bb
|
|
* = (bbe - be + bdd + dd) / bb
|
|
* = (bbe + b(dd-e) + dd) / bb (which is expanded below bb = 1<<(2*alpha_bits))
|
|
*/
|
|
/*
|
|
* XXX possible numeric issues
|
|
* o We assume right shifted integers do the right thing, since that's
|
|
* implementation defined. You can change the right shifts to / (1LL << alpha).
|
|
* o alpha_bits = 9 gives ema ceiling of 23 bits of seconds for ema and 14 bits
|
|
* for emvar. This puts a ceiling of 13 bits on alpha since we need a
|
|
* few tens of seconds of representation.
|
|
* o We mitigate alpha issues by never setting it too high.
|
|
*/
|
|
y = sim_latency;
|
|
delta = (y - iop->ema); /* d */
|
|
iop->ema = ((iop->ema << alpha_bits) + delta) >> alpha_bits;
|
|
|
|
/*
|
|
* Were we to naively plow ahead at this point, we wind up with many numerical
|
|
* issues making any SD > ~3ms unreliable. So, we shift right by 12. This leaves
|
|
* us with microsecond level precision in the input, so the same in the
|
|
* output. It means we can't overflow deltasq unless delta > 4k seconds. It
|
|
* also means that emvar can be up 46 bits 40 of which are fraction, which
|
|
* gives us a way to measure up to ~8s in the SD before the computation goes
|
|
* unstable. Even the worst hard disk rarely has > 1s service time in the
|
|
* drive. It does mean we have to shift left 12 bits after taking the
|
|
* square root to compute the actual standard deviation estimate. This loss of
|
|
* precision is preferable to needing int128 types to work. The above numbers
|
|
* assume alpha=9. 10 or 11 are ok, but we start to run into issues at 12,
|
|
* so 12 or 13 is OK for EMA, EMVAR and SD will be wrong in those cases.
|
|
*/
|
|
delta >>= 12;
|
|
deltasq = delta * delta; /* dd */
|
|
iop->emvar = ((iop->emvar << (2 * alpha_bits)) + /* bbe */
|
|
((deltasq - iop->emvar) << alpha_bits) + /* b(dd-e) */
|
|
deltasq) /* dd */
|
|
>> (2 * alpha_bits); /* div bb */
|
|
iop->sd = (sbintime_t)isqrt64((uint64_t)iop->emvar) << 12;
|
|
}
|
|
|
|
static void
|
|
cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
|
|
sbintime_t sim_latency, int cmd, size_t size)
|
|
{
|
|
/* xxx Do we need to scale based on the size of the I/O ? */
|
|
switch (cmd) {
|
|
case BIO_READ:
|
|
cam_iosched_update(&isc->read_stats, sim_latency);
|
|
break;
|
|
case BIO_WRITE:
|
|
cam_iosched_update(&isc->write_stats, sim_latency);
|
|
break;
|
|
case BIO_DELETE:
|
|
cam_iosched_update(&isc->trim_stats, sim_latency);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef DDB
|
|
static int biolen(struct bio_queue_head *bq)
|
|
{
|
|
int i = 0;
|
|
struct bio *bp;
|
|
|
|
TAILQ_FOREACH(bp, &bq->queue, bio_queue) {
|
|
i++;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Show the internal state of the I/O scheduler.
|
|
*/
|
|
DB_SHOW_COMMAND(iosched, cam_iosched_db_show)
|
|
{
|
|
struct cam_iosched_softc *isc;
|
|
|
|
if (!have_addr) {
|
|
db_printf("Need addr\n");
|
|
return;
|
|
}
|
|
isc = (struct cam_iosched_softc *)addr;
|
|
db_printf("pending_reads: %d\n", isc->read_stats.pending);
|
|
db_printf("min_reads: %d\n", isc->read_stats.min);
|
|
db_printf("max_reads: %d\n", isc->read_stats.max);
|
|
db_printf("reads: %d\n", isc->read_stats.total);
|
|
db_printf("in_reads: %d\n", isc->read_stats.in);
|
|
db_printf("out_reads: %d\n", isc->read_stats.out);
|
|
db_printf("queued_reads: %d\n", isc->read_stats.queued);
|
|
db_printf("Current Q len %d\n", biolen(&isc->bio_queue));
|
|
db_printf("pending_writes: %d\n", isc->write_stats.pending);
|
|
db_printf("min_writes: %d\n", isc->write_stats.min);
|
|
db_printf("max_writes: %d\n", isc->write_stats.max);
|
|
db_printf("writes: %d\n", isc->write_stats.total);
|
|
db_printf("in_writes: %d\n", isc->write_stats.in);
|
|
db_printf("out_writes: %d\n", isc->write_stats.out);
|
|
db_printf("queued_writes: %d\n", isc->write_stats.queued);
|
|
db_printf("Current Q len %d\n", biolen(&isc->write_queue));
|
|
db_printf("pending_trims: %d\n", isc->trim_stats.pending);
|
|
db_printf("min_trims: %d\n", isc->trim_stats.min);
|
|
db_printf("max_trims: %d\n", isc->trim_stats.max);
|
|
db_printf("trims: %d\n", isc->trim_stats.total);
|
|
db_printf("in_trims: %d\n", isc->trim_stats.in);
|
|
db_printf("out_trims: %d\n", isc->trim_stats.out);
|
|
db_printf("queued_trims: %d\n", isc->trim_stats.queued);
|
|
db_printf("Current Q len %d\n", biolen(&isc->trim_queue));
|
|
db_printf("read_bias: %d\n", isc->read_bias);
|
|
db_printf("current_read_bias: %d\n", isc->current_read_bias);
|
|
db_printf("Trim active? %s\n",
|
|
(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) ? "yes" : "no");
|
|
}
|
|
#endif
|
|
#endif
|