6485 lines
253 KiB
C++
6485 lines
253 KiB
C++
//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements routines for translating from LLVM IR into SelectionDAG IR.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "isel"
|
|
#include "SDNodeDbgValue.h"
|
|
#include "SelectionDAGBuilder.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/FastISel.h"
|
|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
|
#include "llvm/CodeGen/GCStrategy.h"
|
|
#include "llvm/CodeGen/GCMetadata.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/Analysis/DebugInfo.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetFrameLowering.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetIntrinsicInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
/// LimitFloatPrecision - Generate low-precision inline sequences for
|
|
/// some float libcalls (6, 8 or 12 bits).
|
|
static unsigned LimitFloatPrecision;
|
|
|
|
static cl::opt<unsigned, true>
|
|
LimitFPPrecision("limit-float-precision",
|
|
cl::desc("Generate low-precision inline sequences "
|
|
"for some float libcalls"),
|
|
cl::location(LimitFloatPrecision),
|
|
cl::init(0));
|
|
|
|
// Limit the width of DAG chains. This is important in general to prevent
|
|
// prevent DAG-based analysis from blowing up. For example, alias analysis and
|
|
// load clustering may not complete in reasonable time. It is difficult to
|
|
// recognize and avoid this situation within each individual analysis, and
|
|
// future analyses are likely to have the same behavior. Limiting DAG width is
|
|
// the safe approach, and will be especially important with global DAGs.
|
|
//
|
|
// MaxParallelChains default is arbitrarily high to avoid affecting
|
|
// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
|
|
// sequence over this should have been converted to llvm.memcpy by the
|
|
// frontend. It easy to induce this behavior with .ll code such as:
|
|
// %buffer = alloca [4096 x i8]
|
|
// %data = load [4096 x i8]* %argPtr
|
|
// store [4096 x i8] %data, [4096 x i8]* %buffer
|
|
static cl::opt<unsigned>
|
|
MaxParallelChains("dag-chain-limit", cl::desc("Max parallel isel dag chains"),
|
|
cl::init(64), cl::Hidden);
|
|
|
|
static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
|
|
const SDValue *Parts, unsigned NumParts,
|
|
EVT PartVT, EVT ValueVT);
|
|
|
|
/// getCopyFromParts - Create a value that contains the specified legal parts
|
|
/// combined into the value they represent. If the parts combine to a type
|
|
/// larger then ValueVT then AssertOp can be used to specify whether the extra
|
|
/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
|
|
/// (ISD::AssertSext).
|
|
static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
|
|
const SDValue *Parts,
|
|
unsigned NumParts, EVT PartVT, EVT ValueVT,
|
|
ISD::NodeType AssertOp = ISD::DELETED_NODE) {
|
|
if (ValueVT.isVector())
|
|
return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
|
|
|
|
assert(NumParts > 0 && "No parts to assemble!");
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
SDValue Val = Parts[0];
|
|
|
|
if (NumParts > 1) {
|
|
// Assemble the value from multiple parts.
|
|
if (ValueVT.isInteger()) {
|
|
unsigned PartBits = PartVT.getSizeInBits();
|
|
unsigned ValueBits = ValueVT.getSizeInBits();
|
|
|
|
// Assemble the power of 2 part.
|
|
unsigned RoundParts = NumParts & (NumParts - 1) ?
|
|
1 << Log2_32(NumParts) : NumParts;
|
|
unsigned RoundBits = PartBits * RoundParts;
|
|
EVT RoundVT = RoundBits == ValueBits ?
|
|
ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
|
|
SDValue Lo, Hi;
|
|
|
|
EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
|
|
|
|
if (RoundParts > 2) {
|
|
Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
|
|
PartVT, HalfVT);
|
|
Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
|
|
RoundParts / 2, PartVT, HalfVT);
|
|
} else {
|
|
Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
|
|
Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
|
|
}
|
|
|
|
if (TLI.isBigEndian())
|
|
std::swap(Lo, Hi);
|
|
|
|
Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
|
|
|
|
if (RoundParts < NumParts) {
|
|
// Assemble the trailing non-power-of-2 part.
|
|
unsigned OddParts = NumParts - RoundParts;
|
|
EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
|
|
Hi = getCopyFromParts(DAG, DL,
|
|
Parts + RoundParts, OddParts, PartVT, OddVT);
|
|
|
|
// Combine the round and odd parts.
|
|
Lo = Val;
|
|
if (TLI.isBigEndian())
|
|
std::swap(Lo, Hi);
|
|
EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
|
|
Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
|
|
Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
|
|
DAG.getConstant(Lo.getValueType().getSizeInBits(),
|
|
TLI.getPointerTy()));
|
|
Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
|
|
Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
|
|
}
|
|
} else if (PartVT.isFloatingPoint()) {
|
|
// FP split into multiple FP parts (for ppcf128)
|
|
assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
|
|
"Unexpected split");
|
|
SDValue Lo, Hi;
|
|
Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
|
|
Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
|
|
if (TLI.isBigEndian())
|
|
std::swap(Lo, Hi);
|
|
Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
|
|
} else {
|
|
// FP split into integer parts (soft fp)
|
|
assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
|
|
!PartVT.isVector() && "Unexpected split");
|
|
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
|
|
Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
|
|
}
|
|
}
|
|
|
|
// There is now one part, held in Val. Correct it to match ValueVT.
|
|
PartVT = Val.getValueType();
|
|
|
|
if (PartVT == ValueVT)
|
|
return Val;
|
|
|
|
if (PartVT.isInteger() && ValueVT.isInteger()) {
|
|
if (ValueVT.bitsLT(PartVT)) {
|
|
// For a truncate, see if we have any information to
|
|
// indicate whether the truncated bits will always be
|
|
// zero or sign-extension.
|
|
if (AssertOp != ISD::DELETED_NODE)
|
|
Val = DAG.getNode(AssertOp, DL, PartVT, Val,
|
|
DAG.getValueType(ValueVT));
|
|
return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
|
|
}
|
|
return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
|
|
}
|
|
|
|
if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
|
|
// FP_ROUND's are always exact here.
|
|
if (ValueVT.bitsLT(Val.getValueType()))
|
|
return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
|
|
DAG.getIntPtrConstant(1));
|
|
|
|
return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
|
|
}
|
|
|
|
if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
|
|
return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
|
|
|
|
llvm_unreachable("Unknown mismatch!");
|
|
return SDValue();
|
|
}
|
|
|
|
/// getCopyFromParts - Create a value that contains the specified legal parts
|
|
/// combined into the value they represent. If the parts combine to a type
|
|
/// larger then ValueVT then AssertOp can be used to specify whether the extra
|
|
/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
|
|
/// (ISD::AssertSext).
|
|
static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
|
|
const SDValue *Parts, unsigned NumParts,
|
|
EVT PartVT, EVT ValueVT) {
|
|
assert(ValueVT.isVector() && "Not a vector value");
|
|
assert(NumParts > 0 && "No parts to assemble!");
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
SDValue Val = Parts[0];
|
|
|
|
// Handle a multi-element vector.
|
|
if (NumParts > 1) {
|
|
EVT IntermediateVT, RegisterVT;
|
|
unsigned NumIntermediates;
|
|
unsigned NumRegs =
|
|
TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
|
|
NumIntermediates, RegisterVT);
|
|
assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
|
|
NumParts = NumRegs; // Silence a compiler warning.
|
|
assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
|
|
assert(RegisterVT == Parts[0].getValueType() &&
|
|
"Part type doesn't match part!");
|
|
|
|
// Assemble the parts into intermediate operands.
|
|
SmallVector<SDValue, 8> Ops(NumIntermediates);
|
|
if (NumIntermediates == NumParts) {
|
|
// If the register was not expanded, truncate or copy the value,
|
|
// as appropriate.
|
|
for (unsigned i = 0; i != NumParts; ++i)
|
|
Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
|
|
PartVT, IntermediateVT);
|
|
} else if (NumParts > 0) {
|
|
// If the intermediate type was expanded, build the intermediate
|
|
// operands from the parts.
|
|
assert(NumParts % NumIntermediates == 0 &&
|
|
"Must expand into a divisible number of parts!");
|
|
unsigned Factor = NumParts / NumIntermediates;
|
|
for (unsigned i = 0; i != NumIntermediates; ++i)
|
|
Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
|
|
PartVT, IntermediateVT);
|
|
}
|
|
|
|
// Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
|
|
// intermediate operands.
|
|
Val = DAG.getNode(IntermediateVT.isVector() ?
|
|
ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
|
|
ValueVT, &Ops[0], NumIntermediates);
|
|
}
|
|
|
|
// There is now one part, held in Val. Correct it to match ValueVT.
|
|
PartVT = Val.getValueType();
|
|
|
|
if (PartVT == ValueVT)
|
|
return Val;
|
|
|
|
if (PartVT.isVector()) {
|
|
// If the element type of the source/dest vectors are the same, but the
|
|
// parts vector has more elements than the value vector, then we have a
|
|
// vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
|
|
// elements we want.
|
|
if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
|
|
assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
|
|
"Cannot narrow, it would be a lossy transformation");
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
|
|
DAG.getIntPtrConstant(0));
|
|
}
|
|
|
|
// Vector/Vector bitcast.
|
|
return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
|
|
}
|
|
|
|
assert(ValueVT.getVectorElementType() == PartVT &&
|
|
ValueVT.getVectorNumElements() == 1 &&
|
|
"Only trivial scalar-to-vector conversions should get here!");
|
|
return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
|
|
}
|
|
|
|
|
|
|
|
|
|
static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
|
|
SDValue Val, SDValue *Parts, unsigned NumParts,
|
|
EVT PartVT);
|
|
|
|
/// getCopyToParts - Create a series of nodes that contain the specified value
|
|
/// split into legal parts. If the parts contain more bits than Val, then, for
|
|
/// integers, ExtendKind can be used to specify how to generate the extra bits.
|
|
static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
|
|
SDValue Val, SDValue *Parts, unsigned NumParts,
|
|
EVT PartVT,
|
|
ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
|
|
EVT ValueVT = Val.getValueType();
|
|
|
|
// Handle the vector case separately.
|
|
if (ValueVT.isVector())
|
|
return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
|
|
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
unsigned PartBits = PartVT.getSizeInBits();
|
|
unsigned OrigNumParts = NumParts;
|
|
assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
|
|
|
|
if (NumParts == 0)
|
|
return;
|
|
|
|
assert(!ValueVT.isVector() && "Vector case handled elsewhere");
|
|
if (PartVT == ValueVT) {
|
|
assert(NumParts == 1 && "No-op copy with multiple parts!");
|
|
Parts[0] = Val;
|
|
return;
|
|
}
|
|
|
|
if (NumParts * PartBits > ValueVT.getSizeInBits()) {
|
|
// If the parts cover more bits than the value has, promote the value.
|
|
if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
|
|
assert(NumParts == 1 && "Do not know what to promote to!");
|
|
Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
|
|
} else {
|
|
assert(PartVT.isInteger() && ValueVT.isInteger() &&
|
|
"Unknown mismatch!");
|
|
ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
|
|
Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
|
|
}
|
|
} else if (PartBits == ValueVT.getSizeInBits()) {
|
|
// Different types of the same size.
|
|
assert(NumParts == 1 && PartVT != ValueVT);
|
|
Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
|
|
} else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
|
|
// If the parts cover less bits than value has, truncate the value.
|
|
assert(PartVT.isInteger() && ValueVT.isInteger() &&
|
|
"Unknown mismatch!");
|
|
ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
|
|
Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
|
|
}
|
|
|
|
// The value may have changed - recompute ValueVT.
|
|
ValueVT = Val.getValueType();
|
|
assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
|
|
"Failed to tile the value with PartVT!");
|
|
|
|
if (NumParts == 1) {
|
|
assert(PartVT == ValueVT && "Type conversion failed!");
|
|
Parts[0] = Val;
|
|
return;
|
|
}
|
|
|
|
// Expand the value into multiple parts.
|
|
if (NumParts & (NumParts - 1)) {
|
|
// The number of parts is not a power of 2. Split off and copy the tail.
|
|
assert(PartVT.isInteger() && ValueVT.isInteger() &&
|
|
"Do not know what to expand to!");
|
|
unsigned RoundParts = 1 << Log2_32(NumParts);
|
|
unsigned RoundBits = RoundParts * PartBits;
|
|
unsigned OddParts = NumParts - RoundParts;
|
|
SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
|
|
DAG.getIntPtrConstant(RoundBits));
|
|
getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
|
|
|
|
if (TLI.isBigEndian())
|
|
// The odd parts were reversed by getCopyToParts - unreverse them.
|
|
std::reverse(Parts + RoundParts, Parts + NumParts);
|
|
|
|
NumParts = RoundParts;
|
|
ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
|
|
Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
|
|
}
|
|
|
|
// The number of parts is a power of 2. Repeatedly bisect the value using
|
|
// EXTRACT_ELEMENT.
|
|
Parts[0] = DAG.getNode(ISD::BITCAST, DL,
|
|
EVT::getIntegerVT(*DAG.getContext(),
|
|
ValueVT.getSizeInBits()),
|
|
Val);
|
|
|
|
for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
|
|
for (unsigned i = 0; i < NumParts; i += StepSize) {
|
|
unsigned ThisBits = StepSize * PartBits / 2;
|
|
EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
|
|
SDValue &Part0 = Parts[i];
|
|
SDValue &Part1 = Parts[i+StepSize/2];
|
|
|
|
Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
|
|
ThisVT, Part0, DAG.getIntPtrConstant(1));
|
|
Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
|
|
ThisVT, Part0, DAG.getIntPtrConstant(0));
|
|
|
|
if (ThisBits == PartBits && ThisVT != PartVT) {
|
|
Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
|
|
Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (TLI.isBigEndian())
|
|
std::reverse(Parts, Parts + OrigNumParts);
|
|
}
|
|
|
|
|
|
/// getCopyToPartsVector - Create a series of nodes that contain the specified
|
|
/// value split into legal parts.
|
|
static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
|
|
SDValue Val, SDValue *Parts, unsigned NumParts,
|
|
EVT PartVT) {
|
|
EVT ValueVT = Val.getValueType();
|
|
assert(ValueVT.isVector() && "Not a vector");
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
if (NumParts == 1) {
|
|
if (PartVT == ValueVT) {
|
|
// Nothing to do.
|
|
} else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
|
|
// Bitconvert vector->vector case.
|
|
Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
|
|
} else if (PartVT.isVector() &&
|
|
PartVT.getVectorElementType() == ValueVT.getVectorElementType()&&
|
|
PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
|
|
EVT ElementVT = PartVT.getVectorElementType();
|
|
// Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
|
|
// undef elements.
|
|
SmallVector<SDValue, 16> Ops;
|
|
for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
|
|
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
|
|
ElementVT, Val, DAG.getIntPtrConstant(i)));
|
|
|
|
for (unsigned i = ValueVT.getVectorNumElements(),
|
|
e = PartVT.getVectorNumElements(); i != e; ++i)
|
|
Ops.push_back(DAG.getUNDEF(ElementVT));
|
|
|
|
Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
|
|
|
|
// FIXME: Use CONCAT for 2x -> 4x.
|
|
|
|
//SDValue UndefElts = DAG.getUNDEF(VectorTy);
|
|
//Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
|
|
} else {
|
|
// Vector -> scalar conversion.
|
|
assert(ValueVT.getVectorElementType() == PartVT &&
|
|
ValueVT.getVectorNumElements() == 1 &&
|
|
"Only trivial vector-to-scalar conversions should get here!");
|
|
Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
|
|
PartVT, Val, DAG.getIntPtrConstant(0));
|
|
}
|
|
|
|
Parts[0] = Val;
|
|
return;
|
|
}
|
|
|
|
// Handle a multi-element vector.
|
|
EVT IntermediateVT, RegisterVT;
|
|
unsigned NumIntermediates;
|
|
unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
|
|
IntermediateVT,
|
|
NumIntermediates, RegisterVT);
|
|
unsigned NumElements = ValueVT.getVectorNumElements();
|
|
|
|
assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
|
|
NumParts = NumRegs; // Silence a compiler warning.
|
|
assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
|
|
|
|
// Split the vector into intermediate operands.
|
|
SmallVector<SDValue, 8> Ops(NumIntermediates);
|
|
for (unsigned i = 0; i != NumIntermediates; ++i) {
|
|
if (IntermediateVT.isVector())
|
|
Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
|
|
IntermediateVT, Val,
|
|
DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
|
|
else
|
|
Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
|
|
IntermediateVT, Val, DAG.getIntPtrConstant(i));
|
|
}
|
|
|
|
// Split the intermediate operands into legal parts.
|
|
if (NumParts == NumIntermediates) {
|
|
// If the register was not expanded, promote or copy the value,
|
|
// as appropriate.
|
|
for (unsigned i = 0; i != NumParts; ++i)
|
|
getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
|
|
} else if (NumParts > 0) {
|
|
// If the intermediate type was expanded, split each the value into
|
|
// legal parts.
|
|
assert(NumParts % NumIntermediates == 0 &&
|
|
"Must expand into a divisible number of parts!");
|
|
unsigned Factor = NumParts / NumIntermediates;
|
|
for (unsigned i = 0; i != NumIntermediates; ++i)
|
|
getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
namespace {
|
|
/// RegsForValue - This struct represents the registers (physical or virtual)
|
|
/// that a particular set of values is assigned, and the type information
|
|
/// about the value. The most common situation is to represent one value at a
|
|
/// time, but struct or array values are handled element-wise as multiple
|
|
/// values. The splitting of aggregates is performed recursively, so that we
|
|
/// never have aggregate-typed registers. The values at this point do not
|
|
/// necessarily have legal types, so each value may require one or more
|
|
/// registers of some legal type.
|
|
///
|
|
struct RegsForValue {
|
|
/// ValueVTs - The value types of the values, which may not be legal, and
|
|
/// may need be promoted or synthesized from one or more registers.
|
|
///
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
|
|
/// RegVTs - The value types of the registers. This is the same size as
|
|
/// ValueVTs and it records, for each value, what the type of the assigned
|
|
/// register or registers are. (Individual values are never synthesized
|
|
/// from more than one type of register.)
|
|
///
|
|
/// With virtual registers, the contents of RegVTs is redundant with TLI's
|
|
/// getRegisterType member function, however when with physical registers
|
|
/// it is necessary to have a separate record of the types.
|
|
///
|
|
SmallVector<EVT, 4> RegVTs;
|
|
|
|
/// Regs - This list holds the registers assigned to the values.
|
|
/// Each legal or promoted value requires one register, and each
|
|
/// expanded value requires multiple registers.
|
|
///
|
|
SmallVector<unsigned, 4> Regs;
|
|
|
|
RegsForValue() {}
|
|
|
|
RegsForValue(const SmallVector<unsigned, 4> ®s,
|
|
EVT regvt, EVT valuevt)
|
|
: ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
|
|
|
|
RegsForValue(LLVMContext &Context, const TargetLowering &tli,
|
|
unsigned Reg, const Type *Ty) {
|
|
ComputeValueVTs(tli, Ty, ValueVTs);
|
|
|
|
for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
|
|
EVT ValueVT = ValueVTs[Value];
|
|
unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
|
|
EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
|
|
for (unsigned i = 0; i != NumRegs; ++i)
|
|
Regs.push_back(Reg + i);
|
|
RegVTs.push_back(RegisterVT);
|
|
Reg += NumRegs;
|
|
}
|
|
}
|
|
|
|
/// areValueTypesLegal - Return true if types of all the values are legal.
|
|
bool areValueTypesLegal(const TargetLowering &TLI) {
|
|
for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
|
|
EVT RegisterVT = RegVTs[Value];
|
|
if (!TLI.isTypeLegal(RegisterVT))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// append - Add the specified values to this one.
|
|
void append(const RegsForValue &RHS) {
|
|
ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
|
|
RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
|
|
Regs.append(RHS.Regs.begin(), RHS.Regs.end());
|
|
}
|
|
|
|
/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
|
|
/// this value and returns the result as a ValueVTs value. This uses
|
|
/// Chain/Flag as the input and updates them for the output Chain/Flag.
|
|
/// If the Flag pointer is NULL, no flag is used.
|
|
SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
|
|
DebugLoc dl,
|
|
SDValue &Chain, SDValue *Flag) const;
|
|
|
|
/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
|
|
/// specified value into the registers specified by this object. This uses
|
|
/// Chain/Flag as the input and updates them for the output Chain/Flag.
|
|
/// If the Flag pointer is NULL, no flag is used.
|
|
void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
|
|
SDValue &Chain, SDValue *Flag) const;
|
|
|
|
/// AddInlineAsmOperands - Add this value to the specified inlineasm node
|
|
/// operand list. This adds the code marker, matching input operand index
|
|
/// (if applicable), and includes the number of values added into it.
|
|
void AddInlineAsmOperands(unsigned Kind,
|
|
bool HasMatching, unsigned MatchingIdx,
|
|
SelectionDAG &DAG,
|
|
std::vector<SDValue> &Ops) const;
|
|
};
|
|
}
|
|
|
|
/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
|
|
/// this value and returns the result as a ValueVT value. This uses
|
|
/// Chain/Flag as the input and updates them for the output Chain/Flag.
|
|
/// If the Flag pointer is NULL, no flag is used.
|
|
SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
|
|
FunctionLoweringInfo &FuncInfo,
|
|
DebugLoc dl,
|
|
SDValue &Chain, SDValue *Flag) const {
|
|
// A Value with type {} or [0 x %t] needs no registers.
|
|
if (ValueVTs.empty())
|
|
return SDValue();
|
|
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
// Assemble the legal parts into the final values.
|
|
SmallVector<SDValue, 4> Values(ValueVTs.size());
|
|
SmallVector<SDValue, 8> Parts;
|
|
for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
|
|
// Copy the legal parts from the registers.
|
|
EVT ValueVT = ValueVTs[Value];
|
|
unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
|
|
EVT RegisterVT = RegVTs[Value];
|
|
|
|
Parts.resize(NumRegs);
|
|
for (unsigned i = 0; i != NumRegs; ++i) {
|
|
SDValue P;
|
|
if (Flag == 0) {
|
|
P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
|
|
} else {
|
|
P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
|
|
*Flag = P.getValue(2);
|
|
}
|
|
|
|
Chain = P.getValue(1);
|
|
Parts[i] = P;
|
|
|
|
// If the source register was virtual and if we know something about it,
|
|
// add an assert node.
|
|
if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
|
|
!RegisterVT.isInteger() || RegisterVT.isVector())
|
|
continue;
|
|
|
|
const FunctionLoweringInfo::LiveOutInfo *LOI =
|
|
FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
|
|
if (!LOI)
|
|
continue;
|
|
|
|
unsigned RegSize = RegisterVT.getSizeInBits();
|
|
unsigned NumSignBits = LOI->NumSignBits;
|
|
unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
|
|
|
|
// FIXME: We capture more information than the dag can represent. For
|
|
// now, just use the tightest assertzext/assertsext possible.
|
|
bool isSExt = true;
|
|
EVT FromVT(MVT::Other);
|
|
if (NumSignBits == RegSize)
|
|
isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
|
|
else if (NumZeroBits >= RegSize-1)
|
|
isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
|
|
else if (NumSignBits > RegSize-8)
|
|
isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
|
|
else if (NumZeroBits >= RegSize-8)
|
|
isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
|
|
else if (NumSignBits > RegSize-16)
|
|
isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
|
|
else if (NumZeroBits >= RegSize-16)
|
|
isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
|
|
else if (NumSignBits > RegSize-32)
|
|
isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
|
|
else if (NumZeroBits >= RegSize-32)
|
|
isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
|
|
else
|
|
continue;
|
|
|
|
// Add an assertion node.
|
|
assert(FromVT != MVT::Other);
|
|
Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
|
|
RegisterVT, P, DAG.getValueType(FromVT));
|
|
}
|
|
|
|
Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
|
|
NumRegs, RegisterVT, ValueVT);
|
|
Part += NumRegs;
|
|
Parts.clear();
|
|
}
|
|
|
|
return DAG.getNode(ISD::MERGE_VALUES, dl,
|
|
DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
|
|
&Values[0], ValueVTs.size());
|
|
}
|
|
|
|
/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
|
|
/// specified value into the registers specified by this object. This uses
|
|
/// Chain/Flag as the input and updates them for the output Chain/Flag.
|
|
/// If the Flag pointer is NULL, no flag is used.
|
|
void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
|
|
SDValue &Chain, SDValue *Flag) const {
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
// Get the list of the values's legal parts.
|
|
unsigned NumRegs = Regs.size();
|
|
SmallVector<SDValue, 8> Parts(NumRegs);
|
|
for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
|
|
EVT ValueVT = ValueVTs[Value];
|
|
unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
|
|
EVT RegisterVT = RegVTs[Value];
|
|
|
|
getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
|
|
&Parts[Part], NumParts, RegisterVT);
|
|
Part += NumParts;
|
|
}
|
|
|
|
// Copy the parts into the registers.
|
|
SmallVector<SDValue, 8> Chains(NumRegs);
|
|
for (unsigned i = 0; i != NumRegs; ++i) {
|
|
SDValue Part;
|
|
if (Flag == 0) {
|
|
Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
|
|
} else {
|
|
Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
|
|
*Flag = Part.getValue(1);
|
|
}
|
|
|
|
Chains[i] = Part.getValue(0);
|
|
}
|
|
|
|
if (NumRegs == 1 || Flag)
|
|
// If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
|
|
// flagged to it. That is the CopyToReg nodes and the user are considered
|
|
// a single scheduling unit. If we create a TokenFactor and return it as
|
|
// chain, then the TokenFactor is both a predecessor (operand) of the
|
|
// user as well as a successor (the TF operands are flagged to the user).
|
|
// c1, f1 = CopyToReg
|
|
// c2, f2 = CopyToReg
|
|
// c3 = TokenFactor c1, c2
|
|
// ...
|
|
// = op c3, ..., f2
|
|
Chain = Chains[NumRegs-1];
|
|
else
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
|
|
}
|
|
|
|
/// AddInlineAsmOperands - Add this value to the specified inlineasm node
|
|
/// operand list. This adds the code marker and includes the number of
|
|
/// values added into it.
|
|
void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
|
|
unsigned MatchingIdx,
|
|
SelectionDAG &DAG,
|
|
std::vector<SDValue> &Ops) const {
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
|
|
if (HasMatching)
|
|
Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
|
|
SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
|
|
Ops.push_back(Res);
|
|
|
|
for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
|
|
unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
|
|
EVT RegisterVT = RegVTs[Value];
|
|
for (unsigned i = 0; i != NumRegs; ++i) {
|
|
assert(Reg < Regs.size() && "Mismatch in # registers expected");
|
|
Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
|
|
}
|
|
}
|
|
}
|
|
|
|
void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
|
|
AA = &aa;
|
|
GFI = gfi;
|
|
TD = DAG.getTarget().getTargetData();
|
|
}
|
|
|
|
/// clear - Clear out the current SelectionDAG and the associated
|
|
/// state and prepare this SelectionDAGBuilder object to be used
|
|
/// for a new block. This doesn't clear out information about
|
|
/// additional blocks that are needed to complete switch lowering
|
|
/// or PHI node updating; that information is cleared out as it is
|
|
/// consumed.
|
|
void SelectionDAGBuilder::clear() {
|
|
NodeMap.clear();
|
|
UnusedArgNodeMap.clear();
|
|
PendingLoads.clear();
|
|
PendingExports.clear();
|
|
DanglingDebugInfoMap.clear();
|
|
CurDebugLoc = DebugLoc();
|
|
HasTailCall = false;
|
|
}
|
|
|
|
/// getRoot - Return the current virtual root of the Selection DAG,
|
|
/// flushing any PendingLoad items. This must be done before emitting
|
|
/// a store or any other node that may need to be ordered after any
|
|
/// prior load instructions.
|
|
///
|
|
SDValue SelectionDAGBuilder::getRoot() {
|
|
if (PendingLoads.empty())
|
|
return DAG.getRoot();
|
|
|
|
if (PendingLoads.size() == 1) {
|
|
SDValue Root = PendingLoads[0];
|
|
DAG.setRoot(Root);
|
|
PendingLoads.clear();
|
|
return Root;
|
|
}
|
|
|
|
// Otherwise, we have to make a token factor node.
|
|
SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
|
|
&PendingLoads[0], PendingLoads.size());
|
|
PendingLoads.clear();
|
|
DAG.setRoot(Root);
|
|
return Root;
|
|
}
|
|
|
|
/// getControlRoot - Similar to getRoot, but instead of flushing all the
|
|
/// PendingLoad items, flush all the PendingExports items. It is necessary
|
|
/// to do this before emitting a terminator instruction.
|
|
///
|
|
SDValue SelectionDAGBuilder::getControlRoot() {
|
|
SDValue Root = DAG.getRoot();
|
|
|
|
if (PendingExports.empty())
|
|
return Root;
|
|
|
|
// Turn all of the CopyToReg chains into one factored node.
|
|
if (Root.getOpcode() != ISD::EntryToken) {
|
|
unsigned i = 0, e = PendingExports.size();
|
|
for (; i != e; ++i) {
|
|
assert(PendingExports[i].getNode()->getNumOperands() > 1);
|
|
if (PendingExports[i].getNode()->getOperand(0) == Root)
|
|
break; // Don't add the root if we already indirectly depend on it.
|
|
}
|
|
|
|
if (i == e)
|
|
PendingExports.push_back(Root);
|
|
}
|
|
|
|
Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
|
|
&PendingExports[0],
|
|
PendingExports.size());
|
|
PendingExports.clear();
|
|
DAG.setRoot(Root);
|
|
return Root;
|
|
}
|
|
|
|
void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
|
|
if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
|
|
DAG.AssignOrdering(Node, SDNodeOrder);
|
|
|
|
for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
|
|
AssignOrderingToNode(Node->getOperand(I).getNode());
|
|
}
|
|
|
|
void SelectionDAGBuilder::visit(const Instruction &I) {
|
|
// Set up outgoing PHI node register values before emitting the terminator.
|
|
if (isa<TerminatorInst>(&I))
|
|
HandlePHINodesInSuccessorBlocks(I.getParent());
|
|
|
|
CurDebugLoc = I.getDebugLoc();
|
|
|
|
visit(I.getOpcode(), I);
|
|
|
|
if (!isa<TerminatorInst>(&I) && !HasTailCall)
|
|
CopyToExportRegsIfNeeded(&I);
|
|
|
|
CurDebugLoc = DebugLoc();
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitPHI(const PHINode &) {
|
|
llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
|
|
}
|
|
|
|
void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
|
|
// Note: this doesn't use InstVisitor, because it has to work with
|
|
// ConstantExpr's in addition to instructions.
|
|
switch (Opcode) {
|
|
default: llvm_unreachable("Unknown instruction type encountered!");
|
|
// Build the switch statement using the Instruction.def file.
|
|
#define HANDLE_INST(NUM, OPCODE, CLASS) \
|
|
case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
|
|
#include "llvm/Instruction.def"
|
|
}
|
|
|
|
// Assign the ordering to the freshly created DAG nodes.
|
|
if (NodeMap.count(&I)) {
|
|
++SDNodeOrder;
|
|
AssignOrderingToNode(getValue(&I).getNode());
|
|
}
|
|
}
|
|
|
|
// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
|
|
// generate the debug data structures now that we've seen its definition.
|
|
void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
|
|
SDValue Val) {
|
|
DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
|
|
if (DDI.getDI()) {
|
|
const DbgValueInst *DI = DDI.getDI();
|
|
DebugLoc dl = DDI.getdl();
|
|
unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
|
|
MDNode *Variable = DI->getVariable();
|
|
uint64_t Offset = DI->getOffset();
|
|
SDDbgValue *SDV;
|
|
if (Val.getNode()) {
|
|
if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
|
|
SDV = DAG.getDbgValue(Variable, Val.getNode(),
|
|
Val.getResNo(), Offset, dl, DbgSDNodeOrder);
|
|
DAG.AddDbgValue(SDV, Val.getNode(), false);
|
|
}
|
|
} else
|
|
DEBUG(dbgs() << "Dropping debug info for " << DI);
|
|
DanglingDebugInfoMap[V] = DanglingDebugInfo();
|
|
}
|
|
}
|
|
|
|
// getValue - Return an SDValue for the given Value.
|
|
SDValue SelectionDAGBuilder::getValue(const Value *V) {
|
|
// If we already have an SDValue for this value, use it. It's important
|
|
// to do this first, so that we don't create a CopyFromReg if we already
|
|
// have a regular SDValue.
|
|
SDValue &N = NodeMap[V];
|
|
if (N.getNode()) return N;
|
|
|
|
// If there's a virtual register allocated and initialized for this
|
|
// value, use it.
|
|
DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
|
|
if (It != FuncInfo.ValueMap.end()) {
|
|
unsigned InReg = It->second;
|
|
RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
|
|
SDValue Chain = DAG.getEntryNode();
|
|
N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
|
|
resolveDanglingDebugInfo(V, N);
|
|
return N;
|
|
}
|
|
|
|
// Otherwise create a new SDValue and remember it.
|
|
SDValue Val = getValueImpl(V);
|
|
NodeMap[V] = Val;
|
|
resolveDanglingDebugInfo(V, Val);
|
|
return Val;
|
|
}
|
|
|
|
/// getNonRegisterValue - Return an SDValue for the given Value, but
|
|
/// don't look in FuncInfo.ValueMap for a virtual register.
|
|
SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
|
|
// If we already have an SDValue for this value, use it.
|
|
SDValue &N = NodeMap[V];
|
|
if (N.getNode()) return N;
|
|
|
|
// Otherwise create a new SDValue and remember it.
|
|
SDValue Val = getValueImpl(V);
|
|
NodeMap[V] = Val;
|
|
resolveDanglingDebugInfo(V, Val);
|
|
return Val;
|
|
}
|
|
|
|
/// getValueImpl - Helper function for getValue and getNonRegisterValue.
|
|
/// Create an SDValue for the given value.
|
|
SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
|
|
if (const Constant *C = dyn_cast<Constant>(V)) {
|
|
EVT VT = TLI.getValueType(V->getType(), true);
|
|
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
|
|
return DAG.getConstant(*CI, VT);
|
|
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
|
|
return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
|
|
|
|
if (isa<ConstantPointerNull>(C))
|
|
return DAG.getConstant(0, TLI.getPointerTy());
|
|
|
|
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
|
|
return DAG.getConstantFP(*CFP, VT);
|
|
|
|
if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
|
|
return DAG.getUNDEF(VT);
|
|
|
|
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
|
visit(CE->getOpcode(), *CE);
|
|
SDValue N1 = NodeMap[V];
|
|
assert(N1.getNode() && "visit didn't populate the NodeMap!");
|
|
return N1;
|
|
}
|
|
|
|
if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
|
|
SmallVector<SDValue, 4> Constants;
|
|
for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
|
|
OI != OE; ++OI) {
|
|
SDNode *Val = getValue(*OI).getNode();
|
|
// If the operand is an empty aggregate, there are no values.
|
|
if (!Val) continue;
|
|
// Add each leaf value from the operand to the Constants list
|
|
// to form a flattened list of all the values.
|
|
for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
|
|
Constants.push_back(SDValue(Val, i));
|
|
}
|
|
|
|
return DAG.getMergeValues(&Constants[0], Constants.size(),
|
|
getCurDebugLoc());
|
|
}
|
|
|
|
if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
|
|
assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
|
|
"Unknown struct or array constant!");
|
|
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
ComputeValueVTs(TLI, C->getType(), ValueVTs);
|
|
unsigned NumElts = ValueVTs.size();
|
|
if (NumElts == 0)
|
|
return SDValue(); // empty struct
|
|
SmallVector<SDValue, 4> Constants(NumElts);
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
EVT EltVT = ValueVTs[i];
|
|
if (isa<UndefValue>(C))
|
|
Constants[i] = DAG.getUNDEF(EltVT);
|
|
else if (EltVT.isFloatingPoint())
|
|
Constants[i] = DAG.getConstantFP(0, EltVT);
|
|
else
|
|
Constants[i] = DAG.getConstant(0, EltVT);
|
|
}
|
|
|
|
return DAG.getMergeValues(&Constants[0], NumElts,
|
|
getCurDebugLoc());
|
|
}
|
|
|
|
if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
|
|
return DAG.getBlockAddress(BA, VT);
|
|
|
|
const VectorType *VecTy = cast<VectorType>(V->getType());
|
|
unsigned NumElements = VecTy->getNumElements();
|
|
|
|
// Now that we know the number and type of the elements, get that number of
|
|
// elements into the Ops array based on what kind of constant it is.
|
|
SmallVector<SDValue, 16> Ops;
|
|
if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
|
|
for (unsigned i = 0; i != NumElements; ++i)
|
|
Ops.push_back(getValue(CP->getOperand(i)));
|
|
} else {
|
|
assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
|
|
EVT EltVT = TLI.getValueType(VecTy->getElementType());
|
|
|
|
SDValue Op;
|
|
if (EltVT.isFloatingPoint())
|
|
Op = DAG.getConstantFP(0, EltVT);
|
|
else
|
|
Op = DAG.getConstant(0, EltVT);
|
|
Ops.assign(NumElements, Op);
|
|
}
|
|
|
|
// Create a BUILD_VECTOR node.
|
|
return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
|
|
VT, &Ops[0], Ops.size());
|
|
}
|
|
|
|
// If this is a static alloca, generate it as the frameindex instead of
|
|
// computation.
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
|
|
DenseMap<const AllocaInst*, int>::iterator SI =
|
|
FuncInfo.StaticAllocaMap.find(AI);
|
|
if (SI != FuncInfo.StaticAllocaMap.end())
|
|
return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
|
|
}
|
|
|
|
// If this is an instruction which fast-isel has deferred, select it now.
|
|
if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
|
|
unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
|
|
RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
|
|
SDValue Chain = DAG.getEntryNode();
|
|
return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
|
|
}
|
|
|
|
llvm_unreachable("Can't get register for value!");
|
|
return SDValue();
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
|
|
SDValue Chain = getControlRoot();
|
|
SmallVector<ISD::OutputArg, 8> Outs;
|
|
SmallVector<SDValue, 8> OutVals;
|
|
|
|
if (!FuncInfo.CanLowerReturn) {
|
|
unsigned DemoteReg = FuncInfo.DemoteRegister;
|
|
const Function *F = I.getParent()->getParent();
|
|
|
|
// Emit a store of the return value through the virtual register.
|
|
// Leave Outs empty so that LowerReturn won't try to load return
|
|
// registers the usual way.
|
|
SmallVector<EVT, 1> PtrValueVTs;
|
|
ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
|
|
PtrValueVTs);
|
|
|
|
SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
|
|
SDValue RetOp = getValue(I.getOperand(0));
|
|
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
SmallVector<uint64_t, 4> Offsets;
|
|
ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
|
|
unsigned NumValues = ValueVTs.size();
|
|
|
|
SmallVector<SDValue, 4> Chains(NumValues);
|
|
for (unsigned i = 0; i != NumValues; ++i) {
|
|
SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
|
|
RetPtr.getValueType(), RetPtr,
|
|
DAG.getIntPtrConstant(Offsets[i]));
|
|
Chains[i] =
|
|
DAG.getStore(Chain, getCurDebugLoc(),
|
|
SDValue(RetOp.getNode(), RetOp.getResNo() + i),
|
|
// FIXME: better loc info would be nice.
|
|
Add, MachinePointerInfo(), false, false, 0);
|
|
}
|
|
|
|
Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
|
|
MVT::Other, &Chains[0], NumValues);
|
|
} else if (I.getNumOperands() != 0) {
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
|
|
unsigned NumValues = ValueVTs.size();
|
|
if (NumValues) {
|
|
SDValue RetOp = getValue(I.getOperand(0));
|
|
for (unsigned j = 0, f = NumValues; j != f; ++j) {
|
|
EVT VT = ValueVTs[j];
|
|
|
|
ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
|
|
|
|
const Function *F = I.getParent()->getParent();
|
|
if (F->paramHasAttr(0, Attribute::SExt))
|
|
ExtendKind = ISD::SIGN_EXTEND;
|
|
else if (F->paramHasAttr(0, Attribute::ZExt))
|
|
ExtendKind = ISD::ZERO_EXTEND;
|
|
|
|
// FIXME: C calling convention requires the return type to be promoted
|
|
// to at least 32-bit. But this is not necessary for non-C calling
|
|
// conventions. The frontend should mark functions whose return values
|
|
// require promoting with signext or zeroext attributes.
|
|
if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
|
|
EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
|
|
if (VT.bitsLT(MinVT))
|
|
VT = MinVT;
|
|
}
|
|
|
|
unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
|
|
EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
|
|
SmallVector<SDValue, 4> Parts(NumParts);
|
|
getCopyToParts(DAG, getCurDebugLoc(),
|
|
SDValue(RetOp.getNode(), RetOp.getResNo() + j),
|
|
&Parts[0], NumParts, PartVT, ExtendKind);
|
|
|
|
// 'inreg' on function refers to return value
|
|
ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
|
|
if (F->paramHasAttr(0, Attribute::InReg))
|
|
Flags.setInReg();
|
|
|
|
// Propagate extension type if any
|
|
if (F->paramHasAttr(0, Attribute::SExt))
|
|
Flags.setSExt();
|
|
else if (F->paramHasAttr(0, Attribute::ZExt))
|
|
Flags.setZExt();
|
|
|
|
for (unsigned i = 0; i < NumParts; ++i) {
|
|
Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
|
|
/*isfixed=*/true));
|
|
OutVals.push_back(Parts[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
|
|
CallingConv::ID CallConv =
|
|
DAG.getMachineFunction().getFunction()->getCallingConv();
|
|
Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
|
|
Outs, OutVals, getCurDebugLoc(), DAG);
|
|
|
|
// Verify that the target's LowerReturn behaved as expected.
|
|
assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
|
|
"LowerReturn didn't return a valid chain!");
|
|
|
|
// Update the DAG with the new chain value resulting from return lowering.
|
|
DAG.setRoot(Chain);
|
|
}
|
|
|
|
/// CopyToExportRegsIfNeeded - If the given value has virtual registers
|
|
/// created for it, emit nodes to copy the value into the virtual
|
|
/// registers.
|
|
void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
|
|
DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
|
|
if (VMI != FuncInfo.ValueMap.end()) {
|
|
assert(!V->use_empty() && "Unused value assigned virtual registers!");
|
|
CopyValueToVirtualRegister(V, VMI->second);
|
|
}
|
|
}
|
|
|
|
/// ExportFromCurrentBlock - If this condition isn't known to be exported from
|
|
/// the current basic block, add it to ValueMap now so that we'll get a
|
|
/// CopyTo/FromReg.
|
|
void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
|
|
// No need to export constants.
|
|
if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
|
|
|
|
// Already exported?
|
|
if (FuncInfo.isExportedInst(V)) return;
|
|
|
|
unsigned Reg = FuncInfo.InitializeRegForValue(V);
|
|
CopyValueToVirtualRegister(V, Reg);
|
|
}
|
|
|
|
bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
|
|
const BasicBlock *FromBB) {
|
|
// The operands of the setcc have to be in this block. We don't know
|
|
// how to export them from some other block.
|
|
if (const Instruction *VI = dyn_cast<Instruction>(V)) {
|
|
// Can export from current BB.
|
|
if (VI->getParent() == FromBB)
|
|
return true;
|
|
|
|
// Is already exported, noop.
|
|
return FuncInfo.isExportedInst(V);
|
|
}
|
|
|
|
// If this is an argument, we can export it if the BB is the entry block or
|
|
// if it is already exported.
|
|
if (isa<Argument>(V)) {
|
|
if (FromBB == &FromBB->getParent()->getEntryBlock())
|
|
return true;
|
|
|
|
// Otherwise, can only export this if it is already exported.
|
|
return FuncInfo.isExportedInst(V);
|
|
}
|
|
|
|
// Otherwise, constants can always be exported.
|
|
return true;
|
|
}
|
|
|
|
static bool InBlock(const Value *V, const BasicBlock *BB) {
|
|
if (const Instruction *I = dyn_cast<Instruction>(V))
|
|
return I->getParent() == BB;
|
|
return true;
|
|
}
|
|
|
|
/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
|
|
/// This function emits a branch and is used at the leaves of an OR or an
|
|
/// AND operator tree.
|
|
///
|
|
void
|
|
SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
|
|
MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB,
|
|
MachineBasicBlock *CurBB,
|
|
MachineBasicBlock *SwitchBB) {
|
|
const BasicBlock *BB = CurBB->getBasicBlock();
|
|
|
|
// If the leaf of the tree is a comparison, merge the condition into
|
|
// the caseblock.
|
|
if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
|
|
// The operands of the cmp have to be in this block. We don't know
|
|
// how to export them from some other block. If this is the first block
|
|
// of the sequence, no exporting is needed.
|
|
if (CurBB == SwitchBB ||
|
|
(isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
|
|
isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
|
|
ISD::CondCode Condition;
|
|
if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
|
|
Condition = getICmpCondCode(IC->getPredicate());
|
|
} else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
|
|
Condition = getFCmpCondCode(FC->getPredicate());
|
|
} else {
|
|
Condition = ISD::SETEQ; // silence warning.
|
|
llvm_unreachable("Unknown compare instruction");
|
|
}
|
|
|
|
CaseBlock CB(Condition, BOp->getOperand(0),
|
|
BOp->getOperand(1), NULL, TBB, FBB, CurBB);
|
|
SwitchCases.push_back(CB);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Create a CaseBlock record representing this branch.
|
|
CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
|
|
NULL, TBB, FBB, CurBB);
|
|
SwitchCases.push_back(CB);
|
|
}
|
|
|
|
/// FindMergedConditions - If Cond is an expression like
|
|
void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
|
|
MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB,
|
|
MachineBasicBlock *CurBB,
|
|
MachineBasicBlock *SwitchBB,
|
|
unsigned Opc) {
|
|
// If this node is not part of the or/and tree, emit it as a branch.
|
|
const Instruction *BOp = dyn_cast<Instruction>(Cond);
|
|
if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
|
|
(unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
|
|
BOp->getParent() != CurBB->getBasicBlock() ||
|
|
!InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
|
|
!InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
|
|
EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
|
|
return;
|
|
}
|
|
|
|
// Create TmpBB after CurBB.
|
|
MachineFunction::iterator BBI = CurBB;
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
|
|
CurBB->getParent()->insert(++BBI, TmpBB);
|
|
|
|
if (Opc == Instruction::Or) {
|
|
// Codegen X | Y as:
|
|
// jmp_if_X TBB
|
|
// jmp TmpBB
|
|
// TmpBB:
|
|
// jmp_if_Y TBB
|
|
// jmp FBB
|
|
//
|
|
|
|
// Emit the LHS condition.
|
|
FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
|
|
|
|
// Emit the RHS condition into TmpBB.
|
|
FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
|
|
} else {
|
|
assert(Opc == Instruction::And && "Unknown merge op!");
|
|
// Codegen X & Y as:
|
|
// jmp_if_X TmpBB
|
|
// jmp FBB
|
|
// TmpBB:
|
|
// jmp_if_Y TBB
|
|
// jmp FBB
|
|
//
|
|
// This requires creation of TmpBB after CurBB.
|
|
|
|
// Emit the LHS condition.
|
|
FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
|
|
|
|
// Emit the RHS condition into TmpBB.
|
|
FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
|
|
}
|
|
}
|
|
|
|
/// If the set of cases should be emitted as a series of branches, return true.
|
|
/// If we should emit this as a bunch of and/or'd together conditions, return
|
|
/// false.
|
|
bool
|
|
SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
|
|
if (Cases.size() != 2) return true;
|
|
|
|
// If this is two comparisons of the same values or'd or and'd together, they
|
|
// will get folded into a single comparison, so don't emit two blocks.
|
|
if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
|
|
Cases[0].CmpRHS == Cases[1].CmpRHS) ||
|
|
(Cases[0].CmpRHS == Cases[1].CmpLHS &&
|
|
Cases[0].CmpLHS == Cases[1].CmpRHS)) {
|
|
return false;
|
|
}
|
|
|
|
// Handle: (X != null) | (Y != null) --> (X|Y) != 0
|
|
// Handle: (X == null) & (Y == null) --> (X|Y) == 0
|
|
if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
|
|
Cases[0].CC == Cases[1].CC &&
|
|
isa<Constant>(Cases[0].CmpRHS) &&
|
|
cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
|
|
if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
|
|
return false;
|
|
if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitBr(const BranchInst &I) {
|
|
MachineBasicBlock *BrMBB = FuncInfo.MBB;
|
|
|
|
// Update machine-CFG edges.
|
|
MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
|
|
|
|
// Figure out which block is immediately after the current one.
|
|
MachineBasicBlock *NextBlock = 0;
|
|
MachineFunction::iterator BBI = BrMBB;
|
|
if (++BBI != FuncInfo.MF->end())
|
|
NextBlock = BBI;
|
|
|
|
if (I.isUnconditional()) {
|
|
// Update machine-CFG edges.
|
|
BrMBB->addSuccessor(Succ0MBB);
|
|
|
|
// If this is not a fall-through branch, emit the branch.
|
|
if (Succ0MBB != NextBlock)
|
|
DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
|
|
MVT::Other, getControlRoot(),
|
|
DAG.getBasicBlock(Succ0MBB)));
|
|
|
|
return;
|
|
}
|
|
|
|
// If this condition is one of the special cases we handle, do special stuff
|
|
// now.
|
|
const Value *CondVal = I.getCondition();
|
|
MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
|
|
|
|
// If this is a series of conditions that are or'd or and'd together, emit
|
|
// this as a sequence of branches instead of setcc's with and/or operations.
|
|
// As long as jumps are not expensive, this should improve performance.
|
|
// For example, instead of something like:
|
|
// cmp A, B
|
|
// C = seteq
|
|
// cmp D, E
|
|
// F = setle
|
|
// or C, F
|
|
// jnz foo
|
|
// Emit:
|
|
// cmp A, B
|
|
// je foo
|
|
// cmp D, E
|
|
// jle foo
|
|
//
|
|
if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
|
|
if (!TLI.isJumpExpensive() &&
|
|
BOp->hasOneUse() &&
|
|
(BOp->getOpcode() == Instruction::And ||
|
|
BOp->getOpcode() == Instruction::Or)) {
|
|
FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
|
|
BOp->getOpcode());
|
|
// If the compares in later blocks need to use values not currently
|
|
// exported from this block, export them now. This block should always
|
|
// be the first entry.
|
|
assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
|
|
|
|
// Allow some cases to be rejected.
|
|
if (ShouldEmitAsBranches(SwitchCases)) {
|
|
for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
|
|
ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
|
|
ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
|
|
}
|
|
|
|
// Emit the branch for this block.
|
|
visitSwitchCase(SwitchCases[0], BrMBB);
|
|
SwitchCases.erase(SwitchCases.begin());
|
|
return;
|
|
}
|
|
|
|
// Okay, we decided not to do this, remove any inserted MBB's and clear
|
|
// SwitchCases.
|
|
for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
|
|
FuncInfo.MF->erase(SwitchCases[i].ThisBB);
|
|
|
|
SwitchCases.clear();
|
|
}
|
|
}
|
|
|
|
// Create a CaseBlock record representing this branch.
|
|
CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
|
|
NULL, Succ0MBB, Succ1MBB, BrMBB);
|
|
|
|
// Use visitSwitchCase to actually insert the fast branch sequence for this
|
|
// cond branch.
|
|
visitSwitchCase(CB, BrMBB);
|
|
}
|
|
|
|
/// visitSwitchCase - Emits the necessary code to represent a single node in
|
|
/// the binary search tree resulting from lowering a switch instruction.
|
|
void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
|
|
MachineBasicBlock *SwitchBB) {
|
|
SDValue Cond;
|
|
SDValue CondLHS = getValue(CB.CmpLHS);
|
|
DebugLoc dl = getCurDebugLoc();
|
|
|
|
// Build the setcc now.
|
|
if (CB.CmpMHS == NULL) {
|
|
// Fold "(X == true)" to X and "(X == false)" to !X to
|
|
// handle common cases produced by branch lowering.
|
|
if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
|
|
CB.CC == ISD::SETEQ)
|
|
Cond = CondLHS;
|
|
else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
|
|
CB.CC == ISD::SETEQ) {
|
|
SDValue True = DAG.getConstant(1, CondLHS.getValueType());
|
|
Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
|
|
} else
|
|
Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
|
|
} else {
|
|
assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
|
|
|
|
const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
|
|
const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
|
|
|
|
SDValue CmpOp = getValue(CB.CmpMHS);
|
|
EVT VT = CmpOp.getValueType();
|
|
|
|
if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
|
|
Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
|
|
ISD::SETLE);
|
|
} else {
|
|
SDValue SUB = DAG.getNode(ISD::SUB, dl,
|
|
VT, CmpOp, DAG.getConstant(Low, VT));
|
|
Cond = DAG.getSetCC(dl, MVT::i1, SUB,
|
|
DAG.getConstant(High-Low, VT), ISD::SETULE);
|
|
}
|
|
}
|
|
|
|
// Update successor info
|
|
SwitchBB->addSuccessor(CB.TrueBB);
|
|
SwitchBB->addSuccessor(CB.FalseBB);
|
|
|
|
// Set NextBlock to be the MBB immediately after the current one, if any.
|
|
// This is used to avoid emitting unnecessary branches to the next block.
|
|
MachineBasicBlock *NextBlock = 0;
|
|
MachineFunction::iterator BBI = SwitchBB;
|
|
if (++BBI != FuncInfo.MF->end())
|
|
NextBlock = BBI;
|
|
|
|
// If the lhs block is the next block, invert the condition so that we can
|
|
// fall through to the lhs instead of the rhs block.
|
|
if (CB.TrueBB == NextBlock) {
|
|
std::swap(CB.TrueBB, CB.FalseBB);
|
|
SDValue True = DAG.getConstant(1, Cond.getValueType());
|
|
Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
|
|
}
|
|
|
|
SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
|
|
MVT::Other, getControlRoot(), Cond,
|
|
DAG.getBasicBlock(CB.TrueBB));
|
|
|
|
// Insert the false branch. Do this even if it's a fall through branch,
|
|
// this makes it easier to do DAG optimizations which require inverting
|
|
// the branch condition.
|
|
BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
|
|
DAG.getBasicBlock(CB.FalseBB));
|
|
|
|
DAG.setRoot(BrCond);
|
|
}
|
|
|
|
/// visitJumpTable - Emit JumpTable node in the current MBB
|
|
void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
|
|
// Emit the code for the jump table
|
|
assert(JT.Reg != -1U && "Should lower JT Header first!");
|
|
EVT PTy = TLI.getPointerTy();
|
|
SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
|
|
JT.Reg, PTy);
|
|
SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
|
|
SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
|
|
MVT::Other, Index.getValue(1),
|
|
Table, Index);
|
|
DAG.setRoot(BrJumpTable);
|
|
}
|
|
|
|
/// visitJumpTableHeader - This function emits necessary code to produce index
|
|
/// in the JumpTable from switch case.
|
|
void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
|
|
JumpTableHeader &JTH,
|
|
MachineBasicBlock *SwitchBB) {
|
|
// Subtract the lowest switch case value from the value being switched on and
|
|
// conditional branch to default mbb if the result is greater than the
|
|
// difference between smallest and largest cases.
|
|
SDValue SwitchOp = getValue(JTH.SValue);
|
|
EVT VT = SwitchOp.getValueType();
|
|
SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
|
|
DAG.getConstant(JTH.First, VT));
|
|
|
|
// The SDNode we just created, which holds the value being switched on minus
|
|
// the smallest case value, needs to be copied to a virtual register so it
|
|
// can be used as an index into the jump table in a subsequent basic block.
|
|
// This value may be smaller or larger than the target's pointer type, and
|
|
// therefore require extension or truncating.
|
|
SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
|
|
|
|
unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
|
|
SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
|
|
JumpTableReg, SwitchOp);
|
|
JT.Reg = JumpTableReg;
|
|
|
|
// Emit the range check for the jump table, and branch to the default block
|
|
// for the switch statement if the value being switched on exceeds the largest
|
|
// case in the switch.
|
|
SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
|
|
TLI.getSetCCResultType(Sub.getValueType()), Sub,
|
|
DAG.getConstant(JTH.Last-JTH.First,VT),
|
|
ISD::SETUGT);
|
|
|
|
// Set NextBlock to be the MBB immediately after the current one, if any.
|
|
// This is used to avoid emitting unnecessary branches to the next block.
|
|
MachineBasicBlock *NextBlock = 0;
|
|
MachineFunction::iterator BBI = SwitchBB;
|
|
|
|
if (++BBI != FuncInfo.MF->end())
|
|
NextBlock = BBI;
|
|
|
|
SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
|
|
MVT::Other, CopyTo, CMP,
|
|
DAG.getBasicBlock(JT.Default));
|
|
|
|
if (JT.MBB != NextBlock)
|
|
BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
|
|
DAG.getBasicBlock(JT.MBB));
|
|
|
|
DAG.setRoot(BrCond);
|
|
}
|
|
|
|
/// visitBitTestHeader - This function emits necessary code to produce value
|
|
/// suitable for "bit tests"
|
|
void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
|
|
MachineBasicBlock *SwitchBB) {
|
|
// Subtract the minimum value
|
|
SDValue SwitchOp = getValue(B.SValue);
|
|
EVT VT = SwitchOp.getValueType();
|
|
SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
|
|
DAG.getConstant(B.First, VT));
|
|
|
|
// Check range
|
|
SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
|
|
TLI.getSetCCResultType(Sub.getValueType()),
|
|
Sub, DAG.getConstant(B.Range, VT),
|
|
ISD::SETUGT);
|
|
|
|
// Determine the type of the test operands.
|
|
bool UsePtrType = false;
|
|
if (!TLI.isTypeLegal(VT))
|
|
UsePtrType = true;
|
|
else {
|
|
for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
|
|
if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
|
|
// Switch table case range are encoded into series of masks.
|
|
// Just use pointer type, it's guaranteed to fit.
|
|
UsePtrType = true;
|
|
break;
|
|
}
|
|
}
|
|
if (UsePtrType) {
|
|
VT = TLI.getPointerTy();
|
|
Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
|
|
}
|
|
|
|
B.RegVT = VT;
|
|
B.Reg = FuncInfo.CreateReg(VT);
|
|
SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
|
|
B.Reg, Sub);
|
|
|
|
// Set NextBlock to be the MBB immediately after the current one, if any.
|
|
// This is used to avoid emitting unnecessary branches to the next block.
|
|
MachineBasicBlock *NextBlock = 0;
|
|
MachineFunction::iterator BBI = SwitchBB;
|
|
if (++BBI != FuncInfo.MF->end())
|
|
NextBlock = BBI;
|
|
|
|
MachineBasicBlock* MBB = B.Cases[0].ThisBB;
|
|
|
|
SwitchBB->addSuccessor(B.Default);
|
|
SwitchBB->addSuccessor(MBB);
|
|
|
|
SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
|
|
MVT::Other, CopyTo, RangeCmp,
|
|
DAG.getBasicBlock(B.Default));
|
|
|
|
if (MBB != NextBlock)
|
|
BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
|
|
DAG.getBasicBlock(MBB));
|
|
|
|
DAG.setRoot(BrRange);
|
|
}
|
|
|
|
/// visitBitTestCase - this function produces one "bit test"
|
|
void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
|
|
MachineBasicBlock* NextMBB,
|
|
unsigned Reg,
|
|
BitTestCase &B,
|
|
MachineBasicBlock *SwitchBB) {
|
|
EVT VT = BB.RegVT;
|
|
SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
|
|
Reg, VT);
|
|
SDValue Cmp;
|
|
if (CountPopulation_64(B.Mask) == 1) {
|
|
// Testing for a single bit; just compare the shift count with what it
|
|
// would need to be to shift a 1 bit in that position.
|
|
Cmp = DAG.getSetCC(getCurDebugLoc(),
|
|
TLI.getSetCCResultType(VT),
|
|
ShiftOp,
|
|
DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
|
|
ISD::SETEQ);
|
|
} else {
|
|
// Make desired shift
|
|
SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
|
|
DAG.getConstant(1, VT), ShiftOp);
|
|
|
|
// Emit bit tests and jumps
|
|
SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
|
|
VT, SwitchVal, DAG.getConstant(B.Mask, VT));
|
|
Cmp = DAG.getSetCC(getCurDebugLoc(),
|
|
TLI.getSetCCResultType(VT),
|
|
AndOp, DAG.getConstant(0, VT),
|
|
ISD::SETNE);
|
|
}
|
|
|
|
SwitchBB->addSuccessor(B.TargetBB);
|
|
SwitchBB->addSuccessor(NextMBB);
|
|
|
|
SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
|
|
MVT::Other, getControlRoot(),
|
|
Cmp, DAG.getBasicBlock(B.TargetBB));
|
|
|
|
// Set NextBlock to be the MBB immediately after the current one, if any.
|
|
// This is used to avoid emitting unnecessary branches to the next block.
|
|
MachineBasicBlock *NextBlock = 0;
|
|
MachineFunction::iterator BBI = SwitchBB;
|
|
if (++BBI != FuncInfo.MF->end())
|
|
NextBlock = BBI;
|
|
|
|
if (NextMBB != NextBlock)
|
|
BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
|
|
DAG.getBasicBlock(NextMBB));
|
|
|
|
DAG.setRoot(BrAnd);
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
|
|
MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
|
|
|
|
// Retrieve successors.
|
|
MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
|
|
MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
|
|
|
|
const Value *Callee(I.getCalledValue());
|
|
if (isa<InlineAsm>(Callee))
|
|
visitInlineAsm(&I);
|
|
else
|
|
LowerCallTo(&I, getValue(Callee), false, LandingPad);
|
|
|
|
// If the value of the invoke is used outside of its defining block, make it
|
|
// available as a virtual register.
|
|
CopyToExportRegsIfNeeded(&I);
|
|
|
|
// Update successor info
|
|
InvokeMBB->addSuccessor(Return);
|
|
InvokeMBB->addSuccessor(LandingPad);
|
|
|
|
// Drop into normal successor.
|
|
DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
|
|
MVT::Other, getControlRoot(),
|
|
DAG.getBasicBlock(Return)));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
|
|
}
|
|
|
|
/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
|
|
/// small case ranges).
|
|
bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
|
|
CaseRecVector& WorkList,
|
|
const Value* SV,
|
|
MachineBasicBlock *Default,
|
|
MachineBasicBlock *SwitchBB) {
|
|
Case& BackCase = *(CR.Range.second-1);
|
|
|
|
// Size is the number of Cases represented by this range.
|
|
size_t Size = CR.Range.second - CR.Range.first;
|
|
if (Size > 3)
|
|
return false;
|
|
|
|
// Get the MachineFunction which holds the current MBB. This is used when
|
|
// inserting any additional MBBs necessary to represent the switch.
|
|
MachineFunction *CurMF = FuncInfo.MF;
|
|
|
|
// Figure out which block is immediately after the current one.
|
|
MachineBasicBlock *NextBlock = 0;
|
|
MachineFunction::iterator BBI = CR.CaseBB;
|
|
|
|
if (++BBI != FuncInfo.MF->end())
|
|
NextBlock = BBI;
|
|
|
|
// If any two of the cases has the same destination, and if one value
|
|
// is the same as the other, but has one bit unset that the other has set,
|
|
// use bit manipulation to do two compares at once. For example:
|
|
// "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
|
|
// TODO: This could be extended to merge any 2 cases in switches with 3 cases.
|
|
// TODO: Handle cases where CR.CaseBB != SwitchBB.
|
|
if (Size == 2 && CR.CaseBB == SwitchBB) {
|
|
Case &Small = *CR.Range.first;
|
|
Case &Big = *(CR.Range.second-1);
|
|
|
|
if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
|
|
const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
|
|
const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
|
|
|
|
// Check that there is only one bit different.
|
|
if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
|
|
(SmallValue | BigValue) == BigValue) {
|
|
// Isolate the common bit.
|
|
APInt CommonBit = BigValue & ~SmallValue;
|
|
assert((SmallValue | CommonBit) == BigValue &&
|
|
CommonBit.countPopulation() == 1 && "Not a common bit?");
|
|
|
|
SDValue CondLHS = getValue(SV);
|
|
EVT VT = CondLHS.getValueType();
|
|
DebugLoc DL = getCurDebugLoc();
|
|
|
|
SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
|
|
DAG.getConstant(CommonBit, VT));
|
|
SDValue Cond = DAG.getSetCC(DL, MVT::i1,
|
|
Or, DAG.getConstant(BigValue, VT),
|
|
ISD::SETEQ);
|
|
|
|
// Update successor info.
|
|
SwitchBB->addSuccessor(Small.BB);
|
|
SwitchBB->addSuccessor(Default);
|
|
|
|
// Insert the true branch.
|
|
SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
|
|
getControlRoot(), Cond,
|
|
DAG.getBasicBlock(Small.BB));
|
|
|
|
// Insert the false branch.
|
|
BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
|
|
DAG.getBasicBlock(Default));
|
|
|
|
DAG.setRoot(BrCond);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Rearrange the case blocks so that the last one falls through if possible.
|
|
if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
|
|
// The last case block won't fall through into 'NextBlock' if we emit the
|
|
// branches in this order. See if rearranging a case value would help.
|
|
for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
|
|
if (I->BB == NextBlock) {
|
|
std::swap(*I, BackCase);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create a CaseBlock record representing a conditional branch to
|
|
// the Case's target mbb if the value being switched on SV is equal
|
|
// to C.
|
|
MachineBasicBlock *CurBlock = CR.CaseBB;
|
|
for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
|
|
MachineBasicBlock *FallThrough;
|
|
if (I != E-1) {
|
|
FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
|
|
CurMF->insert(BBI, FallThrough);
|
|
|
|
// Put SV in a virtual register to make it available from the new blocks.
|
|
ExportFromCurrentBlock(SV);
|
|
} else {
|
|
// If the last case doesn't match, go to the default block.
|
|
FallThrough = Default;
|
|
}
|
|
|
|
const Value *RHS, *LHS, *MHS;
|
|
ISD::CondCode CC;
|
|
if (I->High == I->Low) {
|
|
// This is just small small case range :) containing exactly 1 case
|
|
CC = ISD::SETEQ;
|
|
LHS = SV; RHS = I->High; MHS = NULL;
|
|
} else {
|
|
CC = ISD::SETLE;
|
|
LHS = I->Low; MHS = SV; RHS = I->High;
|
|
}
|
|
CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
|
|
|
|
// If emitting the first comparison, just call visitSwitchCase to emit the
|
|
// code into the current block. Otherwise, push the CaseBlock onto the
|
|
// vector to be later processed by SDISel, and insert the node's MBB
|
|
// before the next MBB.
|
|
if (CurBlock == SwitchBB)
|
|
visitSwitchCase(CB, SwitchBB);
|
|
else
|
|
SwitchCases.push_back(CB);
|
|
|
|
CurBlock = FallThrough;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool areJTsAllowed(const TargetLowering &TLI) {
|
|
return !DisableJumpTables &&
|
|
(TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
|
|
TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
|
|
}
|
|
|
|
static APInt ComputeRange(const APInt &First, const APInt &Last) {
|
|
uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
|
|
APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
|
|
return (LastExt - FirstExt + 1ULL);
|
|
}
|
|
|
|
/// handleJTSwitchCase - Emit jumptable for current switch case range
|
|
bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
|
|
CaseRecVector& WorkList,
|
|
const Value* SV,
|
|
MachineBasicBlock* Default,
|
|
MachineBasicBlock *SwitchBB) {
|
|
Case& FrontCase = *CR.Range.first;
|
|
Case& BackCase = *(CR.Range.second-1);
|
|
|
|
const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
|
|
const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
|
|
|
|
APInt TSize(First.getBitWidth(), 0);
|
|
for (CaseItr I = CR.Range.first, E = CR.Range.second;
|
|
I!=E; ++I)
|
|
TSize += I->size();
|
|
|
|
if (!areJTsAllowed(TLI) || TSize.ult(4))
|
|
return false;
|
|
|
|
APInt Range = ComputeRange(First, Last);
|
|
double Density = TSize.roundToDouble() / Range.roundToDouble();
|
|
if (Density < 0.4)
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "Lowering jump table\n"
|
|
<< "First entry: " << First << ". Last entry: " << Last << '\n'
|
|
<< "Range: " << Range
|
|
<< ". Size: " << TSize << ". Density: " << Density << "\n\n");
|
|
|
|
// Get the MachineFunction which holds the current MBB. This is used when
|
|
// inserting any additional MBBs necessary to represent the switch.
|
|
MachineFunction *CurMF = FuncInfo.MF;
|
|
|
|
// Figure out which block is immediately after the current one.
|
|
MachineFunction::iterator BBI = CR.CaseBB;
|
|
++BBI;
|
|
|
|
const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
|
|
|
|
// Create a new basic block to hold the code for loading the address
|
|
// of the jump table, and jumping to it. Update successor information;
|
|
// we will either branch to the default case for the switch, or the jump
|
|
// table.
|
|
MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
|
|
CurMF->insert(BBI, JumpTableBB);
|
|
CR.CaseBB->addSuccessor(Default);
|
|
CR.CaseBB->addSuccessor(JumpTableBB);
|
|
|
|
// Build a vector of destination BBs, corresponding to each target
|
|
// of the jump table. If the value of the jump table slot corresponds to
|
|
// a case statement, push the case's BB onto the vector, otherwise, push
|
|
// the default BB.
|
|
std::vector<MachineBasicBlock*> DestBBs;
|
|
APInt TEI = First;
|
|
for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
|
|
const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
|
|
const APInt &High = cast<ConstantInt>(I->High)->getValue();
|
|
|
|
if (Low.sle(TEI) && TEI.sle(High)) {
|
|
DestBBs.push_back(I->BB);
|
|
if (TEI==High)
|
|
++I;
|
|
} else {
|
|
DestBBs.push_back(Default);
|
|
}
|
|
}
|
|
|
|
// Update successor info. Add one edge to each unique successor.
|
|
BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
|
|
for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
|
|
E = DestBBs.end(); I != E; ++I) {
|
|
if (!SuccsHandled[(*I)->getNumber()]) {
|
|
SuccsHandled[(*I)->getNumber()] = true;
|
|
JumpTableBB->addSuccessor(*I);
|
|
}
|
|
}
|
|
|
|
// Create a jump table index for this jump table.
|
|
unsigned JTEncoding = TLI.getJumpTableEncoding();
|
|
unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
|
|
->createJumpTableIndex(DestBBs);
|
|
|
|
// Set the jump table information so that we can codegen it as a second
|
|
// MachineBasicBlock
|
|
JumpTable JT(-1U, JTI, JumpTableBB, Default);
|
|
JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
|
|
if (CR.CaseBB == SwitchBB)
|
|
visitJumpTableHeader(JT, JTH, SwitchBB);
|
|
|
|
JTCases.push_back(JumpTableBlock(JTH, JT));
|
|
|
|
return true;
|
|
}
|
|
|
|
/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
|
|
/// 2 subtrees.
|
|
bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
|
|
CaseRecVector& WorkList,
|
|
const Value* SV,
|
|
MachineBasicBlock *Default,
|
|
MachineBasicBlock *SwitchBB) {
|
|
// Get the MachineFunction which holds the current MBB. This is used when
|
|
// inserting any additional MBBs necessary to represent the switch.
|
|
MachineFunction *CurMF = FuncInfo.MF;
|
|
|
|
// Figure out which block is immediately after the current one.
|
|
MachineFunction::iterator BBI = CR.CaseBB;
|
|
++BBI;
|
|
|
|
Case& FrontCase = *CR.Range.first;
|
|
Case& BackCase = *(CR.Range.second-1);
|
|
const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
|
|
|
|
// Size is the number of Cases represented by this range.
|
|
unsigned Size = CR.Range.second - CR.Range.first;
|
|
|
|
const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
|
|
const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
|
|
double FMetric = 0;
|
|
CaseItr Pivot = CR.Range.first + Size/2;
|
|
|
|
// Select optimal pivot, maximizing sum density of LHS and RHS. This will
|
|
// (heuristically) allow us to emit JumpTable's later.
|
|
APInt TSize(First.getBitWidth(), 0);
|
|
for (CaseItr I = CR.Range.first, E = CR.Range.second;
|
|
I!=E; ++I)
|
|
TSize += I->size();
|
|
|
|
APInt LSize = FrontCase.size();
|
|
APInt RSize = TSize-LSize;
|
|
DEBUG(dbgs() << "Selecting best pivot: \n"
|
|
<< "First: " << First << ", Last: " << Last <<'\n'
|
|
<< "LSize: " << LSize << ", RSize: " << RSize << '\n');
|
|
for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
|
|
J!=E; ++I, ++J) {
|
|
const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
|
|
const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
|
|
APInt Range = ComputeRange(LEnd, RBegin);
|
|
assert((Range - 2ULL).isNonNegative() &&
|
|
"Invalid case distance");
|
|
double LDensity = (double)LSize.roundToDouble() /
|
|
(LEnd - First + 1ULL).roundToDouble();
|
|
double RDensity = (double)RSize.roundToDouble() /
|
|
(Last - RBegin + 1ULL).roundToDouble();
|
|
double Metric = Range.logBase2()*(LDensity+RDensity);
|
|
// Should always split in some non-trivial place
|
|
DEBUG(dbgs() <<"=>Step\n"
|
|
<< "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
|
|
<< "LDensity: " << LDensity
|
|
<< ", RDensity: " << RDensity << '\n'
|
|
<< "Metric: " << Metric << '\n');
|
|
if (FMetric < Metric) {
|
|
Pivot = J;
|
|
FMetric = Metric;
|
|
DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
|
|
}
|
|
|
|
LSize += J->size();
|
|
RSize -= J->size();
|
|
}
|
|
if (areJTsAllowed(TLI)) {
|
|
// If our case is dense we *really* should handle it earlier!
|
|
assert((FMetric > 0) && "Should handle dense range earlier!");
|
|
} else {
|
|
Pivot = CR.Range.first + Size/2;
|
|
}
|
|
|
|
CaseRange LHSR(CR.Range.first, Pivot);
|
|
CaseRange RHSR(Pivot, CR.Range.second);
|
|
Constant *C = Pivot->Low;
|
|
MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
|
|
|
|
// We know that we branch to the LHS if the Value being switched on is
|
|
// less than the Pivot value, C. We use this to optimize our binary
|
|
// tree a bit, by recognizing that if SV is greater than or equal to the
|
|
// LHS's Case Value, and that Case Value is exactly one less than the
|
|
// Pivot's Value, then we can branch directly to the LHS's Target,
|
|
// rather than creating a leaf node for it.
|
|
if ((LHSR.second - LHSR.first) == 1 &&
|
|
LHSR.first->High == CR.GE &&
|
|
cast<ConstantInt>(C)->getValue() ==
|
|
(cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
|
|
TrueBB = LHSR.first->BB;
|
|
} else {
|
|
TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
|
|
CurMF->insert(BBI, TrueBB);
|
|
WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
|
|
|
|
// Put SV in a virtual register to make it available from the new blocks.
|
|
ExportFromCurrentBlock(SV);
|
|
}
|
|
|
|
// Similar to the optimization above, if the Value being switched on is
|
|
// known to be less than the Constant CR.LT, and the current Case Value
|
|
// is CR.LT - 1, then we can branch directly to the target block for
|
|
// the current Case Value, rather than emitting a RHS leaf node for it.
|
|
if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
|
|
cast<ConstantInt>(RHSR.first->Low)->getValue() ==
|
|
(cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
|
|
FalseBB = RHSR.first->BB;
|
|
} else {
|
|
FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
|
|
CurMF->insert(BBI, FalseBB);
|
|
WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
|
|
|
|
// Put SV in a virtual register to make it available from the new blocks.
|
|
ExportFromCurrentBlock(SV);
|
|
}
|
|
|
|
// Create a CaseBlock record representing a conditional branch to
|
|
// the LHS node if the value being switched on SV is less than C.
|
|
// Otherwise, branch to LHS.
|
|
CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
|
|
|
|
if (CR.CaseBB == SwitchBB)
|
|
visitSwitchCase(CB, SwitchBB);
|
|
else
|
|
SwitchCases.push_back(CB);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// handleBitTestsSwitchCase - if current case range has few destination and
|
|
/// range span less, than machine word bitwidth, encode case range into series
|
|
/// of masks and emit bit tests with these masks.
|
|
bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
|
|
CaseRecVector& WorkList,
|
|
const Value* SV,
|
|
MachineBasicBlock* Default,
|
|
MachineBasicBlock *SwitchBB){
|
|
EVT PTy = TLI.getPointerTy();
|
|
unsigned IntPtrBits = PTy.getSizeInBits();
|
|
|
|
Case& FrontCase = *CR.Range.first;
|
|
Case& BackCase = *(CR.Range.second-1);
|
|
|
|
// Get the MachineFunction which holds the current MBB. This is used when
|
|
// inserting any additional MBBs necessary to represent the switch.
|
|
MachineFunction *CurMF = FuncInfo.MF;
|
|
|
|
// If target does not have legal shift left, do not emit bit tests at all.
|
|
if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
|
|
return false;
|
|
|
|
size_t numCmps = 0;
|
|
for (CaseItr I = CR.Range.first, E = CR.Range.second;
|
|
I!=E; ++I) {
|
|
// Single case counts one, case range - two.
|
|
numCmps += (I->Low == I->High ? 1 : 2);
|
|
}
|
|
|
|
// Count unique destinations
|
|
SmallSet<MachineBasicBlock*, 4> Dests;
|
|
for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
|
|
Dests.insert(I->BB);
|
|
if (Dests.size() > 3)
|
|
// Don't bother the code below, if there are too much unique destinations
|
|
return false;
|
|
}
|
|
DEBUG(dbgs() << "Total number of unique destinations: "
|
|
<< Dests.size() << '\n'
|
|
<< "Total number of comparisons: " << numCmps << '\n');
|
|
|
|
// Compute span of values.
|
|
const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
|
|
const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
|
|
APInt cmpRange = maxValue - minValue;
|
|
|
|
DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
|
|
<< "Low bound: " << minValue << '\n'
|
|
<< "High bound: " << maxValue << '\n');
|
|
|
|
if (cmpRange.uge(IntPtrBits) ||
|
|
(!(Dests.size() == 1 && numCmps >= 3) &&
|
|
!(Dests.size() == 2 && numCmps >= 5) &&
|
|
!(Dests.size() >= 3 && numCmps >= 6)))
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "Emitting bit tests\n");
|
|
APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
|
|
|
|
// Optimize the case where all the case values fit in a
|
|
// word without having to subtract minValue. In this case,
|
|
// we can optimize away the subtraction.
|
|
if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
|
|
cmpRange = maxValue;
|
|
} else {
|
|
lowBound = minValue;
|
|
}
|
|
|
|
CaseBitsVector CasesBits;
|
|
unsigned i, count = 0;
|
|
|
|
for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
|
|
MachineBasicBlock* Dest = I->BB;
|
|
for (i = 0; i < count; ++i)
|
|
if (Dest == CasesBits[i].BB)
|
|
break;
|
|
|
|
if (i == count) {
|
|
assert((count < 3) && "Too much destinations to test!");
|
|
CasesBits.push_back(CaseBits(0, Dest, 0));
|
|
count++;
|
|
}
|
|
|
|
const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
|
|
const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
|
|
|
|
uint64_t lo = (lowValue - lowBound).getZExtValue();
|
|
uint64_t hi = (highValue - lowBound).getZExtValue();
|
|
|
|
for (uint64_t j = lo; j <= hi; j++) {
|
|
CasesBits[i].Mask |= 1ULL << j;
|
|
CasesBits[i].Bits++;
|
|
}
|
|
|
|
}
|
|
std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
|
|
|
|
BitTestInfo BTC;
|
|
|
|
// Figure out which block is immediately after the current one.
|
|
MachineFunction::iterator BBI = CR.CaseBB;
|
|
++BBI;
|
|
|
|
const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
|
|
|
|
DEBUG(dbgs() << "Cases:\n");
|
|
for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
|
|
DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
|
|
<< ", Bits: " << CasesBits[i].Bits
|
|
<< ", BB: " << CasesBits[i].BB << '\n');
|
|
|
|
MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
|
|
CurMF->insert(BBI, CaseBB);
|
|
BTC.push_back(BitTestCase(CasesBits[i].Mask,
|
|
CaseBB,
|
|
CasesBits[i].BB));
|
|
|
|
// Put SV in a virtual register to make it available from the new blocks.
|
|
ExportFromCurrentBlock(SV);
|
|
}
|
|
|
|
BitTestBlock BTB(lowBound, cmpRange, SV,
|
|
-1U, MVT::Other, (CR.CaseBB == SwitchBB),
|
|
CR.CaseBB, Default, BTC);
|
|
|
|
if (CR.CaseBB == SwitchBB)
|
|
visitBitTestHeader(BTB, SwitchBB);
|
|
|
|
BitTestCases.push_back(BTB);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Clusterify - Transform simple list of Cases into list of CaseRange's
|
|
size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
|
|
const SwitchInst& SI) {
|
|
size_t numCmps = 0;
|
|
|
|
// Start with "simple" cases
|
|
for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
|
|
MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
|
|
Cases.push_back(Case(SI.getSuccessorValue(i),
|
|
SI.getSuccessorValue(i),
|
|
SMBB));
|
|
}
|
|
std::sort(Cases.begin(), Cases.end(), CaseCmp());
|
|
|
|
// Merge case into clusters
|
|
if (Cases.size() >= 2)
|
|
// Must recompute end() each iteration because it may be
|
|
// invalidated by erase if we hold on to it
|
|
for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
|
|
J != Cases.end(); ) {
|
|
const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
|
|
const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
|
|
MachineBasicBlock* nextBB = J->BB;
|
|
MachineBasicBlock* currentBB = I->BB;
|
|
|
|
// If the two neighboring cases go to the same destination, merge them
|
|
// into a single case.
|
|
if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
|
|
I->High = J->High;
|
|
J = Cases.erase(J);
|
|
} else {
|
|
I = J++;
|
|
}
|
|
}
|
|
|
|
for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
|
|
if (I->Low != I->High)
|
|
// A range counts double, since it requires two compares.
|
|
++numCmps;
|
|
}
|
|
|
|
return numCmps;
|
|
}
|
|
|
|
void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
|
|
MachineBasicBlock *Last) {
|
|
// Update JTCases.
|
|
for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
|
|
if (JTCases[i].first.HeaderBB == First)
|
|
JTCases[i].first.HeaderBB = Last;
|
|
|
|
// Update BitTestCases.
|
|
for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
|
|
if (BitTestCases[i].Parent == First)
|
|
BitTestCases[i].Parent = Last;
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
|
|
MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
|
|
|
|
// Figure out which block is immediately after the current one.
|
|
MachineBasicBlock *NextBlock = 0;
|
|
MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
|
|
|
|
// If there is only the default destination, branch to it if it is not the
|
|
// next basic block. Otherwise, just fall through.
|
|
if (SI.getNumOperands() == 2) {
|
|
// Update machine-CFG edges.
|
|
|
|
// If this is not a fall-through branch, emit the branch.
|
|
SwitchMBB->addSuccessor(Default);
|
|
if (Default != NextBlock)
|
|
DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
|
|
MVT::Other, getControlRoot(),
|
|
DAG.getBasicBlock(Default)));
|
|
|
|
return;
|
|
}
|
|
|
|
// If there are any non-default case statements, create a vector of Cases
|
|
// representing each one, and sort the vector so that we can efficiently
|
|
// create a binary search tree from them.
|
|
CaseVector Cases;
|
|
size_t numCmps = Clusterify(Cases, SI);
|
|
DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
|
|
<< ". Total compares: " << numCmps << '\n');
|
|
numCmps = 0;
|
|
|
|
// Get the Value to be switched on and default basic blocks, which will be
|
|
// inserted into CaseBlock records, representing basic blocks in the binary
|
|
// search tree.
|
|
const Value *SV = SI.getOperand(0);
|
|
|
|
// Push the initial CaseRec onto the worklist
|
|
CaseRecVector WorkList;
|
|
WorkList.push_back(CaseRec(SwitchMBB,0,0,
|
|
CaseRange(Cases.begin(),Cases.end())));
|
|
|
|
while (!WorkList.empty()) {
|
|
// Grab a record representing a case range to process off the worklist
|
|
CaseRec CR = WorkList.back();
|
|
WorkList.pop_back();
|
|
|
|
if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
|
|
continue;
|
|
|
|
// If the range has few cases (two or less) emit a series of specific
|
|
// tests.
|
|
if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
|
|
continue;
|
|
|
|
// If the switch has more than 5 blocks, and at least 40% dense, and the
|
|
// target supports indirect branches, then emit a jump table rather than
|
|
// lowering the switch to a binary tree of conditional branches.
|
|
if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
|
|
continue;
|
|
|
|
// Emit binary tree. We need to pick a pivot, and push left and right ranges
|
|
// onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
|
|
handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
|
|
}
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
|
|
MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
|
|
|
|
// Update machine-CFG edges with unique successors.
|
|
SmallVector<BasicBlock*, 32> succs;
|
|
succs.reserve(I.getNumSuccessors());
|
|
for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
|
|
succs.push_back(I.getSuccessor(i));
|
|
array_pod_sort(succs.begin(), succs.end());
|
|
succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
|
|
for (unsigned i = 0, e = succs.size(); i != e; ++i)
|
|
IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
|
|
|
|
DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
|
|
MVT::Other, getControlRoot(),
|
|
getValue(I.getAddress())));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitFSub(const User &I) {
|
|
// -0.0 - X --> fneg
|
|
const Type *Ty = I.getType();
|
|
if (isa<Constant>(I.getOperand(0)) &&
|
|
I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
|
|
SDValue Op2 = getValue(I.getOperand(1));
|
|
setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
|
|
Op2.getValueType(), Op2));
|
|
return;
|
|
}
|
|
|
|
visitBinary(I, ISD::FSUB);
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
|
|
SDValue Op1 = getValue(I.getOperand(0));
|
|
SDValue Op2 = getValue(I.getOperand(1));
|
|
setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
|
|
Op1.getValueType(), Op1, Op2));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
|
|
SDValue Op1 = getValue(I.getOperand(0));
|
|
SDValue Op2 = getValue(I.getOperand(1));
|
|
|
|
MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
|
|
|
|
// Coerce the shift amount to the right type if we can.
|
|
if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
|
|
unsigned ShiftSize = ShiftTy.getSizeInBits();
|
|
unsigned Op2Size = Op2.getValueType().getSizeInBits();
|
|
DebugLoc DL = getCurDebugLoc();
|
|
|
|
// If the operand is smaller than the shift count type, promote it.
|
|
if (ShiftSize > Op2Size)
|
|
Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
|
|
|
|
// If the operand is larger than the shift count type but the shift
|
|
// count type has enough bits to represent any shift value, truncate
|
|
// it now. This is a common case and it exposes the truncate to
|
|
// optimization early.
|
|
else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
|
|
Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
|
|
// Otherwise we'll need to temporarily settle for some other convenient
|
|
// type. Type legalization will make adjustments once the shiftee is split.
|
|
else
|
|
Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
|
|
}
|
|
|
|
setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
|
|
Op1.getValueType(), Op1, Op2));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitICmp(const User &I) {
|
|
ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
|
|
if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
|
|
predicate = IC->getPredicate();
|
|
else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
|
|
predicate = ICmpInst::Predicate(IC->getPredicate());
|
|
SDValue Op1 = getValue(I.getOperand(0));
|
|
SDValue Op2 = getValue(I.getOperand(1));
|
|
ISD::CondCode Opcode = getICmpCondCode(predicate);
|
|
|
|
EVT DestVT = TLI.getValueType(I.getType());
|
|
setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitFCmp(const User &I) {
|
|
FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
|
|
if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
|
|
predicate = FC->getPredicate();
|
|
else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
|
|
predicate = FCmpInst::Predicate(FC->getPredicate());
|
|
SDValue Op1 = getValue(I.getOperand(0));
|
|
SDValue Op2 = getValue(I.getOperand(1));
|
|
ISD::CondCode Condition = getFCmpCondCode(predicate);
|
|
EVT DestVT = TLI.getValueType(I.getType());
|
|
setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitSelect(const User &I) {
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
ComputeValueVTs(TLI, I.getType(), ValueVTs);
|
|
unsigned NumValues = ValueVTs.size();
|
|
if (NumValues == 0) return;
|
|
|
|
SmallVector<SDValue, 4> Values(NumValues);
|
|
SDValue Cond = getValue(I.getOperand(0));
|
|
SDValue TrueVal = getValue(I.getOperand(1));
|
|
SDValue FalseVal = getValue(I.getOperand(2));
|
|
|
|
for (unsigned i = 0; i != NumValues; ++i)
|
|
Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
|
|
TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
|
|
Cond,
|
|
SDValue(TrueVal.getNode(),
|
|
TrueVal.getResNo() + i),
|
|
SDValue(FalseVal.getNode(),
|
|
FalseVal.getResNo() + i));
|
|
|
|
setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
|
|
DAG.getVTList(&ValueVTs[0], NumValues),
|
|
&Values[0], NumValues));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitTrunc(const User &I) {
|
|
// TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
|
|
SDValue N = getValue(I.getOperand(0));
|
|
EVT DestVT = TLI.getValueType(I.getType());
|
|
setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitZExt(const User &I) {
|
|
// ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
|
|
// ZExt also can't be a cast to bool for same reason. So, nothing much to do
|
|
SDValue N = getValue(I.getOperand(0));
|
|
EVT DestVT = TLI.getValueType(I.getType());
|
|
setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitSExt(const User &I) {
|
|
// SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
|
|
// SExt also can't be a cast to bool for same reason. So, nothing much to do
|
|
SDValue N = getValue(I.getOperand(0));
|
|
EVT DestVT = TLI.getValueType(I.getType());
|
|
setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitFPTrunc(const User &I) {
|
|
// FPTrunc is never a no-op cast, no need to check
|
|
SDValue N = getValue(I.getOperand(0));
|
|
EVT DestVT = TLI.getValueType(I.getType());
|
|
setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
|
|
DestVT, N, DAG.getIntPtrConstant(0)));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitFPExt(const User &I){
|
|
// FPTrunc is never a no-op cast, no need to check
|
|
SDValue N = getValue(I.getOperand(0));
|
|
EVT DestVT = TLI.getValueType(I.getType());
|
|
setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitFPToUI(const User &I) {
|
|
// FPToUI is never a no-op cast, no need to check
|
|
SDValue N = getValue(I.getOperand(0));
|
|
EVT DestVT = TLI.getValueType(I.getType());
|
|
setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitFPToSI(const User &I) {
|
|
// FPToSI is never a no-op cast, no need to check
|
|
SDValue N = getValue(I.getOperand(0));
|
|
EVT DestVT = TLI.getValueType(I.getType());
|
|
setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitUIToFP(const User &I) {
|
|
// UIToFP is never a no-op cast, no need to check
|
|
SDValue N = getValue(I.getOperand(0));
|
|
EVT DestVT = TLI.getValueType(I.getType());
|
|
setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitSIToFP(const User &I){
|
|
// SIToFP is never a no-op cast, no need to check
|
|
SDValue N = getValue(I.getOperand(0));
|
|
EVT DestVT = TLI.getValueType(I.getType());
|
|
setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitPtrToInt(const User &I) {
|
|
// What to do depends on the size of the integer and the size of the pointer.
|
|
// We can either truncate, zero extend, or no-op, accordingly.
|
|
SDValue N = getValue(I.getOperand(0));
|
|
EVT DestVT = TLI.getValueType(I.getType());
|
|
setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitIntToPtr(const User &I) {
|
|
// What to do depends on the size of the integer and the size of the pointer.
|
|
// We can either truncate, zero extend, or no-op, accordingly.
|
|
SDValue N = getValue(I.getOperand(0));
|
|
EVT DestVT = TLI.getValueType(I.getType());
|
|
setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitBitCast(const User &I) {
|
|
SDValue N = getValue(I.getOperand(0));
|
|
EVT DestVT = TLI.getValueType(I.getType());
|
|
|
|
// BitCast assures us that source and destination are the same size so this is
|
|
// either a BITCAST or a no-op.
|
|
if (DestVT != N.getValueType())
|
|
setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
|
|
DestVT, N)); // convert types.
|
|
else
|
|
setValue(&I, N); // noop cast.
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitInsertElement(const User &I) {
|
|
SDValue InVec = getValue(I.getOperand(0));
|
|
SDValue InVal = getValue(I.getOperand(1));
|
|
SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
|
|
TLI.getPointerTy(),
|
|
getValue(I.getOperand(2)));
|
|
setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
|
|
TLI.getValueType(I.getType()),
|
|
InVec, InVal, InIdx));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitExtractElement(const User &I) {
|
|
SDValue InVec = getValue(I.getOperand(0));
|
|
SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
|
|
TLI.getPointerTy(),
|
|
getValue(I.getOperand(1)));
|
|
setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
|
|
TLI.getValueType(I.getType()), InVec, InIdx));
|
|
}
|
|
|
|
// Utility for visitShuffleVector - Returns true if the mask is mask starting
|
|
// from SIndx and increasing to the element length (undefs are allowed).
|
|
static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
|
|
unsigned MaskNumElts = Mask.size();
|
|
for (unsigned i = 0; i != MaskNumElts; ++i)
|
|
if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitShuffleVector(const User &I) {
|
|
SmallVector<int, 8> Mask;
|
|
SDValue Src1 = getValue(I.getOperand(0));
|
|
SDValue Src2 = getValue(I.getOperand(1));
|
|
|
|
// Convert the ConstantVector mask operand into an array of ints, with -1
|
|
// representing undef values.
|
|
SmallVector<Constant*, 8> MaskElts;
|
|
cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
|
|
unsigned MaskNumElts = MaskElts.size();
|
|
for (unsigned i = 0; i != MaskNumElts; ++i) {
|
|
if (isa<UndefValue>(MaskElts[i]))
|
|
Mask.push_back(-1);
|
|
else
|
|
Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
|
|
}
|
|
|
|
EVT VT = TLI.getValueType(I.getType());
|
|
EVT SrcVT = Src1.getValueType();
|
|
unsigned SrcNumElts = SrcVT.getVectorNumElements();
|
|
|
|
if (SrcNumElts == MaskNumElts) {
|
|
setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
|
|
&Mask[0]));
|
|
return;
|
|
}
|
|
|
|
// Normalize the shuffle vector since mask and vector length don't match.
|
|
if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
|
|
// Mask is longer than the source vectors and is a multiple of the source
|
|
// vectors. We can use concatenate vector to make the mask and vectors
|
|
// lengths match.
|
|
if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
|
|
// The shuffle is concatenating two vectors together.
|
|
setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
|
|
VT, Src1, Src2));
|
|
return;
|
|
}
|
|
|
|
// Pad both vectors with undefs to make them the same length as the mask.
|
|
unsigned NumConcat = MaskNumElts / SrcNumElts;
|
|
bool Src1U = Src1.getOpcode() == ISD::UNDEF;
|
|
bool Src2U = Src2.getOpcode() == ISD::UNDEF;
|
|
SDValue UndefVal = DAG.getUNDEF(SrcVT);
|
|
|
|
SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
|
|
SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
|
|
MOps1[0] = Src1;
|
|
MOps2[0] = Src2;
|
|
|
|
Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
|
|
getCurDebugLoc(), VT,
|
|
&MOps1[0], NumConcat);
|
|
Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
|
|
getCurDebugLoc(), VT,
|
|
&MOps2[0], NumConcat);
|
|
|
|
// Readjust mask for new input vector length.
|
|
SmallVector<int, 8> MappedOps;
|
|
for (unsigned i = 0; i != MaskNumElts; ++i) {
|
|
int Idx = Mask[i];
|
|
if (Idx < (int)SrcNumElts)
|
|
MappedOps.push_back(Idx);
|
|
else
|
|
MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
|
|
}
|
|
|
|
setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
|
|
&MappedOps[0]));
|
|
return;
|
|
}
|
|
|
|
if (SrcNumElts > MaskNumElts) {
|
|
// Analyze the access pattern of the vector to see if we can extract
|
|
// two subvectors and do the shuffle. The analysis is done by calculating
|
|
// the range of elements the mask access on both vectors.
|
|
int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
|
|
int MaxRange[2] = {-1, -1};
|
|
|
|
for (unsigned i = 0; i != MaskNumElts; ++i) {
|
|
int Idx = Mask[i];
|
|
int Input = 0;
|
|
if (Idx < 0)
|
|
continue;
|
|
|
|
if (Idx >= (int)SrcNumElts) {
|
|
Input = 1;
|
|
Idx -= SrcNumElts;
|
|
}
|
|
if (Idx > MaxRange[Input])
|
|
MaxRange[Input] = Idx;
|
|
if (Idx < MinRange[Input])
|
|
MinRange[Input] = Idx;
|
|
}
|
|
|
|
// Check if the access is smaller than the vector size and can we find
|
|
// a reasonable extract index.
|
|
int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not
|
|
// Extract.
|
|
int StartIdx[2]; // StartIdx to extract from
|
|
for (int Input=0; Input < 2; ++Input) {
|
|
if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
|
|
RangeUse[Input] = 0; // Unused
|
|
StartIdx[Input] = 0;
|
|
} else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
|
|
// Fits within range but we should see if we can find a good
|
|
// start index that is a multiple of the mask length.
|
|
if (MaxRange[Input] < (int)MaskNumElts) {
|
|
RangeUse[Input] = 1; // Extract from beginning of the vector
|
|
StartIdx[Input] = 0;
|
|
} else {
|
|
StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
|
|
if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
|
|
StartIdx[Input] + MaskNumElts <= SrcNumElts)
|
|
RangeUse[Input] = 1; // Extract from a multiple of the mask length.
|
|
}
|
|
}
|
|
}
|
|
|
|
if (RangeUse[0] == 0 && RangeUse[1] == 0) {
|
|
setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
|
|
return;
|
|
}
|
|
else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
|
|
// Extract appropriate subvector and generate a vector shuffle
|
|
for (int Input=0; Input < 2; ++Input) {
|
|
SDValue &Src = Input == 0 ? Src1 : Src2;
|
|
if (RangeUse[Input] == 0)
|
|
Src = DAG.getUNDEF(VT);
|
|
else
|
|
Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
|
|
Src, DAG.getIntPtrConstant(StartIdx[Input]));
|
|
}
|
|
|
|
// Calculate new mask.
|
|
SmallVector<int, 8> MappedOps;
|
|
for (unsigned i = 0; i != MaskNumElts; ++i) {
|
|
int Idx = Mask[i];
|
|
if (Idx < 0)
|
|
MappedOps.push_back(Idx);
|
|
else if (Idx < (int)SrcNumElts)
|
|
MappedOps.push_back(Idx - StartIdx[0]);
|
|
else
|
|
MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
|
|
}
|
|
|
|
setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
|
|
&MappedOps[0]));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// We can't use either concat vectors or extract subvectors so fall back to
|
|
// replacing the shuffle with extract and build vector.
|
|
// to insert and build vector.
|
|
EVT EltVT = VT.getVectorElementType();
|
|
EVT PtrVT = TLI.getPointerTy();
|
|
SmallVector<SDValue,8> Ops;
|
|
for (unsigned i = 0; i != MaskNumElts; ++i) {
|
|
if (Mask[i] < 0) {
|
|
Ops.push_back(DAG.getUNDEF(EltVT));
|
|
} else {
|
|
int Idx = Mask[i];
|
|
SDValue Res;
|
|
|
|
if (Idx < (int)SrcNumElts)
|
|
Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
|
|
EltVT, Src1, DAG.getConstant(Idx, PtrVT));
|
|
else
|
|
Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
|
|
EltVT, Src2,
|
|
DAG.getConstant(Idx - SrcNumElts, PtrVT));
|
|
|
|
Ops.push_back(Res);
|
|
}
|
|
}
|
|
|
|
setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
|
|
VT, &Ops[0], Ops.size()));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
|
|
const Value *Op0 = I.getOperand(0);
|
|
const Value *Op1 = I.getOperand(1);
|
|
const Type *AggTy = I.getType();
|
|
const Type *ValTy = Op1->getType();
|
|
bool IntoUndef = isa<UndefValue>(Op0);
|
|
bool FromUndef = isa<UndefValue>(Op1);
|
|
|
|
unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
|
|
|
|
SmallVector<EVT, 4> AggValueVTs;
|
|
ComputeValueVTs(TLI, AggTy, AggValueVTs);
|
|
SmallVector<EVT, 4> ValValueVTs;
|
|
ComputeValueVTs(TLI, ValTy, ValValueVTs);
|
|
|
|
unsigned NumAggValues = AggValueVTs.size();
|
|
unsigned NumValValues = ValValueVTs.size();
|
|
SmallVector<SDValue, 4> Values(NumAggValues);
|
|
|
|
SDValue Agg = getValue(Op0);
|
|
SDValue Val = getValue(Op1);
|
|
unsigned i = 0;
|
|
// Copy the beginning value(s) from the original aggregate.
|
|
for (; i != LinearIndex; ++i)
|
|
Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
|
|
SDValue(Agg.getNode(), Agg.getResNo() + i);
|
|
// Copy values from the inserted value(s).
|
|
for (; i != LinearIndex + NumValValues; ++i)
|
|
Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
|
|
SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
|
|
// Copy remaining value(s) from the original aggregate.
|
|
for (; i != NumAggValues; ++i)
|
|
Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
|
|
SDValue(Agg.getNode(), Agg.getResNo() + i);
|
|
|
|
setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
|
|
DAG.getVTList(&AggValueVTs[0], NumAggValues),
|
|
&Values[0], NumAggValues));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
|
|
const Value *Op0 = I.getOperand(0);
|
|
const Type *AggTy = Op0->getType();
|
|
const Type *ValTy = I.getType();
|
|
bool OutOfUndef = isa<UndefValue>(Op0);
|
|
|
|
unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
|
|
|
|
SmallVector<EVT, 4> ValValueVTs;
|
|
ComputeValueVTs(TLI, ValTy, ValValueVTs);
|
|
|
|
unsigned NumValValues = ValValueVTs.size();
|
|
SmallVector<SDValue, 4> Values(NumValValues);
|
|
|
|
SDValue Agg = getValue(Op0);
|
|
// Copy out the selected value(s).
|
|
for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
|
|
Values[i - LinearIndex] =
|
|
OutOfUndef ?
|
|
DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
|
|
SDValue(Agg.getNode(), Agg.getResNo() + i);
|
|
|
|
setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
|
|
DAG.getVTList(&ValValueVTs[0], NumValValues),
|
|
&Values[0], NumValValues));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
|
|
SDValue N = getValue(I.getOperand(0));
|
|
const Type *Ty = I.getOperand(0)->getType();
|
|
|
|
for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
|
|
OI != E; ++OI) {
|
|
const Value *Idx = *OI;
|
|
if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
|
|
unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
|
|
if (Field) {
|
|
// N = N + Offset
|
|
uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
|
|
N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
|
|
DAG.getIntPtrConstant(Offset));
|
|
}
|
|
|
|
Ty = StTy->getElementType(Field);
|
|
} else {
|
|
Ty = cast<SequentialType>(Ty)->getElementType();
|
|
|
|
// If this is a constant subscript, handle it quickly.
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
|
|
if (CI->isZero()) continue;
|
|
uint64_t Offs =
|
|
TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
|
|
SDValue OffsVal;
|
|
EVT PTy = TLI.getPointerTy();
|
|
unsigned PtrBits = PTy.getSizeInBits();
|
|
if (PtrBits < 64)
|
|
OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
|
|
TLI.getPointerTy(),
|
|
DAG.getConstant(Offs, MVT::i64));
|
|
else
|
|
OffsVal = DAG.getIntPtrConstant(Offs);
|
|
|
|
N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
|
|
OffsVal);
|
|
continue;
|
|
}
|
|
|
|
// N = N + Idx * ElementSize;
|
|
APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
|
|
TD->getTypeAllocSize(Ty));
|
|
SDValue IdxN = getValue(Idx);
|
|
|
|
// If the index is smaller or larger than intptr_t, truncate or extend
|
|
// it.
|
|
IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
|
|
|
|
// If this is a multiply by a power of two, turn it into a shl
|
|
// immediately. This is a very common case.
|
|
if (ElementSize != 1) {
|
|
if (ElementSize.isPowerOf2()) {
|
|
unsigned Amt = ElementSize.logBase2();
|
|
IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
|
|
N.getValueType(), IdxN,
|
|
DAG.getConstant(Amt, TLI.getPointerTy()));
|
|
} else {
|
|
SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
|
|
IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
|
|
N.getValueType(), IdxN, Scale);
|
|
}
|
|
}
|
|
|
|
N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
|
|
N.getValueType(), N, IdxN);
|
|
}
|
|
}
|
|
|
|
setValue(&I, N);
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
|
|
// If this is a fixed sized alloca in the entry block of the function,
|
|
// allocate it statically on the stack.
|
|
if (FuncInfo.StaticAllocaMap.count(&I))
|
|
return; // getValue will auto-populate this.
|
|
|
|
const Type *Ty = I.getAllocatedType();
|
|
uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
|
|
unsigned Align =
|
|
std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
|
|
I.getAlignment());
|
|
|
|
SDValue AllocSize = getValue(I.getArraySize());
|
|
|
|
EVT IntPtr = TLI.getPointerTy();
|
|
if (AllocSize.getValueType() != IntPtr)
|
|
AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
|
|
|
|
AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
|
|
AllocSize,
|
|
DAG.getConstant(TySize, IntPtr));
|
|
|
|
// Handle alignment. If the requested alignment is less than or equal to
|
|
// the stack alignment, ignore it. If the size is greater than or equal to
|
|
// the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
|
|
unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
|
|
if (Align <= StackAlign)
|
|
Align = 0;
|
|
|
|
// Round the size of the allocation up to the stack alignment size
|
|
// by add SA-1 to the size.
|
|
AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
|
|
AllocSize.getValueType(), AllocSize,
|
|
DAG.getIntPtrConstant(StackAlign-1));
|
|
|
|
// Mask out the low bits for alignment purposes.
|
|
AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
|
|
AllocSize.getValueType(), AllocSize,
|
|
DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
|
|
|
|
SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
|
|
SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
|
|
SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
|
|
VTs, Ops, 3);
|
|
setValue(&I, DSA);
|
|
DAG.setRoot(DSA.getValue(1));
|
|
|
|
// Inform the Frame Information that we have just allocated a variable-sized
|
|
// object.
|
|
FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
|
|
const Value *SV = I.getOperand(0);
|
|
SDValue Ptr = getValue(SV);
|
|
|
|
const Type *Ty = I.getType();
|
|
|
|
bool isVolatile = I.isVolatile();
|
|
bool isNonTemporal = I.getMetadata("nontemporal") != 0;
|
|
unsigned Alignment = I.getAlignment();
|
|
const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
|
|
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
SmallVector<uint64_t, 4> Offsets;
|
|
ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
|
|
unsigned NumValues = ValueVTs.size();
|
|
if (NumValues == 0)
|
|
return;
|
|
|
|
SDValue Root;
|
|
bool ConstantMemory = false;
|
|
if (I.isVolatile() || NumValues > MaxParallelChains)
|
|
// Serialize volatile loads with other side effects.
|
|
Root = getRoot();
|
|
else if (AA->pointsToConstantMemory(
|
|
AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
|
|
// Do not serialize (non-volatile) loads of constant memory with anything.
|
|
Root = DAG.getEntryNode();
|
|
ConstantMemory = true;
|
|
} else {
|
|
// Do not serialize non-volatile loads against each other.
|
|
Root = DAG.getRoot();
|
|
}
|
|
|
|
SmallVector<SDValue, 4> Values(NumValues);
|
|
SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
|
|
NumValues));
|
|
EVT PtrVT = Ptr.getValueType();
|
|
unsigned ChainI = 0;
|
|
for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
|
|
// Serializing loads here may result in excessive register pressure, and
|
|
// TokenFactor places arbitrary choke points on the scheduler. SD scheduling
|
|
// could recover a bit by hoisting nodes upward in the chain by recognizing
|
|
// they are side-effect free or do not alias. The optimizer should really
|
|
// avoid this case by converting large object/array copies to llvm.memcpy
|
|
// (MaxParallelChains should always remain as failsafe).
|
|
if (ChainI == MaxParallelChains) {
|
|
assert(PendingLoads.empty() && "PendingLoads must be serialized first");
|
|
SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
|
|
MVT::Other, &Chains[0], ChainI);
|
|
Root = Chain;
|
|
ChainI = 0;
|
|
}
|
|
SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
|
|
PtrVT, Ptr,
|
|
DAG.getConstant(Offsets[i], PtrVT));
|
|
SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
|
|
A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
|
|
isNonTemporal, Alignment, TBAAInfo);
|
|
|
|
Values[i] = L;
|
|
Chains[ChainI] = L.getValue(1);
|
|
}
|
|
|
|
if (!ConstantMemory) {
|
|
SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
|
|
MVT::Other, &Chains[0], ChainI);
|
|
if (isVolatile)
|
|
DAG.setRoot(Chain);
|
|
else
|
|
PendingLoads.push_back(Chain);
|
|
}
|
|
|
|
setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
|
|
DAG.getVTList(&ValueVTs[0], NumValues),
|
|
&Values[0], NumValues));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitStore(const StoreInst &I) {
|
|
const Value *SrcV = I.getOperand(0);
|
|
const Value *PtrV = I.getOperand(1);
|
|
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
SmallVector<uint64_t, 4> Offsets;
|
|
ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
|
|
unsigned NumValues = ValueVTs.size();
|
|
if (NumValues == 0)
|
|
return;
|
|
|
|
// Get the lowered operands. Note that we do this after
|
|
// checking if NumResults is zero, because with zero results
|
|
// the operands won't have values in the map.
|
|
SDValue Src = getValue(SrcV);
|
|
SDValue Ptr = getValue(PtrV);
|
|
|
|
SDValue Root = getRoot();
|
|
SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
|
|
NumValues));
|
|
EVT PtrVT = Ptr.getValueType();
|
|
bool isVolatile = I.isVolatile();
|
|
bool isNonTemporal = I.getMetadata("nontemporal") != 0;
|
|
unsigned Alignment = I.getAlignment();
|
|
const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
|
|
|
|
unsigned ChainI = 0;
|
|
for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
|
|
// See visitLoad comments.
|
|
if (ChainI == MaxParallelChains) {
|
|
SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
|
|
MVT::Other, &Chains[0], ChainI);
|
|
Root = Chain;
|
|
ChainI = 0;
|
|
}
|
|
SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
|
|
DAG.getConstant(Offsets[i], PtrVT));
|
|
SDValue St = DAG.getStore(Root, getCurDebugLoc(),
|
|
SDValue(Src.getNode(), Src.getResNo() + i),
|
|
Add, MachinePointerInfo(PtrV, Offsets[i]),
|
|
isVolatile, isNonTemporal, Alignment, TBAAInfo);
|
|
Chains[ChainI] = St;
|
|
}
|
|
|
|
SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
|
|
MVT::Other, &Chains[0], ChainI);
|
|
++SDNodeOrder;
|
|
AssignOrderingToNode(StoreNode.getNode());
|
|
DAG.setRoot(StoreNode);
|
|
}
|
|
|
|
/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
|
|
/// node.
|
|
void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
|
|
unsigned Intrinsic) {
|
|
bool HasChain = !I.doesNotAccessMemory();
|
|
bool OnlyLoad = HasChain && I.onlyReadsMemory();
|
|
|
|
// Build the operand list.
|
|
SmallVector<SDValue, 8> Ops;
|
|
if (HasChain) { // If this intrinsic has side-effects, chainify it.
|
|
if (OnlyLoad) {
|
|
// We don't need to serialize loads against other loads.
|
|
Ops.push_back(DAG.getRoot());
|
|
} else {
|
|
Ops.push_back(getRoot());
|
|
}
|
|
}
|
|
|
|
// Info is set by getTgtMemInstrinsic
|
|
TargetLowering::IntrinsicInfo Info;
|
|
bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
|
|
|
|
// Add the intrinsic ID as an integer operand if it's not a target intrinsic.
|
|
if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
|
|
Info.opc == ISD::INTRINSIC_W_CHAIN)
|
|
Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
|
|
|
|
// Add all operands of the call to the operand list.
|
|
for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
|
|
SDValue Op = getValue(I.getArgOperand(i));
|
|
assert(TLI.isTypeLegal(Op.getValueType()) &&
|
|
"Intrinsic uses a non-legal type?");
|
|
Ops.push_back(Op);
|
|
}
|
|
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
ComputeValueVTs(TLI, I.getType(), ValueVTs);
|
|
#ifndef NDEBUG
|
|
for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
|
|
assert(TLI.isTypeLegal(ValueVTs[Val]) &&
|
|
"Intrinsic uses a non-legal type?");
|
|
}
|
|
#endif // NDEBUG
|
|
|
|
if (HasChain)
|
|
ValueVTs.push_back(MVT::Other);
|
|
|
|
SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
|
|
|
|
// Create the node.
|
|
SDValue Result;
|
|
if (IsTgtIntrinsic) {
|
|
// This is target intrinsic that touches memory
|
|
Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
|
|
VTs, &Ops[0], Ops.size(),
|
|
Info.memVT,
|
|
MachinePointerInfo(Info.ptrVal, Info.offset),
|
|
Info.align, Info.vol,
|
|
Info.readMem, Info.writeMem);
|
|
} else if (!HasChain) {
|
|
Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
|
|
VTs, &Ops[0], Ops.size());
|
|
} else if (!I.getType()->isVoidTy()) {
|
|
Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
|
|
VTs, &Ops[0], Ops.size());
|
|
} else {
|
|
Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
|
|
VTs, &Ops[0], Ops.size());
|
|
}
|
|
|
|
if (HasChain) {
|
|
SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
|
|
if (OnlyLoad)
|
|
PendingLoads.push_back(Chain);
|
|
else
|
|
DAG.setRoot(Chain);
|
|
}
|
|
|
|
if (!I.getType()->isVoidTy()) {
|
|
if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
|
|
EVT VT = TLI.getValueType(PTy);
|
|
Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
|
|
}
|
|
|
|
setValue(&I, Result);
|
|
}
|
|
}
|
|
|
|
/// GetSignificand - Get the significand and build it into a floating-point
|
|
/// number with exponent of 1:
|
|
///
|
|
/// Op = (Op & 0x007fffff) | 0x3f800000;
|
|
///
|
|
/// where Op is the hexidecimal representation of floating point value.
|
|
static SDValue
|
|
GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
|
|
SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
|
|
DAG.getConstant(0x007fffff, MVT::i32));
|
|
SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
|
|
DAG.getConstant(0x3f800000, MVT::i32));
|
|
return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
|
|
}
|
|
|
|
/// GetExponent - Get the exponent:
|
|
///
|
|
/// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
|
|
///
|
|
/// where Op is the hexidecimal representation of floating point value.
|
|
static SDValue
|
|
GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
|
|
DebugLoc dl) {
|
|
SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
|
|
DAG.getConstant(0x7f800000, MVT::i32));
|
|
SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
|
|
DAG.getConstant(23, TLI.getPointerTy()));
|
|
SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
|
|
DAG.getConstant(127, MVT::i32));
|
|
return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
|
|
}
|
|
|
|
/// getF32Constant - Get 32-bit floating point constant.
|
|
static SDValue
|
|
getF32Constant(SelectionDAG &DAG, unsigned Flt) {
|
|
return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
|
|
}
|
|
|
|
/// Inlined utility function to implement binary input atomic intrinsics for
|
|
/// visitIntrinsicCall: I is a call instruction
|
|
/// Op is the associated NodeType for I
|
|
const char *
|
|
SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
|
|
ISD::NodeType Op) {
|
|
SDValue Root = getRoot();
|
|
SDValue L =
|
|
DAG.getAtomic(Op, getCurDebugLoc(),
|
|
getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
|
|
Root,
|
|
getValue(I.getArgOperand(0)),
|
|
getValue(I.getArgOperand(1)),
|
|
I.getArgOperand(0));
|
|
setValue(&I, L);
|
|
DAG.setRoot(L.getValue(1));
|
|
return 0;
|
|
}
|
|
|
|
// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
|
|
const char *
|
|
SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
|
|
SDValue Op1 = getValue(I.getArgOperand(0));
|
|
SDValue Op2 = getValue(I.getArgOperand(1));
|
|
|
|
SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
|
|
setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
|
|
return 0;
|
|
}
|
|
|
|
/// visitExp - Lower an exp intrinsic. Handles the special sequences for
|
|
/// limited-precision mode.
|
|
void
|
|
SelectionDAGBuilder::visitExp(const CallInst &I) {
|
|
SDValue result;
|
|
DebugLoc dl = getCurDebugLoc();
|
|
|
|
if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
|
|
LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
|
|
SDValue Op = getValue(I.getArgOperand(0));
|
|
|
|
// Put the exponent in the right bit position for later addition to the
|
|
// final result:
|
|
//
|
|
// #define LOG2OFe 1.4426950f
|
|
// IntegerPartOfX = ((int32_t)(X * LOG2OFe));
|
|
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
|
|
getF32Constant(DAG, 0x3fb8aa3b));
|
|
SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
|
|
|
|
// FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
|
|
SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
|
|
SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
|
|
|
|
// IntegerPartOfX <<= 23;
|
|
IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
|
|
DAG.getConstant(23, TLI.getPointerTy()));
|
|
|
|
if (LimitFloatPrecision <= 6) {
|
|
// For floating-point precision of 6:
|
|
//
|
|
// TwoToFractionalPartOfX =
|
|
// 0.997535578f +
|
|
// (0.735607626f + 0.252464424f * x) * x;
|
|
//
|
|
// error 0.0144103317, which is 6 bits
|
|
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
|
|
getF32Constant(DAG, 0x3e814304));
|
|
SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
|
|
getF32Constant(DAG, 0x3f3c50c8));
|
|
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
|
|
SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
|
|
getF32Constant(DAG, 0x3f7f5e7e));
|
|
SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
|
|
|
|
// Add the exponent into the result in integer domain.
|
|
SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
|
|
TwoToFracPartOfX, IntegerPartOfX);
|
|
|
|
result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
|
|
} else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
|
|
// For floating-point precision of 12:
|
|
//
|
|
// TwoToFractionalPartOfX =
|
|
// 0.999892986f +
|
|
// (0.696457318f +
|
|
// (0.224338339f + 0.792043434e-1f * x) * x) * x;
|
|
//
|
|
// 0.000107046256 error, which is 13 to 14 bits
|
|
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
|
|
getF32Constant(DAG, 0x3da235e3));
|
|
SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
|
|
getF32Constant(DAG, 0x3e65b8f3));
|
|
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
|
|
SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
|
|
getF32Constant(DAG, 0x3f324b07));
|
|
SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
|
|
SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
|
|
getF32Constant(DAG, 0x3f7ff8fd));
|
|
SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
|
|
|
|
// Add the exponent into the result in integer domain.
|
|
SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
|
|
TwoToFracPartOfX, IntegerPartOfX);
|
|
|
|
result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
|
|
} else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
|
|
// For floating-point precision of 18:
|
|
//
|
|
// TwoToFractionalPartOfX =
|
|
// 0.999999982f +
|
|
// (0.693148872f +
|
|
// (0.240227044f +
|
|
// (0.554906021e-1f +
|
|
// (0.961591928e-2f +
|
|
// (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
|
|
//
|
|
// error 2.47208000*10^(-7), which is better than 18 bits
|
|
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
|
|
getF32Constant(DAG, 0x3924b03e));
|
|
SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
|
|
getF32Constant(DAG, 0x3ab24b87));
|
|
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
|
|
SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
|
|
getF32Constant(DAG, 0x3c1d8c17));
|
|
SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
|
|
SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
|
|
getF32Constant(DAG, 0x3d634a1d));
|
|
SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
|
|
SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
|
|
getF32Constant(DAG, 0x3e75fe14));
|
|
SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
|
|
SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
|
|
getF32Constant(DAG, 0x3f317234));
|
|
SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
|
|
SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
|
|
getF32Constant(DAG, 0x3f800000));
|
|
SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
|
|
MVT::i32, t13);
|
|
|
|
// Add the exponent into the result in integer domain.
|
|
SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
|
|
TwoToFracPartOfX, IntegerPartOfX);
|
|
|
|
result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
|
|
}
|
|
} else {
|
|
// No special expansion.
|
|
result = DAG.getNode(ISD::FEXP, dl,
|
|
getValue(I.getArgOperand(0)).getValueType(),
|
|
getValue(I.getArgOperand(0)));
|
|
}
|
|
|
|
setValue(&I, result);
|
|
}
|
|
|
|
/// visitLog - Lower a log intrinsic. Handles the special sequences for
|
|
/// limited-precision mode.
|
|
void
|
|
SelectionDAGBuilder::visitLog(const CallInst &I) {
|
|
SDValue result;
|
|
DebugLoc dl = getCurDebugLoc();
|
|
|
|
if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
|
|
LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
|
|
SDValue Op = getValue(I.getArgOperand(0));
|
|
SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
|
|
|
|
// Scale the exponent by log(2) [0.69314718f].
|
|
SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
|
|
SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
|
|
getF32Constant(DAG, 0x3f317218));
|
|
|
|
// Get the significand and build it into a floating-point number with
|
|
// exponent of 1.
|
|
SDValue X = GetSignificand(DAG, Op1, dl);
|
|
|
|
if (LimitFloatPrecision <= 6) {
|
|
// For floating-point precision of 6:
|
|
//
|
|
// LogofMantissa =
|
|
// -1.1609546f +
|
|
// (1.4034025f - 0.23903021f * x) * x;
|
|
//
|
|
// error 0.0034276066, which is better than 8 bits
|
|
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
|
|
getF32Constant(DAG, 0xbe74c456));
|
|
SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
|
|
getF32Constant(DAG, 0x3fb3a2b1));
|
|
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
|
|
SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
|
|
getF32Constant(DAG, 0x3f949a29));
|
|
|
|
result = DAG.getNode(ISD::FADD, dl,
|
|
MVT::f32, LogOfExponent, LogOfMantissa);
|
|
} else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
|
|
// For floating-point precision of 12:
|
|
//
|
|
// LogOfMantissa =
|
|
// -1.7417939f +
|
|
// (2.8212026f +
|
|
// (-1.4699568f +
|
|
// (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
|
|
//
|
|
// error 0.000061011436, which is 14 bits
|
|
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
|
|
getF32Constant(DAG, 0xbd67b6d6));
|
|
SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
|
|
getF32Constant(DAG, 0x3ee4f4b8));
|
|
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
|
|
SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
|
|
getF32Constant(DAG, 0x3fbc278b));
|
|
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
|
|
SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
|
|
getF32Constant(DAG, 0x40348e95));
|
|
SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
|
|
SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
|
|
getF32Constant(DAG, 0x3fdef31a));
|
|
|
|
result = DAG.getNode(ISD::FADD, dl,
|
|
MVT::f32, LogOfExponent, LogOfMantissa);
|
|
} else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
|
|
// For floating-point precision of 18:
|
|
//
|
|
// LogOfMantissa =
|
|
// -2.1072184f +
|
|
// (4.2372794f +
|
|
// (-3.7029485f +
|
|
// (2.2781945f +
|
|
// (-0.87823314f +
|
|
// (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
|
|
//
|
|
// error 0.0000023660568, which is better than 18 bits
|
|
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
|
|
getF32Constant(DAG, 0xbc91e5ac));
|
|
SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
|
|
getF32Constant(DAG, 0x3e4350aa));
|
|
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
|
|
SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
|
|
getF32Constant(DAG, 0x3f60d3e3));
|
|
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
|
|
SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
|
|
getF32Constant(DAG, 0x4011cdf0));
|
|
SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
|
|
SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
|
|
getF32Constant(DAG, 0x406cfd1c));
|
|
SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
|
|
SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
|
|
getF32Constant(DAG, 0x408797cb));
|
|
SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
|
|
SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
|
|
getF32Constant(DAG, 0x4006dcab));
|
|
|
|
result = DAG.getNode(ISD::FADD, dl,
|
|
MVT::f32, LogOfExponent, LogOfMantissa);
|
|
}
|
|
} else {
|
|
// No special expansion.
|
|
result = DAG.getNode(ISD::FLOG, dl,
|
|
getValue(I.getArgOperand(0)).getValueType(),
|
|
getValue(I.getArgOperand(0)));
|
|
}
|
|
|
|
setValue(&I, result);
|
|
}
|
|
|
|
/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
|
|
/// limited-precision mode.
|
|
void
|
|
SelectionDAGBuilder::visitLog2(const CallInst &I) {
|
|
SDValue result;
|
|
DebugLoc dl = getCurDebugLoc();
|
|
|
|
if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
|
|
LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
|
|
SDValue Op = getValue(I.getArgOperand(0));
|
|
SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
|
|
|
|
// Get the exponent.
|
|
SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
|
|
|
|
// Get the significand and build it into a floating-point number with
|
|
// exponent of 1.
|
|
SDValue X = GetSignificand(DAG, Op1, dl);
|
|
|
|
// Different possible minimax approximations of significand in
|
|
// floating-point for various degrees of accuracy over [1,2].
|
|
if (LimitFloatPrecision <= 6) {
|
|
// For floating-point precision of 6:
|
|
//
|
|
// Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
|
|
//
|
|
// error 0.0049451742, which is more than 7 bits
|
|
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
|
|
getF32Constant(DAG, 0xbeb08fe0));
|
|
SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
|
|
getF32Constant(DAG, 0x40019463));
|
|
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
|
|
SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
|
|
getF32Constant(DAG, 0x3fd6633d));
|
|
|
|
result = DAG.getNode(ISD::FADD, dl,
|
|
MVT::f32, LogOfExponent, Log2ofMantissa);
|
|
} else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
|
|
// For floating-point precision of 12:
|
|
//
|
|
// Log2ofMantissa =
|
|
// -2.51285454f +
|
|
// (4.07009056f +
|
|
// (-2.12067489f +
|
|
// (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
|
|
//
|
|
// error 0.0000876136000, which is better than 13 bits
|
|
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
|
|
getF32Constant(DAG, 0xbda7262e));
|
|
SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
|
|
getF32Constant(DAG, 0x3f25280b));
|
|
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
|
|
SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
|
|
getF32Constant(DAG, 0x4007b923));
|
|
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
|
|
SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
|
|
getF32Constant(DAG, 0x40823e2f));
|
|
SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
|
|
SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
|
|
getF32Constant(DAG, 0x4020d29c));
|
|
|
|
result = DAG.getNode(ISD::FADD, dl,
|
|
MVT::f32, LogOfExponent, Log2ofMantissa);
|
|
} else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
|
|
// For floating-point precision of 18:
|
|
//
|
|
// Log2ofMantissa =
|
|
// -3.0400495f +
|
|
// (6.1129976f +
|
|
// (-5.3420409f +
|
|
// (3.2865683f +
|
|
// (-1.2669343f +
|
|
// (0.27515199f -
|
|
// 0.25691327e-1f * x) * x) * x) * x) * x) * x;
|
|
//
|
|
// error 0.0000018516, which is better than 18 bits
|
|
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
|
|
getF32Constant(DAG, 0xbcd2769e));
|
|
SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
|
|
getF32Constant(DAG, 0x3e8ce0b9));
|
|
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
|
|
SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
|
|
getF32Constant(DAG, 0x3fa22ae7));
|
|
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
|
|
SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
|
|
getF32Constant(DAG, 0x40525723));
|
|
SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
|
|
SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
|
|
getF32Constant(DAG, 0x40aaf200));
|
|
SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
|
|
SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
|
|
getF32Constant(DAG, 0x40c39dad));
|
|
SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
|
|
SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
|
|
getF32Constant(DAG, 0x4042902c));
|
|
|
|
result = DAG.getNode(ISD::FADD, dl,
|
|
MVT::f32, LogOfExponent, Log2ofMantissa);
|
|
}
|
|
} else {
|
|
// No special expansion.
|
|
result = DAG.getNode(ISD::FLOG2, dl,
|
|
getValue(I.getArgOperand(0)).getValueType(),
|
|
getValue(I.getArgOperand(0)));
|
|
}
|
|
|
|
setValue(&I, result);
|
|
}
|
|
|
|
/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
|
|
/// limited-precision mode.
|
|
void
|
|
SelectionDAGBuilder::visitLog10(const CallInst &I) {
|
|
SDValue result;
|
|
DebugLoc dl = getCurDebugLoc();
|
|
|
|
if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
|
|
LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
|
|
SDValue Op = getValue(I.getArgOperand(0));
|
|
SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
|
|
|
|
// Scale the exponent by log10(2) [0.30102999f].
|
|
SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
|
|
SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
|
|
getF32Constant(DAG, 0x3e9a209a));
|
|
|
|
// Get the significand and build it into a floating-point number with
|
|
// exponent of 1.
|
|
SDValue X = GetSignificand(DAG, Op1, dl);
|
|
|
|
if (LimitFloatPrecision <= 6) {
|
|
// For floating-point precision of 6:
|
|
//
|
|
// Log10ofMantissa =
|
|
// -0.50419619f +
|
|
// (0.60948995f - 0.10380950f * x) * x;
|
|
//
|
|
// error 0.0014886165, which is 6 bits
|
|
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
|
|
getF32Constant(DAG, 0xbdd49a13));
|
|
SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
|
|
getF32Constant(DAG, 0x3f1c0789));
|
|
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
|
|
SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
|
|
getF32Constant(DAG, 0x3f011300));
|
|
|
|
result = DAG.getNode(ISD::FADD, dl,
|
|
MVT::f32, LogOfExponent, Log10ofMantissa);
|
|
} else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
|
|
// For floating-point precision of 12:
|
|
//
|
|
// Log10ofMantissa =
|
|
// -0.64831180f +
|
|
// (0.91751397f +
|
|
// (-0.31664806f + 0.47637168e-1f * x) * x) * x;
|
|
//
|
|
// error 0.00019228036, which is better than 12 bits
|
|
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
|
|
getF32Constant(DAG, 0x3d431f31));
|
|
SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
|
|
getF32Constant(DAG, 0x3ea21fb2));
|
|
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
|
|
SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
|
|
getF32Constant(DAG, 0x3f6ae232));
|
|
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
|
|
SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
|
|
getF32Constant(DAG, 0x3f25f7c3));
|
|
|
|
result = DAG.getNode(ISD::FADD, dl,
|
|
MVT::f32, LogOfExponent, Log10ofMantissa);
|
|
} else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
|
|
// For floating-point precision of 18:
|
|
//
|
|
// Log10ofMantissa =
|
|
// -0.84299375f +
|
|
// (1.5327582f +
|
|
// (-1.0688956f +
|
|
// (0.49102474f +
|
|
// (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
|
|
//
|
|
// error 0.0000037995730, which is better than 18 bits
|
|
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
|
|
getF32Constant(DAG, 0x3c5d51ce));
|
|
SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
|
|
getF32Constant(DAG, 0x3e00685a));
|
|
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
|
|
SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
|
|
getF32Constant(DAG, 0x3efb6798));
|
|
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
|
|
SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
|
|
getF32Constant(DAG, 0x3f88d192));
|
|
SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
|
|
SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
|
|
getF32Constant(DAG, 0x3fc4316c));
|
|
SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
|
|
SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
|
|
getF32Constant(DAG, 0x3f57ce70));
|
|
|
|
result = DAG.getNode(ISD::FADD, dl,
|
|
MVT::f32, LogOfExponent, Log10ofMantissa);
|
|
}
|
|
} else {
|
|
// No special expansion.
|
|
result = DAG.getNode(ISD::FLOG10, dl,
|
|
getValue(I.getArgOperand(0)).getValueType(),
|
|
getValue(I.getArgOperand(0)));
|
|
}
|
|
|
|
setValue(&I, result);
|
|
}
|
|
|
|
/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
|
|
/// limited-precision mode.
|
|
void
|
|
SelectionDAGBuilder::visitExp2(const CallInst &I) {
|
|
SDValue result;
|
|
DebugLoc dl = getCurDebugLoc();
|
|
|
|
if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
|
|
LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
|
|
SDValue Op = getValue(I.getArgOperand(0));
|
|
|
|
SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
|
|
|
|
// FractionalPartOfX = x - (float)IntegerPartOfX;
|
|
SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
|
|
SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
|
|
|
|
// IntegerPartOfX <<= 23;
|
|
IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
|
|
DAG.getConstant(23, TLI.getPointerTy()));
|
|
|
|
if (LimitFloatPrecision <= 6) {
|
|
// For floating-point precision of 6:
|
|
//
|
|
// TwoToFractionalPartOfX =
|
|
// 0.997535578f +
|
|
// (0.735607626f + 0.252464424f * x) * x;
|
|
//
|
|
// error 0.0144103317, which is 6 bits
|
|
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
|
|
getF32Constant(DAG, 0x3e814304));
|
|
SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
|
|
getF32Constant(DAG, 0x3f3c50c8));
|
|
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
|
|
SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
|
|
getF32Constant(DAG, 0x3f7f5e7e));
|
|
SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
|
|
SDValue TwoToFractionalPartOfX =
|
|
DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
|
|
|
|
result = DAG.getNode(ISD::BITCAST, dl,
|
|
MVT::f32, TwoToFractionalPartOfX);
|
|
} else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
|
|
// For floating-point precision of 12:
|
|
//
|
|
// TwoToFractionalPartOfX =
|
|
// 0.999892986f +
|
|
// (0.696457318f +
|
|
// (0.224338339f + 0.792043434e-1f * x) * x) * x;
|
|
//
|
|
// error 0.000107046256, which is 13 to 14 bits
|
|
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
|
|
getF32Constant(DAG, 0x3da235e3));
|
|
SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
|
|
getF32Constant(DAG, 0x3e65b8f3));
|
|
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
|
|
SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
|
|
getF32Constant(DAG, 0x3f324b07));
|
|
SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
|
|
SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
|
|
getF32Constant(DAG, 0x3f7ff8fd));
|
|
SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
|
|
SDValue TwoToFractionalPartOfX =
|
|
DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
|
|
|
|
result = DAG.getNode(ISD::BITCAST, dl,
|
|
MVT::f32, TwoToFractionalPartOfX);
|
|
} else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
|
|
// For floating-point precision of 18:
|
|
//
|
|
// TwoToFractionalPartOfX =
|
|
// 0.999999982f +
|
|
// (0.693148872f +
|
|
// (0.240227044f +
|
|
// (0.554906021e-1f +
|
|
// (0.961591928e-2f +
|
|
// (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
|
|
// error 2.47208000*10^(-7), which is better than 18 bits
|
|
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
|
|
getF32Constant(DAG, 0x3924b03e));
|
|
SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
|
|
getF32Constant(DAG, 0x3ab24b87));
|
|
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
|
|
SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
|
|
getF32Constant(DAG, 0x3c1d8c17));
|
|
SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
|
|
SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
|
|
getF32Constant(DAG, 0x3d634a1d));
|
|
SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
|
|
SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
|
|
getF32Constant(DAG, 0x3e75fe14));
|
|
SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
|
|
SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
|
|
getF32Constant(DAG, 0x3f317234));
|
|
SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
|
|
SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
|
|
getF32Constant(DAG, 0x3f800000));
|
|
SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
|
|
SDValue TwoToFractionalPartOfX =
|
|
DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
|
|
|
|
result = DAG.getNode(ISD::BITCAST, dl,
|
|
MVT::f32, TwoToFractionalPartOfX);
|
|
}
|
|
} else {
|
|
// No special expansion.
|
|
result = DAG.getNode(ISD::FEXP2, dl,
|
|
getValue(I.getArgOperand(0)).getValueType(),
|
|
getValue(I.getArgOperand(0)));
|
|
}
|
|
|
|
setValue(&I, result);
|
|
}
|
|
|
|
/// visitPow - Lower a pow intrinsic. Handles the special sequences for
|
|
/// limited-precision mode with x == 10.0f.
|
|
void
|
|
SelectionDAGBuilder::visitPow(const CallInst &I) {
|
|
SDValue result;
|
|
const Value *Val = I.getArgOperand(0);
|
|
DebugLoc dl = getCurDebugLoc();
|
|
bool IsExp10 = false;
|
|
|
|
if (getValue(Val).getValueType() == MVT::f32 &&
|
|
getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
|
|
LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
|
|
if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
|
|
if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
|
|
APFloat Ten(10.0f);
|
|
IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
|
|
SDValue Op = getValue(I.getArgOperand(1));
|
|
|
|
// Put the exponent in the right bit position for later addition to the
|
|
// final result:
|
|
//
|
|
// #define LOG2OF10 3.3219281f
|
|
// IntegerPartOfX = (int32_t)(x * LOG2OF10);
|
|
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
|
|
getF32Constant(DAG, 0x40549a78));
|
|
SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
|
|
|
|
// FractionalPartOfX = x - (float)IntegerPartOfX;
|
|
SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
|
|
SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
|
|
|
|
// IntegerPartOfX <<= 23;
|
|
IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
|
|
DAG.getConstant(23, TLI.getPointerTy()));
|
|
|
|
if (LimitFloatPrecision <= 6) {
|
|
// For floating-point precision of 6:
|
|
//
|
|
// twoToFractionalPartOfX =
|
|
// 0.997535578f +
|
|
// (0.735607626f + 0.252464424f * x) * x;
|
|
//
|
|
// error 0.0144103317, which is 6 bits
|
|
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
|
|
getF32Constant(DAG, 0x3e814304));
|
|
SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
|
|
getF32Constant(DAG, 0x3f3c50c8));
|
|
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
|
|
SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
|
|
getF32Constant(DAG, 0x3f7f5e7e));
|
|
SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
|
|
SDValue TwoToFractionalPartOfX =
|
|
DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
|
|
|
|
result = DAG.getNode(ISD::BITCAST, dl,
|
|
MVT::f32, TwoToFractionalPartOfX);
|
|
} else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
|
|
// For floating-point precision of 12:
|
|
//
|
|
// TwoToFractionalPartOfX =
|
|
// 0.999892986f +
|
|
// (0.696457318f +
|
|
// (0.224338339f + 0.792043434e-1f * x) * x) * x;
|
|
//
|
|
// error 0.000107046256, which is 13 to 14 bits
|
|
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
|
|
getF32Constant(DAG, 0x3da235e3));
|
|
SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
|
|
getF32Constant(DAG, 0x3e65b8f3));
|
|
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
|
|
SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
|
|
getF32Constant(DAG, 0x3f324b07));
|
|
SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
|
|
SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
|
|
getF32Constant(DAG, 0x3f7ff8fd));
|
|
SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
|
|
SDValue TwoToFractionalPartOfX =
|
|
DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
|
|
|
|
result = DAG.getNode(ISD::BITCAST, dl,
|
|
MVT::f32, TwoToFractionalPartOfX);
|
|
} else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
|
|
// For floating-point precision of 18:
|
|
//
|
|
// TwoToFractionalPartOfX =
|
|
// 0.999999982f +
|
|
// (0.693148872f +
|
|
// (0.240227044f +
|
|
// (0.554906021e-1f +
|
|
// (0.961591928e-2f +
|
|
// (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
|
|
// error 2.47208000*10^(-7), which is better than 18 bits
|
|
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
|
|
getF32Constant(DAG, 0x3924b03e));
|
|
SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
|
|
getF32Constant(DAG, 0x3ab24b87));
|
|
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
|
|
SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
|
|
getF32Constant(DAG, 0x3c1d8c17));
|
|
SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
|
|
SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
|
|
getF32Constant(DAG, 0x3d634a1d));
|
|
SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
|
|
SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
|
|
getF32Constant(DAG, 0x3e75fe14));
|
|
SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
|
|
SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
|
|
getF32Constant(DAG, 0x3f317234));
|
|
SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
|
|
SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
|
|
getF32Constant(DAG, 0x3f800000));
|
|
SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
|
|
SDValue TwoToFractionalPartOfX =
|
|
DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
|
|
|
|
result = DAG.getNode(ISD::BITCAST, dl,
|
|
MVT::f32, TwoToFractionalPartOfX);
|
|
}
|
|
} else {
|
|
// No special expansion.
|
|
result = DAG.getNode(ISD::FPOW, dl,
|
|
getValue(I.getArgOperand(0)).getValueType(),
|
|
getValue(I.getArgOperand(0)),
|
|
getValue(I.getArgOperand(1)));
|
|
}
|
|
|
|
setValue(&I, result);
|
|
}
|
|
|
|
|
|
/// ExpandPowI - Expand a llvm.powi intrinsic.
|
|
static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
|
|
SelectionDAG &DAG) {
|
|
// If RHS is a constant, we can expand this out to a multiplication tree,
|
|
// otherwise we end up lowering to a call to __powidf2 (for example). When
|
|
// optimizing for size, we only want to do this if the expansion would produce
|
|
// a small number of multiplies, otherwise we do the full expansion.
|
|
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
|
|
// Get the exponent as a positive value.
|
|
unsigned Val = RHSC->getSExtValue();
|
|
if ((int)Val < 0) Val = -Val;
|
|
|
|
// powi(x, 0) -> 1.0
|
|
if (Val == 0)
|
|
return DAG.getConstantFP(1.0, LHS.getValueType());
|
|
|
|
const Function *F = DAG.getMachineFunction().getFunction();
|
|
if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
|
|
// If optimizing for size, don't insert too many multiplies. This
|
|
// inserts up to 5 multiplies.
|
|
CountPopulation_32(Val)+Log2_32(Val) < 7) {
|
|
// We use the simple binary decomposition method to generate the multiply
|
|
// sequence. There are more optimal ways to do this (for example,
|
|
// powi(x,15) generates one more multiply than it should), but this has
|
|
// the benefit of being both really simple and much better than a libcall.
|
|
SDValue Res; // Logically starts equal to 1.0
|
|
SDValue CurSquare = LHS;
|
|
while (Val) {
|
|
if (Val & 1) {
|
|
if (Res.getNode())
|
|
Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
|
|
else
|
|
Res = CurSquare; // 1.0*CurSquare.
|
|
}
|
|
|
|
CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
|
|
CurSquare, CurSquare);
|
|
Val >>= 1;
|
|
}
|
|
|
|
// If the original was negative, invert the result, producing 1/(x*x*x).
|
|
if (RHSC->getSExtValue() < 0)
|
|
Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
|
|
DAG.getConstantFP(1.0, LHS.getValueType()), Res);
|
|
return Res;
|
|
}
|
|
}
|
|
|
|
// Otherwise, expand to a libcall.
|
|
return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
|
|
}
|
|
|
|
/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
|
|
/// argument, create the corresponding DBG_VALUE machine instruction for it now.
|
|
/// At the end of instruction selection, they will be inserted to the entry BB.
|
|
bool
|
|
SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
|
|
int64_t Offset,
|
|
const SDValue &N) {
|
|
const Argument *Arg = dyn_cast<Argument>(V);
|
|
if (!Arg)
|
|
return false;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
|
|
const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
|
|
|
|
// Ignore inlined function arguments here.
|
|
DIVariable DV(Variable);
|
|
if (DV.isInlinedFnArgument(MF.getFunction()))
|
|
return false;
|
|
|
|
MachineBasicBlock *MBB = FuncInfo.MBB;
|
|
if (MBB != &MF.front())
|
|
return false;
|
|
|
|
unsigned Reg = 0;
|
|
if (Arg->hasByValAttr()) {
|
|
// Byval arguments' frame index is recorded during argument lowering.
|
|
// Use this info directly.
|
|
Reg = TRI->getFrameRegister(MF);
|
|
Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
|
|
// If byval argument ofset is not recorded then ignore this.
|
|
if (!Offset)
|
|
Reg = 0;
|
|
}
|
|
|
|
if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) {
|
|
Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
unsigned PR = RegInfo.getLiveInPhysReg(Reg);
|
|
if (PR)
|
|
Reg = PR;
|
|
}
|
|
}
|
|
|
|
if (!Reg) {
|
|
// Check if ValueMap has reg number.
|
|
DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
|
|
if (VMI != FuncInfo.ValueMap.end())
|
|
Reg = VMI->second;
|
|
}
|
|
|
|
if (!Reg && N.getNode()) {
|
|
// Check if frame index is available.
|
|
if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
|
|
if (FrameIndexSDNode *FINode =
|
|
dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
|
|
Reg = TRI->getFrameRegister(MF);
|
|
Offset = FINode->getIndex();
|
|
}
|
|
}
|
|
|
|
if (!Reg)
|
|
return false;
|
|
|
|
MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
|
|
TII->get(TargetOpcode::DBG_VALUE))
|
|
.addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
|
|
FuncInfo.ArgDbgValues.push_back(&*MIB);
|
|
return true;
|
|
}
|
|
|
|
// VisualStudio defines setjmp as _setjmp
|
|
#if defined(_MSC_VER) && defined(setjmp) && \
|
|
!defined(setjmp_undefined_for_msvc)
|
|
# pragma push_macro("setjmp")
|
|
# undef setjmp
|
|
# define setjmp_undefined_for_msvc
|
|
#endif
|
|
|
|
/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
|
|
/// we want to emit this as a call to a named external function, return the name
|
|
/// otherwise lower it and return null.
|
|
const char *
|
|
SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
|
|
DebugLoc dl = getCurDebugLoc();
|
|
SDValue Res;
|
|
|
|
switch (Intrinsic) {
|
|
default:
|
|
// By default, turn this into a target intrinsic node.
|
|
visitTargetIntrinsic(I, Intrinsic);
|
|
return 0;
|
|
case Intrinsic::vastart: visitVAStart(I); return 0;
|
|
case Intrinsic::vaend: visitVAEnd(I); return 0;
|
|
case Intrinsic::vacopy: visitVACopy(I); return 0;
|
|
case Intrinsic::returnaddress:
|
|
setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
|
|
getValue(I.getArgOperand(0))));
|
|
return 0;
|
|
case Intrinsic::frameaddress:
|
|
setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
|
|
getValue(I.getArgOperand(0))));
|
|
return 0;
|
|
case Intrinsic::setjmp:
|
|
return "_setjmp"+!TLI.usesUnderscoreSetJmp();
|
|
case Intrinsic::longjmp:
|
|
return "_longjmp"+!TLI.usesUnderscoreLongJmp();
|
|
case Intrinsic::memcpy: {
|
|
// Assert for address < 256 since we support only user defined address
|
|
// spaces.
|
|
assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
|
|
< 256 &&
|
|
cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
|
|
< 256 &&
|
|
"Unknown address space");
|
|
SDValue Op1 = getValue(I.getArgOperand(0));
|
|
SDValue Op2 = getValue(I.getArgOperand(1));
|
|
SDValue Op3 = getValue(I.getArgOperand(2));
|
|
unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
|
|
bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
|
|
DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
|
|
MachinePointerInfo(I.getArgOperand(0)),
|
|
MachinePointerInfo(I.getArgOperand(1))));
|
|
return 0;
|
|
}
|
|
case Intrinsic::memset: {
|
|
// Assert for address < 256 since we support only user defined address
|
|
// spaces.
|
|
assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
|
|
< 256 &&
|
|
"Unknown address space");
|
|
SDValue Op1 = getValue(I.getArgOperand(0));
|
|
SDValue Op2 = getValue(I.getArgOperand(1));
|
|
SDValue Op3 = getValue(I.getArgOperand(2));
|
|
unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
|
|
bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
|
|
DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
|
|
MachinePointerInfo(I.getArgOperand(0))));
|
|
return 0;
|
|
}
|
|
case Intrinsic::memmove: {
|
|
// Assert for address < 256 since we support only user defined address
|
|
// spaces.
|
|
assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
|
|
< 256 &&
|
|
cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
|
|
< 256 &&
|
|
"Unknown address space");
|
|
SDValue Op1 = getValue(I.getArgOperand(0));
|
|
SDValue Op2 = getValue(I.getArgOperand(1));
|
|
SDValue Op3 = getValue(I.getArgOperand(2));
|
|
unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
|
|
bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
|
|
DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
|
|
MachinePointerInfo(I.getArgOperand(0)),
|
|
MachinePointerInfo(I.getArgOperand(1))));
|
|
return 0;
|
|
}
|
|
case Intrinsic::dbg_declare: {
|
|
const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
|
|
MDNode *Variable = DI.getVariable();
|
|
const Value *Address = DI.getAddress();
|
|
if (!Address || !DIVariable(DI.getVariable()).Verify())
|
|
return 0;
|
|
|
|
// Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder
|
|
// but do not always have a corresponding SDNode built. The SDNodeOrder
|
|
// absolute, but not relative, values are different depending on whether
|
|
// debug info exists.
|
|
++SDNodeOrder;
|
|
|
|
// Check if address has undef value.
|
|
if (isa<UndefValue>(Address) ||
|
|
(Address->use_empty() && !isa<Argument>(Address))) {
|
|
DEBUG(dbgs() << "Dropping debug info for " << DI);
|
|
return 0;
|
|
}
|
|
|
|
SDValue &N = NodeMap[Address];
|
|
if (!N.getNode() && isa<Argument>(Address))
|
|
// Check unused arguments map.
|
|
N = UnusedArgNodeMap[Address];
|
|
SDDbgValue *SDV;
|
|
if (N.getNode()) {
|
|
// Parameters are handled specially.
|
|
bool isParameter =
|
|
DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
|
|
if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
|
|
Address = BCI->getOperand(0);
|
|
const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
|
|
|
|
if (isParameter && !AI) {
|
|
FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
|
|
if (FINode)
|
|
// Byval parameter. We have a frame index at this point.
|
|
SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
|
|
0, dl, SDNodeOrder);
|
|
else {
|
|
// Can't do anything with other non-AI cases yet. This might be a
|
|
// parameter of a callee function that got inlined, for example.
|
|
DEBUG(dbgs() << "Dropping debug info for " << DI);
|
|
return 0;
|
|
}
|
|
} else if (AI)
|
|
SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
|
|
0, dl, SDNodeOrder);
|
|
else {
|
|
// Can't do anything with other non-AI cases yet.
|
|
DEBUG(dbgs() << "Dropping debug info for " << DI);
|
|
return 0;
|
|
}
|
|
DAG.AddDbgValue(SDV, N.getNode(), isParameter);
|
|
} else {
|
|
// If Address is an argument then try to emit its dbg value using
|
|
// virtual register info from the FuncInfo.ValueMap.
|
|
if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
|
|
// If variable is pinned by a alloca in dominating bb then
|
|
// use StaticAllocaMap.
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
|
|
if (AI->getParent() != DI.getParent()) {
|
|
DenseMap<const AllocaInst*, int>::iterator SI =
|
|
FuncInfo.StaticAllocaMap.find(AI);
|
|
if (SI != FuncInfo.StaticAllocaMap.end()) {
|
|
SDV = DAG.getDbgValue(Variable, SI->second,
|
|
0, dl, SDNodeOrder);
|
|
DAG.AddDbgValue(SDV, 0, false);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
DEBUG(dbgs() << "Dropping debug info for " << DI);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
case Intrinsic::dbg_value: {
|
|
const DbgValueInst &DI = cast<DbgValueInst>(I);
|
|
if (!DIVariable(DI.getVariable()).Verify())
|
|
return 0;
|
|
|
|
MDNode *Variable = DI.getVariable();
|
|
uint64_t Offset = DI.getOffset();
|
|
const Value *V = DI.getValue();
|
|
if (!V)
|
|
return 0;
|
|
|
|
// Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder
|
|
// but do not always have a corresponding SDNode built. The SDNodeOrder
|
|
// absolute, but not relative, values are different depending on whether
|
|
// debug info exists.
|
|
++SDNodeOrder;
|
|
SDDbgValue *SDV;
|
|
if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
|
|
SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
|
|
DAG.AddDbgValue(SDV, 0, false);
|
|
} else {
|
|
// Do not use getValue() in here; we don't want to generate code at
|
|
// this point if it hasn't been done yet.
|
|
SDValue N = NodeMap[V];
|
|
if (!N.getNode() && isa<Argument>(V))
|
|
// Check unused arguments map.
|
|
N = UnusedArgNodeMap[V];
|
|
if (N.getNode()) {
|
|
if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
|
|
SDV = DAG.getDbgValue(Variable, N.getNode(),
|
|
N.getResNo(), Offset, dl, SDNodeOrder);
|
|
DAG.AddDbgValue(SDV, N.getNode(), false);
|
|
}
|
|
} else if (!V->use_empty() ) {
|
|
// Do not call getValue(V) yet, as we don't want to generate code.
|
|
// Remember it for later.
|
|
DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
|
|
DanglingDebugInfoMap[V] = DDI;
|
|
} else {
|
|
// We may expand this to cover more cases. One case where we have no
|
|
// data available is an unreferenced parameter.
|
|
DEBUG(dbgs() << "Dropping debug info for " << DI);
|
|
}
|
|
}
|
|
|
|
// Build a debug info table entry.
|
|
if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
|
|
V = BCI->getOperand(0);
|
|
const AllocaInst *AI = dyn_cast<AllocaInst>(V);
|
|
// Don't handle byval struct arguments or VLAs, for example.
|
|
if (!AI)
|
|
return 0;
|
|
DenseMap<const AllocaInst*, int>::iterator SI =
|
|
FuncInfo.StaticAllocaMap.find(AI);
|
|
if (SI == FuncInfo.StaticAllocaMap.end())
|
|
return 0; // VLAs.
|
|
int FI = SI->second;
|
|
|
|
MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
|
|
if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
|
|
MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
|
|
return 0;
|
|
}
|
|
case Intrinsic::eh_exception: {
|
|
// Insert the EXCEPTIONADDR instruction.
|
|
assert(FuncInfo.MBB->isLandingPad() &&
|
|
"Call to eh.exception not in landing pad!");
|
|
SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
|
|
SDValue Ops[1];
|
|
Ops[0] = DAG.getRoot();
|
|
SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
|
|
setValue(&I, Op);
|
|
DAG.setRoot(Op.getValue(1));
|
|
return 0;
|
|
}
|
|
|
|
case Intrinsic::eh_selector: {
|
|
MachineBasicBlock *CallMBB = FuncInfo.MBB;
|
|
MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
|
|
if (CallMBB->isLandingPad())
|
|
AddCatchInfo(I, &MMI, CallMBB);
|
|
else {
|
|
#ifndef NDEBUG
|
|
FuncInfo.CatchInfoLost.insert(&I);
|
|
#endif
|
|
// FIXME: Mark exception selector register as live in. Hack for PR1508.
|
|
unsigned Reg = TLI.getExceptionSelectorRegister();
|
|
if (Reg) FuncInfo.MBB->addLiveIn(Reg);
|
|
}
|
|
|
|
// Insert the EHSELECTION instruction.
|
|
SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
|
|
SDValue Ops[2];
|
|
Ops[0] = getValue(I.getArgOperand(0));
|
|
Ops[1] = getRoot();
|
|
SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
|
|
DAG.setRoot(Op.getValue(1));
|
|
setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
|
|
return 0;
|
|
}
|
|
|
|
case Intrinsic::eh_typeid_for: {
|
|
// Find the type id for the given typeinfo.
|
|
GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
|
|
unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
|
|
Res = DAG.getConstant(TypeID, MVT::i32);
|
|
setValue(&I, Res);
|
|
return 0;
|
|
}
|
|
|
|
case Intrinsic::eh_return_i32:
|
|
case Intrinsic::eh_return_i64:
|
|
DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
|
|
DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
|
|
MVT::Other,
|
|
getControlRoot(),
|
|
getValue(I.getArgOperand(0)),
|
|
getValue(I.getArgOperand(1))));
|
|
return 0;
|
|
case Intrinsic::eh_unwind_init:
|
|
DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
|
|
return 0;
|
|
case Intrinsic::eh_dwarf_cfa: {
|
|
SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
|
|
TLI.getPointerTy());
|
|
SDValue Offset = DAG.getNode(ISD::ADD, dl,
|
|
TLI.getPointerTy(),
|
|
DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
|
|
TLI.getPointerTy()),
|
|
CfaArg);
|
|
SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
|
|
TLI.getPointerTy(),
|
|
DAG.getConstant(0, TLI.getPointerTy()));
|
|
setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
|
|
FA, Offset));
|
|
return 0;
|
|
}
|
|
case Intrinsic::eh_sjlj_callsite: {
|
|
MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
|
|
assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
|
|
assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
|
|
|
|
MMI.setCurrentCallSite(CI->getZExtValue());
|
|
return 0;
|
|
}
|
|
case Intrinsic::eh_sjlj_setjmp: {
|
|
setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
|
|
getValue(I.getArgOperand(0))));
|
|
return 0;
|
|
}
|
|
case Intrinsic::eh_sjlj_longjmp: {
|
|
DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
|
|
getRoot(), getValue(I.getArgOperand(0))));
|
|
return 0;
|
|
}
|
|
case Intrinsic::eh_sjlj_dispatch_setup: {
|
|
DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
|
|
getRoot(), getValue(I.getArgOperand(0))));
|
|
return 0;
|
|
}
|
|
|
|
case Intrinsic::x86_mmx_pslli_w:
|
|
case Intrinsic::x86_mmx_pslli_d:
|
|
case Intrinsic::x86_mmx_pslli_q:
|
|
case Intrinsic::x86_mmx_psrli_w:
|
|
case Intrinsic::x86_mmx_psrli_d:
|
|
case Intrinsic::x86_mmx_psrli_q:
|
|
case Intrinsic::x86_mmx_psrai_w:
|
|
case Intrinsic::x86_mmx_psrai_d: {
|
|
SDValue ShAmt = getValue(I.getArgOperand(1));
|
|
if (isa<ConstantSDNode>(ShAmt)) {
|
|
visitTargetIntrinsic(I, Intrinsic);
|
|
return 0;
|
|
}
|
|
unsigned NewIntrinsic = 0;
|
|
EVT ShAmtVT = MVT::v2i32;
|
|
switch (Intrinsic) {
|
|
case Intrinsic::x86_mmx_pslli_w:
|
|
NewIntrinsic = Intrinsic::x86_mmx_psll_w;
|
|
break;
|
|
case Intrinsic::x86_mmx_pslli_d:
|
|
NewIntrinsic = Intrinsic::x86_mmx_psll_d;
|
|
break;
|
|
case Intrinsic::x86_mmx_pslli_q:
|
|
NewIntrinsic = Intrinsic::x86_mmx_psll_q;
|
|
break;
|
|
case Intrinsic::x86_mmx_psrli_w:
|
|
NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
|
|
break;
|
|
case Intrinsic::x86_mmx_psrli_d:
|
|
NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
|
|
break;
|
|
case Intrinsic::x86_mmx_psrli_q:
|
|
NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
|
|
break;
|
|
case Intrinsic::x86_mmx_psrai_w:
|
|
NewIntrinsic = Intrinsic::x86_mmx_psra_w;
|
|
break;
|
|
case Intrinsic::x86_mmx_psrai_d:
|
|
NewIntrinsic = Intrinsic::x86_mmx_psra_d;
|
|
break;
|
|
default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
|
|
}
|
|
|
|
// The vector shift intrinsics with scalars uses 32b shift amounts but
|
|
// the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
|
|
// to be zero.
|
|
// We must do this early because v2i32 is not a legal type.
|
|
DebugLoc dl = getCurDebugLoc();
|
|
SDValue ShOps[2];
|
|
ShOps[0] = ShAmt;
|
|
ShOps[1] = DAG.getConstant(0, MVT::i32);
|
|
ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
|
|
EVT DestVT = TLI.getValueType(I.getType());
|
|
ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
|
|
Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
|
|
DAG.getConstant(NewIntrinsic, MVT::i32),
|
|
getValue(I.getArgOperand(0)), ShAmt);
|
|
setValue(&I, Res);
|
|
return 0;
|
|
}
|
|
case Intrinsic::convertff:
|
|
case Intrinsic::convertfsi:
|
|
case Intrinsic::convertfui:
|
|
case Intrinsic::convertsif:
|
|
case Intrinsic::convertuif:
|
|
case Intrinsic::convertss:
|
|
case Intrinsic::convertsu:
|
|
case Intrinsic::convertus:
|
|
case Intrinsic::convertuu: {
|
|
ISD::CvtCode Code = ISD::CVT_INVALID;
|
|
switch (Intrinsic) {
|
|
case Intrinsic::convertff: Code = ISD::CVT_FF; break;
|
|
case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
|
|
case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
|
|
case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
|
|
case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
|
|
case Intrinsic::convertss: Code = ISD::CVT_SS; break;
|
|
case Intrinsic::convertsu: Code = ISD::CVT_SU; break;
|
|
case Intrinsic::convertus: Code = ISD::CVT_US; break;
|
|
case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
|
|
}
|
|
EVT DestVT = TLI.getValueType(I.getType());
|
|
const Value *Op1 = I.getArgOperand(0);
|
|
Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
|
|
DAG.getValueType(DestVT),
|
|
DAG.getValueType(getValue(Op1).getValueType()),
|
|
getValue(I.getArgOperand(1)),
|
|
getValue(I.getArgOperand(2)),
|
|
Code);
|
|
setValue(&I, Res);
|
|
return 0;
|
|
}
|
|
case Intrinsic::sqrt:
|
|
setValue(&I, DAG.getNode(ISD::FSQRT, dl,
|
|
getValue(I.getArgOperand(0)).getValueType(),
|
|
getValue(I.getArgOperand(0))));
|
|
return 0;
|
|
case Intrinsic::powi:
|
|
setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
|
|
getValue(I.getArgOperand(1)), DAG));
|
|
return 0;
|
|
case Intrinsic::sin:
|
|
setValue(&I, DAG.getNode(ISD::FSIN, dl,
|
|
getValue(I.getArgOperand(0)).getValueType(),
|
|
getValue(I.getArgOperand(0))));
|
|
return 0;
|
|
case Intrinsic::cos:
|
|
setValue(&I, DAG.getNode(ISD::FCOS, dl,
|
|
getValue(I.getArgOperand(0)).getValueType(),
|
|
getValue(I.getArgOperand(0))));
|
|
return 0;
|
|
case Intrinsic::log:
|
|
visitLog(I);
|
|
return 0;
|
|
case Intrinsic::log2:
|
|
visitLog2(I);
|
|
return 0;
|
|
case Intrinsic::log10:
|
|
visitLog10(I);
|
|
return 0;
|
|
case Intrinsic::exp:
|
|
visitExp(I);
|
|
return 0;
|
|
case Intrinsic::exp2:
|
|
visitExp2(I);
|
|
return 0;
|
|
case Intrinsic::pow:
|
|
visitPow(I);
|
|
return 0;
|
|
case Intrinsic::convert_to_fp16:
|
|
setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
|
|
MVT::i16, getValue(I.getArgOperand(0))));
|
|
return 0;
|
|
case Intrinsic::convert_from_fp16:
|
|
setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
|
|
MVT::f32, getValue(I.getArgOperand(0))));
|
|
return 0;
|
|
case Intrinsic::pcmarker: {
|
|
SDValue Tmp = getValue(I.getArgOperand(0));
|
|
DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
|
|
return 0;
|
|
}
|
|
case Intrinsic::readcyclecounter: {
|
|
SDValue Op = getRoot();
|
|
Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
|
|
DAG.getVTList(MVT::i64, MVT::Other),
|
|
&Op, 1);
|
|
setValue(&I, Res);
|
|
DAG.setRoot(Res.getValue(1));
|
|
return 0;
|
|
}
|
|
case Intrinsic::bswap:
|
|
setValue(&I, DAG.getNode(ISD::BSWAP, dl,
|
|
getValue(I.getArgOperand(0)).getValueType(),
|
|
getValue(I.getArgOperand(0))));
|
|
return 0;
|
|
case Intrinsic::cttz: {
|
|
SDValue Arg = getValue(I.getArgOperand(0));
|
|
EVT Ty = Arg.getValueType();
|
|
setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
|
|
return 0;
|
|
}
|
|
case Intrinsic::ctlz: {
|
|
SDValue Arg = getValue(I.getArgOperand(0));
|
|
EVT Ty = Arg.getValueType();
|
|
setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
|
|
return 0;
|
|
}
|
|
case Intrinsic::ctpop: {
|
|
SDValue Arg = getValue(I.getArgOperand(0));
|
|
EVT Ty = Arg.getValueType();
|
|
setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
|
|
return 0;
|
|
}
|
|
case Intrinsic::stacksave: {
|
|
SDValue Op = getRoot();
|
|
Res = DAG.getNode(ISD::STACKSAVE, dl,
|
|
DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
|
|
setValue(&I, Res);
|
|
DAG.setRoot(Res.getValue(1));
|
|
return 0;
|
|
}
|
|
case Intrinsic::stackrestore: {
|
|
Res = getValue(I.getArgOperand(0));
|
|
DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
|
|
return 0;
|
|
}
|
|
case Intrinsic::stackprotector: {
|
|
// Emit code into the DAG to store the stack guard onto the stack.
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
EVT PtrTy = TLI.getPointerTy();
|
|
|
|
SDValue Src = getValue(I.getArgOperand(0)); // The guard's value.
|
|
AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
|
|
|
|
int FI = FuncInfo.StaticAllocaMap[Slot];
|
|
MFI->setStackProtectorIndex(FI);
|
|
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
|
|
|
|
// Store the stack protector onto the stack.
|
|
Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
true, false, 0);
|
|
setValue(&I, Res);
|
|
DAG.setRoot(Res);
|
|
return 0;
|
|
}
|
|
case Intrinsic::objectsize: {
|
|
// If we don't know by now, we're never going to know.
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
|
|
|
|
assert(CI && "Non-constant type in __builtin_object_size?");
|
|
|
|
SDValue Arg = getValue(I.getCalledValue());
|
|
EVT Ty = Arg.getValueType();
|
|
|
|
if (CI->isZero())
|
|
Res = DAG.getConstant(-1ULL, Ty);
|
|
else
|
|
Res = DAG.getConstant(0, Ty);
|
|
|
|
setValue(&I, Res);
|
|
return 0;
|
|
}
|
|
case Intrinsic::var_annotation:
|
|
// Discard annotate attributes
|
|
return 0;
|
|
|
|
case Intrinsic::init_trampoline: {
|
|
const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
|
|
|
|
SDValue Ops[6];
|
|
Ops[0] = getRoot();
|
|
Ops[1] = getValue(I.getArgOperand(0));
|
|
Ops[2] = getValue(I.getArgOperand(1));
|
|
Ops[3] = getValue(I.getArgOperand(2));
|
|
Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
|
|
Ops[5] = DAG.getSrcValue(F);
|
|
|
|
Res = DAG.getNode(ISD::TRAMPOLINE, dl,
|
|
DAG.getVTList(TLI.getPointerTy(), MVT::Other),
|
|
Ops, 6);
|
|
|
|
setValue(&I, Res);
|
|
DAG.setRoot(Res.getValue(1));
|
|
return 0;
|
|
}
|
|
case Intrinsic::gcroot:
|
|
if (GFI) {
|
|
const Value *Alloca = I.getArgOperand(0);
|
|
const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
|
|
|
|
FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
|
|
GFI->addStackRoot(FI->getIndex(), TypeMap);
|
|
}
|
|
return 0;
|
|
case Intrinsic::gcread:
|
|
case Intrinsic::gcwrite:
|
|
llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
|
|
return 0;
|
|
case Intrinsic::flt_rounds:
|
|
setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
|
|
return 0;
|
|
case Intrinsic::trap:
|
|
DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
|
|
return 0;
|
|
case Intrinsic::uadd_with_overflow:
|
|
return implVisitAluOverflow(I, ISD::UADDO);
|
|
case Intrinsic::sadd_with_overflow:
|
|
return implVisitAluOverflow(I, ISD::SADDO);
|
|
case Intrinsic::usub_with_overflow:
|
|
return implVisitAluOverflow(I, ISD::USUBO);
|
|
case Intrinsic::ssub_with_overflow:
|
|
return implVisitAluOverflow(I, ISD::SSUBO);
|
|
case Intrinsic::umul_with_overflow:
|
|
return implVisitAluOverflow(I, ISD::UMULO);
|
|
case Intrinsic::smul_with_overflow:
|
|
return implVisitAluOverflow(I, ISD::SMULO);
|
|
|
|
case Intrinsic::prefetch: {
|
|
SDValue Ops[4];
|
|
unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
|
|
Ops[0] = getRoot();
|
|
Ops[1] = getValue(I.getArgOperand(0));
|
|
Ops[2] = getValue(I.getArgOperand(1));
|
|
Ops[3] = getValue(I.getArgOperand(2));
|
|
DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
|
|
DAG.getVTList(MVT::Other),
|
|
&Ops[0], 4,
|
|
EVT::getIntegerVT(*Context, 8),
|
|
MachinePointerInfo(I.getArgOperand(0)),
|
|
0, /* align */
|
|
false, /* volatile */
|
|
rw==0, /* read */
|
|
rw==1)); /* write */
|
|
return 0;
|
|
}
|
|
case Intrinsic::memory_barrier: {
|
|
SDValue Ops[6];
|
|
Ops[0] = getRoot();
|
|
for (int x = 1; x < 6; ++x)
|
|
Ops[x] = getValue(I.getArgOperand(x - 1));
|
|
|
|
DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
|
|
return 0;
|
|
}
|
|
case Intrinsic::atomic_cmp_swap: {
|
|
SDValue Root = getRoot();
|
|
SDValue L =
|
|
DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
|
|
getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
|
|
Root,
|
|
getValue(I.getArgOperand(0)),
|
|
getValue(I.getArgOperand(1)),
|
|
getValue(I.getArgOperand(2)),
|
|
MachinePointerInfo(I.getArgOperand(0)));
|
|
setValue(&I, L);
|
|
DAG.setRoot(L.getValue(1));
|
|
return 0;
|
|
}
|
|
case Intrinsic::atomic_load_add:
|
|
return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
|
|
case Intrinsic::atomic_load_sub:
|
|
return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
|
|
case Intrinsic::atomic_load_or:
|
|
return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
|
|
case Intrinsic::atomic_load_xor:
|
|
return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
|
|
case Intrinsic::atomic_load_and:
|
|
return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
|
|
case Intrinsic::atomic_load_nand:
|
|
return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
|
|
case Intrinsic::atomic_load_max:
|
|
return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
|
|
case Intrinsic::atomic_load_min:
|
|
return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
|
|
case Intrinsic::atomic_load_umin:
|
|
return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
|
|
case Intrinsic::atomic_load_umax:
|
|
return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
|
|
case Intrinsic::atomic_swap:
|
|
return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
|
|
|
|
case Intrinsic::invariant_start:
|
|
case Intrinsic::lifetime_start:
|
|
// Discard region information.
|
|
setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
|
|
return 0;
|
|
case Intrinsic::invariant_end:
|
|
case Intrinsic::lifetime_end:
|
|
// Discard region information.
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
|
|
bool isTailCall,
|
|
MachineBasicBlock *LandingPad) {
|
|
const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
|
|
const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
|
|
const Type *RetTy = FTy->getReturnType();
|
|
MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
|
|
MCSymbol *BeginLabel = 0;
|
|
|
|
TargetLowering::ArgListTy Args;
|
|
TargetLowering::ArgListEntry Entry;
|
|
Args.reserve(CS.arg_size());
|
|
|
|
// Check whether the function can return without sret-demotion.
|
|
SmallVector<ISD::OutputArg, 4> Outs;
|
|
SmallVector<uint64_t, 4> Offsets;
|
|
GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
|
|
Outs, TLI, &Offsets);
|
|
|
|
bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
|
|
FTy->isVarArg(), Outs, FTy->getContext());
|
|
|
|
SDValue DemoteStackSlot;
|
|
int DemoteStackIdx = -100;
|
|
|
|
if (!CanLowerReturn) {
|
|
uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
|
|
FTy->getReturnType());
|
|
unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(
|
|
FTy->getReturnType());
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
|
|
const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
|
|
|
|
DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
|
|
Entry.Node = DemoteStackSlot;
|
|
Entry.Ty = StackSlotPtrType;
|
|
Entry.isSExt = false;
|
|
Entry.isZExt = false;
|
|
Entry.isInReg = false;
|
|
Entry.isSRet = true;
|
|
Entry.isNest = false;
|
|
Entry.isByVal = false;
|
|
Entry.Alignment = Align;
|
|
Args.push_back(Entry);
|
|
RetTy = Type::getVoidTy(FTy->getContext());
|
|
}
|
|
|
|
for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
|
|
i != e; ++i) {
|
|
SDValue ArgNode = getValue(*i);
|
|
Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
|
|
|
|
unsigned attrInd = i - CS.arg_begin() + 1;
|
|
Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt);
|
|
Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt);
|
|
Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
|
|
Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet);
|
|
Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest);
|
|
Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
|
|
Entry.Alignment = CS.getParamAlignment(attrInd);
|
|
Args.push_back(Entry);
|
|
}
|
|
|
|
if (LandingPad) {
|
|
// Insert a label before the invoke call to mark the try range. This can be
|
|
// used to detect deletion of the invoke via the MachineModuleInfo.
|
|
BeginLabel = MMI.getContext().CreateTempSymbol();
|
|
|
|
// For SjLj, keep track of which landing pads go with which invokes
|
|
// so as to maintain the ordering of pads in the LSDA.
|
|
unsigned CallSiteIndex = MMI.getCurrentCallSite();
|
|
if (CallSiteIndex) {
|
|
MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
|
|
// Now that the call site is handled, stop tracking it.
|
|
MMI.setCurrentCallSite(0);
|
|
}
|
|
|
|
// Both PendingLoads and PendingExports must be flushed here;
|
|
// this call might not return.
|
|
(void)getRoot();
|
|
DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
|
|
}
|
|
|
|
// Check if target-independent constraints permit a tail call here.
|
|
// Target-dependent constraints are checked within TLI.LowerCallTo.
|
|
if (isTailCall &&
|
|
!isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
|
|
isTailCall = false;
|
|
|
|
// If there's a possibility that fast-isel has already selected some amount
|
|
// of the current basic block, don't emit a tail call.
|
|
if (isTailCall && EnableFastISel)
|
|
isTailCall = false;
|
|
|
|
std::pair<SDValue,SDValue> Result =
|
|
TLI.LowerCallTo(getRoot(), RetTy,
|
|
CS.paramHasAttr(0, Attribute::SExt),
|
|
CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
|
|
CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
|
|
CS.getCallingConv(),
|
|
isTailCall,
|
|
!CS.getInstruction()->use_empty(),
|
|
Callee, Args, DAG, getCurDebugLoc());
|
|
assert((isTailCall || Result.second.getNode()) &&
|
|
"Non-null chain expected with non-tail call!");
|
|
assert((Result.second.getNode() || !Result.first.getNode()) &&
|
|
"Null value expected with tail call!");
|
|
if (Result.first.getNode()) {
|
|
setValue(CS.getInstruction(), Result.first);
|
|
} else if (!CanLowerReturn && Result.second.getNode()) {
|
|
// The instruction result is the result of loading from the
|
|
// hidden sret parameter.
|
|
SmallVector<EVT, 1> PVTs;
|
|
const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
|
|
|
|
ComputeValueVTs(TLI, PtrRetTy, PVTs);
|
|
assert(PVTs.size() == 1 && "Pointers should fit in one register");
|
|
EVT PtrVT = PVTs[0];
|
|
unsigned NumValues = Outs.size();
|
|
SmallVector<SDValue, 4> Values(NumValues);
|
|
SmallVector<SDValue, 4> Chains(NumValues);
|
|
|
|
for (unsigned i = 0; i < NumValues; ++i) {
|
|
SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
|
|
DemoteStackSlot,
|
|
DAG.getConstant(Offsets[i], PtrVT));
|
|
SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
|
|
Add,
|
|
MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
|
|
false, false, 1);
|
|
Values[i] = L;
|
|
Chains[i] = L.getValue(1);
|
|
}
|
|
|
|
SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
|
|
MVT::Other, &Chains[0], NumValues);
|
|
PendingLoads.push_back(Chain);
|
|
|
|
// Collect the legal value parts into potentially illegal values
|
|
// that correspond to the original function's return values.
|
|
SmallVector<EVT, 4> RetTys;
|
|
RetTy = FTy->getReturnType();
|
|
ComputeValueVTs(TLI, RetTy, RetTys);
|
|
ISD::NodeType AssertOp = ISD::DELETED_NODE;
|
|
SmallVector<SDValue, 4> ReturnValues;
|
|
unsigned CurReg = 0;
|
|
for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
|
|
EVT VT = RetTys[I];
|
|
EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
|
|
unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
|
|
|
|
SDValue ReturnValue =
|
|
getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
|
|
RegisterVT, VT, AssertOp);
|
|
ReturnValues.push_back(ReturnValue);
|
|
CurReg += NumRegs;
|
|
}
|
|
|
|
setValue(CS.getInstruction(),
|
|
DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
|
|
DAG.getVTList(&RetTys[0], RetTys.size()),
|
|
&ReturnValues[0], ReturnValues.size()));
|
|
|
|
}
|
|
|
|
// As a special case, a null chain means that a tail call has been emitted and
|
|
// the DAG root is already updated.
|
|
if (Result.second.getNode())
|
|
DAG.setRoot(Result.second);
|
|
else
|
|
HasTailCall = true;
|
|
|
|
if (LandingPad) {
|
|
// Insert a label at the end of the invoke call to mark the try range. This
|
|
// can be used to detect deletion of the invoke via the MachineModuleInfo.
|
|
MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
|
|
DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
|
|
|
|
// Inform MachineModuleInfo of range.
|
|
MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
|
|
}
|
|
}
|
|
|
|
/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
|
|
/// value is equal or not-equal to zero.
|
|
static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
|
|
for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
|
|
UI != E; ++UI) {
|
|
if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
|
|
if (IC->isEquality())
|
|
if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
|
|
if (C->isNullValue())
|
|
continue;
|
|
// Unknown instruction.
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
|
|
const Type *LoadTy,
|
|
SelectionDAGBuilder &Builder) {
|
|
|
|
// Check to see if this load can be trivially constant folded, e.g. if the
|
|
// input is from a string literal.
|
|
if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
|
|
// Cast pointer to the type we really want to load.
|
|
LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
|
|
PointerType::getUnqual(LoadTy));
|
|
|
|
if (const Constant *LoadCst =
|
|
ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
|
|
Builder.TD))
|
|
return Builder.getValue(LoadCst);
|
|
}
|
|
|
|
// Otherwise, we have to emit the load. If the pointer is to unfoldable but
|
|
// still constant memory, the input chain can be the entry node.
|
|
SDValue Root;
|
|
bool ConstantMemory = false;
|
|
|
|
// Do not serialize (non-volatile) loads of constant memory with anything.
|
|
if (Builder.AA->pointsToConstantMemory(PtrVal)) {
|
|
Root = Builder.DAG.getEntryNode();
|
|
ConstantMemory = true;
|
|
} else {
|
|
// Do not serialize non-volatile loads against each other.
|
|
Root = Builder.DAG.getRoot();
|
|
}
|
|
|
|
SDValue Ptr = Builder.getValue(PtrVal);
|
|
SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
|
|
Ptr, MachinePointerInfo(PtrVal),
|
|
false /*volatile*/,
|
|
false /*nontemporal*/, 1 /* align=1 */);
|
|
|
|
if (!ConstantMemory)
|
|
Builder.PendingLoads.push_back(LoadVal.getValue(1));
|
|
return LoadVal;
|
|
}
|
|
|
|
|
|
/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
|
|
/// If so, return true and lower it, otherwise return false and it will be
|
|
/// lowered like a normal call.
|
|
bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
|
|
// Verify that the prototype makes sense. int memcmp(void*,void*,size_t)
|
|
if (I.getNumArgOperands() != 3)
|
|
return false;
|
|
|
|
const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
|
|
if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
|
|
!I.getArgOperand(2)->getType()->isIntegerTy() ||
|
|
!I.getType()->isIntegerTy())
|
|
return false;
|
|
|
|
const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
|
|
|
|
// memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
|
|
// memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
|
|
if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
|
|
bool ActuallyDoIt = true;
|
|
MVT LoadVT;
|
|
const Type *LoadTy;
|
|
switch (Size->getZExtValue()) {
|
|
default:
|
|
LoadVT = MVT::Other;
|
|
LoadTy = 0;
|
|
ActuallyDoIt = false;
|
|
break;
|
|
case 2:
|
|
LoadVT = MVT::i16;
|
|
LoadTy = Type::getInt16Ty(Size->getContext());
|
|
break;
|
|
case 4:
|
|
LoadVT = MVT::i32;
|
|
LoadTy = Type::getInt32Ty(Size->getContext());
|
|
break;
|
|
case 8:
|
|
LoadVT = MVT::i64;
|
|
LoadTy = Type::getInt64Ty(Size->getContext());
|
|
break;
|
|
/*
|
|
case 16:
|
|
LoadVT = MVT::v4i32;
|
|
LoadTy = Type::getInt32Ty(Size->getContext());
|
|
LoadTy = VectorType::get(LoadTy, 4);
|
|
break;
|
|
*/
|
|
}
|
|
|
|
// This turns into unaligned loads. We only do this if the target natively
|
|
// supports the MVT we'll be loading or if it is small enough (<= 4) that
|
|
// we'll only produce a small number of byte loads.
|
|
|
|
// Require that we can find a legal MVT, and only do this if the target
|
|
// supports unaligned loads of that type. Expanding into byte loads would
|
|
// bloat the code.
|
|
if (ActuallyDoIt && Size->getZExtValue() > 4) {
|
|
// TODO: Handle 5 byte compare as 4-byte + 1 byte.
|
|
// TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
|
|
if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
|
|
ActuallyDoIt = false;
|
|
}
|
|
|
|
if (ActuallyDoIt) {
|
|
SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
|
|
SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
|
|
|
|
SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
|
|
ISD::SETNE);
|
|
EVT CallVT = TLI.getValueType(I.getType(), true);
|
|
setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
void SelectionDAGBuilder::visitCall(const CallInst &I) {
|
|
// Handle inline assembly differently.
|
|
if (isa<InlineAsm>(I.getCalledValue())) {
|
|
visitInlineAsm(&I);
|
|
return;
|
|
}
|
|
|
|
// See if any floating point values are being passed to this function. This is
|
|
// used to emit an undefined reference to fltused on Windows.
|
|
const FunctionType *FT =
|
|
cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
|
|
MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
|
|
if (FT->isVarArg() &&
|
|
!MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
|
|
for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
|
|
const Type* T = I.getArgOperand(i)->getType();
|
|
for (po_iterator<const Type*> i = po_begin(T), e = po_end(T);
|
|
i != e; ++i) {
|
|
if (!i->isFloatingPointTy()) continue;
|
|
MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
const char *RenameFn = 0;
|
|
if (Function *F = I.getCalledFunction()) {
|
|
if (F->isDeclaration()) {
|
|
if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
|
|
if (unsigned IID = II->getIntrinsicID(F)) {
|
|
RenameFn = visitIntrinsicCall(I, IID);
|
|
if (!RenameFn)
|
|
return;
|
|
}
|
|
}
|
|
if (unsigned IID = F->getIntrinsicID()) {
|
|
RenameFn = visitIntrinsicCall(I, IID);
|
|
if (!RenameFn)
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Check for well-known libc/libm calls. If the function is internal, it
|
|
// can't be a library call.
|
|
if (!F->hasLocalLinkage() && F->hasName()) {
|
|
StringRef Name = F->getName();
|
|
if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
|
|
if (I.getNumArgOperands() == 2 && // Basic sanity checks.
|
|
I.getArgOperand(0)->getType()->isFloatingPointTy() &&
|
|
I.getType() == I.getArgOperand(0)->getType() &&
|
|
I.getType() == I.getArgOperand(1)->getType()) {
|
|
SDValue LHS = getValue(I.getArgOperand(0));
|
|
SDValue RHS = getValue(I.getArgOperand(1));
|
|
setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
|
|
LHS.getValueType(), LHS, RHS));
|
|
return;
|
|
}
|
|
} else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
|
|
if (I.getNumArgOperands() == 1 && // Basic sanity checks.
|
|
I.getArgOperand(0)->getType()->isFloatingPointTy() &&
|
|
I.getType() == I.getArgOperand(0)->getType()) {
|
|
SDValue Tmp = getValue(I.getArgOperand(0));
|
|
setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
|
|
Tmp.getValueType(), Tmp));
|
|
return;
|
|
}
|
|
} else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
|
|
if (I.getNumArgOperands() == 1 && // Basic sanity checks.
|
|
I.getArgOperand(0)->getType()->isFloatingPointTy() &&
|
|
I.getType() == I.getArgOperand(0)->getType() &&
|
|
I.onlyReadsMemory()) {
|
|
SDValue Tmp = getValue(I.getArgOperand(0));
|
|
setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
|
|
Tmp.getValueType(), Tmp));
|
|
return;
|
|
}
|
|
} else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
|
|
if (I.getNumArgOperands() == 1 && // Basic sanity checks.
|
|
I.getArgOperand(0)->getType()->isFloatingPointTy() &&
|
|
I.getType() == I.getArgOperand(0)->getType() &&
|
|
I.onlyReadsMemory()) {
|
|
SDValue Tmp = getValue(I.getArgOperand(0));
|
|
setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
|
|
Tmp.getValueType(), Tmp));
|
|
return;
|
|
}
|
|
} else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
|
|
if (I.getNumArgOperands() == 1 && // Basic sanity checks.
|
|
I.getArgOperand(0)->getType()->isFloatingPointTy() &&
|
|
I.getType() == I.getArgOperand(0)->getType() &&
|
|
I.onlyReadsMemory()) {
|
|
SDValue Tmp = getValue(I.getArgOperand(0));
|
|
setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
|
|
Tmp.getValueType(), Tmp));
|
|
return;
|
|
}
|
|
} else if (Name == "memcmp") {
|
|
if (visitMemCmpCall(I))
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
SDValue Callee;
|
|
if (!RenameFn)
|
|
Callee = getValue(I.getCalledValue());
|
|
else
|
|
Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
|
|
|
|
// Check if we can potentially perform a tail call. More detailed checking is
|
|
// be done within LowerCallTo, after more information about the call is known.
|
|
LowerCallTo(&I, Callee, I.isTailCall());
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
/// AsmOperandInfo - This contains information for each constraint that we are
|
|
/// lowering.
|
|
class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
|
|
public TargetLowering::AsmOperandInfo {
|
|
public:
|
|
/// CallOperand - If this is the result output operand or a clobber
|
|
/// this is null, otherwise it is the incoming operand to the CallInst.
|
|
/// This gets modified as the asm is processed.
|
|
SDValue CallOperand;
|
|
|
|
/// AssignedRegs - If this is a register or register class operand, this
|
|
/// contains the set of register corresponding to the operand.
|
|
RegsForValue AssignedRegs;
|
|
|
|
explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
|
|
: TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
|
|
}
|
|
|
|
/// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
|
|
/// busy in OutputRegs/InputRegs.
|
|
void MarkAllocatedRegs(bool isOutReg, bool isInReg,
|
|
std::set<unsigned> &OutputRegs,
|
|
std::set<unsigned> &InputRegs,
|
|
const TargetRegisterInfo &TRI) const {
|
|
if (isOutReg) {
|
|
for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
|
|
MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
|
|
}
|
|
if (isInReg) {
|
|
for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
|
|
MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
|
|
}
|
|
}
|
|
|
|
/// getCallOperandValEVT - Return the EVT of the Value* that this operand
|
|
/// corresponds to. If there is no Value* for this operand, it returns
|
|
/// MVT::Other.
|
|
EVT getCallOperandValEVT(LLVMContext &Context,
|
|
const TargetLowering &TLI,
|
|
const TargetData *TD) const {
|
|
if (CallOperandVal == 0) return MVT::Other;
|
|
|
|
if (isa<BasicBlock>(CallOperandVal))
|
|
return TLI.getPointerTy();
|
|
|
|
const llvm::Type *OpTy = CallOperandVal->getType();
|
|
|
|
// If this is an indirect operand, the operand is a pointer to the
|
|
// accessed type.
|
|
if (isIndirect) {
|
|
const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
|
|
if (!PtrTy)
|
|
report_fatal_error("Indirect operand for inline asm not a pointer!");
|
|
OpTy = PtrTy->getElementType();
|
|
}
|
|
|
|
// If OpTy is not a single value, it may be a struct/union that we
|
|
// can tile with integers.
|
|
if (!OpTy->isSingleValueType() && OpTy->isSized()) {
|
|
unsigned BitSize = TD->getTypeSizeInBits(OpTy);
|
|
switch (BitSize) {
|
|
default: break;
|
|
case 1:
|
|
case 8:
|
|
case 16:
|
|
case 32:
|
|
case 64:
|
|
case 128:
|
|
OpTy = IntegerType::get(Context, BitSize);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return TLI.getValueType(OpTy, true);
|
|
}
|
|
|
|
private:
|
|
/// MarkRegAndAliases - Mark the specified register and all aliases in the
|
|
/// specified set.
|
|
static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
|
|
const TargetRegisterInfo &TRI) {
|
|
assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
|
|
Regs.insert(Reg);
|
|
if (const unsigned *Aliases = TRI.getAliasSet(Reg))
|
|
for (; *Aliases; ++Aliases)
|
|
Regs.insert(*Aliases);
|
|
}
|
|
};
|
|
|
|
typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
|
|
|
|
} // end llvm namespace.
|
|
|
|
/// isAllocatableRegister - If the specified register is safe to allocate,
|
|
/// i.e. it isn't a stack pointer or some other special register, return the
|
|
/// register class for the register. Otherwise, return null.
|
|
static const TargetRegisterClass *
|
|
isAllocatableRegister(unsigned Reg, MachineFunction &MF,
|
|
const TargetLowering &TLI,
|
|
const TargetRegisterInfo *TRI) {
|
|
EVT FoundVT = MVT::Other;
|
|
const TargetRegisterClass *FoundRC = 0;
|
|
for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
|
|
E = TRI->regclass_end(); RCI != E; ++RCI) {
|
|
EVT ThisVT = MVT::Other;
|
|
|
|
const TargetRegisterClass *RC = *RCI;
|
|
// If none of the value types for this register class are valid, we
|
|
// can't use it. For example, 64-bit reg classes on 32-bit targets.
|
|
for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
|
|
I != E; ++I) {
|
|
if (TLI.isTypeLegal(*I)) {
|
|
// If we have already found this register in a different register class,
|
|
// choose the one with the largest VT specified. For example, on
|
|
// PowerPC, we favor f64 register classes over f32.
|
|
if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
|
|
ThisVT = *I;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ThisVT == MVT::Other) continue;
|
|
|
|
// NOTE: This isn't ideal. In particular, this might allocate the
|
|
// frame pointer in functions that need it (due to them not being taken
|
|
// out of allocation, because a variable sized allocation hasn't been seen
|
|
// yet). This is a slight code pessimization, but should still work.
|
|
for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
|
|
E = RC->allocation_order_end(MF); I != E; ++I)
|
|
if (*I == Reg) {
|
|
// We found a matching register class. Keep looking at others in case
|
|
// we find one with larger registers that this physreg is also in.
|
|
FoundRC = RC;
|
|
FoundVT = ThisVT;
|
|
break;
|
|
}
|
|
}
|
|
return FoundRC;
|
|
}
|
|
|
|
/// GetRegistersForValue - Assign registers (virtual or physical) for the
|
|
/// specified operand. We prefer to assign virtual registers, to allow the
|
|
/// register allocator to handle the assignment process. However, if the asm
|
|
/// uses features that we can't model on machineinstrs, we have SDISel do the
|
|
/// allocation. This produces generally horrible, but correct, code.
|
|
///
|
|
/// OpInfo describes the operand.
|
|
/// Input and OutputRegs are the set of already allocated physical registers.
|
|
///
|
|
void SelectionDAGBuilder::
|
|
GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
|
|
std::set<unsigned> &OutputRegs,
|
|
std::set<unsigned> &InputRegs) {
|
|
LLVMContext &Context = FuncInfo.Fn->getContext();
|
|
|
|
// Compute whether this value requires an input register, an output register,
|
|
// or both.
|
|
bool isOutReg = false;
|
|
bool isInReg = false;
|
|
switch (OpInfo.Type) {
|
|
case InlineAsm::isOutput:
|
|
isOutReg = true;
|
|
|
|
// If there is an input constraint that matches this, we need to reserve
|
|
// the input register so no other inputs allocate to it.
|
|
isInReg = OpInfo.hasMatchingInput();
|
|
break;
|
|
case InlineAsm::isInput:
|
|
isInReg = true;
|
|
isOutReg = false;
|
|
break;
|
|
case InlineAsm::isClobber:
|
|
isOutReg = true;
|
|
isInReg = true;
|
|
break;
|
|
}
|
|
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
SmallVector<unsigned, 4> Regs;
|
|
|
|
// If this is a constraint for a single physreg, or a constraint for a
|
|
// register class, find it.
|
|
std::pair<unsigned, const TargetRegisterClass*> PhysReg =
|
|
TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
|
|
OpInfo.ConstraintVT);
|
|
|
|
unsigned NumRegs = 1;
|
|
if (OpInfo.ConstraintVT != MVT::Other) {
|
|
// If this is a FP input in an integer register (or visa versa) insert a bit
|
|
// cast of the input value. More generally, handle any case where the input
|
|
// value disagrees with the register class we plan to stick this in.
|
|
if (OpInfo.Type == InlineAsm::isInput &&
|
|
PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
|
|
// Try to convert to the first EVT that the reg class contains. If the
|
|
// types are identical size, use a bitcast to convert (e.g. two differing
|
|
// vector types).
|
|
EVT RegVT = *PhysReg.second->vt_begin();
|
|
if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
|
|
OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
|
|
RegVT, OpInfo.CallOperand);
|
|
OpInfo.ConstraintVT = RegVT;
|
|
} else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
|
|
// If the input is a FP value and we want it in FP registers, do a
|
|
// bitcast to the corresponding integer type. This turns an f64 value
|
|
// into i64, which can be passed with two i32 values on a 32-bit
|
|
// machine.
|
|
RegVT = EVT::getIntegerVT(Context,
|
|
OpInfo.ConstraintVT.getSizeInBits());
|
|
OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
|
|
RegVT, OpInfo.CallOperand);
|
|
OpInfo.ConstraintVT = RegVT;
|
|
}
|
|
}
|
|
|
|
NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
|
|
}
|
|
|
|
EVT RegVT;
|
|
EVT ValueVT = OpInfo.ConstraintVT;
|
|
|
|
// If this is a constraint for a specific physical register, like {r17},
|
|
// assign it now.
|
|
if (unsigned AssignedReg = PhysReg.first) {
|
|
const TargetRegisterClass *RC = PhysReg.second;
|
|
if (OpInfo.ConstraintVT == MVT::Other)
|
|
ValueVT = *RC->vt_begin();
|
|
|
|
// Get the actual register value type. This is important, because the user
|
|
// may have asked for (e.g.) the AX register in i32 type. We need to
|
|
// remember that AX is actually i16 to get the right extension.
|
|
RegVT = *RC->vt_begin();
|
|
|
|
// This is a explicit reference to a physical register.
|
|
Regs.push_back(AssignedReg);
|
|
|
|
// If this is an expanded reference, add the rest of the regs to Regs.
|
|
if (NumRegs != 1) {
|
|
TargetRegisterClass::iterator I = RC->begin();
|
|
for (; *I != AssignedReg; ++I)
|
|
assert(I != RC->end() && "Didn't find reg!");
|
|
|
|
// Already added the first reg.
|
|
--NumRegs; ++I;
|
|
for (; NumRegs; --NumRegs, ++I) {
|
|
assert(I != RC->end() && "Ran out of registers to allocate!");
|
|
Regs.push_back(*I);
|
|
}
|
|
}
|
|
|
|
OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
|
|
const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
|
|
OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, if this was a reference to an LLVM register class, create vregs
|
|
// for this reference.
|
|
if (const TargetRegisterClass *RC = PhysReg.second) {
|
|
RegVT = *RC->vt_begin();
|
|
if (OpInfo.ConstraintVT == MVT::Other)
|
|
ValueVT = RegVT;
|
|
|
|
// Create the appropriate number of virtual registers.
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
for (; NumRegs; --NumRegs)
|
|
Regs.push_back(RegInfo.createVirtualRegister(RC));
|
|
|
|
OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
|
|
return;
|
|
}
|
|
|
|
// This is a reference to a register class that doesn't directly correspond
|
|
// to an LLVM register class. Allocate NumRegs consecutive, available,
|
|
// registers from the class.
|
|
std::vector<unsigned> RegClassRegs
|
|
= TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
|
|
OpInfo.ConstraintVT);
|
|
|
|
const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
|
|
unsigned NumAllocated = 0;
|
|
for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
|
|
unsigned Reg = RegClassRegs[i];
|
|
// See if this register is available.
|
|
if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
|
|
(isInReg && InputRegs.count(Reg))) { // Already used.
|
|
// Make sure we find consecutive registers.
|
|
NumAllocated = 0;
|
|
continue;
|
|
}
|
|
|
|
// Check to see if this register is allocatable (i.e. don't give out the
|
|
// stack pointer).
|
|
const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
|
|
if (!RC) { // Couldn't allocate this register.
|
|
// Reset NumAllocated to make sure we return consecutive registers.
|
|
NumAllocated = 0;
|
|
continue;
|
|
}
|
|
|
|
// Okay, this register is good, we can use it.
|
|
++NumAllocated;
|
|
|
|
// If we allocated enough consecutive registers, succeed.
|
|
if (NumAllocated == NumRegs) {
|
|
unsigned RegStart = (i-NumAllocated)+1;
|
|
unsigned RegEnd = i+1;
|
|
// Mark all of the allocated registers used.
|
|
for (unsigned i = RegStart; i != RegEnd; ++i)
|
|
Regs.push_back(RegClassRegs[i]);
|
|
|
|
OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
|
|
OpInfo.ConstraintVT);
|
|
OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Otherwise, we couldn't allocate enough registers for this.
|
|
}
|
|
|
|
/// visitInlineAsm - Handle a call to an InlineAsm object.
|
|
///
|
|
void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
|
|
const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
|
|
|
|
/// ConstraintOperands - Information about all of the constraints.
|
|
SDISelAsmOperandInfoVector ConstraintOperands;
|
|
|
|
std::set<unsigned> OutputRegs, InputRegs;
|
|
|
|
TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(CS);
|
|
bool hasMemory = false;
|
|
|
|
unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
|
|
unsigned ResNo = 0; // ResNo - The result number of the next output.
|
|
for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
|
|
ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
|
|
SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
|
|
|
|
EVT OpVT = MVT::Other;
|
|
|
|
// Compute the value type for each operand.
|
|
switch (OpInfo.Type) {
|
|
case InlineAsm::isOutput:
|
|
// Indirect outputs just consume an argument.
|
|
if (OpInfo.isIndirect) {
|
|
OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
|
|
break;
|
|
}
|
|
|
|
// The return value of the call is this value. As such, there is no
|
|
// corresponding argument.
|
|
assert(!CS.getType()->isVoidTy() &&
|
|
"Bad inline asm!");
|
|
if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
|
|
OpVT = TLI.getValueType(STy->getElementType(ResNo));
|
|
} else {
|
|
assert(ResNo == 0 && "Asm only has one result!");
|
|
OpVT = TLI.getValueType(CS.getType());
|
|
}
|
|
++ResNo;
|
|
break;
|
|
case InlineAsm::isInput:
|
|
OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
|
|
break;
|
|
case InlineAsm::isClobber:
|
|
// Nothing to do.
|
|
break;
|
|
}
|
|
|
|
// If this is an input or an indirect output, process the call argument.
|
|
// BasicBlocks are labels, currently appearing only in asm's.
|
|
if (OpInfo.CallOperandVal) {
|
|
if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
|
|
OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
|
|
} else {
|
|
OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
|
|
}
|
|
|
|
OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
|
|
}
|
|
|
|
OpInfo.ConstraintVT = OpVT;
|
|
|
|
// Indirect operand accesses access memory.
|
|
if (OpInfo.isIndirect)
|
|
hasMemory = true;
|
|
else {
|
|
for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
|
|
TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]);
|
|
if (CType == TargetLowering::C_Memory) {
|
|
hasMemory = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SDValue Chain, Flag;
|
|
|
|
// We won't need to flush pending loads if this asm doesn't touch
|
|
// memory and is nonvolatile.
|
|
if (hasMemory || IA->hasSideEffects())
|
|
Chain = getRoot();
|
|
else
|
|
Chain = DAG.getRoot();
|
|
|
|
// Second pass over the constraints: compute which constraint option to use
|
|
// and assign registers to constraints that want a specific physreg.
|
|
for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
|
|
SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
|
|
|
|
// If this is an output operand with a matching input operand, look up the
|
|
// matching input. If their types mismatch, e.g. one is an integer, the
|
|
// other is floating point, or their sizes are different, flag it as an
|
|
// error.
|
|
if (OpInfo.hasMatchingInput()) {
|
|
SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
|
|
|
|
if (OpInfo.ConstraintVT != Input.ConstraintVT) {
|
|
if ((OpInfo.ConstraintVT.isInteger() !=
|
|
Input.ConstraintVT.isInteger()) ||
|
|
(OpInfo.ConstraintVT.getSizeInBits() !=
|
|
Input.ConstraintVT.getSizeInBits())) {
|
|
report_fatal_error("Unsupported asm: input constraint"
|
|
" with a matching output constraint of"
|
|
" incompatible type!");
|
|
}
|
|
Input.ConstraintVT = OpInfo.ConstraintVT;
|
|
}
|
|
}
|
|
|
|
// Compute the constraint code and ConstraintType to use.
|
|
TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
|
|
|
|
// If this is a memory input, and if the operand is not indirect, do what we
|
|
// need to to provide an address for the memory input.
|
|
if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
|
|
!OpInfo.isIndirect) {
|
|
assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) &&
|
|
"Can only indirectify direct input operands!");
|
|
|
|
// Memory operands really want the address of the value. If we don't have
|
|
// an indirect input, put it in the constpool if we can, otherwise spill
|
|
// it to a stack slot.
|
|
|
|
// If the operand is a float, integer, or vector constant, spill to a
|
|
// constant pool entry to get its address.
|
|
const Value *OpVal = OpInfo.CallOperandVal;
|
|
if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
|
|
isa<ConstantVector>(OpVal)) {
|
|
OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
|
|
TLI.getPointerTy());
|
|
} else {
|
|
// Otherwise, create a stack slot and emit a store to it before the
|
|
// asm.
|
|
const Type *Ty = OpVal->getType();
|
|
uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
|
|
unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
|
|
SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
|
|
Chain = DAG.getStore(Chain, getCurDebugLoc(),
|
|
OpInfo.CallOperand, StackSlot,
|
|
MachinePointerInfo::getFixedStack(SSFI),
|
|
false, false, 0);
|
|
OpInfo.CallOperand = StackSlot;
|
|
}
|
|
|
|
// There is no longer a Value* corresponding to this operand.
|
|
OpInfo.CallOperandVal = 0;
|
|
|
|
// It is now an indirect operand.
|
|
OpInfo.isIndirect = true;
|
|
}
|
|
|
|
// If this constraint is for a specific register, allocate it before
|
|
// anything else.
|
|
if (OpInfo.ConstraintType == TargetLowering::C_Register)
|
|
GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
|
|
}
|
|
|
|
// Second pass - Loop over all of the operands, assigning virtual or physregs
|
|
// to register class operands.
|
|
for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
|
|
SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
|
|
|
|
// C_Register operands have already been allocated, Other/Memory don't need
|
|
// to be.
|
|
if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
|
|
GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
|
|
}
|
|
|
|
// AsmNodeOperands - The operands for the ISD::INLINEASM node.
|
|
std::vector<SDValue> AsmNodeOperands;
|
|
AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
|
|
AsmNodeOperands.push_back(
|
|
DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
|
|
TLI.getPointerTy()));
|
|
|
|
// If we have a !srcloc metadata node associated with it, we want to attach
|
|
// this to the ultimately generated inline asm machineinstr. To do this, we
|
|
// pass in the third operand as this (potentially null) inline asm MDNode.
|
|
const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
|
|
AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
|
|
|
|
// Remember the HasSideEffect and AlignStack bits as operand 3.
|
|
unsigned ExtraInfo = 0;
|
|
if (IA->hasSideEffects())
|
|
ExtraInfo |= InlineAsm::Extra_HasSideEffects;
|
|
if (IA->isAlignStack())
|
|
ExtraInfo |= InlineAsm::Extra_IsAlignStack;
|
|
AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
|
|
TLI.getPointerTy()));
|
|
|
|
// Loop over all of the inputs, copying the operand values into the
|
|
// appropriate registers and processing the output regs.
|
|
RegsForValue RetValRegs;
|
|
|
|
// IndirectStoresToEmit - The set of stores to emit after the inline asm node.
|
|
std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
|
|
|
|
for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
|
|
SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
|
|
|
|
switch (OpInfo.Type) {
|
|
case InlineAsm::isOutput: {
|
|
if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
|
|
OpInfo.ConstraintType != TargetLowering::C_Register) {
|
|
// Memory output, or 'other' output (e.g. 'X' constraint).
|
|
assert(OpInfo.isIndirect && "Memory output must be indirect operand");
|
|
|
|
// Add information to the INLINEASM node to know about this output.
|
|
unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
|
|
AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
|
|
TLI.getPointerTy()));
|
|
AsmNodeOperands.push_back(OpInfo.CallOperand);
|
|
break;
|
|
}
|
|
|
|
// Otherwise, this is a register or register class output.
|
|
|
|
// Copy the output from the appropriate register. Find a register that
|
|
// we can use.
|
|
if (OpInfo.AssignedRegs.Regs.empty())
|
|
report_fatal_error("Couldn't allocate output reg for constraint '" +
|
|
Twine(OpInfo.ConstraintCode) + "'!");
|
|
|
|
// If this is an indirect operand, store through the pointer after the
|
|
// asm.
|
|
if (OpInfo.isIndirect) {
|
|
IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
|
|
OpInfo.CallOperandVal));
|
|
} else {
|
|
// This is the result value of the call.
|
|
assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
|
|
// Concatenate this output onto the outputs list.
|
|
RetValRegs.append(OpInfo.AssignedRegs);
|
|
}
|
|
|
|
// Add information to the INLINEASM node to know that this register is
|
|
// set.
|
|
OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
|
|
InlineAsm::Kind_RegDefEarlyClobber :
|
|
InlineAsm::Kind_RegDef,
|
|
false,
|
|
0,
|
|
DAG,
|
|
AsmNodeOperands);
|
|
break;
|
|
}
|
|
case InlineAsm::isInput: {
|
|
SDValue InOperandVal = OpInfo.CallOperand;
|
|
|
|
if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
|
|
// If this is required to match an output register we have already set,
|
|
// just use its register.
|
|
unsigned OperandNo = OpInfo.getMatchedOperand();
|
|
|
|
// Scan until we find the definition we already emitted of this operand.
|
|
// When we find it, create a RegsForValue operand.
|
|
unsigned CurOp = InlineAsm::Op_FirstOperand;
|
|
for (; OperandNo; --OperandNo) {
|
|
// Advance to the next operand.
|
|
unsigned OpFlag =
|
|
cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
|
|
assert((InlineAsm::isRegDefKind(OpFlag) ||
|
|
InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
|
|
InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
|
|
CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
|
|
}
|
|
|
|
unsigned OpFlag =
|
|
cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
|
|
if (InlineAsm::isRegDefKind(OpFlag) ||
|
|
InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
|
|
// Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
|
|
if (OpInfo.isIndirect) {
|
|
// This happens on gcc/testsuite/gcc.dg/pr8788-1.c
|
|
LLVMContext &Ctx = *DAG.getContext();
|
|
Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
|
|
" don't know how to handle tied "
|
|
"indirect register inputs");
|
|
}
|
|
|
|
RegsForValue MatchedRegs;
|
|
MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
|
|
EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
|
|
MatchedRegs.RegVTs.push_back(RegVT);
|
|
MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
|
|
for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
|
|
i != e; ++i)
|
|
MatchedRegs.Regs.push_back
|
|
(RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
|
|
|
|
// Use the produced MatchedRegs object to
|
|
MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
|
|
Chain, &Flag);
|
|
MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
|
|
true, OpInfo.getMatchedOperand(),
|
|
DAG, AsmNodeOperands);
|
|
break;
|
|
}
|
|
|
|
assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
|
|
assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
|
|
"Unexpected number of operands");
|
|
// Add information to the INLINEASM node to know about this input.
|
|
// See InlineAsm.h isUseOperandTiedToDef.
|
|
OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
|
|
OpInfo.getMatchedOperand());
|
|
AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
|
|
TLI.getPointerTy()));
|
|
AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
|
|
break;
|
|
}
|
|
|
|
// Treat indirect 'X' constraint as memory.
|
|
if (OpInfo.ConstraintType == TargetLowering::C_Other &&
|
|
OpInfo.isIndirect)
|
|
OpInfo.ConstraintType = TargetLowering::C_Memory;
|
|
|
|
if (OpInfo.ConstraintType == TargetLowering::C_Other) {
|
|
std::vector<SDValue> Ops;
|
|
TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
|
|
Ops, DAG);
|
|
if (Ops.empty())
|
|
report_fatal_error("Invalid operand for inline asm constraint '" +
|
|
Twine(OpInfo.ConstraintCode) + "'!");
|
|
|
|
// Add information to the INLINEASM node to know about this input.
|
|
unsigned ResOpType =
|
|
InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
|
|
AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
|
|
TLI.getPointerTy()));
|
|
AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
|
|
break;
|
|
}
|
|
|
|
if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
|
|
assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
|
|
assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
|
|
"Memory operands expect pointer values");
|
|
|
|
// Add information to the INLINEASM node to know about this input.
|
|
unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
|
|
AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
|
|
TLI.getPointerTy()));
|
|
AsmNodeOperands.push_back(InOperandVal);
|
|
break;
|
|
}
|
|
|
|
assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
|
|
OpInfo.ConstraintType == TargetLowering::C_Register) &&
|
|
"Unknown constraint type!");
|
|
assert(!OpInfo.isIndirect &&
|
|
"Don't know how to handle indirect register inputs yet!");
|
|
|
|
// Copy the input into the appropriate registers.
|
|
if (OpInfo.AssignedRegs.Regs.empty() ||
|
|
!OpInfo.AssignedRegs.areValueTypesLegal(TLI))
|
|
report_fatal_error("Couldn't allocate input reg for constraint '" +
|
|
Twine(OpInfo.ConstraintCode) + "'!");
|
|
|
|
OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
|
|
Chain, &Flag);
|
|
|
|
OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
|
|
DAG, AsmNodeOperands);
|
|
break;
|
|
}
|
|
case InlineAsm::isClobber: {
|
|
// Add the clobbered value to the operand list, so that the register
|
|
// allocator is aware that the physreg got clobbered.
|
|
if (!OpInfo.AssignedRegs.Regs.empty())
|
|
OpInfo.AssignedRegs.AddInlineAsmOperands(
|
|
InlineAsm::Kind_RegDefEarlyClobber,
|
|
false, 0, DAG,
|
|
AsmNodeOperands);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finish up input operands. Set the input chain and add the flag last.
|
|
AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
|
|
if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
|
|
|
|
Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
|
|
DAG.getVTList(MVT::Other, MVT::Glue),
|
|
&AsmNodeOperands[0], AsmNodeOperands.size());
|
|
Flag = Chain.getValue(1);
|
|
|
|
// If this asm returns a register value, copy the result from that register
|
|
// and set it as the value of the call.
|
|
if (!RetValRegs.Regs.empty()) {
|
|
SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
|
|
Chain, &Flag);
|
|
|
|
// FIXME: Why don't we do this for inline asms with MRVs?
|
|
if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
|
|
EVT ResultType = TLI.getValueType(CS.getType());
|
|
|
|
// If any of the results of the inline asm is a vector, it may have the
|
|
// wrong width/num elts. This can happen for register classes that can
|
|
// contain multiple different value types. The preg or vreg allocated may
|
|
// not have the same VT as was expected. Convert it to the right type
|
|
// with bit_convert.
|
|
if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
|
|
Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
|
|
ResultType, Val);
|
|
|
|
} else if (ResultType != Val.getValueType() &&
|
|
ResultType.isInteger() && Val.getValueType().isInteger()) {
|
|
// If a result value was tied to an input value, the computed result may
|
|
// have a wider width than the expected result. Extract the relevant
|
|
// portion.
|
|
Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
|
|
}
|
|
|
|
assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
|
|
}
|
|
|
|
setValue(CS.getInstruction(), Val);
|
|
// Don't need to use this as a chain in this case.
|
|
if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
|
|
return;
|
|
}
|
|
|
|
std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
|
|
|
|
// Process indirect outputs, first output all of the flagged copies out of
|
|
// physregs.
|
|
for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
|
|
RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
|
|
const Value *Ptr = IndirectStoresToEmit[i].second;
|
|
SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
|
|
Chain, &Flag);
|
|
StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
|
|
}
|
|
|
|
// Emit the non-flagged stores from the physregs.
|
|
SmallVector<SDValue, 8> OutChains;
|
|
for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
|
|
SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
|
|
StoresToEmit[i].first,
|
|
getValue(StoresToEmit[i].second),
|
|
MachinePointerInfo(StoresToEmit[i].second),
|
|
false, false, 0);
|
|
OutChains.push_back(Val);
|
|
}
|
|
|
|
if (!OutChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
|
|
&OutChains[0], OutChains.size());
|
|
|
|
DAG.setRoot(Chain);
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
|
|
DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
|
|
MVT::Other, getRoot(),
|
|
getValue(I.getArgOperand(0)),
|
|
DAG.getSrcValue(I.getArgOperand(0))));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
|
|
const TargetData &TD = *TLI.getTargetData();
|
|
SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
|
|
getRoot(), getValue(I.getOperand(0)),
|
|
DAG.getSrcValue(I.getOperand(0)),
|
|
TD.getABITypeAlignment(I.getType()));
|
|
setValue(&I, V);
|
|
DAG.setRoot(V.getValue(1));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
|
|
DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
|
|
MVT::Other, getRoot(),
|
|
getValue(I.getArgOperand(0)),
|
|
DAG.getSrcValue(I.getArgOperand(0))));
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
|
|
DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
|
|
MVT::Other, getRoot(),
|
|
getValue(I.getArgOperand(0)),
|
|
getValue(I.getArgOperand(1)),
|
|
DAG.getSrcValue(I.getArgOperand(0)),
|
|
DAG.getSrcValue(I.getArgOperand(1))));
|
|
}
|
|
|
|
/// TargetLowering::LowerCallTo - This is the default LowerCallTo
|
|
/// implementation, which just calls LowerCall.
|
|
/// FIXME: When all targets are
|
|
/// migrated to using LowerCall, this hook should be integrated into SDISel.
|
|
std::pair<SDValue, SDValue>
|
|
TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
|
|
bool RetSExt, bool RetZExt, bool isVarArg,
|
|
bool isInreg, unsigned NumFixedArgs,
|
|
CallingConv::ID CallConv, bool isTailCall,
|
|
bool isReturnValueUsed,
|
|
SDValue Callee,
|
|
ArgListTy &Args, SelectionDAG &DAG,
|
|
DebugLoc dl) const {
|
|
// Handle all of the outgoing arguments.
|
|
SmallVector<ISD::OutputArg, 32> Outs;
|
|
SmallVector<SDValue, 32> OutVals;
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
|
|
for (unsigned Value = 0, NumValues = ValueVTs.size();
|
|
Value != NumValues; ++Value) {
|
|
EVT VT = ValueVTs[Value];
|
|
const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
|
|
SDValue Op = SDValue(Args[i].Node.getNode(),
|
|
Args[i].Node.getResNo() + Value);
|
|
ISD::ArgFlagsTy Flags;
|
|
unsigned OriginalAlignment =
|
|
getTargetData()->getABITypeAlignment(ArgTy);
|
|
|
|
if (Args[i].isZExt)
|
|
Flags.setZExt();
|
|
if (Args[i].isSExt)
|
|
Flags.setSExt();
|
|
if (Args[i].isInReg)
|
|
Flags.setInReg();
|
|
if (Args[i].isSRet)
|
|
Flags.setSRet();
|
|
if (Args[i].isByVal) {
|
|
Flags.setByVal();
|
|
const PointerType *Ty = cast<PointerType>(Args[i].Ty);
|
|
const Type *ElementTy = Ty->getElementType();
|
|
unsigned FrameAlign = getByValTypeAlignment(ElementTy);
|
|
unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy);
|
|
// For ByVal, alignment should come from FE. BE will guess if this
|
|
// info is not there but there are cases it cannot get right.
|
|
if (Args[i].Alignment)
|
|
FrameAlign = Args[i].Alignment;
|
|
Flags.setByValAlign(FrameAlign);
|
|
Flags.setByValSize(FrameSize);
|
|
}
|
|
if (Args[i].isNest)
|
|
Flags.setNest();
|
|
Flags.setOrigAlign(OriginalAlignment);
|
|
|
|
EVT PartVT = getRegisterType(RetTy->getContext(), VT);
|
|
unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
|
|
SmallVector<SDValue, 4> Parts(NumParts);
|
|
ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
|
|
|
|
if (Args[i].isSExt)
|
|
ExtendKind = ISD::SIGN_EXTEND;
|
|
else if (Args[i].isZExt)
|
|
ExtendKind = ISD::ZERO_EXTEND;
|
|
|
|
getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
|
|
PartVT, ExtendKind);
|
|
|
|
for (unsigned j = 0; j != NumParts; ++j) {
|
|
// if it isn't first piece, alignment must be 1
|
|
ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
|
|
i < NumFixedArgs);
|
|
if (NumParts > 1 && j == 0)
|
|
MyFlags.Flags.setSplit();
|
|
else if (j != 0)
|
|
MyFlags.Flags.setOrigAlign(1);
|
|
|
|
Outs.push_back(MyFlags);
|
|
OutVals.push_back(Parts[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handle the incoming return values from the call.
|
|
SmallVector<ISD::InputArg, 32> Ins;
|
|
SmallVector<EVT, 4> RetTys;
|
|
ComputeValueVTs(*this, RetTy, RetTys);
|
|
for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
|
|
EVT VT = RetTys[I];
|
|
EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
|
|
unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
|
|
for (unsigned i = 0; i != NumRegs; ++i) {
|
|
ISD::InputArg MyFlags;
|
|
MyFlags.VT = RegisterVT.getSimpleVT();
|
|
MyFlags.Used = isReturnValueUsed;
|
|
if (RetSExt)
|
|
MyFlags.Flags.setSExt();
|
|
if (RetZExt)
|
|
MyFlags.Flags.setZExt();
|
|
if (isInreg)
|
|
MyFlags.Flags.setInReg();
|
|
Ins.push_back(MyFlags);
|
|
}
|
|
}
|
|
|
|
SmallVector<SDValue, 4> InVals;
|
|
Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
|
|
Outs, OutVals, Ins, dl, DAG, InVals);
|
|
|
|
// Verify that the target's LowerCall behaved as expected.
|
|
assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
|
|
"LowerCall didn't return a valid chain!");
|
|
assert((!isTailCall || InVals.empty()) &&
|
|
"LowerCall emitted a return value for a tail call!");
|
|
assert((isTailCall || InVals.size() == Ins.size()) &&
|
|
"LowerCall didn't emit the correct number of values!");
|
|
|
|
// For a tail call, the return value is merely live-out and there aren't
|
|
// any nodes in the DAG representing it. Return a special value to
|
|
// indicate that a tail call has been emitted and no more Instructions
|
|
// should be processed in the current block.
|
|
if (isTailCall) {
|
|
DAG.setRoot(Chain);
|
|
return std::make_pair(SDValue(), SDValue());
|
|
}
|
|
|
|
DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
|
|
assert(InVals[i].getNode() &&
|
|
"LowerCall emitted a null value!");
|
|
assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
|
|
"LowerCall emitted a value with the wrong type!");
|
|
});
|
|
|
|
// Collect the legal value parts into potentially illegal values
|
|
// that correspond to the original function's return values.
|
|
ISD::NodeType AssertOp = ISD::DELETED_NODE;
|
|
if (RetSExt)
|
|
AssertOp = ISD::AssertSext;
|
|
else if (RetZExt)
|
|
AssertOp = ISD::AssertZext;
|
|
SmallVector<SDValue, 4> ReturnValues;
|
|
unsigned CurReg = 0;
|
|
for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
|
|
EVT VT = RetTys[I];
|
|
EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
|
|
unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
|
|
|
|
ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
|
|
NumRegs, RegisterVT, VT,
|
|
AssertOp));
|
|
CurReg += NumRegs;
|
|
}
|
|
|
|
// For a function returning void, there is no return value. We can't create
|
|
// such a node, so we just return a null return value in that case. In
|
|
// that case, nothing will actualy look at the value.
|
|
if (ReturnValues.empty())
|
|
return std::make_pair(SDValue(), Chain);
|
|
|
|
SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
|
|
DAG.getVTList(&RetTys[0], RetTys.size()),
|
|
&ReturnValues[0], ReturnValues.size());
|
|
return std::make_pair(Res, Chain);
|
|
}
|
|
|
|
void TargetLowering::LowerOperationWrapper(SDNode *N,
|
|
SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Res = LowerOperation(SDValue(N, 0), DAG);
|
|
if (Res.getNode())
|
|
Results.push_back(Res);
|
|
}
|
|
|
|
SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
|
|
llvm_unreachable("LowerOperation not implemented for this target!");
|
|
return SDValue();
|
|
}
|
|
|
|
void
|
|
SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
|
|
SDValue Op = getNonRegisterValue(V);
|
|
assert((Op.getOpcode() != ISD::CopyFromReg ||
|
|
cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
|
|
"Copy from a reg to the same reg!");
|
|
assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
|
|
|
|
RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
|
|
SDValue Chain = DAG.getEntryNode();
|
|
RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
|
|
PendingExports.push_back(Chain);
|
|
}
|
|
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
|
|
void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
|
|
// If this is the entry block, emit arguments.
|
|
const Function &F = *LLVMBB->getParent();
|
|
SelectionDAG &DAG = SDB->DAG;
|
|
DebugLoc dl = SDB->getCurDebugLoc();
|
|
const TargetData *TD = TLI.getTargetData();
|
|
SmallVector<ISD::InputArg, 16> Ins;
|
|
|
|
// Check whether the function can return without sret-demotion.
|
|
SmallVector<ISD::OutputArg, 4> Outs;
|
|
GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
|
|
Outs, TLI);
|
|
|
|
if (!FuncInfo->CanLowerReturn) {
|
|
// Put in an sret pointer parameter before all the other parameters.
|
|
SmallVector<EVT, 1> ValueVTs;
|
|
ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
|
|
|
|
// NOTE: Assuming that a pointer will never break down to more than one VT
|
|
// or one register.
|
|
ISD::ArgFlagsTy Flags;
|
|
Flags.setSRet();
|
|
EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
|
|
ISD::InputArg RetArg(Flags, RegisterVT, true);
|
|
Ins.push_back(RetArg);
|
|
}
|
|
|
|
// Set up the incoming argument description vector.
|
|
unsigned Idx = 1;
|
|
for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
|
|
I != E; ++I, ++Idx) {
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
ComputeValueVTs(TLI, I->getType(), ValueVTs);
|
|
bool isArgValueUsed = !I->use_empty();
|
|
for (unsigned Value = 0, NumValues = ValueVTs.size();
|
|
Value != NumValues; ++Value) {
|
|
EVT VT = ValueVTs[Value];
|
|
const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
|
|
ISD::ArgFlagsTy Flags;
|
|
unsigned OriginalAlignment =
|
|
TD->getABITypeAlignment(ArgTy);
|
|
|
|
if (F.paramHasAttr(Idx, Attribute::ZExt))
|
|
Flags.setZExt();
|
|
if (F.paramHasAttr(Idx, Attribute::SExt))
|
|
Flags.setSExt();
|
|
if (F.paramHasAttr(Idx, Attribute::InReg))
|
|
Flags.setInReg();
|
|
if (F.paramHasAttr(Idx, Attribute::StructRet))
|
|
Flags.setSRet();
|
|
if (F.paramHasAttr(Idx, Attribute::ByVal)) {
|
|
Flags.setByVal();
|
|
const PointerType *Ty = cast<PointerType>(I->getType());
|
|
const Type *ElementTy = Ty->getElementType();
|
|
unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
|
|
unsigned FrameSize = TD->getTypeAllocSize(ElementTy);
|
|
// For ByVal, alignment should be passed from FE. BE will guess if
|
|
// this info is not there but there are cases it cannot get right.
|
|
if (F.getParamAlignment(Idx))
|
|
FrameAlign = F.getParamAlignment(Idx);
|
|
Flags.setByValAlign(FrameAlign);
|
|
Flags.setByValSize(FrameSize);
|
|
}
|
|
if (F.paramHasAttr(Idx, Attribute::Nest))
|
|
Flags.setNest();
|
|
Flags.setOrigAlign(OriginalAlignment);
|
|
|
|
EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
|
|
unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
|
|
for (unsigned i = 0; i != NumRegs; ++i) {
|
|
ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
|
|
if (NumRegs > 1 && i == 0)
|
|
MyFlags.Flags.setSplit();
|
|
// if it isn't first piece, alignment must be 1
|
|
else if (i > 0)
|
|
MyFlags.Flags.setOrigAlign(1);
|
|
Ins.push_back(MyFlags);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Call the target to set up the argument values.
|
|
SmallVector<SDValue, 8> InVals;
|
|
SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
|
|
F.isVarArg(), Ins,
|
|
dl, DAG, InVals);
|
|
|
|
// Verify that the target's LowerFormalArguments behaved as expected.
|
|
assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
|
|
"LowerFormalArguments didn't return a valid chain!");
|
|
assert(InVals.size() == Ins.size() &&
|
|
"LowerFormalArguments didn't emit the correct number of values!");
|
|
DEBUG({
|
|
for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
|
|
assert(InVals[i].getNode() &&
|
|
"LowerFormalArguments emitted a null value!");
|
|
assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
|
|
"LowerFormalArguments emitted a value with the wrong type!");
|
|
}
|
|
});
|
|
|
|
// Update the DAG with the new chain value resulting from argument lowering.
|
|
DAG.setRoot(NewRoot);
|
|
|
|
// Set up the argument values.
|
|
unsigned i = 0;
|
|
Idx = 1;
|
|
if (!FuncInfo->CanLowerReturn) {
|
|
// Create a virtual register for the sret pointer, and put in a copy
|
|
// from the sret argument into it.
|
|
SmallVector<EVT, 1> ValueVTs;
|
|
ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
|
|
EVT VT = ValueVTs[0];
|
|
EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
|
|
ISD::NodeType AssertOp = ISD::DELETED_NODE;
|
|
SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
|
|
RegVT, VT, AssertOp);
|
|
|
|
MachineFunction& MF = SDB->DAG.getMachineFunction();
|
|
MachineRegisterInfo& RegInfo = MF.getRegInfo();
|
|
unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
|
|
FuncInfo->DemoteRegister = SRetReg;
|
|
NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
|
|
SRetReg, ArgValue);
|
|
DAG.setRoot(NewRoot);
|
|
|
|
// i indexes lowered arguments. Bump it past the hidden sret argument.
|
|
// Idx indexes LLVM arguments. Don't touch it.
|
|
++i;
|
|
}
|
|
|
|
for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
|
|
++I, ++Idx) {
|
|
SmallVector<SDValue, 4> ArgValues;
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
ComputeValueVTs(TLI, I->getType(), ValueVTs);
|
|
unsigned NumValues = ValueVTs.size();
|
|
|
|
// If this argument is unused then remember its value. It is used to generate
|
|
// debugging information.
|
|
if (I->use_empty() && NumValues)
|
|
SDB->setUnusedArgValue(I, InVals[i]);
|
|
|
|
for (unsigned Value = 0; Value != NumValues; ++Value) {
|
|
EVT VT = ValueVTs[Value];
|
|
EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
|
|
unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
|
|
|
|
if (!I->use_empty()) {
|
|
ISD::NodeType AssertOp = ISD::DELETED_NODE;
|
|
if (F.paramHasAttr(Idx, Attribute::SExt))
|
|
AssertOp = ISD::AssertSext;
|
|
else if (F.paramHasAttr(Idx, Attribute::ZExt))
|
|
AssertOp = ISD::AssertZext;
|
|
|
|
ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
|
|
NumParts, PartVT, VT,
|
|
AssertOp));
|
|
}
|
|
|
|
i += NumParts;
|
|
}
|
|
|
|
// Note down frame index for byval arguments.
|
|
if (I->hasByValAttr() && !ArgValues.empty())
|
|
if (FrameIndexSDNode *FI =
|
|
dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
|
|
FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
|
|
|
|
if (!I->use_empty()) {
|
|
SDValue Res;
|
|
if (!ArgValues.empty())
|
|
Res = DAG.getMergeValues(&ArgValues[0], NumValues,
|
|
SDB->getCurDebugLoc());
|
|
SDB->setValue(I, Res);
|
|
|
|
// If this argument is live outside of the entry block, insert a copy from
|
|
// whereever we got it to the vreg that other BB's will reference it as.
|
|
SDB->CopyToExportRegsIfNeeded(I);
|
|
}
|
|
}
|
|
|
|
assert(i == InVals.size() && "Argument register count mismatch!");
|
|
|
|
// Finally, if the target has anything special to do, allow it to do so.
|
|
// FIXME: this should insert code into the DAG!
|
|
EmitFunctionEntryCode();
|
|
}
|
|
|
|
/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
|
|
/// ensure constants are generated when needed. Remember the virtual registers
|
|
/// that need to be added to the Machine PHI nodes as input. We cannot just
|
|
/// directly add them, because expansion might result in multiple MBB's for one
|
|
/// BB. As such, the start of the BB might correspond to a different MBB than
|
|
/// the end.
|
|
///
|
|
void
|
|
SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
|
|
const TerminatorInst *TI = LLVMBB->getTerminator();
|
|
|
|
SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
|
|
|
|
// Check successor nodes' PHI nodes that expect a constant to be available
|
|
// from this block.
|
|
for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
|
|
const BasicBlock *SuccBB = TI->getSuccessor(succ);
|
|
if (!isa<PHINode>(SuccBB->begin())) continue;
|
|
MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
|
|
|
|
// If this terminator has multiple identical successors (common for
|
|
// switches), only handle each succ once.
|
|
if (!SuccsHandled.insert(SuccMBB)) continue;
|
|
|
|
MachineBasicBlock::iterator MBBI = SuccMBB->begin();
|
|
|
|
// At this point we know that there is a 1-1 correspondence between LLVM PHI
|
|
// nodes and Machine PHI nodes, but the incoming operands have not been
|
|
// emitted yet.
|
|
for (BasicBlock::const_iterator I = SuccBB->begin();
|
|
const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
|
|
// Ignore dead phi's.
|
|
if (PN->use_empty()) continue;
|
|
|
|
unsigned Reg;
|
|
const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
|
|
|
|
if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
|
|
unsigned &RegOut = ConstantsOut[C];
|
|
if (RegOut == 0) {
|
|
RegOut = FuncInfo.CreateRegs(C->getType());
|
|
CopyValueToVirtualRegister(C, RegOut);
|
|
}
|
|
Reg = RegOut;
|
|
} else {
|
|
DenseMap<const Value *, unsigned>::iterator I =
|
|
FuncInfo.ValueMap.find(PHIOp);
|
|
if (I != FuncInfo.ValueMap.end())
|
|
Reg = I->second;
|
|
else {
|
|
assert(isa<AllocaInst>(PHIOp) &&
|
|
FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
|
|
"Didn't codegen value into a register!??");
|
|
Reg = FuncInfo.CreateRegs(PHIOp->getType());
|
|
CopyValueToVirtualRegister(PHIOp, Reg);
|
|
}
|
|
}
|
|
|
|
// Remember that this register needs to added to the machine PHI node as
|
|
// the input for this MBB.
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
ComputeValueVTs(TLI, PN->getType(), ValueVTs);
|
|
for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
|
|
EVT VT = ValueVTs[vti];
|
|
unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
|
|
for (unsigned i = 0, e = NumRegisters; i != e; ++i)
|
|
FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
|
|
Reg += NumRegisters;
|
|
}
|
|
}
|
|
}
|
|
ConstantsOut.clear();
|
|
}
|