freebsd-dev/lib/CodeGen/SimpleRegisterCoalescing.cpp

1794 lines
67 KiB
C++

//===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a simple register coalescing pass that attempts to
// aggressively coalesce every register copy that it can.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regcoalescing"
#include "SimpleRegisterCoalescing.h"
#include "VirtRegMap.h"
#include "LiveDebugVariables.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/Value.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <cmath>
using namespace llvm;
STATISTIC(numJoins , "Number of interval joins performed");
STATISTIC(numCrossRCs , "Number of cross class joins performed");
STATISTIC(numCommutes , "Number of instruction commuting performed");
STATISTIC(numExtends , "Number of copies extended");
STATISTIC(NumReMats , "Number of instructions re-materialized");
STATISTIC(numPeep , "Number of identity moves eliminated after coalescing");
STATISTIC(numAborts , "Number of times interval joining aborted");
STATISTIC(numDeadValNo, "Number of valno def marked dead");
char SimpleRegisterCoalescing::ID = 0;
static cl::opt<bool>
EnableJoining("join-liveintervals",
cl::desc("Coalesce copies (default=true)"),
cl::init(true));
static cl::opt<bool>
DisableCrossClassJoin("disable-cross-class-join",
cl::desc("Avoid coalescing cross register class copies"),
cl::init(false), cl::Hidden);
static cl::opt<bool>
DisablePhysicalJoin("disable-physical-join",
cl::desc("Avoid coalescing physical register copies"),
cl::init(false), cl::Hidden);
static cl::opt<bool>
VerifyCoalescing("verify-coalescing",
cl::desc("Verify machine instrs before and after register coalescing"),
cl::Hidden);
INITIALIZE_AG_PASS_BEGIN(SimpleRegisterCoalescing, RegisterCoalescer,
"simple-register-coalescing", "Simple Register Coalescing",
false, false, true)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
INITIALIZE_PASS_DEPENDENCY(PHIElimination)
INITIALIZE_PASS_DEPENDENCY(TwoAddressInstructionPass)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_AG_PASS_END(SimpleRegisterCoalescing, RegisterCoalescer,
"simple-register-coalescing", "Simple Register Coalescing",
false, false, true)
char &llvm::SimpleRegisterCoalescingID = SimpleRegisterCoalescing::ID;
void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<AliasAnalysis>();
AU.addRequired<LiveIntervals>();
AU.addPreserved<LiveIntervals>();
AU.addRequired<LiveDebugVariables>();
AU.addPreserved<LiveDebugVariables>();
AU.addPreserved<SlotIndexes>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
AU.addPreservedID(MachineDominatorsID);
AU.addPreservedID(StrongPHIEliminationID);
AU.addPreservedID(PHIEliminationID);
AU.addPreservedID(TwoAddressInstructionPassID);
MachineFunctionPass::getAnalysisUsage(AU);
}
/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
/// being the source and IntB being the dest, thus this defines a value number
/// in IntB. If the source value number (in IntA) is defined by a copy from B,
/// see if we can merge these two pieces of B into a single value number,
/// eliminating a copy. For example:
///
/// A3 = B0
/// ...
/// B1 = A3 <- this copy
///
/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
/// value number to be replaced with B0 (which simplifies the B liveinterval).
///
/// This returns true if an interval was modified.
///
bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(const CoalescerPair &CP,
MachineInstr *CopyMI) {
// Bail if there is no dst interval - can happen when merging physical subreg
// operations.
if (!li_->hasInterval(CP.getDstReg()))
return false;
LiveInterval &IntA =
li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
LiveInterval &IntB =
li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
// BValNo is a value number in B that is defined by a copy from A. 'B3' in
// the example above.
LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
if (BLR == IntB.end()) return false;
VNInfo *BValNo = BLR->valno;
// Get the location that B is defined at. Two options: either this value has
// an unknown definition point or it is defined at CopyIdx. If unknown, we
// can't process it.
if (!BValNo->isDefByCopy()) return false;
assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
// AValNo is the value number in A that defines the copy, A3 in the example.
SlotIndex CopyUseIdx = CopyIdx.getUseIndex();
LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
// The live range might not exist after fun with physreg coalescing.
if (ALR == IntA.end()) return false;
VNInfo *AValNo = ALR->valno;
// If it's re-defined by an early clobber somewhere in the live range, then
// it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
// See PR3149:
// 172 %ECX<def> = MOV32rr %reg1039<kill>
// 180 INLINEASM <es:subl $5,$1
// sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9,
// %EAX<kill>,
// 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
// 188 %EAX<def> = MOV32rr %EAX<kill>
// 196 %ECX<def> = MOV32rr %ECX<kill>
// 204 %ECX<def> = MOV32rr %ECX<kill>
// 212 %EAX<def> = MOV32rr %EAX<kill>
// 220 %EAX<def> = MOV32rr %EAX
// 228 %reg1039<def> = MOV32rr %ECX<kill>
// The early clobber operand ties ECX input to the ECX def.
//
// The live interval of ECX is represented as this:
// %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
// The coalescer has no idea there was a def in the middle of [174,230].
if (AValNo->hasRedefByEC())
return false;
// If AValNo is defined as a copy from IntB, we can potentially process this.
// Get the instruction that defines this value number.
if (!CP.isCoalescable(AValNo->getCopy()))
return false;
// Get the LiveRange in IntB that this value number starts with.
LiveInterval::iterator ValLR =
IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
if (ValLR == IntB.end())
return false;
// Make sure that the end of the live range is inside the same block as
// CopyMI.
MachineInstr *ValLREndInst =
li_->getInstructionFromIndex(ValLR->end.getPrevSlot());
if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
return false;
// Okay, we now know that ValLR ends in the same block that the CopyMI
// live-range starts. If there are no intervening live ranges between them in
// IntB, we can merge them.
if (ValLR+1 != BLR) return false;
// If a live interval is a physical register, conservatively check if any
// of its sub-registers is overlapping the live interval of the virtual
// register. If so, do not coalesce.
if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) &&
*tri_->getSubRegisters(IntB.reg)) {
for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
DEBUG({
dbgs() << "\t\tInterfere with sub-register ";
li_->getInterval(*SR).print(dbgs(), tri_);
});
return false;
}
}
DEBUG({
dbgs() << "Extending: ";
IntB.print(dbgs(), tri_);
});
SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
// We are about to delete CopyMI, so need to remove it as the 'instruction
// that defines this value #'. Update the valnum with the new defining
// instruction #.
BValNo->def = FillerStart;
BValNo->setCopy(0);
// Okay, we can merge them. We need to insert a new liverange:
// [ValLR.end, BLR.begin) of either value number, then we merge the
// two value numbers.
IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
// If the IntB live range is assigned to a physical register, and if that
// physreg has sub-registers, update their live intervals as well.
if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
if (!li_->hasInterval(*SR))
continue;
LiveInterval &SRLI = li_->getInterval(*SR);
SRLI.addRange(LiveRange(FillerStart, FillerEnd,
SRLI.getNextValue(FillerStart, 0,
li_->getVNInfoAllocator())));
}
}
// Okay, merge "B1" into the same value number as "B0".
if (BValNo != ValLR->valno) {
IntB.MergeValueNumberInto(BValNo, ValLR->valno);
}
DEBUG({
dbgs() << " result = ";
IntB.print(dbgs(), tri_);
dbgs() << "\n";
});
// If the source instruction was killing the source register before the
// merge, unset the isKill marker given the live range has been extended.
int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
if (UIdx != -1) {
ValLREndInst->getOperand(UIdx).setIsKill(false);
}
// If the copy instruction was killing the destination register before the
// merge, find the last use and trim the live range. That will also add the
// isKill marker.
if (ALR->end == CopyIdx)
TrimLiveIntervalToLastUse(CopyUseIdx, CopyMI->getParent(), IntA, ALR);
++numExtends;
return true;
}
/// HasOtherReachingDefs - Return true if there are definitions of IntB
/// other than BValNo val# that can reach uses of AValno val# of IntA.
bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
LiveInterval &IntB,
VNInfo *AValNo,
VNInfo *BValNo) {
for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
AI != AE; ++AI) {
if (AI->valno != AValNo) continue;
LiveInterval::Ranges::iterator BI =
std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
if (BI != IntB.ranges.begin())
--BI;
for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
if (BI->valno == BValNo)
continue;
if (BI->start <= AI->start && BI->end > AI->start)
return true;
if (BI->start > AI->start && BI->start < AI->end)
return true;
}
}
return false;
}
/// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
/// IntA being the source and IntB being the dest, thus this defines a value
/// number in IntB. If the source value number (in IntA) is defined by a
/// commutable instruction and its other operand is coalesced to the copy dest
/// register, see if we can transform the copy into a noop by commuting the
/// definition. For example,
///
/// A3 = op A2 B0<kill>
/// ...
/// B1 = A3 <- this copy
/// ...
/// = op A3 <- more uses
///
/// ==>
///
/// B2 = op B0 A2<kill>
/// ...
/// B1 = B2 <- now an identify copy
/// ...
/// = op B2 <- more uses
///
/// This returns true if an interval was modified.
///
bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(const CoalescerPair &CP,
MachineInstr *CopyMI) {
// FIXME: For now, only eliminate the copy by commuting its def when the
// source register is a virtual register. We want to guard against cases
// where the copy is a back edge copy and commuting the def lengthen the
// live interval of the source register to the entire loop.
if (CP.isPhys() && CP.isFlipped())
return false;
// Bail if there is no dst interval.
if (!li_->hasInterval(CP.getDstReg()))
return false;
SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
LiveInterval &IntA =
li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
LiveInterval &IntB =
li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
// BValNo is a value number in B that is defined by a copy from A. 'B3' in
// the example above.
VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
if (!BValNo || !BValNo->isDefByCopy())
return false;
assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
// AValNo is the value number in A that defines the copy, A3 in the example.
VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getUseIndex());
assert(AValNo && "COPY source not live");
// If other defs can reach uses of this def, then it's not safe to perform
// the optimization.
if (AValNo->isPHIDef() || AValNo->isUnused() || AValNo->hasPHIKill())
return false;
MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
if (!DefMI)
return false;
const TargetInstrDesc &TID = DefMI->getDesc();
if (!TID.isCommutable())
return false;
// If DefMI is a two-address instruction then commuting it will change the
// destination register.
int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
assert(DefIdx != -1);
unsigned UseOpIdx;
if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
return false;
unsigned Op1, Op2, NewDstIdx;
if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2))
return false;
if (Op1 == UseOpIdx)
NewDstIdx = Op2;
else if (Op2 == UseOpIdx)
NewDstIdx = Op1;
else
return false;
MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
unsigned NewReg = NewDstMO.getReg();
if (NewReg != IntB.reg || !NewDstMO.isKill())
return false;
// Make sure there are no other definitions of IntB that would reach the
// uses which the new definition can reach.
if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
return false;
// Abort if the aliases of IntB.reg have values that are not simply the
// clobbers from the superreg.
if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
for (const unsigned *AS = tri_->getAliasSet(IntB.reg); *AS; ++AS)
if (li_->hasInterval(*AS) &&
HasOtherReachingDefs(IntA, li_->getInterval(*AS), AValNo, 0))
return false;
// If some of the uses of IntA.reg is already coalesced away, return false.
// It's not possible to determine whether it's safe to perform the coalescing.
for (MachineRegisterInfo::use_nodbg_iterator UI =
mri_->use_nodbg_begin(IntA.reg),
UE = mri_->use_nodbg_end(); UI != UE; ++UI) {
MachineInstr *UseMI = &*UI;
SlotIndex UseIdx = li_->getInstructionIndex(UseMI);
LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
if (ULR == IntA.end())
continue;
if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
return false;
}
DEBUG(dbgs() << "\tRemoveCopyByCommutingDef: " << AValNo->def << '\t'
<< *DefMI);
// At this point we have decided that it is legal to do this
// transformation. Start by commuting the instruction.
MachineBasicBlock *MBB = DefMI->getParent();
MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
if (!NewMI)
return false;
if (NewMI != DefMI) {
li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
MBB->insert(DefMI, NewMI);
MBB->erase(DefMI);
}
unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
NewMI->getOperand(OpIdx).setIsKill();
// If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
// A = or A, B
// ...
// B = A
// ...
// C = A<kill>
// ...
// = B
// Update uses of IntA of the specific Val# with IntB.
for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
UE = mri_->use_end(); UI != UE;) {
MachineOperand &UseMO = UI.getOperand();
MachineInstr *UseMI = &*UI;
++UI;
if (JoinedCopies.count(UseMI))
continue;
if (UseMI->isDebugValue()) {
// FIXME These don't have an instruction index. Not clear we have enough
// info to decide whether to do this replacement or not. For now do it.
UseMO.setReg(NewReg);
continue;
}
SlotIndex UseIdx = li_->getInstructionIndex(UseMI).getUseIndex();
LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
if (ULR == IntA.end() || ULR->valno != AValNo)
continue;
if (TargetRegisterInfo::isPhysicalRegister(NewReg))
UseMO.substPhysReg(NewReg, *tri_);
else
UseMO.setReg(NewReg);
if (UseMI == CopyMI)
continue;
if (!UseMI->isCopy())
continue;
if (UseMI->getOperand(0).getReg() != IntB.reg ||
UseMI->getOperand(0).getSubReg())
continue;
// This copy will become a noop. If it's defining a new val#, merge it into
// BValNo.
SlotIndex DefIdx = UseIdx.getDefIndex();
VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
if (!DVNI)
continue;
DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
assert(DVNI->def == DefIdx);
BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
JoinedCopies.insert(UseMI);
}
// Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
// is updated.
VNInfo *ValNo = BValNo;
ValNo->def = AValNo->def;
ValNo->setCopy(0);
for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
AI != AE; ++AI) {
if (AI->valno != AValNo) continue;
IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
}
DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
IntA.removeValNo(AValNo);
DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
++numCommutes;
return true;
}
/// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
/// fallthoughs to SuccMBB.
static bool isSameOrFallThroughBB(MachineBasicBlock *MBB,
MachineBasicBlock *SuccMBB,
const TargetInstrInfo *tii_) {
if (MBB == SuccMBB)
return true;
MachineBasicBlock *TBB = 0, *FBB = 0;
SmallVector<MachineOperand, 4> Cond;
return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB &&
MBB->isSuccessor(SuccMBB);
}
/// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
/// from a physical register live interval as well as from the live intervals
/// of its sub-registers.
static void removeRange(LiveInterval &li,
SlotIndex Start, SlotIndex End,
LiveIntervals *li_, const TargetRegisterInfo *tri_) {
li.removeRange(Start, End, true);
if (TargetRegisterInfo::isPhysicalRegister(li.reg)) {
for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
if (!li_->hasInterval(*SR))
continue;
LiveInterval &sli = li_->getInterval(*SR);
SlotIndex RemoveStart = Start;
SlotIndex RemoveEnd = Start;
while (RemoveEnd != End) {
LiveInterval::iterator LR = sli.FindLiveRangeContaining(RemoveStart);
if (LR == sli.end())
break;
RemoveEnd = (LR->end < End) ? LR->end : End;
sli.removeRange(RemoveStart, RemoveEnd, true);
RemoveStart = RemoveEnd;
}
}
}
}
/// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
/// as the copy instruction, trim the live interval to the last use and return
/// true.
bool
SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(SlotIndex CopyIdx,
MachineBasicBlock *CopyMBB,
LiveInterval &li,
const LiveRange *LR) {
SlotIndex MBBStart = li_->getMBBStartIdx(CopyMBB);
SlotIndex LastUseIdx;
MachineOperand *LastUse =
lastRegisterUse(LR->start, CopyIdx.getPrevSlot(), li.reg, LastUseIdx);
if (LastUse) {
MachineInstr *LastUseMI = LastUse->getParent();
if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) {
// r1024 = op
// ...
// BB1:
// = r1024
//
// BB2:
// r1025<dead> = r1024<kill>
if (MBBStart < LR->end)
removeRange(li, MBBStart, LR->end, li_, tri_);
return true;
}
// There are uses before the copy, just shorten the live range to the end
// of last use.
LastUse->setIsKill();
removeRange(li, LastUseIdx.getDefIndex(), LR->end, li_, tri_);
if (LastUseMI->isCopy()) {
MachineOperand &DefMO = LastUseMI->getOperand(0);
if (DefMO.getReg() == li.reg && !DefMO.getSubReg())
DefMO.setIsDead();
}
return true;
}
// Is it livein?
if (LR->start <= MBBStart && LR->end > MBBStart) {
if (LR->start == li_->getZeroIndex()) {
assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
// Live-in to the function but dead. Remove it from entry live-in set.
mf_->begin()->removeLiveIn(li.reg);
}
// FIXME: Shorten intervals in BBs that reaches this BB.
}
return false;
}
/// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
/// computation, replace the copy by rematerialize the definition.
bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
bool preserveSrcInt,
unsigned DstReg,
unsigned DstSubIdx,
MachineInstr *CopyMI) {
SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getUseIndex();
LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
assert(SrcLR != SrcInt.end() && "Live range not found!");
VNInfo *ValNo = SrcLR->valno;
// If other defs can reach uses of this def, then it's not safe to perform
// the optimization.
if (ValNo->isPHIDef() || ValNo->isUnused() || ValNo->hasPHIKill())
return false;
MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
if (!DefMI)
return false;
assert(DefMI && "Defining instruction disappeared");
const TargetInstrDesc &TID = DefMI->getDesc();
if (!TID.isAsCheapAsAMove())
return false;
if (!tii_->isTriviallyReMaterializable(DefMI, AA))
return false;
bool SawStore = false;
if (!DefMI->isSafeToMove(tii_, AA, SawStore))
return false;
if (TID.getNumDefs() != 1)
return false;
if (!DefMI->isImplicitDef()) {
// Make sure the copy destination register class fits the instruction
// definition register class. The mismatch can happen as a result of earlier
// extract_subreg, insert_subreg, subreg_to_reg coalescing.
const TargetRegisterClass *RC = TID.OpInfo[0].getRegClass(tri_);
if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
if (mri_->getRegClass(DstReg) != RC)
return false;
} else if (!RC->contains(DstReg))
return false;
}
// If destination register has a sub-register index on it, make sure it
// matches the instruction register class.
if (DstSubIdx) {
const TargetInstrDesc &TID = DefMI->getDesc();
if (TID.getNumDefs() != 1)
return false;
const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
const TargetRegisterClass *DstSubRC =
DstRC->getSubRegisterRegClass(DstSubIdx);
const TargetRegisterClass *DefRC = TID.OpInfo[0].getRegClass(tri_);
if (DefRC == DstRC)
DstSubIdx = 0;
else if (DefRC != DstSubRC)
return false;
}
RemoveCopyFlag(DstReg, CopyMI);
MachineBasicBlock *MBB = CopyMI->getParent();
MachineBasicBlock::iterator MII =
llvm::next(MachineBasicBlock::iterator(CopyMI));
tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI, *tri_);
MachineInstr *NewMI = prior(MII);
// CopyMI may have implicit operands, transfer them over to the newly
// rematerialized instruction. And update implicit def interval valnos.
for (unsigned i = CopyMI->getDesc().getNumOperands(),
e = CopyMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = CopyMI->getOperand(i);
if (MO.isReg() && MO.isImplicit())
NewMI->addOperand(MO);
if (MO.isDef())
RemoveCopyFlag(MO.getReg(), CopyMI);
}
NewMI->copyImplicitOps(CopyMI);
li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
CopyMI->eraseFromParent();
ReMatCopies.insert(CopyMI);
ReMatDefs.insert(DefMI);
DEBUG(dbgs() << "Remat: " << *NewMI);
++NumReMats;
// The source interval can become smaller because we removed a use.
if (preserveSrcInt)
li_->shrinkToUses(&SrcInt);
return true;
}
/// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
/// update the subregister number if it is not zero. If DstReg is a
/// physical register and the existing subregister number of the def / use
/// being updated is not zero, make sure to set it to the correct physical
/// subregister.
void
SimpleRegisterCoalescing::UpdateRegDefsUses(const CoalescerPair &CP) {
bool DstIsPhys = CP.isPhys();
unsigned SrcReg = CP.getSrcReg();
unsigned DstReg = CP.getDstReg();
unsigned SubIdx = CP.getSubIdx();
// Update LiveDebugVariables.
ldv_->renameRegister(SrcReg, DstReg, SubIdx);
for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg);
MachineInstr *UseMI = I.skipInstruction();) {
// A PhysReg copy that won't be coalesced can perhaps be rematerialized
// instead.
if (DstIsPhys) {
if (UseMI->isCopy() &&
!UseMI->getOperand(1).getSubReg() &&
!UseMI->getOperand(0).getSubReg() &&
UseMI->getOperand(1).getReg() == SrcReg &&
UseMI->getOperand(0).getReg() != SrcReg &&
UseMI->getOperand(0).getReg() != DstReg &&
!JoinedCopies.count(UseMI) &&
ReMaterializeTrivialDef(li_->getInterval(SrcReg), false,
UseMI->getOperand(0).getReg(), 0, UseMI))
continue;
}
SmallVector<unsigned,8> Ops;
bool Reads, Writes;
tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
bool Kills = false, Deads = false;
// Replace SrcReg with DstReg in all UseMI operands.
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
MachineOperand &MO = UseMI->getOperand(Ops[i]);
Kills |= MO.isKill();
Deads |= MO.isDead();
if (DstIsPhys)
MO.substPhysReg(DstReg, *tri_);
else
MO.substVirtReg(DstReg, SubIdx, *tri_);
}
// This instruction is a copy that will be removed.
if (JoinedCopies.count(UseMI))
continue;
if (SubIdx) {
// If UseMI was a simple SrcReg def, make sure we didn't turn it into a
// read-modify-write of DstReg.
if (Deads)
UseMI->addRegisterDead(DstReg, tri_);
else if (!Reads && Writes)
UseMI->addRegisterDefined(DstReg, tri_);
// Kill flags apply to the whole physical register.
if (DstIsPhys && Kills)
UseMI->addRegisterKilled(DstReg, tri_);
}
DEBUG({
dbgs() << "\t\tupdated: ";
if (!UseMI->isDebugValue())
dbgs() << li_->getInstructionIndex(UseMI) << "\t";
dbgs() << *UseMI;
});
}
}
/// removeIntervalIfEmpty - Check if the live interval of a physical register
/// is empty, if so remove it and also remove the empty intervals of its
/// sub-registers. Return true if live interval is removed.
static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
const TargetRegisterInfo *tri_) {
if (li.empty()) {
if (TargetRegisterInfo::isPhysicalRegister(li.reg))
for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
if (!li_->hasInterval(*SR))
continue;
LiveInterval &sli = li_->getInterval(*SR);
if (sli.empty())
li_->removeInterval(*SR);
}
li_->removeInterval(li.reg);
return true;
}
return false;
}
/// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
/// Return true if live interval is removed.
bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
MachineInstr *CopyMI) {
SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI);
LiveInterval::iterator MLR =
li.FindLiveRangeContaining(CopyIdx.getDefIndex());
if (MLR == li.end())
return false; // Already removed by ShortenDeadCopySrcLiveRange.
SlotIndex RemoveStart = MLR->start;
SlotIndex RemoveEnd = MLR->end;
SlotIndex DefIdx = CopyIdx.getDefIndex();
// Remove the liverange that's defined by this.
if (RemoveStart == DefIdx && RemoveEnd == DefIdx.getStoreIndex()) {
removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
return removeIntervalIfEmpty(li, li_, tri_);
}
return false;
}
/// RemoveDeadDef - If a def of a live interval is now determined dead, remove
/// the val# it defines. If the live interval becomes empty, remove it as well.
bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
MachineInstr *DefMI) {
SlotIndex DefIdx = li_->getInstructionIndex(DefMI).getDefIndex();
LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
if (DefIdx != MLR->valno->def)
return false;
li.removeValNo(MLR->valno);
return removeIntervalIfEmpty(li, li_, tri_);
}
void SimpleRegisterCoalescing::RemoveCopyFlag(unsigned DstReg,
const MachineInstr *CopyMI) {
SlotIndex DefIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
if (li_->hasInterval(DstReg)) {
LiveInterval &LI = li_->getInterval(DstReg);
if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
if (LR->valno->def == DefIdx)
LR->valno->setCopy(0);
}
if (!TargetRegisterInfo::isPhysicalRegister(DstReg))
return;
for (const unsigned* AS = tri_->getAliasSet(DstReg); *AS; ++AS) {
if (!li_->hasInterval(*AS))
continue;
LiveInterval &LI = li_->getInterval(*AS);
if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
if (LR->valno->def == DefIdx)
LR->valno->setCopy(0);
}
}
/// PropagateDeadness - Propagate the dead marker to the instruction which
/// defines the val#.
static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
SlotIndex &LRStart, LiveIntervals *li_,
const TargetRegisterInfo* tri_) {
MachineInstr *DefMI =
li_->getInstructionFromIndex(LRStart.getDefIndex());
if (DefMI && DefMI != CopyMI) {
int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg);
if (DeadIdx != -1)
DefMI->getOperand(DeadIdx).setIsDead();
else
DefMI->addOperand(MachineOperand::CreateReg(li.reg,
/*def*/true, /*implicit*/true, /*kill*/false, /*dead*/true));
LRStart = LRStart.getNextSlot();
}
}
/// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
/// extended by a dead copy. Mark the last use (if any) of the val# as kill as
/// ends the live range there. If there isn't another use, then this live range
/// is dead. Return true if live interval is removed.
bool
SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
MachineInstr *CopyMI) {
SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI);
if (CopyIdx == SlotIndex()) {
// FIXME: special case: function live in. It can be a general case if the
// first instruction index starts at > 0 value.
assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
// Live-in to the function but dead. Remove it from entry live-in set.
if (mf_->begin()->isLiveIn(li.reg))
mf_->begin()->removeLiveIn(li.reg);
if (const LiveRange *LR = li.getLiveRangeContaining(CopyIdx))
removeRange(li, LR->start, LR->end, li_, tri_);
return removeIntervalIfEmpty(li, li_, tri_);
}
LiveInterval::iterator LR =
li.FindLiveRangeContaining(CopyIdx.getPrevIndex().getStoreIndex());
if (LR == li.end())
// Livein but defined by a phi.
return false;
SlotIndex RemoveStart = LR->start;
SlotIndex RemoveEnd = CopyIdx.getStoreIndex();
if (LR->end > RemoveEnd)
// More uses past this copy? Nothing to do.
return false;
// If there is a last use in the same bb, we can't remove the live range.
// Shorten the live interval and return.
MachineBasicBlock *CopyMBB = CopyMI->getParent();
if (TrimLiveIntervalToLastUse(CopyIdx, CopyMBB, li, LR))
return false;
// There are other kills of the val#. Nothing to do.
if (!li.isOnlyLROfValNo(LR))
return false;
MachineBasicBlock *StartMBB = li_->getMBBFromIndex(RemoveStart);
if (!isSameOrFallThroughBB(StartMBB, CopyMBB, tii_))
// If the live range starts in another mbb and the copy mbb is not a fall
// through mbb, then we can only cut the range from the beginning of the
// copy mbb.
RemoveStart = li_->getMBBStartIdx(CopyMBB).getNextIndex().getBaseIndex();
if (LR->valno->def == RemoveStart) {
// If the def MI defines the val# and this copy is the only kill of the
// val#, then propagate the dead marker.
PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);
++numDeadValNo;
}
removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
return removeIntervalIfEmpty(li, li_, tri_);
}
/// isWinToJoinCrossClass - Return true if it's profitable to coalesce
/// two virtual registers from different register classes.
bool
SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned SrcReg,
unsigned DstReg,
const TargetRegisterClass *SrcRC,
const TargetRegisterClass *DstRC,
const TargetRegisterClass *NewRC) {
unsigned NewRCCount = allocatableRCRegs_[NewRC].count();
// This heuristics is good enough in practice, but it's obviously not *right*.
// 4 is a magic number that works well enough for x86, ARM, etc. It filter
// out all but the most restrictive register classes.
if (NewRCCount > 4 ||
// Early exit if the function is fairly small, coalesce aggressively if
// that's the case. For really special register classes with 3 or
// fewer registers, be a bit more careful.
(li_->getFuncInstructionCount() / NewRCCount) < 8)
return true;
LiveInterval &SrcInt = li_->getInterval(SrcReg);
LiveInterval &DstInt = li_->getInterval(DstReg);
unsigned SrcSize = li_->getApproximateInstructionCount(SrcInt);
unsigned DstSize = li_->getApproximateInstructionCount(DstInt);
if (SrcSize <= NewRCCount && DstSize <= NewRCCount)
return true;
// Estimate *register use density*. If it doubles or more, abort.
unsigned SrcUses = std::distance(mri_->use_nodbg_begin(SrcReg),
mri_->use_nodbg_end());
unsigned DstUses = std::distance(mri_->use_nodbg_begin(DstReg),
mri_->use_nodbg_end());
unsigned NewUses = SrcUses + DstUses;
unsigned NewSize = SrcSize + DstSize;
if (SrcRC != NewRC && SrcSize > NewRCCount) {
unsigned SrcRCCount = allocatableRCRegs_[SrcRC].count();
if (NewUses*SrcSize*SrcRCCount > 2*SrcUses*NewSize*NewRCCount)
return false;
}
if (DstRC != NewRC && DstSize > NewRCCount) {
unsigned DstRCCount = allocatableRCRegs_[DstRC].count();
if (NewUses*DstSize*DstRCCount > 2*DstUses*NewSize*NewRCCount)
return false;
}
return true;
}
/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
/// which are the src/dst of the copy instruction CopyMI. This returns true
/// if the copy was successfully coalesced away. If it is not currently
/// possible to coalesce this interval, but it may be possible if other
/// things get coalesced, then it returns true by reference in 'Again'.
bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
MachineInstr *CopyMI = TheCopy.MI;
Again = false;
if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
return false; // Already done.
DEBUG(dbgs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
CoalescerPair CP(*tii_, *tri_);
if (!CP.setRegisters(CopyMI)) {
DEBUG(dbgs() << "\tNot coalescable.\n");
return false;
}
// If they are already joined we continue.
if (CP.getSrcReg() == CP.getDstReg()) {
DEBUG(dbgs() << "\tCopy already coalesced.\n");
return false; // Not coalescable.
}
if (DisablePhysicalJoin && CP.isPhys()) {
DEBUG(dbgs() << "\tPhysical joins disabled.\n");
return false;
}
DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), tri_));
// Enforce policies.
if (CP.isPhys()) {
DEBUG(dbgs() <<" with physreg " << PrintReg(CP.getDstReg(), tri_) << "\n");
// Only coalesce to allocatable physreg.
if (!li_->isAllocatable(CP.getDstReg())) {
DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n");
return false; // Not coalescable.
}
} else {
DEBUG(dbgs() << " with " << PrintReg(CP.getDstReg(), tri_, CP.getSubIdx())
<< " to " << CP.getNewRC()->getName() << "\n");
// Avoid constraining virtual register regclass too much.
if (CP.isCrossClass()) {
if (DisableCrossClassJoin) {
DEBUG(dbgs() << "\tCross-class joins disabled.\n");
return false;
}
if (!isWinToJoinCrossClass(CP.getSrcReg(), CP.getDstReg(),
mri_->getRegClass(CP.getSrcReg()),
mri_->getRegClass(CP.getDstReg()),
CP.getNewRC())) {
DEBUG(dbgs() << "\tAvoid coalescing to constrained register class: "
<< CP.getNewRC()->getName() << ".\n");
Again = true; // May be possible to coalesce later.
return false;
}
}
// When possible, let DstReg be the larger interval.
if (!CP.getSubIdx() && li_->getInterval(CP.getSrcReg()).ranges.size() >
li_->getInterval(CP.getDstReg()).ranges.size())
CP.flip();
}
// We need to be careful about coalescing a source physical register with a
// virtual register. Once the coalescing is done, it cannot be broken and
// these are not spillable! If the destination interval uses are far away,
// think twice about coalescing them!
// FIXME: Why are we skipping this test for partial copies?
// CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
if (!CP.isPartial() && CP.isPhys()) {
LiveInterval &JoinVInt = li_->getInterval(CP.getSrcReg());
// Don't join with physregs that have a ridiculous number of live
// ranges. The data structure performance is really bad when that
// happens.
if (li_->hasInterval(CP.getDstReg()) &&
li_->getInterval(CP.getDstReg()).ranges.size() > 1000) {
++numAborts;
DEBUG(dbgs()
<< "\tPhysical register live interval too complicated, abort!\n");
return false;
}
const TargetRegisterClass *RC = mri_->getRegClass(CP.getSrcReg());
unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
if (Length > Threshold &&
std::distance(mri_->use_nodbg_begin(CP.getSrcReg()),
mri_->use_nodbg_end()) * Threshold < Length) {
// Before giving up coalescing, if definition of source is defined by
// trivial computation, try rematerializing it.
if (!CP.isFlipped() &&
ReMaterializeTrivialDef(JoinVInt, true, CP.getDstReg(), 0, CopyMI))
return true;
++numAborts;
DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
Again = true; // May be possible to coalesce later.
return false;
}
}
// Okay, attempt to join these two intervals. On failure, this returns false.
// Otherwise, if one of the intervals being joined is a physreg, this method
// always canonicalizes DstInt to be it. The output "SrcInt" will not have
// been modified, so we can use this information below to update aliases.
if (!JoinIntervals(CP)) {
// Coalescing failed.
// If definition of source is defined by trivial computation, try
// rematerializing it.
if (!CP.isFlipped() &&
ReMaterializeTrivialDef(li_->getInterval(CP.getSrcReg()), true,
CP.getDstReg(), 0, CopyMI))
return true;
// If we can eliminate the copy without merging the live ranges, do so now.
if (!CP.isPartial()) {
if (AdjustCopiesBackFrom(CP, CopyMI) ||
RemoveCopyByCommutingDef(CP, CopyMI)) {
JoinedCopies.insert(CopyMI);
DEBUG(dbgs() << "\tTrivial!\n");
return true;
}
}
// Otherwise, we are unable to join the intervals.
DEBUG(dbgs() << "\tInterference!\n");
Again = true; // May be possible to coalesce later.
return false;
}
// Coalescing to a virtual register that is of a sub-register class of the
// other. Make sure the resulting register is set to the right register class.
if (CP.isCrossClass()) {
++numCrossRCs;
mri_->setRegClass(CP.getDstReg(), CP.getNewRC());
}
// Remember to delete the copy instruction.
JoinedCopies.insert(CopyMI);
UpdateRegDefsUses(CP);
// If we have extended the live range of a physical register, make sure we
// update live-in lists as well.
if (CP.isPhys()) {
SmallVector<MachineBasicBlock*, 16> BlockSeq;
// JoinIntervals invalidates the VNInfos in SrcInt, but we only need the
// ranges for this, and they are preserved.
LiveInterval &SrcInt = li_->getInterval(CP.getSrcReg());
for (LiveInterval::const_iterator I = SrcInt.begin(), E = SrcInt.end();
I != E; ++I ) {
li_->findLiveInMBBs(I->start, I->end, BlockSeq);
for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
MachineBasicBlock &block = *BlockSeq[idx];
if (!block.isLiveIn(CP.getDstReg()))
block.addLiveIn(CP.getDstReg());
}
BlockSeq.clear();
}
}
// SrcReg is guarateed to be the register whose live interval that is
// being merged.
li_->removeInterval(CP.getSrcReg());
// Update regalloc hint.
tri_->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *mf_);
DEBUG({
LiveInterval &DstInt = li_->getInterval(CP.getDstReg());
dbgs() << "\tJoined. Result = ";
DstInt.print(dbgs(), tri_);
dbgs() << "\n";
});
++numJoins;
return true;
}
/// ComputeUltimateVN - Assuming we are going to join two live intervals,
/// compute what the resultant value numbers for each value in the input two
/// ranges will be. This is complicated by copies between the two which can
/// and will commonly cause multiple value numbers to be merged into one.
///
/// VN is the value number that we're trying to resolve. InstDefiningValue
/// keeps track of the new InstDefiningValue assignment for the result
/// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
/// whether a value in this or other is a copy from the opposite set.
/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
/// already been assigned.
///
/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
/// contains the value number the copy is from.
///
static unsigned ComputeUltimateVN(VNInfo *VNI,
SmallVector<VNInfo*, 16> &NewVNInfo,
DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
SmallVector<int, 16> &ThisValNoAssignments,
SmallVector<int, 16> &OtherValNoAssignments) {
unsigned VN = VNI->id;
// If the VN has already been computed, just return it.
if (ThisValNoAssignments[VN] >= 0)
return ThisValNoAssignments[VN];
assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
// If this val is not a copy from the other val, then it must be a new value
// number in the destination.
DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
if (I == ThisFromOther.end()) {
NewVNInfo.push_back(VNI);
return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
}
VNInfo *OtherValNo = I->second;
// Otherwise, this *is* a copy from the RHS. If the other side has already
// been computed, return it.
if (OtherValNoAssignments[OtherValNo->id] >= 0)
return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
// Mark this value number as currently being computed, then ask what the
// ultimate value # of the other value is.
ThisValNoAssignments[VN] = -2;
unsigned UltimateVN =
ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
OtherValNoAssignments, ThisValNoAssignments);
return ThisValNoAssignments[VN] = UltimateVN;
}
/// JoinIntervals - Attempt to join these two intervals. On failure, this
/// returns false.
bool SimpleRegisterCoalescing::JoinIntervals(CoalescerPair &CP) {
LiveInterval &RHS = li_->getInterval(CP.getSrcReg());
DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), tri_); dbgs() << "\n"; });
// If a live interval is a physical register, check for interference with any
// aliases. The interference check implemented here is a bit more conservative
// than the full interfeence check below. We allow overlapping live ranges
// only when one is a copy of the other.
if (CP.isPhys()) {
for (const unsigned *AS = tri_->getAliasSet(CP.getDstReg()); *AS; ++AS){
if (!li_->hasInterval(*AS))
continue;
const LiveInterval &LHS = li_->getInterval(*AS);
LiveInterval::const_iterator LI = LHS.begin();
for (LiveInterval::const_iterator RI = RHS.begin(), RE = RHS.end();
RI != RE; ++RI) {
LI = std::lower_bound(LI, LHS.end(), RI->start);
// Does LHS have an overlapping live range starting before RI?
if ((LI != LHS.begin() && LI[-1].end > RI->start) &&
(RI->start != RI->valno->def ||
!CP.isCoalescable(li_->getInstructionFromIndex(RI->start)))) {
DEBUG({
dbgs() << "\t\tInterference from alias: ";
LHS.print(dbgs(), tri_);
dbgs() << "\n\t\tOverlap at " << RI->start << " and no copy.\n";
});
return false;
}
// Check that LHS ranges beginning in this range are copies.
for (; LI != LHS.end() && LI->start < RI->end; ++LI) {
if (LI->start != LI->valno->def ||
!CP.isCoalescable(li_->getInstructionFromIndex(LI->start))) {
DEBUG({
dbgs() << "\t\tInterference from alias: ";
LHS.print(dbgs(), tri_);
dbgs() << "\n\t\tDef at " << LI->start << " is not a copy.\n";
});
return false;
}
}
}
}
}
// Compute the final value assignment, assuming that the live ranges can be
// coalesced.
SmallVector<int, 16> LHSValNoAssignments;
SmallVector<int, 16> RHSValNoAssignments;
DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
SmallVector<VNInfo*, 16> NewVNInfo;
LiveInterval &LHS = li_->getOrCreateInterval(CP.getDstReg());
DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), tri_); dbgs() << "\n"; });
// Loop over the value numbers of the LHS, seeing if any are defined from
// the RHS.
for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
i != e; ++i) {
VNInfo *VNI = *i;
if (VNI->isUnused() || !VNI->isDefByCopy()) // Src not defined by a copy?
continue;
// Never join with a register that has EarlyClobber redefs.
if (VNI->hasRedefByEC())
return false;
// DstReg is known to be a register in the LHS interval. If the src is
// from the RHS interval, we can use its value #.
if (!CP.isCoalescable(VNI->getCopy()))
continue;
// Figure out the value # from the RHS.
LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot());
// The copy could be to an aliased physreg.
if (!lr) continue;
LHSValsDefinedFromRHS[VNI] = lr->valno;
}
// Loop over the value numbers of the RHS, seeing if any are defined from
// the LHS.
for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
i != e; ++i) {
VNInfo *VNI = *i;
if (VNI->isUnused() || !VNI->isDefByCopy()) // Src not defined by a copy?
continue;
// Never join with a register that has EarlyClobber redefs.
if (VNI->hasRedefByEC())
return false;
// DstReg is known to be a register in the RHS interval. If the src is
// from the LHS interval, we can use its value #.
if (!CP.isCoalescable(VNI->getCopy()))
continue;
// Figure out the value # from the LHS.
LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot());
// The copy could be to an aliased physreg.
if (!lr) continue;
RHSValsDefinedFromLHS[VNI] = lr->valno;
}
LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
i != e; ++i) {
VNInfo *VNI = *i;
unsigned VN = VNI->id;
if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
continue;
ComputeUltimateVN(VNI, NewVNInfo,
LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
LHSValNoAssignments, RHSValNoAssignments);
}
for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
i != e; ++i) {
VNInfo *VNI = *i;
unsigned VN = VNI->id;
if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
continue;
// If this value number isn't a copy from the LHS, it's a new number.
if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
NewVNInfo.push_back(VNI);
RHSValNoAssignments[VN] = NewVNInfo.size()-1;
continue;
}
ComputeUltimateVN(VNI, NewVNInfo,
RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
RHSValNoAssignments, LHSValNoAssignments);
}
// Armed with the mappings of LHS/RHS values to ultimate values, walk the
// interval lists to see if these intervals are coalescable.
LiveInterval::const_iterator I = LHS.begin();
LiveInterval::const_iterator IE = LHS.end();
LiveInterval::const_iterator J = RHS.begin();
LiveInterval::const_iterator JE = RHS.end();
// Skip ahead until the first place of potential sharing.
if (I != IE && J != JE) {
if (I->start < J->start) {
I = std::upper_bound(I, IE, J->start);
if (I != LHS.begin()) --I;
} else if (J->start < I->start) {
J = std::upper_bound(J, JE, I->start);
if (J != RHS.begin()) --J;
}
}
while (I != IE && J != JE) {
// Determine if these two live ranges overlap.
bool Overlaps;
if (I->start < J->start) {
Overlaps = I->end > J->start;
} else {
Overlaps = J->end > I->start;
}
// If so, check value # info to determine if they are really different.
if (Overlaps) {
// If the live range overlap will map to the same value number in the
// result liverange, we can still coalesce them. If not, we can't.
if (LHSValNoAssignments[I->valno->id] !=
RHSValNoAssignments[J->valno->id])
return false;
// If it's re-defined by an early clobber somewhere in the live range,
// then conservatively abort coalescing.
if (NewVNInfo[LHSValNoAssignments[I->valno->id]]->hasRedefByEC())
return false;
}
if (I->end < J->end)
++I;
else
++J;
}
// Update kill info. Some live ranges are extended due to copy coalescing.
for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
VNInfo *VNI = I->first;
unsigned LHSValID = LHSValNoAssignments[VNI->id];
if (VNI->hasPHIKill())
NewVNInfo[LHSValID]->setHasPHIKill(true);
}
// Update kill info. Some live ranges are extended due to copy coalescing.
for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
VNInfo *VNI = I->first;
unsigned RHSValID = RHSValNoAssignments[VNI->id];
if (VNI->hasPHIKill())
NewVNInfo[RHSValID]->setHasPHIKill(true);
}
if (LHSValNoAssignments.empty())
LHSValNoAssignments.push_back(-1);
if (RHSValNoAssignments.empty())
RHSValNoAssignments.push_back(-1);
// If we get here, we know that we can coalesce the live ranges. Ask the
// intervals to coalesce themselves now.
LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
mri_);
return true;
}
namespace {
// DepthMBBCompare - Comparison predicate that sort first based on the loop
// depth of the basic block (the unsigned), and then on the MBB number.
struct DepthMBBCompare {
typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
// Deeper loops first
if (LHS.first != RHS.first)
return LHS.first > RHS.first;
// Prefer blocks that are more connected in the CFG. This takes care of
// the most difficult copies first while intervals are short.
unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
if (cl != cr)
return cl > cr;
// As a last resort, sort by block number.
return LHS.second->getNumber() < RHS.second->getNumber();
}
};
}
void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
std::vector<CopyRec> &TryAgain) {
DEBUG(dbgs() << MBB->getName() << ":\n");
SmallVector<CopyRec, 8> VirtCopies;
SmallVector<CopyRec, 8> PhysCopies;
SmallVector<CopyRec, 8> ImpDefCopies;
for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
MII != E;) {
MachineInstr *Inst = MII++;
// If this isn't a copy nor a extract_subreg, we can't join intervals.
unsigned SrcReg, DstReg;
if (Inst->isCopy()) {
DstReg = Inst->getOperand(0).getReg();
SrcReg = Inst->getOperand(1).getReg();
} else if (Inst->isSubregToReg()) {
DstReg = Inst->getOperand(0).getReg();
SrcReg = Inst->getOperand(2).getReg();
} else
continue;
bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
ImpDefCopies.push_back(CopyRec(Inst, 0));
else if (SrcIsPhys || DstIsPhys)
PhysCopies.push_back(CopyRec(Inst, 0));
else
VirtCopies.push_back(CopyRec(Inst, 0));
}
// Try coalescing implicit copies and insert_subreg <undef> first,
// followed by copies to / from physical registers, then finally copies
// from virtual registers to virtual registers.
for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
CopyRec &TheCopy = ImpDefCopies[i];
bool Again = false;
if (!JoinCopy(TheCopy, Again))
if (Again)
TryAgain.push_back(TheCopy);
}
for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
CopyRec &TheCopy = PhysCopies[i];
bool Again = false;
if (!JoinCopy(TheCopy, Again))
if (Again)
TryAgain.push_back(TheCopy);
}
for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
CopyRec &TheCopy = VirtCopies[i];
bool Again = false;
if (!JoinCopy(TheCopy, Again))
if (Again)
TryAgain.push_back(TheCopy);
}
}
void SimpleRegisterCoalescing::joinIntervals() {
DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
std::vector<CopyRec> TryAgainList;
if (loopInfo->empty()) {
// If there are no loops in the function, join intervals in function order.
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
I != E; ++I)
CopyCoalesceInMBB(I, TryAgainList);
} else {
// Otherwise, join intervals in inner loops before other intervals.
// Unfortunately we can't just iterate over loop hierarchy here because
// there may be more MBB's than BB's. Collect MBB's for sorting.
// Join intervals in the function prolog first. We want to join physical
// registers with virtual registers before the intervals got too long.
std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
MachineBasicBlock *MBB = I;
MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
}
// Sort by loop depth.
std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
// Finally, join intervals in loop nest order.
for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
}
// Joining intervals can allow other intervals to be joined. Iteratively join
// until we make no progress.
bool ProgressMade = true;
while (ProgressMade) {
ProgressMade = false;
for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
CopyRec &TheCopy = TryAgainList[i];
if (!TheCopy.MI)
continue;
bool Again = false;
bool Success = JoinCopy(TheCopy, Again);
if (Success || !Again) {
TheCopy.MI = 0; // Mark this one as done.
ProgressMade = true;
}
}
}
}
/// Return true if the two specified registers belong to different register
/// classes. The registers may be either phys or virt regs.
bool
SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
unsigned RegB) const {
// Get the register classes for the first reg.
if (TargetRegisterInfo::isPhysicalRegister(RegA)) {
assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
"Shouldn't consider two physregs!");
return !mri_->getRegClass(RegB)->contains(RegA);
}
// Compare against the regclass for the second reg.
const TargetRegisterClass *RegClassA = mri_->getRegClass(RegA);
if (TargetRegisterInfo::isVirtualRegister(RegB)) {
const TargetRegisterClass *RegClassB = mri_->getRegClass(RegB);
return RegClassA != RegClassB;
}
return !RegClassA->contains(RegB);
}
/// lastRegisterUse - Returns the last (non-debug) use of the specific register
/// between cycles Start and End or NULL if there are no uses.
MachineOperand *
SimpleRegisterCoalescing::lastRegisterUse(SlotIndex Start,
SlotIndex End,
unsigned Reg,
SlotIndex &UseIdx) const{
UseIdx = SlotIndex();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
MachineOperand *LastUse = NULL;
for (MachineRegisterInfo::use_nodbg_iterator I = mri_->use_nodbg_begin(Reg),
E = mri_->use_nodbg_end(); I != E; ++I) {
MachineOperand &Use = I.getOperand();
MachineInstr *UseMI = Use.getParent();
if (UseMI->isIdentityCopy())
continue;
SlotIndex Idx = li_->getInstructionIndex(UseMI);
// FIXME: Should this be Idx != UseIdx? SlotIndex() will return something
// that compares higher than any other interval.
if (Idx >= Start && Idx < End && Idx >= UseIdx) {
LastUse = &Use;
UseIdx = Idx.getUseIndex();
}
}
return LastUse;
}
SlotIndex s = Start;
SlotIndex e = End.getPrevSlot().getBaseIndex();
while (e >= s) {
// Skip deleted instructions
MachineInstr *MI = li_->getInstructionFromIndex(e);
while (e != SlotIndex() && e.getPrevIndex() >= s && !MI) {
e = e.getPrevIndex();
MI = li_->getInstructionFromIndex(e);
}
if (e < s || MI == NULL)
return NULL;
// Ignore identity copies.
if (!MI->isIdentityCopy())
for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
MachineOperand &Use = MI->getOperand(i);
if (Use.isReg() && Use.isUse() && Use.getReg() &&
tri_->regsOverlap(Use.getReg(), Reg)) {
UseIdx = e.getUseIndex();
return &Use;
}
}
e = e.getPrevIndex();
}
return NULL;
}
void SimpleRegisterCoalescing::releaseMemory() {
JoinedCopies.clear();
ReMatCopies.clear();
ReMatDefs.clear();
}
bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
mf_ = &fn;
mri_ = &fn.getRegInfo();
tm_ = &fn.getTarget();
tri_ = tm_->getRegisterInfo();
tii_ = tm_->getInstrInfo();
li_ = &getAnalysis<LiveIntervals>();
ldv_ = &getAnalysis<LiveDebugVariables>();
AA = &getAnalysis<AliasAnalysis>();
loopInfo = &getAnalysis<MachineLoopInfo>();
DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
<< "********** Function: "
<< ((Value*)mf_->getFunction())->getName() << '\n');
if (VerifyCoalescing)
mf_->verify(this, "Before register coalescing");
for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(),
E = tri_->regclass_end(); I != E; ++I)
allocatableRCRegs_.insert(std::make_pair(*I,
tri_->getAllocatableSet(fn, *I)));
// Join (coalesce) intervals if requested.
if (EnableJoining) {
joinIntervals();
DEBUG({
dbgs() << "********** INTERVALS POST JOINING **********\n";
for (LiveIntervals::iterator I = li_->begin(), E = li_->end();
I != E; ++I){
I->second->print(dbgs(), tri_);
dbgs() << "\n";
}
});
}
// Perform a final pass over the instructions and compute spill weights
// and remove identity moves.
SmallVector<unsigned, 4> DeadDefs;
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
mbbi != mbbe; ++mbbi) {
MachineBasicBlock* mbb = mbbi;
for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
mii != mie; ) {
MachineInstr *MI = mii;
if (JoinedCopies.count(MI)) {
// Delete all coalesced copies.
bool DoDelete = true;
assert(MI->isCopyLike() && "Unrecognized copy instruction");
unsigned SrcReg = MI->getOperand(MI->isSubregToReg() ? 2 : 1).getReg();
if (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
MI->getNumOperands() > 2)
// Do not delete extract_subreg, insert_subreg of physical
// registers unless the definition is dead. e.g.
// %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
// or else the scavenger may complain. LowerSubregs will
// delete them later.
DoDelete = false;
if (MI->allDefsAreDead()) {
if (li_->hasInterval(SrcReg)) {
LiveInterval &li = li_->getInterval(SrcReg);
if (!ShortenDeadCopySrcLiveRange(li, MI))
ShortenDeadCopyLiveRange(li, MI);
}
DoDelete = true;
}
if (!DoDelete) {
// We need the instruction to adjust liveness, so make it a KILL.
if (MI->isSubregToReg()) {
MI->RemoveOperand(3);
MI->RemoveOperand(1);
}
MI->setDesc(tii_->get(TargetOpcode::KILL));
mii = llvm::next(mii);
} else {
li_->RemoveMachineInstrFromMaps(MI);
mii = mbbi->erase(mii);
++numPeep;
}
continue;
}
// Now check if this is a remat'ed def instruction which is now dead.
if (ReMatDefs.count(MI)) {
bool isDead = true;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
if (TargetRegisterInfo::isVirtualRegister(Reg))
DeadDefs.push_back(Reg);
if (MO.isDead())
continue;
if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
!mri_->use_nodbg_empty(Reg)) {
isDead = false;
break;
}
}
if (isDead) {
while (!DeadDefs.empty()) {
unsigned DeadDef = DeadDefs.back();
DeadDefs.pop_back();
RemoveDeadDef(li_->getInterval(DeadDef), MI);
}
li_->RemoveMachineInstrFromMaps(mii);
mii = mbbi->erase(mii);
continue;
} else
DeadDefs.clear();
}
// If the move will be an identity move delete it
if (MI->isIdentityCopy()) {
unsigned SrcReg = MI->getOperand(1).getReg();
if (li_->hasInterval(SrcReg)) {
LiveInterval &RegInt = li_->getInterval(SrcReg);
// If def of this move instruction is dead, remove its live range
// from the destination register's live interval.
if (MI->allDefsAreDead()) {
if (!ShortenDeadCopySrcLiveRange(RegInt, MI))
ShortenDeadCopyLiveRange(RegInt, MI);
}
}
li_->RemoveMachineInstrFromMaps(MI);
mii = mbbi->erase(mii);
++numPeep;
continue;
}
++mii;
// Check for now unnecessary kill flags.
if (li_->isNotInMIMap(MI)) continue;
SlotIndex DefIdx = li_->getInstructionIndex(MI).getDefIndex();
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isKill()) continue;
unsigned reg = MO.getReg();
if (!reg || !li_->hasInterval(reg)) continue;
if (!li_->getInterval(reg).killedAt(DefIdx)) {
MO.setIsKill(false);
continue;
}
// When leaving a kill flag on a physreg, check if any subregs should
// remain alive.
if (!TargetRegisterInfo::isPhysicalRegister(reg))
continue;
for (const unsigned *SR = tri_->getSubRegisters(reg);
unsigned S = *SR; ++SR)
if (li_->hasInterval(S) && li_->getInterval(S).liveAt(DefIdx))
MI->addRegisterDefined(S, tri_);
}
}
}
DEBUG(dump());
DEBUG(ldv_->dump());
if (VerifyCoalescing)
mf_->verify(this, "After register coalescing");
return true;
}
/// print - Implement the dump method.
void SimpleRegisterCoalescing::print(raw_ostream &O, const Module* m) const {
li_->print(O, m);
}
RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
return new SimpleRegisterCoalescing();
}
// Make sure that anything that uses RegisterCoalescer pulls in this file...
DEFINING_FILE_FOR(SimpleRegisterCoalescing)