d153eeee97
not scheduled -> scheduled -> running -> not scheduled. The API and the manual page assume that, some comments in the code assume that, and looks like some contributors to the code also did. The problem is that this paradigm isn't true. A callout can be scheduled and running at the same time, which makes API description ambigouous. In such case callout_stop() family of functions/macros should return 1 and 0 at the same time, since it successfully unscheduled future callout but the current one is running. Before this change we returned 1 in such a case, with an exception that if running callout was migrating we returned 0, unless CS_MIGRBLOCK was specified. With this change, we now return 0 in case if future callout was unscheduled, but another one is still in action, indicating to API users that resources are not yet safe to be freed. However, the sleepqueue code relies on getting 1 return code in that case, and there already was CS_MIGRBLOCK flag, that covered one of the edge cases. In the new return path we will also use this flag, to keep sleepqueue safe. Since the flag CS_MIGRBLOCK doesn't block migration and now isn't limited to migration edge case, rename it to CS_EXECUTING. This change fixes panics on a high loaded TCP server. Reviewed by: jch, hselasky, rrs, kib Approved by: re (gjb) Differential Revision: https://reviews.freebsd.org/D7042
1378 lines
36 KiB
C
1378 lines
36 KiB
C
/*-
|
|
* Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Implementation of sleep queues used to hold queue of threads blocked on
|
|
* a wait channel. Sleep queues different from turnstiles in that wait
|
|
* channels are not owned by anyone, so there is no priority propagation.
|
|
* Sleep queues can also provide a timeout and can also be interrupted by
|
|
* signals. That said, there are several similarities between the turnstile
|
|
* and sleep queue implementations. (Note: turnstiles were implemented
|
|
* first.) For example, both use a hash table of the same size where each
|
|
* bucket is referred to as a "chain" that contains both a spin lock and
|
|
* a linked list of queues. An individual queue is located by using a hash
|
|
* to pick a chain, locking the chain, and then walking the chain searching
|
|
* for the queue. This means that a wait channel object does not need to
|
|
* embed it's queue head just as locks do not embed their turnstile queue
|
|
* head. Threads also carry around a sleep queue that they lend to the
|
|
* wait channel when blocking. Just as in turnstiles, the queue includes
|
|
* a free list of the sleep queues of other threads blocked on the same
|
|
* wait channel in the case of multiple waiters.
|
|
*
|
|
* Some additional functionality provided by sleep queues include the
|
|
* ability to set a timeout. The timeout is managed using a per-thread
|
|
* callout that resumes a thread if it is asleep. A thread may also
|
|
* catch signals while it is asleep (aka an interruptible sleep). The
|
|
* signal code uses sleepq_abort() to interrupt a sleeping thread. Finally,
|
|
* sleep queues also provide some extra assertions. One is not allowed to
|
|
* mix the sleep/wakeup and cv APIs for a given wait channel. Also, one
|
|
* must consistently use the same lock to synchronize with a wait channel,
|
|
* though this check is currently only a warning for sleep/wakeup due to
|
|
* pre-existing abuse of that API. The same lock must also be held when
|
|
* awakening threads, though that is currently only enforced for condition
|
|
* variables.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_sleepqueue_profiling.h"
|
|
#include "opt_ddb.h"
|
|
#include "opt_sched.h"
|
|
#include "opt_stack.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sdt.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/sleepqueue.h>
|
|
#include <sys/stack.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <vm/uma.h>
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Constants for the hash table of sleep queue chains.
|
|
* SC_TABLESIZE must be a power of two for SC_MASK to work properly.
|
|
*/
|
|
#define SC_TABLESIZE 256 /* Must be power of 2. */
|
|
#define SC_MASK (SC_TABLESIZE - 1)
|
|
#define SC_SHIFT 8
|
|
#define SC_HASH(wc) ((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
|
|
SC_MASK)
|
|
#define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)]
|
|
#define NR_SLEEPQS 2
|
|
/*
|
|
* There two different lists of sleep queues. Both lists are connected
|
|
* via the sq_hash entries. The first list is the sleep queue chain list
|
|
* that a sleep queue is on when it is attached to a wait channel. The
|
|
* second list is the free list hung off of a sleep queue that is attached
|
|
* to a wait channel.
|
|
*
|
|
* Each sleep queue also contains the wait channel it is attached to, the
|
|
* list of threads blocked on that wait channel, flags specific to the
|
|
* wait channel, and the lock used to synchronize with a wait channel.
|
|
* The flags are used to catch mismatches between the various consumers
|
|
* of the sleep queue API (e.g. sleep/wakeup and condition variables).
|
|
* The lock pointer is only used when invariants are enabled for various
|
|
* debugging checks.
|
|
*
|
|
* Locking key:
|
|
* c - sleep queue chain lock
|
|
*/
|
|
struct sleepqueue {
|
|
TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */
|
|
u_int sq_blockedcnt[NR_SLEEPQS]; /* (c) N. of blocked threads. */
|
|
LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */
|
|
LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */
|
|
void *sq_wchan; /* (c) Wait channel. */
|
|
int sq_type; /* (c) Queue type. */
|
|
#ifdef INVARIANTS
|
|
struct lock_object *sq_lock; /* (c) Associated lock. */
|
|
#endif
|
|
};
|
|
|
|
struct sleepqueue_chain {
|
|
LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */
|
|
struct mtx sc_lock; /* Spin lock for this chain. */
|
|
#ifdef SLEEPQUEUE_PROFILING
|
|
u_int sc_depth; /* Length of sc_queues. */
|
|
u_int sc_max_depth; /* Max length of sc_queues. */
|
|
#endif
|
|
};
|
|
|
|
#ifdef SLEEPQUEUE_PROFILING
|
|
u_int sleepq_max_depth;
|
|
static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
|
|
static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
|
|
"sleepq chain stats");
|
|
SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
|
|
0, "maxmimum depth achieved of a single chain");
|
|
|
|
static void sleepq_profile(const char *wmesg);
|
|
static int prof_enabled;
|
|
#endif
|
|
static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
|
|
static uma_zone_t sleepq_zone;
|
|
|
|
/*
|
|
* Prototypes for non-exported routines.
|
|
*/
|
|
static int sleepq_catch_signals(void *wchan, int pri);
|
|
static int sleepq_check_signals(void);
|
|
static int sleepq_check_timeout(void);
|
|
#ifdef INVARIANTS
|
|
static void sleepq_dtor(void *mem, int size, void *arg);
|
|
#endif
|
|
static int sleepq_init(void *mem, int size, int flags);
|
|
static int sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
|
|
int pri);
|
|
static void sleepq_switch(void *wchan, int pri);
|
|
static void sleepq_timeout(void *arg);
|
|
|
|
SDT_PROBE_DECLARE(sched, , , sleep);
|
|
SDT_PROBE_DECLARE(sched, , , wakeup);
|
|
|
|
/*
|
|
* Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
|
|
* Note that it must happen after sleepinit() has been fully executed, so
|
|
* it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
|
|
*/
|
|
#ifdef SLEEPQUEUE_PROFILING
|
|
static void
|
|
init_sleepqueue_profiling(void)
|
|
{
|
|
char chain_name[10];
|
|
struct sysctl_oid *chain_oid;
|
|
u_int i;
|
|
|
|
for (i = 0; i < SC_TABLESIZE; i++) {
|
|
snprintf(chain_name, sizeof(chain_name), "%u", i);
|
|
chain_oid = SYSCTL_ADD_NODE(NULL,
|
|
SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
|
|
chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
|
|
SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
|
|
"depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
|
|
SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
|
|
"max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
|
|
NULL);
|
|
}
|
|
}
|
|
|
|
SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
|
|
init_sleepqueue_profiling, NULL);
|
|
#endif
|
|
|
|
/*
|
|
* Early initialization of sleep queues that is called from the sleepinit()
|
|
* SYSINIT.
|
|
*/
|
|
void
|
|
init_sleepqueues(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < SC_TABLESIZE; i++) {
|
|
LIST_INIT(&sleepq_chains[i].sc_queues);
|
|
mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
|
|
MTX_SPIN | MTX_RECURSE);
|
|
}
|
|
sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
|
|
#ifdef INVARIANTS
|
|
NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
|
|
#else
|
|
NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
|
|
#endif
|
|
|
|
thread0.td_sleepqueue = sleepq_alloc();
|
|
}
|
|
|
|
/*
|
|
* Get a sleep queue for a new thread.
|
|
*/
|
|
struct sleepqueue *
|
|
sleepq_alloc(void)
|
|
{
|
|
|
|
return (uma_zalloc(sleepq_zone, M_WAITOK));
|
|
}
|
|
|
|
/*
|
|
* Free a sleep queue when a thread is destroyed.
|
|
*/
|
|
void
|
|
sleepq_free(struct sleepqueue *sq)
|
|
{
|
|
|
|
uma_zfree(sleepq_zone, sq);
|
|
}
|
|
|
|
/*
|
|
* Lock the sleep queue chain associated with the specified wait channel.
|
|
*/
|
|
void
|
|
sleepq_lock(void *wchan)
|
|
{
|
|
struct sleepqueue_chain *sc;
|
|
|
|
sc = SC_LOOKUP(wchan);
|
|
mtx_lock_spin(&sc->sc_lock);
|
|
}
|
|
|
|
/*
|
|
* Look up the sleep queue associated with a given wait channel in the hash
|
|
* table locking the associated sleep queue chain. If no queue is found in
|
|
* the table, NULL is returned.
|
|
*/
|
|
struct sleepqueue *
|
|
sleepq_lookup(void *wchan)
|
|
{
|
|
struct sleepqueue_chain *sc;
|
|
struct sleepqueue *sq;
|
|
|
|
KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
|
|
sc = SC_LOOKUP(wchan);
|
|
mtx_assert(&sc->sc_lock, MA_OWNED);
|
|
LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
|
|
if (sq->sq_wchan == wchan)
|
|
return (sq);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Unlock the sleep queue chain associated with a given wait channel.
|
|
*/
|
|
void
|
|
sleepq_release(void *wchan)
|
|
{
|
|
struct sleepqueue_chain *sc;
|
|
|
|
sc = SC_LOOKUP(wchan);
|
|
mtx_unlock_spin(&sc->sc_lock);
|
|
}
|
|
|
|
/*
|
|
* Places the current thread on the sleep queue for the specified wait
|
|
* channel. If INVARIANTS is enabled, then it associates the passed in
|
|
* lock with the sleepq to make sure it is held when that sleep queue is
|
|
* woken up.
|
|
*/
|
|
void
|
|
sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
|
|
int queue)
|
|
{
|
|
struct sleepqueue_chain *sc;
|
|
struct sleepqueue *sq;
|
|
struct thread *td;
|
|
|
|
td = curthread;
|
|
sc = SC_LOOKUP(wchan);
|
|
mtx_assert(&sc->sc_lock, MA_OWNED);
|
|
MPASS(td->td_sleepqueue != NULL);
|
|
MPASS(wchan != NULL);
|
|
MPASS((queue >= 0) && (queue < NR_SLEEPQS));
|
|
|
|
/* If this thread is not allowed to sleep, die a horrible death. */
|
|
KASSERT(td->td_no_sleeping == 0,
|
|
("%s: td %p to sleep on wchan %p with sleeping prohibited",
|
|
__func__, td, wchan));
|
|
|
|
/* Look up the sleep queue associated with the wait channel 'wchan'. */
|
|
sq = sleepq_lookup(wchan);
|
|
|
|
/*
|
|
* If the wait channel does not already have a sleep queue, use
|
|
* this thread's sleep queue. Otherwise, insert the current thread
|
|
* into the sleep queue already in use by this wait channel.
|
|
*/
|
|
if (sq == NULL) {
|
|
#ifdef INVARIANTS
|
|
int i;
|
|
|
|
sq = td->td_sleepqueue;
|
|
for (i = 0; i < NR_SLEEPQS; i++) {
|
|
KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
|
|
("thread's sleep queue %d is not empty", i));
|
|
KASSERT(sq->sq_blockedcnt[i] == 0,
|
|
("thread's sleep queue %d count mismatches", i));
|
|
}
|
|
KASSERT(LIST_EMPTY(&sq->sq_free),
|
|
("thread's sleep queue has a non-empty free list"));
|
|
KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
|
|
sq->sq_lock = lock;
|
|
#endif
|
|
#ifdef SLEEPQUEUE_PROFILING
|
|
sc->sc_depth++;
|
|
if (sc->sc_depth > sc->sc_max_depth) {
|
|
sc->sc_max_depth = sc->sc_depth;
|
|
if (sc->sc_max_depth > sleepq_max_depth)
|
|
sleepq_max_depth = sc->sc_max_depth;
|
|
}
|
|
#endif
|
|
sq = td->td_sleepqueue;
|
|
LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
|
|
sq->sq_wchan = wchan;
|
|
sq->sq_type = flags & SLEEPQ_TYPE;
|
|
} else {
|
|
MPASS(wchan == sq->sq_wchan);
|
|
MPASS(lock == sq->sq_lock);
|
|
MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
|
|
LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
|
|
}
|
|
thread_lock(td);
|
|
TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
|
|
sq->sq_blockedcnt[queue]++;
|
|
td->td_sleepqueue = NULL;
|
|
td->td_sqqueue = queue;
|
|
td->td_wchan = wchan;
|
|
td->td_wmesg = wmesg;
|
|
if (flags & SLEEPQ_INTERRUPTIBLE) {
|
|
td->td_flags |= TDF_SINTR;
|
|
td->td_flags &= ~TDF_SLEEPABORT;
|
|
}
|
|
thread_unlock(td);
|
|
}
|
|
|
|
/*
|
|
* Sets a timeout that will remove the current thread from the specified
|
|
* sleep queue after timo ticks if the thread has not already been awakened.
|
|
*/
|
|
void
|
|
sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr,
|
|
int flags)
|
|
{
|
|
struct sleepqueue_chain *sc;
|
|
struct thread *td;
|
|
|
|
td = curthread;
|
|
sc = SC_LOOKUP(wchan);
|
|
mtx_assert(&sc->sc_lock, MA_OWNED);
|
|
MPASS(TD_ON_SLEEPQ(td));
|
|
MPASS(td->td_sleepqueue == NULL);
|
|
MPASS(wchan != NULL);
|
|
if (cold)
|
|
panic("timed sleep before timers are working");
|
|
callout_reset_sbt_on(&td->td_slpcallout, sbt, pr,
|
|
sleepq_timeout, td, PCPU_GET(cpuid), flags | C_DIRECT_EXEC);
|
|
}
|
|
|
|
/*
|
|
* Return the number of actual sleepers for the specified queue.
|
|
*/
|
|
u_int
|
|
sleepq_sleepcnt(void *wchan, int queue)
|
|
{
|
|
struct sleepqueue *sq;
|
|
|
|
KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
|
|
MPASS((queue >= 0) && (queue < NR_SLEEPQS));
|
|
sq = sleepq_lookup(wchan);
|
|
if (sq == NULL)
|
|
return (0);
|
|
return (sq->sq_blockedcnt[queue]);
|
|
}
|
|
|
|
/*
|
|
* Marks the pending sleep of the current thread as interruptible and
|
|
* makes an initial check for pending signals before putting a thread
|
|
* to sleep. Enters and exits with the thread lock held. Thread lock
|
|
* may have transitioned from the sleepq lock to a run lock.
|
|
*/
|
|
static int
|
|
sleepq_catch_signals(void *wchan, int pri)
|
|
{
|
|
struct sleepqueue_chain *sc;
|
|
struct sleepqueue *sq;
|
|
struct thread *td;
|
|
struct proc *p;
|
|
struct sigacts *ps;
|
|
int sig, ret;
|
|
|
|
td = curthread;
|
|
p = curproc;
|
|
sc = SC_LOOKUP(wchan);
|
|
mtx_assert(&sc->sc_lock, MA_OWNED);
|
|
MPASS(wchan != NULL);
|
|
if ((td->td_pflags & TDP_WAKEUP) != 0) {
|
|
td->td_pflags &= ~TDP_WAKEUP;
|
|
ret = EINTR;
|
|
thread_lock(td);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* See if there are any pending signals for this thread. If not
|
|
* we can switch immediately. Otherwise do the signal processing
|
|
* directly.
|
|
*/
|
|
thread_lock(td);
|
|
if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
|
|
sleepq_switch(wchan, pri);
|
|
return (0);
|
|
}
|
|
thread_unlock(td);
|
|
mtx_unlock_spin(&sc->sc_lock);
|
|
CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
|
|
(void *)td, (long)p->p_pid, td->td_name);
|
|
PROC_LOCK(p);
|
|
ps = p->p_sigacts;
|
|
mtx_lock(&ps->ps_mtx);
|
|
sig = cursig(td);
|
|
if (sig == -1) {
|
|
mtx_unlock(&ps->ps_mtx);
|
|
KASSERT((td->td_flags & TDF_SBDRY) != 0, ("lost TDF_SBDRY"));
|
|
KASSERT(TD_SBDRY_INTR(td),
|
|
("lost TDF_SERESTART of TDF_SEINTR"));
|
|
KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
|
|
(TDF_SEINTR | TDF_SERESTART),
|
|
("both TDF_SEINTR and TDF_SERESTART"));
|
|
ret = TD_SBDRY_ERRNO(td);
|
|
} else if (sig == 0) {
|
|
mtx_unlock(&ps->ps_mtx);
|
|
ret = thread_suspend_check(1);
|
|
MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
|
|
} else {
|
|
if (SIGISMEMBER(ps->ps_sigintr, sig))
|
|
ret = EINTR;
|
|
else
|
|
ret = ERESTART;
|
|
mtx_unlock(&ps->ps_mtx);
|
|
}
|
|
/*
|
|
* Lock the per-process spinlock prior to dropping the PROC_LOCK
|
|
* to avoid a signal delivery race. PROC_LOCK, PROC_SLOCK, and
|
|
* thread_lock() are currently held in tdsendsignal().
|
|
*/
|
|
PROC_SLOCK(p);
|
|
mtx_lock_spin(&sc->sc_lock);
|
|
PROC_UNLOCK(p);
|
|
thread_lock(td);
|
|
PROC_SUNLOCK(p);
|
|
if (ret == 0) {
|
|
sleepq_switch(wchan, pri);
|
|
return (0);
|
|
}
|
|
out:
|
|
/*
|
|
* There were pending signals and this thread is still
|
|
* on the sleep queue, remove it from the sleep queue.
|
|
*/
|
|
if (TD_ON_SLEEPQ(td)) {
|
|
sq = sleepq_lookup(wchan);
|
|
if (sleepq_resume_thread(sq, td, 0)) {
|
|
#ifdef INVARIANTS
|
|
/*
|
|
* This thread hasn't gone to sleep yet, so it
|
|
* should not be swapped out.
|
|
*/
|
|
panic("not waking up swapper");
|
|
#endif
|
|
}
|
|
}
|
|
mtx_unlock_spin(&sc->sc_lock);
|
|
MPASS(td->td_lock != &sc->sc_lock);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Switches to another thread if we are still asleep on a sleep queue.
|
|
* Returns with thread lock.
|
|
*/
|
|
static void
|
|
sleepq_switch(void *wchan, int pri)
|
|
{
|
|
struct sleepqueue_chain *sc;
|
|
struct sleepqueue *sq;
|
|
struct thread *td;
|
|
|
|
td = curthread;
|
|
sc = SC_LOOKUP(wchan);
|
|
mtx_assert(&sc->sc_lock, MA_OWNED);
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
|
|
/*
|
|
* If we have a sleep queue, then we've already been woken up, so
|
|
* just return.
|
|
*/
|
|
if (td->td_sleepqueue != NULL) {
|
|
mtx_unlock_spin(&sc->sc_lock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If TDF_TIMEOUT is set, then our sleep has been timed out
|
|
* already but we are still on the sleep queue, so dequeue the
|
|
* thread and return.
|
|
*/
|
|
if (td->td_flags & TDF_TIMEOUT) {
|
|
MPASS(TD_ON_SLEEPQ(td));
|
|
sq = sleepq_lookup(wchan);
|
|
if (sleepq_resume_thread(sq, td, 0)) {
|
|
#ifdef INVARIANTS
|
|
/*
|
|
* This thread hasn't gone to sleep yet, so it
|
|
* should not be swapped out.
|
|
*/
|
|
panic("not waking up swapper");
|
|
#endif
|
|
}
|
|
mtx_unlock_spin(&sc->sc_lock);
|
|
return;
|
|
}
|
|
#ifdef SLEEPQUEUE_PROFILING
|
|
if (prof_enabled)
|
|
sleepq_profile(td->td_wmesg);
|
|
#endif
|
|
MPASS(td->td_sleepqueue == NULL);
|
|
sched_sleep(td, pri);
|
|
thread_lock_set(td, &sc->sc_lock);
|
|
SDT_PROBE0(sched, , , sleep);
|
|
TD_SET_SLEEPING(td);
|
|
mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
|
|
KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
|
|
CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
|
|
(void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
|
|
}
|
|
|
|
/*
|
|
* Check to see if we timed out.
|
|
*/
|
|
static int
|
|
sleepq_check_timeout(void)
|
|
{
|
|
struct thread *td;
|
|
|
|
td = curthread;
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
|
|
/*
|
|
* If TDF_TIMEOUT is set, we timed out.
|
|
*/
|
|
if (td->td_flags & TDF_TIMEOUT) {
|
|
td->td_flags &= ~TDF_TIMEOUT;
|
|
return (EWOULDBLOCK);
|
|
}
|
|
|
|
/*
|
|
* If TDF_TIMOFAIL is set, the timeout ran after we had
|
|
* already been woken up.
|
|
*/
|
|
if (td->td_flags & TDF_TIMOFAIL)
|
|
td->td_flags &= ~TDF_TIMOFAIL;
|
|
|
|
/*
|
|
* If callout_stop() fails, then the timeout is running on
|
|
* another CPU, so synchronize with it to avoid having it
|
|
* accidentally wake up a subsequent sleep.
|
|
*/
|
|
else if (_callout_stop_safe(&td->td_slpcallout, CS_EXECUTING, NULL)
|
|
== 0) {
|
|
td->td_flags |= TDF_TIMEOUT;
|
|
TD_SET_SLEEPING(td);
|
|
mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check to see if we were awoken by a signal.
|
|
*/
|
|
static int
|
|
sleepq_check_signals(void)
|
|
{
|
|
struct thread *td;
|
|
|
|
td = curthread;
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
|
|
/* We are no longer in an interruptible sleep. */
|
|
if (td->td_flags & TDF_SINTR)
|
|
td->td_flags &= ~TDF_SINTR;
|
|
|
|
if (td->td_flags & TDF_SLEEPABORT) {
|
|
td->td_flags &= ~TDF_SLEEPABORT;
|
|
return (td->td_intrval);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Block the current thread until it is awakened from its sleep queue.
|
|
*/
|
|
void
|
|
sleepq_wait(void *wchan, int pri)
|
|
{
|
|
struct thread *td;
|
|
|
|
td = curthread;
|
|
MPASS(!(td->td_flags & TDF_SINTR));
|
|
thread_lock(td);
|
|
sleepq_switch(wchan, pri);
|
|
thread_unlock(td);
|
|
}
|
|
|
|
/*
|
|
* Block the current thread until it is awakened from its sleep queue
|
|
* or it is interrupted by a signal.
|
|
*/
|
|
int
|
|
sleepq_wait_sig(void *wchan, int pri)
|
|
{
|
|
int rcatch;
|
|
int rval;
|
|
|
|
rcatch = sleepq_catch_signals(wchan, pri);
|
|
rval = sleepq_check_signals();
|
|
thread_unlock(curthread);
|
|
if (rcatch)
|
|
return (rcatch);
|
|
return (rval);
|
|
}
|
|
|
|
/*
|
|
* Block the current thread until it is awakened from its sleep queue
|
|
* or it times out while waiting.
|
|
*/
|
|
int
|
|
sleepq_timedwait(void *wchan, int pri)
|
|
{
|
|
struct thread *td;
|
|
int rval;
|
|
|
|
td = curthread;
|
|
MPASS(!(td->td_flags & TDF_SINTR));
|
|
thread_lock(td);
|
|
sleepq_switch(wchan, pri);
|
|
rval = sleepq_check_timeout();
|
|
thread_unlock(td);
|
|
|
|
return (rval);
|
|
}
|
|
|
|
/*
|
|
* Block the current thread until it is awakened from its sleep queue,
|
|
* it is interrupted by a signal, or it times out waiting to be awakened.
|
|
*/
|
|
int
|
|
sleepq_timedwait_sig(void *wchan, int pri)
|
|
{
|
|
int rcatch, rvalt, rvals;
|
|
|
|
rcatch = sleepq_catch_signals(wchan, pri);
|
|
rvalt = sleepq_check_timeout();
|
|
rvals = sleepq_check_signals();
|
|
thread_unlock(curthread);
|
|
if (rcatch)
|
|
return (rcatch);
|
|
if (rvals)
|
|
return (rvals);
|
|
return (rvalt);
|
|
}
|
|
|
|
/*
|
|
* Returns the type of sleepqueue given a waitchannel.
|
|
*/
|
|
int
|
|
sleepq_type(void *wchan)
|
|
{
|
|
struct sleepqueue *sq;
|
|
int type;
|
|
|
|
MPASS(wchan != NULL);
|
|
|
|
sleepq_lock(wchan);
|
|
sq = sleepq_lookup(wchan);
|
|
if (sq == NULL) {
|
|
sleepq_release(wchan);
|
|
return (-1);
|
|
}
|
|
type = sq->sq_type;
|
|
sleepq_release(wchan);
|
|
return (type);
|
|
}
|
|
|
|
/*
|
|
* Removes a thread from a sleep queue and makes it
|
|
* runnable.
|
|
*/
|
|
static int
|
|
sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
|
|
{
|
|
struct sleepqueue_chain *sc;
|
|
|
|
MPASS(td != NULL);
|
|
MPASS(sq->sq_wchan != NULL);
|
|
MPASS(td->td_wchan == sq->sq_wchan);
|
|
MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
sc = SC_LOOKUP(sq->sq_wchan);
|
|
mtx_assert(&sc->sc_lock, MA_OWNED);
|
|
|
|
SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
|
|
|
|
/* Remove the thread from the queue. */
|
|
sq->sq_blockedcnt[td->td_sqqueue]--;
|
|
TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
|
|
|
|
/*
|
|
* Get a sleep queue for this thread. If this is the last waiter,
|
|
* use the queue itself and take it out of the chain, otherwise,
|
|
* remove a queue from the free list.
|
|
*/
|
|
if (LIST_EMPTY(&sq->sq_free)) {
|
|
td->td_sleepqueue = sq;
|
|
#ifdef INVARIANTS
|
|
sq->sq_wchan = NULL;
|
|
#endif
|
|
#ifdef SLEEPQUEUE_PROFILING
|
|
sc->sc_depth--;
|
|
#endif
|
|
} else
|
|
td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
|
|
LIST_REMOVE(td->td_sleepqueue, sq_hash);
|
|
|
|
td->td_wmesg = NULL;
|
|
td->td_wchan = NULL;
|
|
td->td_flags &= ~TDF_SINTR;
|
|
|
|
CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
|
|
(void *)td, (long)td->td_proc->p_pid, td->td_name);
|
|
|
|
/* Adjust priority if requested. */
|
|
MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
|
|
if (pri != 0 && td->td_priority > pri &&
|
|
PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
|
|
sched_prio(td, pri);
|
|
|
|
/*
|
|
* Note that thread td might not be sleeping if it is running
|
|
* sleepq_catch_signals() on another CPU or is blocked on its
|
|
* proc lock to check signals. There's no need to mark the
|
|
* thread runnable in that case.
|
|
*/
|
|
if (TD_IS_SLEEPING(td)) {
|
|
TD_CLR_SLEEPING(td);
|
|
return (setrunnable(td));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
#ifdef INVARIANTS
|
|
/*
|
|
* UMA zone item deallocator.
|
|
*/
|
|
static void
|
|
sleepq_dtor(void *mem, int size, void *arg)
|
|
{
|
|
struct sleepqueue *sq;
|
|
int i;
|
|
|
|
sq = mem;
|
|
for (i = 0; i < NR_SLEEPQS; i++) {
|
|
MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
|
|
MPASS(sq->sq_blockedcnt[i] == 0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* UMA zone item initializer.
|
|
*/
|
|
static int
|
|
sleepq_init(void *mem, int size, int flags)
|
|
{
|
|
struct sleepqueue *sq;
|
|
int i;
|
|
|
|
bzero(mem, size);
|
|
sq = mem;
|
|
for (i = 0; i < NR_SLEEPQS; i++) {
|
|
TAILQ_INIT(&sq->sq_blocked[i]);
|
|
sq->sq_blockedcnt[i] = 0;
|
|
}
|
|
LIST_INIT(&sq->sq_free);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Find the highest priority thread sleeping on a wait channel and resume it.
|
|
*/
|
|
int
|
|
sleepq_signal(void *wchan, int flags, int pri, int queue)
|
|
{
|
|
struct sleepqueue *sq;
|
|
struct thread *td, *besttd;
|
|
int wakeup_swapper;
|
|
|
|
CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
|
|
KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
|
|
MPASS((queue >= 0) && (queue < NR_SLEEPQS));
|
|
sq = sleepq_lookup(wchan);
|
|
if (sq == NULL)
|
|
return (0);
|
|
KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
|
|
("%s: mismatch between sleep/wakeup and cv_*", __func__));
|
|
|
|
/*
|
|
* Find the highest priority thread on the queue. If there is a
|
|
* tie, use the thread that first appears in the queue as it has
|
|
* been sleeping the longest since threads are always added to
|
|
* the tail of sleep queues.
|
|
*/
|
|
besttd = NULL;
|
|
TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
|
|
if (besttd == NULL || td->td_priority < besttd->td_priority)
|
|
besttd = td;
|
|
}
|
|
MPASS(besttd != NULL);
|
|
thread_lock(besttd);
|
|
wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
|
|
thread_unlock(besttd);
|
|
return (wakeup_swapper);
|
|
}
|
|
|
|
/*
|
|
* Resume all threads sleeping on a specified wait channel.
|
|
*/
|
|
int
|
|
sleepq_broadcast(void *wchan, int flags, int pri, int queue)
|
|
{
|
|
struct sleepqueue *sq;
|
|
struct thread *td;
|
|
int wakeup_swapper;
|
|
|
|
CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
|
|
KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
|
|
MPASS((queue >= 0) && (queue < NR_SLEEPQS));
|
|
sq = sleepq_lookup(wchan);
|
|
if (sq == NULL)
|
|
return (0);
|
|
KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
|
|
("%s: mismatch between sleep/wakeup and cv_*", __func__));
|
|
|
|
/* Resume all blocked threads on the sleep queue. */
|
|
wakeup_swapper = 0;
|
|
while ((td = TAILQ_FIRST(&sq->sq_blocked[queue])) != NULL) {
|
|
thread_lock(td);
|
|
wakeup_swapper |= sleepq_resume_thread(sq, td, pri);
|
|
thread_unlock(td);
|
|
}
|
|
return (wakeup_swapper);
|
|
}
|
|
|
|
/*
|
|
* Time sleeping threads out. When the timeout expires, the thread is
|
|
* removed from the sleep queue and made runnable if it is still asleep.
|
|
*/
|
|
static void
|
|
sleepq_timeout(void *arg)
|
|
{
|
|
struct sleepqueue_chain *sc;
|
|
struct sleepqueue *sq;
|
|
struct thread *td;
|
|
void *wchan;
|
|
int wakeup_swapper;
|
|
|
|
td = arg;
|
|
wakeup_swapper = 0;
|
|
CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
|
|
(void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
|
|
|
|
/*
|
|
* First, see if the thread is asleep and get the wait channel if
|
|
* it is.
|
|
*/
|
|
thread_lock(td);
|
|
if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
|
|
wchan = td->td_wchan;
|
|
sc = SC_LOOKUP(wchan);
|
|
THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
|
|
sq = sleepq_lookup(wchan);
|
|
MPASS(sq != NULL);
|
|
td->td_flags |= TDF_TIMEOUT;
|
|
wakeup_swapper = sleepq_resume_thread(sq, td, 0);
|
|
thread_unlock(td);
|
|
if (wakeup_swapper)
|
|
kick_proc0();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the thread is on the SLEEPQ but isn't sleeping yet, it
|
|
* can either be on another CPU in between sleepq_add() and
|
|
* one of the sleepq_*wait*() routines or it can be in
|
|
* sleepq_catch_signals().
|
|
*/
|
|
if (TD_ON_SLEEPQ(td)) {
|
|
td->td_flags |= TDF_TIMEOUT;
|
|
thread_unlock(td);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Now check for the edge cases. First, if TDF_TIMEOUT is set,
|
|
* then the other thread has already yielded to us, so clear
|
|
* the flag and resume it. If TDF_TIMEOUT is not set, then the
|
|
* we know that the other thread is not on a sleep queue, but it
|
|
* hasn't resumed execution yet. In that case, set TDF_TIMOFAIL
|
|
* to let it know that the timeout has already run and doesn't
|
|
* need to be canceled.
|
|
*/
|
|
if (td->td_flags & TDF_TIMEOUT) {
|
|
MPASS(TD_IS_SLEEPING(td));
|
|
td->td_flags &= ~TDF_TIMEOUT;
|
|
TD_CLR_SLEEPING(td);
|
|
wakeup_swapper = setrunnable(td);
|
|
} else
|
|
td->td_flags |= TDF_TIMOFAIL;
|
|
thread_unlock(td);
|
|
if (wakeup_swapper)
|
|
kick_proc0();
|
|
}
|
|
|
|
/*
|
|
* Resumes a specific thread from the sleep queue associated with a specific
|
|
* wait channel if it is on that queue.
|
|
*/
|
|
void
|
|
sleepq_remove(struct thread *td, void *wchan)
|
|
{
|
|
struct sleepqueue *sq;
|
|
int wakeup_swapper;
|
|
|
|
/*
|
|
* Look up the sleep queue for this wait channel, then re-check
|
|
* that the thread is asleep on that channel, if it is not, then
|
|
* bail.
|
|
*/
|
|
MPASS(wchan != NULL);
|
|
sleepq_lock(wchan);
|
|
sq = sleepq_lookup(wchan);
|
|
/*
|
|
* We can not lock the thread here as it may be sleeping on a
|
|
* different sleepq. However, holding the sleepq lock for this
|
|
* wchan can guarantee that we do not miss a wakeup for this
|
|
* channel. The asserts below will catch any false positives.
|
|
*/
|
|
if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
|
|
sleepq_release(wchan);
|
|
return;
|
|
}
|
|
/* Thread is asleep on sleep queue sq, so wake it up. */
|
|
thread_lock(td);
|
|
MPASS(sq != NULL);
|
|
MPASS(td->td_wchan == wchan);
|
|
wakeup_swapper = sleepq_resume_thread(sq, td, 0);
|
|
thread_unlock(td);
|
|
sleepq_release(wchan);
|
|
if (wakeup_swapper)
|
|
kick_proc0();
|
|
}
|
|
|
|
/*
|
|
* Abort a thread as if an interrupt had occurred. Only abort
|
|
* interruptible waits (unfortunately it isn't safe to abort others).
|
|
*/
|
|
int
|
|
sleepq_abort(struct thread *td, int intrval)
|
|
{
|
|
struct sleepqueue *sq;
|
|
void *wchan;
|
|
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
MPASS(TD_ON_SLEEPQ(td));
|
|
MPASS(td->td_flags & TDF_SINTR);
|
|
MPASS(intrval == EINTR || intrval == ERESTART);
|
|
|
|
/*
|
|
* If the TDF_TIMEOUT flag is set, just leave. A
|
|
* timeout is scheduled anyhow.
|
|
*/
|
|
if (td->td_flags & TDF_TIMEOUT)
|
|
return (0);
|
|
|
|
CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
|
|
(void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
|
|
td->td_intrval = intrval;
|
|
td->td_flags |= TDF_SLEEPABORT;
|
|
/*
|
|
* If the thread has not slept yet it will find the signal in
|
|
* sleepq_catch_signals() and call sleepq_resume_thread. Otherwise
|
|
* we have to do it here.
|
|
*/
|
|
if (!TD_IS_SLEEPING(td))
|
|
return (0);
|
|
wchan = td->td_wchan;
|
|
MPASS(wchan != NULL);
|
|
sq = sleepq_lookup(wchan);
|
|
MPASS(sq != NULL);
|
|
|
|
/* Thread is asleep on sleep queue sq, so wake it up. */
|
|
return (sleepq_resume_thread(sq, td, 0));
|
|
}
|
|
|
|
/*
|
|
* Prints the stacks of all threads presently sleeping on wchan/queue to
|
|
* the sbuf sb. Sets count_stacks_printed to the number of stacks actually
|
|
* printed. Typically, this will equal the number of threads sleeping on the
|
|
* queue, but may be less if sb overflowed before all stacks were printed.
|
|
*/
|
|
#ifdef STACK
|
|
int
|
|
sleepq_sbuf_print_stacks(struct sbuf *sb, void *wchan, int queue,
|
|
int *count_stacks_printed)
|
|
{
|
|
struct thread *td, *td_next;
|
|
struct sleepqueue *sq;
|
|
struct stack **st;
|
|
struct sbuf **td_infos;
|
|
int i, stack_idx, error, stacks_to_allocate;
|
|
bool finished, partial_print;
|
|
|
|
error = 0;
|
|
finished = false;
|
|
partial_print = false;
|
|
|
|
KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
|
|
MPASS((queue >= 0) && (queue < NR_SLEEPQS));
|
|
|
|
stacks_to_allocate = 10;
|
|
for (i = 0; i < 3 && !finished ; i++) {
|
|
/* We cannot malloc while holding the queue's spinlock, so
|
|
* we do our mallocs now, and hope it is enough. If it
|
|
* isn't, we will free these, drop the lock, malloc more,
|
|
* and try again, up to a point. After that point we will
|
|
* give up and report ENOMEM. We also cannot write to sb
|
|
* during this time since the client may have set the
|
|
* SBUF_AUTOEXTEND flag on their sbuf, which could cause a
|
|
* malloc as we print to it. So we defer actually printing
|
|
* to sb until after we drop the spinlock.
|
|
*/
|
|
|
|
/* Where we will store the stacks. */
|
|
st = malloc(sizeof(struct stack *) * stacks_to_allocate,
|
|
M_TEMP, M_WAITOK);
|
|
for (stack_idx = 0; stack_idx < stacks_to_allocate;
|
|
stack_idx++)
|
|
st[stack_idx] = stack_create();
|
|
|
|
/* Where we will store the td name, tid, etc. */
|
|
td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate,
|
|
M_TEMP, M_WAITOK);
|
|
for (stack_idx = 0; stack_idx < stacks_to_allocate;
|
|
stack_idx++)
|
|
td_infos[stack_idx] = sbuf_new(NULL, NULL,
|
|
MAXCOMLEN + sizeof(struct thread *) * 2 + 40,
|
|
SBUF_FIXEDLEN);
|
|
|
|
sleepq_lock(wchan);
|
|
sq = sleepq_lookup(wchan);
|
|
if (sq == NULL) {
|
|
/* This sleepq does not exist; exit and return ENOENT. */
|
|
error = ENOENT;
|
|
finished = true;
|
|
sleepq_release(wchan);
|
|
goto loop_end;
|
|
}
|
|
|
|
stack_idx = 0;
|
|
/* Save thread info */
|
|
TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq,
|
|
td_next) {
|
|
if (stack_idx >= stacks_to_allocate)
|
|
goto loop_end;
|
|
|
|
/* Note the td_lock is equal to the sleepq_lock here. */
|
|
stack_save_td(st[stack_idx], td);
|
|
|
|
sbuf_printf(td_infos[stack_idx], "%d: %s %p",
|
|
td->td_tid, td->td_name, td);
|
|
|
|
++stack_idx;
|
|
}
|
|
|
|
finished = true;
|
|
sleepq_release(wchan);
|
|
|
|
/* Print the stacks */
|
|
for (i = 0; i < stack_idx; i++) {
|
|
sbuf_finish(td_infos[i]);
|
|
sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i]));
|
|
stack_sbuf_print(sb, st[i]);
|
|
sbuf_printf(sb, "\n");
|
|
|
|
error = sbuf_error(sb);
|
|
if (error == 0)
|
|
*count_stacks_printed = stack_idx;
|
|
}
|
|
|
|
loop_end:
|
|
if (!finished)
|
|
sleepq_release(wchan);
|
|
for (stack_idx = 0; stack_idx < stacks_to_allocate;
|
|
stack_idx++)
|
|
stack_destroy(st[stack_idx]);
|
|
for (stack_idx = 0; stack_idx < stacks_to_allocate;
|
|
stack_idx++)
|
|
sbuf_delete(td_infos[stack_idx]);
|
|
free(st, M_TEMP);
|
|
free(td_infos, M_TEMP);
|
|
stacks_to_allocate *= 10;
|
|
}
|
|
|
|
if (!finished && error == 0)
|
|
error = ENOMEM;
|
|
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
#ifdef SLEEPQUEUE_PROFILING
|
|
#define SLEEPQ_PROF_LOCATIONS 1024
|
|
#define SLEEPQ_SBUFSIZE 512
|
|
struct sleepq_prof {
|
|
LIST_ENTRY(sleepq_prof) sp_link;
|
|
const char *sp_wmesg;
|
|
long sp_count;
|
|
};
|
|
|
|
LIST_HEAD(sqphead, sleepq_prof);
|
|
|
|
struct sqphead sleepq_prof_free;
|
|
struct sqphead sleepq_hash[SC_TABLESIZE];
|
|
static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
|
|
static struct mtx sleepq_prof_lock;
|
|
MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
|
|
|
|
static void
|
|
sleepq_profile(const char *wmesg)
|
|
{
|
|
struct sleepq_prof *sp;
|
|
|
|
mtx_lock_spin(&sleepq_prof_lock);
|
|
if (prof_enabled == 0)
|
|
goto unlock;
|
|
LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
|
|
if (sp->sp_wmesg == wmesg)
|
|
goto done;
|
|
sp = LIST_FIRST(&sleepq_prof_free);
|
|
if (sp == NULL)
|
|
goto unlock;
|
|
sp->sp_wmesg = wmesg;
|
|
LIST_REMOVE(sp, sp_link);
|
|
LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
|
|
done:
|
|
sp->sp_count++;
|
|
unlock:
|
|
mtx_unlock_spin(&sleepq_prof_lock);
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sleepq_prof_reset(void)
|
|
{
|
|
struct sleepq_prof *sp;
|
|
int enabled;
|
|
int i;
|
|
|
|
mtx_lock_spin(&sleepq_prof_lock);
|
|
enabled = prof_enabled;
|
|
prof_enabled = 0;
|
|
for (i = 0; i < SC_TABLESIZE; i++)
|
|
LIST_INIT(&sleepq_hash[i]);
|
|
LIST_INIT(&sleepq_prof_free);
|
|
for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
|
|
sp = &sleepq_profent[i];
|
|
sp->sp_wmesg = NULL;
|
|
sp->sp_count = 0;
|
|
LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
|
|
}
|
|
prof_enabled = enabled;
|
|
mtx_unlock_spin(&sleepq_prof_lock);
|
|
}
|
|
|
|
static int
|
|
enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, v;
|
|
|
|
v = prof_enabled;
|
|
error = sysctl_handle_int(oidp, &v, v, req);
|
|
if (error)
|
|
return (error);
|
|
if (req->newptr == NULL)
|
|
return (error);
|
|
if (v == prof_enabled)
|
|
return (0);
|
|
if (v == 1)
|
|
sleepq_prof_reset();
|
|
mtx_lock_spin(&sleepq_prof_lock);
|
|
prof_enabled = !!v;
|
|
mtx_unlock_spin(&sleepq_prof_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, v;
|
|
|
|
v = 0;
|
|
error = sysctl_handle_int(oidp, &v, 0, req);
|
|
if (error)
|
|
return (error);
|
|
if (req->newptr == NULL)
|
|
return (error);
|
|
if (v == 0)
|
|
return (0);
|
|
sleepq_prof_reset();
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct sleepq_prof *sp;
|
|
struct sbuf *sb;
|
|
int enabled;
|
|
int error;
|
|
int i;
|
|
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
|
|
sbuf_printf(sb, "\nwmesg\tcount\n");
|
|
enabled = prof_enabled;
|
|
mtx_lock_spin(&sleepq_prof_lock);
|
|
prof_enabled = 0;
|
|
mtx_unlock_spin(&sleepq_prof_lock);
|
|
for (i = 0; i < SC_TABLESIZE; i++) {
|
|
LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
|
|
sbuf_printf(sb, "%s\t%ld\n",
|
|
sp->sp_wmesg, sp->sp_count);
|
|
}
|
|
}
|
|
mtx_lock_spin(&sleepq_prof_lock);
|
|
prof_enabled = enabled;
|
|
mtx_unlock_spin(&sleepq_prof_lock);
|
|
|
|
error = sbuf_finish(sb);
|
|
sbuf_delete(sb);
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
|
|
NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
|
|
SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
|
|
NULL, 0, reset_sleepq_prof_stats, "I",
|
|
"Reset sleepqueue profiling statistics");
|
|
SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
|
|
NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
|
|
#endif
|
|
|
|
#ifdef DDB
|
|
DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
|
|
{
|
|
struct sleepqueue_chain *sc;
|
|
struct sleepqueue *sq;
|
|
#ifdef INVARIANTS
|
|
struct lock_object *lock;
|
|
#endif
|
|
struct thread *td;
|
|
void *wchan;
|
|
int i;
|
|
|
|
if (!have_addr)
|
|
return;
|
|
|
|
/*
|
|
* First, see if there is an active sleep queue for the wait channel
|
|
* indicated by the address.
|
|
*/
|
|
wchan = (void *)addr;
|
|
sc = SC_LOOKUP(wchan);
|
|
LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
|
|
if (sq->sq_wchan == wchan)
|
|
goto found;
|
|
|
|
/*
|
|
* Second, see if there is an active sleep queue at the address
|
|
* indicated.
|
|
*/
|
|
for (i = 0; i < SC_TABLESIZE; i++)
|
|
LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
|
|
if (sq == (struct sleepqueue *)addr)
|
|
goto found;
|
|
}
|
|
|
|
db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
|
|
return;
|
|
found:
|
|
db_printf("Wait channel: %p\n", sq->sq_wchan);
|
|
db_printf("Queue type: %d\n", sq->sq_type);
|
|
#ifdef INVARIANTS
|
|
if (sq->sq_lock) {
|
|
lock = sq->sq_lock;
|
|
db_printf("Associated Interlock: %p - (%s) %s\n", lock,
|
|
LOCK_CLASS(lock)->lc_name, lock->lo_name);
|
|
}
|
|
#endif
|
|
db_printf("Blocked threads:\n");
|
|
for (i = 0; i < NR_SLEEPQS; i++) {
|
|
db_printf("\nQueue[%d]:\n", i);
|
|
if (TAILQ_EMPTY(&sq->sq_blocked[i]))
|
|
db_printf("\tempty\n");
|
|
else
|
|
TAILQ_FOREACH(td, &sq->sq_blocked[0],
|
|
td_slpq) {
|
|
db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
|
|
td->td_tid, td->td_proc->p_pid,
|
|
td->td_name);
|
|
}
|
|
db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
|
|
}
|
|
}
|
|
|
|
/* Alias 'show sleepqueue' to 'show sleepq'. */
|
|
DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
|
|
#endif
|