1017 lines
28 KiB
C
1017 lines
28 KiB
C
/* Dead code elimination pass for the GNU compiler.
|
||
Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
|
||
Contributed by Ben Elliston <bje@redhat.com>
|
||
and Andrew MacLeod <amacleod@redhat.com>
|
||
Adapted to use control dependence by Steven Bosscher, SUSE Labs.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it
|
||
under the terms of the GNU General Public License as published by the
|
||
Free Software Foundation; either version 2, or (at your option) any
|
||
later version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
/* Dead code elimination.
|
||
|
||
References:
|
||
|
||
Building an Optimizing Compiler,
|
||
Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
|
||
|
||
Advanced Compiler Design and Implementation,
|
||
Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
|
||
|
||
Dead-code elimination is the removal of statements which have no
|
||
impact on the program's output. "Dead statements" have no impact
|
||
on the program's output, while "necessary statements" may have
|
||
impact on the output.
|
||
|
||
The algorithm consists of three phases:
|
||
1. Marking as necessary all statements known to be necessary,
|
||
e.g. most function calls, writing a value to memory, etc;
|
||
2. Propagating necessary statements, e.g., the statements
|
||
giving values to operands in necessary statements; and
|
||
3. Removing dead statements. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "ggc.h"
|
||
|
||
/* These RTL headers are needed for basic-block.h. */
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "hard-reg-set.h"
|
||
#include "obstack.h"
|
||
#include "basic-block.h"
|
||
|
||
#include "tree.h"
|
||
#include "diagnostic.h"
|
||
#include "tree-flow.h"
|
||
#include "tree-gimple.h"
|
||
#include "tree-dump.h"
|
||
#include "tree-pass.h"
|
||
#include "timevar.h"
|
||
#include "flags.h"
|
||
#include "cfgloop.h"
|
||
#include "tree-scalar-evolution.h"
|
||
|
||
static struct stmt_stats
|
||
{
|
||
int total;
|
||
int total_phis;
|
||
int removed;
|
||
int removed_phis;
|
||
} stats;
|
||
|
||
static VEC(tree,heap) *worklist;
|
||
|
||
/* Vector indicating an SSA name has already been processed and marked
|
||
as necessary. */
|
||
static sbitmap processed;
|
||
|
||
/* Vector indicating that last_stmt if a basic block has already been
|
||
marked as necessary. */
|
||
static sbitmap last_stmt_necessary;
|
||
|
||
/* Before we can determine whether a control branch is dead, we need to
|
||
compute which blocks are control dependent on which edges.
|
||
|
||
We expect each block to be control dependent on very few edges so we
|
||
use a bitmap for each block recording its edges. An array holds the
|
||
bitmap. The Ith bit in the bitmap is set if that block is dependent
|
||
on the Ith edge. */
|
||
static bitmap *control_dependence_map;
|
||
|
||
/* Vector indicating that a basic block has already had all the edges
|
||
processed that it is control dependent on. */
|
||
static sbitmap visited_control_parents;
|
||
|
||
/* TRUE if this pass alters the CFG (by removing control statements).
|
||
FALSE otherwise.
|
||
|
||
If this pass alters the CFG, then it will arrange for the dominators
|
||
to be recomputed. */
|
||
static bool cfg_altered;
|
||
|
||
/* Execute code that follows the macro for each edge (given number
|
||
EDGE_NUMBER within the CODE) for which the block with index N is
|
||
control dependent. */
|
||
#define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
|
||
EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
|
||
(EDGE_NUMBER), (BI))
|
||
|
||
/* Local function prototypes. */
|
||
static inline void set_control_dependence_map_bit (basic_block, int);
|
||
static inline void clear_control_dependence_bitmap (basic_block);
|
||
static void find_all_control_dependences (struct edge_list *);
|
||
static void find_control_dependence (struct edge_list *, int);
|
||
static inline basic_block find_pdom (basic_block);
|
||
|
||
static inline void mark_stmt_necessary (tree, bool);
|
||
static inline void mark_operand_necessary (tree, bool);
|
||
|
||
static void mark_stmt_if_obviously_necessary (tree, bool);
|
||
static void find_obviously_necessary_stmts (struct edge_list *);
|
||
|
||
static void mark_control_dependent_edges_necessary (basic_block, struct edge_list *);
|
||
static void propagate_necessity (struct edge_list *);
|
||
|
||
static void eliminate_unnecessary_stmts (void);
|
||
static void remove_dead_phis (basic_block);
|
||
static void remove_dead_stmt (block_stmt_iterator *, basic_block);
|
||
|
||
static void print_stats (void);
|
||
static void tree_dce_init (bool);
|
||
static void tree_dce_done (bool);
|
||
|
||
/* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
|
||
static inline void
|
||
set_control_dependence_map_bit (basic_block bb, int edge_index)
|
||
{
|
||
if (bb == ENTRY_BLOCK_PTR)
|
||
return;
|
||
gcc_assert (bb != EXIT_BLOCK_PTR);
|
||
bitmap_set_bit (control_dependence_map[bb->index], edge_index);
|
||
}
|
||
|
||
/* Clear all control dependences for block BB. */
|
||
static inline void
|
||
clear_control_dependence_bitmap (basic_block bb)
|
||
{
|
||
bitmap_clear (control_dependence_map[bb->index]);
|
||
}
|
||
|
||
/* Record all blocks' control dependences on all edges in the edge
|
||
list EL, ala Morgan, Section 3.6. */
|
||
|
||
static void
|
||
find_all_control_dependences (struct edge_list *el)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < NUM_EDGES (el); ++i)
|
||
find_control_dependence (el, i);
|
||
}
|
||
|
||
/* Determine all blocks' control dependences on the given edge with edge_list
|
||
EL index EDGE_INDEX, ala Morgan, Section 3.6. */
|
||
|
||
static void
|
||
find_control_dependence (struct edge_list *el, int edge_index)
|
||
{
|
||
basic_block current_block;
|
||
basic_block ending_block;
|
||
|
||
gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
|
||
|
||
if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
|
||
ending_block = single_succ (ENTRY_BLOCK_PTR);
|
||
else
|
||
ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
|
||
|
||
for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
|
||
current_block != ending_block && current_block != EXIT_BLOCK_PTR;
|
||
current_block = find_pdom (current_block))
|
||
{
|
||
edge e = INDEX_EDGE (el, edge_index);
|
||
|
||
/* For abnormal edges, we don't make current_block control
|
||
dependent because instructions that throw are always necessary
|
||
anyway. */
|
||
if (e->flags & EDGE_ABNORMAL)
|
||
continue;
|
||
|
||
set_control_dependence_map_bit (current_block, edge_index);
|
||
}
|
||
}
|
||
|
||
/* Find the immediate postdominator PDOM of the specified basic block BLOCK.
|
||
This function is necessary because some blocks have negative numbers. */
|
||
|
||
static inline basic_block
|
||
find_pdom (basic_block block)
|
||
{
|
||
gcc_assert (block != ENTRY_BLOCK_PTR);
|
||
|
||
if (block == EXIT_BLOCK_PTR)
|
||
return EXIT_BLOCK_PTR;
|
||
else
|
||
{
|
||
basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
|
||
if (! bb)
|
||
return EXIT_BLOCK_PTR;
|
||
return bb;
|
||
}
|
||
}
|
||
|
||
#define NECESSARY(stmt) stmt->common.asm_written_flag
|
||
|
||
/* If STMT is not already marked necessary, mark it, and add it to the
|
||
worklist if ADD_TO_WORKLIST is true. */
|
||
static inline void
|
||
mark_stmt_necessary (tree stmt, bool add_to_worklist)
|
||
{
|
||
gcc_assert (stmt);
|
||
gcc_assert (!DECL_P (stmt));
|
||
|
||
if (NECESSARY (stmt))
|
||
return;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "Marking useful stmt: ");
|
||
print_generic_stmt (dump_file, stmt, TDF_SLIM);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
NECESSARY (stmt) = 1;
|
||
if (add_to_worklist)
|
||
VEC_safe_push (tree, heap, worklist, stmt);
|
||
}
|
||
|
||
/* Mark the statement defining operand OP as necessary. PHIONLY is true
|
||
if we should only mark it necessary if it is a phi node. */
|
||
|
||
static inline void
|
||
mark_operand_necessary (tree op, bool phionly)
|
||
{
|
||
tree stmt;
|
||
int ver;
|
||
|
||
gcc_assert (op);
|
||
|
||
ver = SSA_NAME_VERSION (op);
|
||
if (TEST_BIT (processed, ver))
|
||
return;
|
||
SET_BIT (processed, ver);
|
||
|
||
stmt = SSA_NAME_DEF_STMT (op);
|
||
gcc_assert (stmt);
|
||
|
||
if (NECESSARY (stmt)
|
||
|| IS_EMPTY_STMT (stmt)
|
||
|| (phionly && TREE_CODE (stmt) != PHI_NODE))
|
||
return;
|
||
|
||
NECESSARY (stmt) = 1;
|
||
VEC_safe_push (tree, heap, worklist, stmt);
|
||
}
|
||
|
||
|
||
/* Mark STMT as necessary if it obviously is. Add it to the worklist if
|
||
it can make other statements necessary.
|
||
|
||
If AGGRESSIVE is false, control statements are conservatively marked as
|
||
necessary. */
|
||
|
||
static void
|
||
mark_stmt_if_obviously_necessary (tree stmt, bool aggressive)
|
||
{
|
||
stmt_ann_t ann;
|
||
tree op;
|
||
|
||
/* With non-call exceptions, we have to assume that all statements could
|
||
throw. If a statement may throw, it is inherently necessary. */
|
||
if (flag_non_call_exceptions
|
||
&& tree_could_throw_p (stmt))
|
||
{
|
||
mark_stmt_necessary (stmt, true);
|
||
return;
|
||
}
|
||
|
||
/* Statements that are implicitly live. Most function calls, asm and return
|
||
statements are required. Labels and BIND_EXPR nodes are kept because
|
||
they are control flow, and we have no way of knowing whether they can be
|
||
removed. DCE can eliminate all the other statements in a block, and CFG
|
||
can then remove the block and labels. */
|
||
switch (TREE_CODE (stmt))
|
||
{
|
||
case BIND_EXPR:
|
||
case LABEL_EXPR:
|
||
case CASE_LABEL_EXPR:
|
||
mark_stmt_necessary (stmt, false);
|
||
return;
|
||
|
||
case ASM_EXPR:
|
||
case RESX_EXPR:
|
||
case RETURN_EXPR:
|
||
mark_stmt_necessary (stmt, true);
|
||
return;
|
||
|
||
case CALL_EXPR:
|
||
/* Most, but not all function calls are required. Function calls that
|
||
produce no result and have no side effects (i.e. const pure
|
||
functions) are unnecessary. */
|
||
if (TREE_SIDE_EFFECTS (stmt))
|
||
mark_stmt_necessary (stmt, true);
|
||
return;
|
||
|
||
case MODIFY_EXPR:
|
||
op = get_call_expr_in (stmt);
|
||
if (op && TREE_SIDE_EFFECTS (op))
|
||
{
|
||
mark_stmt_necessary (stmt, true);
|
||
return;
|
||
}
|
||
|
||
/* These values are mildly magic bits of the EH runtime. We can't
|
||
see the entire lifetime of these values until landing pads are
|
||
generated. */
|
||
if (TREE_CODE (TREE_OPERAND (stmt, 0)) == EXC_PTR_EXPR
|
||
|| TREE_CODE (TREE_OPERAND (stmt, 0)) == FILTER_EXPR)
|
||
{
|
||
mark_stmt_necessary (stmt, true);
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case GOTO_EXPR:
|
||
gcc_assert (!simple_goto_p (stmt));
|
||
mark_stmt_necessary (stmt, true);
|
||
return;
|
||
|
||
case COND_EXPR:
|
||
gcc_assert (EDGE_COUNT (bb_for_stmt (stmt)->succs) == 2);
|
||
/* Fall through. */
|
||
|
||
case SWITCH_EXPR:
|
||
if (! aggressive)
|
||
mark_stmt_necessary (stmt, true);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
ann = stmt_ann (stmt);
|
||
|
||
/* If the statement has volatile operands, it needs to be preserved.
|
||
Same for statements that can alter control flow in unpredictable
|
||
ways. */
|
||
if (ann->has_volatile_ops || is_ctrl_altering_stmt (stmt))
|
||
{
|
||
mark_stmt_necessary (stmt, true);
|
||
return;
|
||
}
|
||
|
||
if (is_hidden_global_store (stmt))
|
||
{
|
||
mark_stmt_necessary (stmt, true);
|
||
return;
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
/* Find obviously necessary statements. These are things like most function
|
||
calls, and stores to file level variables.
|
||
|
||
If EL is NULL, control statements are conservatively marked as
|
||
necessary. Otherwise it contains the list of edges used by control
|
||
dependence analysis. */
|
||
|
||
static void
|
||
find_obviously_necessary_stmts (struct edge_list *el)
|
||
{
|
||
basic_block bb;
|
||
block_stmt_iterator i;
|
||
edge e;
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
tree phi;
|
||
|
||
/* Check any PHI nodes in the block. */
|
||
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
|
||
{
|
||
NECESSARY (phi) = 0;
|
||
|
||
/* PHIs for virtual variables do not directly affect code
|
||
generation and need not be considered inherently necessary
|
||
regardless of the bits set in their decl.
|
||
|
||
Thus, we only need to mark PHIs for real variables which
|
||
need their result preserved as being inherently necessary. */
|
||
if (is_gimple_reg (PHI_RESULT (phi))
|
||
&& is_global_var (SSA_NAME_VAR (PHI_RESULT (phi))))
|
||
mark_stmt_necessary (phi, true);
|
||
}
|
||
|
||
/* Check all statements in the block. */
|
||
for (i = bsi_start (bb); ! bsi_end_p (i); bsi_next (&i))
|
||
{
|
||
tree stmt = bsi_stmt (i);
|
||
NECESSARY (stmt) = 0;
|
||
mark_stmt_if_obviously_necessary (stmt, el != NULL);
|
||
}
|
||
}
|
||
|
||
if (el)
|
||
{
|
||
/* Prevent the loops from being removed. We must keep the infinite loops,
|
||
and we currently do not have a means to recognize the finite ones. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
edge_iterator ei;
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (e->flags & EDGE_DFS_BACK)
|
||
mark_control_dependent_edges_necessary (e->dest, el);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Make corresponding control dependent edges necessary. We only
|
||
have to do this once for each basic block, so we clear the bitmap
|
||
after we're done. */
|
||
static void
|
||
mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
|
||
{
|
||
bitmap_iterator bi;
|
||
unsigned edge_number;
|
||
|
||
gcc_assert (bb != EXIT_BLOCK_PTR);
|
||
|
||
if (bb == ENTRY_BLOCK_PTR)
|
||
return;
|
||
|
||
EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
|
||
{
|
||
tree t;
|
||
basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
|
||
|
||
if (TEST_BIT (last_stmt_necessary, cd_bb->index))
|
||
continue;
|
||
SET_BIT (last_stmt_necessary, cd_bb->index);
|
||
|
||
t = last_stmt (cd_bb);
|
||
if (t && is_ctrl_stmt (t))
|
||
mark_stmt_necessary (t, true);
|
||
}
|
||
}
|
||
|
||
/* Propagate necessity using the operands of necessary statements. Process
|
||
the uses on each statement in the worklist, and add all feeding statements
|
||
which contribute to the calculation of this value to the worklist.
|
||
|
||
In conservative mode, EL is NULL. */
|
||
|
||
static void
|
||
propagate_necessity (struct edge_list *el)
|
||
{
|
||
tree i;
|
||
bool aggressive = (el ? true : false);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "\nProcessing worklist:\n");
|
||
|
||
while (VEC_length (tree, worklist) > 0)
|
||
{
|
||
/* Take `i' from worklist. */
|
||
i = VEC_pop (tree, worklist);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "processing: ");
|
||
print_generic_stmt (dump_file, i, TDF_SLIM);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
if (aggressive)
|
||
{
|
||
/* Mark the last statements of the basic blocks that the block
|
||
containing `i' is control dependent on, but only if we haven't
|
||
already done so. */
|
||
basic_block bb = bb_for_stmt (i);
|
||
if (bb != ENTRY_BLOCK_PTR
|
||
&& ! TEST_BIT (visited_control_parents, bb->index))
|
||
{
|
||
SET_BIT (visited_control_parents, bb->index);
|
||
mark_control_dependent_edges_necessary (bb, el);
|
||
}
|
||
}
|
||
|
||
if (TREE_CODE (i) == PHI_NODE)
|
||
{
|
||
/* PHI nodes are somewhat special in that each PHI alternative has
|
||
data and control dependencies. All the statements feeding the
|
||
PHI node's arguments are always necessary. In aggressive mode,
|
||
we also consider the control dependent edges leading to the
|
||
predecessor block associated with each PHI alternative as
|
||
necessary. */
|
||
int k;
|
||
for (k = 0; k < PHI_NUM_ARGS (i); k++)
|
||
{
|
||
tree arg = PHI_ARG_DEF (i, k);
|
||
if (TREE_CODE (arg) == SSA_NAME)
|
||
mark_operand_necessary (arg, false);
|
||
}
|
||
|
||
if (aggressive)
|
||
{
|
||
for (k = 0; k < PHI_NUM_ARGS (i); k++)
|
||
{
|
||
basic_block arg_bb = PHI_ARG_EDGE (i, k)->src;
|
||
if (arg_bb != ENTRY_BLOCK_PTR
|
||
&& ! TEST_BIT (visited_control_parents, arg_bb->index))
|
||
{
|
||
SET_BIT (visited_control_parents, arg_bb->index);
|
||
mark_control_dependent_edges_necessary (arg_bb, el);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Propagate through the operands. Examine all the USE, VUSE and
|
||
V_MAY_DEF operands in this statement. Mark all the statements
|
||
which feed this statement's uses as necessary. */
|
||
ssa_op_iter iter;
|
||
tree use;
|
||
|
||
/* The operands of V_MAY_DEF expressions are also needed as they
|
||
represent potential definitions that may reach this
|
||
statement (V_MAY_DEF operands allow us to follow def-def
|
||
links). */
|
||
|
||
FOR_EACH_SSA_TREE_OPERAND (use, i, iter, SSA_OP_ALL_USES)
|
||
mark_operand_necessary (use, false);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Propagate necessity around virtual phi nodes used in kill operands.
|
||
The reason this isn't done during propagate_necessity is because we don't
|
||
want to keep phis around that are just there for must-defs, unless we
|
||
absolutely have to. After we've rewritten the reaching definitions to be
|
||
correct in the previous part of the fixup routine, we can simply propagate
|
||
around the information about which of these virtual phi nodes are really
|
||
used, and set the NECESSARY flag accordingly.
|
||
Note that we do the minimum here to ensure that we keep alive the phis that
|
||
are actually used in the corrected SSA form. In particular, some of these
|
||
phis may now have all of the same operand, and will be deleted by some
|
||
other pass. */
|
||
|
||
static void
|
||
mark_really_necessary_kill_operand_phis (void)
|
||
{
|
||
basic_block bb;
|
||
int i;
|
||
|
||
/* Seed the worklist with the new virtual phi arguments and virtual
|
||
uses */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
block_stmt_iterator bsi;
|
||
tree phi;
|
||
|
||
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
|
||
{
|
||
if (!is_gimple_reg (PHI_RESULT (phi)) && NECESSARY (phi))
|
||
{
|
||
for (i = 0; i < PHI_NUM_ARGS (phi); i++)
|
||
mark_operand_necessary (PHI_ARG_DEF (phi, i), true);
|
||
}
|
||
}
|
||
|
||
for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
|
||
{
|
||
tree stmt = bsi_stmt (bsi);
|
||
|
||
if (NECESSARY (stmt))
|
||
{
|
||
use_operand_p use_p;
|
||
ssa_op_iter iter;
|
||
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
|
||
SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_KILLS)
|
||
{
|
||
tree use = USE_FROM_PTR (use_p);
|
||
mark_operand_necessary (use, true);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Mark all virtual phis still in use as necessary, and all of their
|
||
arguments that are phis as necessary. */
|
||
while (VEC_length (tree, worklist) > 0)
|
||
{
|
||
tree use = VEC_pop (tree, worklist);
|
||
|
||
for (i = 0; i < PHI_NUM_ARGS (use); i++)
|
||
mark_operand_necessary (PHI_ARG_DEF (use, i), true);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
/* Eliminate unnecessary statements. Any instruction not marked as necessary
|
||
contributes nothing to the program, and can be deleted. */
|
||
|
||
static void
|
||
eliminate_unnecessary_stmts (void)
|
||
{
|
||
basic_block bb;
|
||
block_stmt_iterator i;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "\nEliminating unnecessary statements:\n");
|
||
|
||
clear_special_calls ();
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
/* Remove dead PHI nodes. */
|
||
remove_dead_phis (bb);
|
||
}
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
/* Remove dead statements. */
|
||
for (i = bsi_start (bb); ! bsi_end_p (i) ; )
|
||
{
|
||
tree t = bsi_stmt (i);
|
||
|
||
stats.total++;
|
||
|
||
/* If `i' is not necessary then remove it. */
|
||
if (! NECESSARY (t))
|
||
remove_dead_stmt (&i, bb);
|
||
else
|
||
{
|
||
tree call = get_call_expr_in (t);
|
||
if (call)
|
||
notice_special_calls (call);
|
||
bsi_next (&i);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Remove dead PHI nodes from block BB. */
|
||
|
||
static void
|
||
remove_dead_phis (basic_block bb)
|
||
{
|
||
tree prev, phi;
|
||
|
||
prev = NULL_TREE;
|
||
phi = phi_nodes (bb);
|
||
while (phi)
|
||
{
|
||
stats.total_phis++;
|
||
|
||
if (! NECESSARY (phi))
|
||
{
|
||
tree next = PHI_CHAIN (phi);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "Deleting : ");
|
||
print_generic_stmt (dump_file, phi, TDF_SLIM);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
remove_phi_node (phi, prev);
|
||
stats.removed_phis++;
|
||
phi = next;
|
||
}
|
||
else
|
||
{
|
||
prev = phi;
|
||
phi = PHI_CHAIN (phi);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Remove dead statement pointed to by iterator I. Receives the basic block BB
|
||
containing I so that we don't have to look it up. */
|
||
|
||
static void
|
||
remove_dead_stmt (block_stmt_iterator *i, basic_block bb)
|
||
{
|
||
tree t = bsi_stmt (*i);
|
||
def_operand_p def_p;
|
||
|
||
ssa_op_iter iter;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "Deleting : ");
|
||
print_generic_stmt (dump_file, t, TDF_SLIM);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
stats.removed++;
|
||
|
||
/* If we have determined that a conditional branch statement contributes
|
||
nothing to the program, then we not only remove it, but we also change
|
||
the flow graph so that the current block will simply fall-thru to its
|
||
immediate post-dominator. The blocks we are circumventing will be
|
||
removed by cleanup_tree_cfg if this change in the flow graph makes them
|
||
unreachable. */
|
||
if (is_ctrl_stmt (t))
|
||
{
|
||
basic_block post_dom_bb;
|
||
|
||
/* The post dominance info has to be up-to-date. */
|
||
gcc_assert (dom_computed[CDI_POST_DOMINATORS] == DOM_OK);
|
||
/* Get the immediate post dominator of bb. */
|
||
post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
|
||
|
||
/* There are three particularly problematical cases.
|
||
|
||
1. Blocks that do not have an immediate post dominator. This
|
||
can happen with infinite loops.
|
||
|
||
2. Blocks that are only post dominated by the exit block. These
|
||
can also happen for infinite loops as we create fake edges
|
||
in the dominator tree.
|
||
|
||
3. If the post dominator has PHI nodes we may be able to compute
|
||
the right PHI args for them.
|
||
|
||
|
||
In each of these cases we must remove the control statement
|
||
as it may reference SSA_NAMEs which are going to be removed and
|
||
we remove all but one outgoing edge from the block. */
|
||
if (! post_dom_bb
|
||
|| post_dom_bb == EXIT_BLOCK_PTR
|
||
|| phi_nodes (post_dom_bb))
|
||
;
|
||
else
|
||
{
|
||
/* Redirect the first edge out of BB to reach POST_DOM_BB. */
|
||
redirect_edge_and_branch (EDGE_SUCC (bb, 0), post_dom_bb);
|
||
PENDING_STMT (EDGE_SUCC (bb, 0)) = NULL;
|
||
}
|
||
EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
|
||
EDGE_SUCC (bb, 0)->count = bb->count;
|
||
|
||
/* The edge is no longer associated with a conditional, so it does
|
||
not have TRUE/FALSE flags. */
|
||
EDGE_SUCC (bb, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
|
||
|
||
/* The lone outgoing edge from BB will be a fallthru edge. */
|
||
EDGE_SUCC (bb, 0)->flags |= EDGE_FALLTHRU;
|
||
|
||
/* Remove the remaining the outgoing edges. */
|
||
while (!single_succ_p (bb))
|
||
{
|
||
/* FIXME. When we remove the edge, we modify the CFG, which
|
||
in turn modifies the dominator and post-dominator tree.
|
||
Is it safe to postpone recomputing the dominator and
|
||
post-dominator tree until the end of this pass given that
|
||
the post-dominators are used above? */
|
||
cfg_altered = true;
|
||
remove_edge (EDGE_SUCC (bb, 1));
|
||
}
|
||
}
|
||
|
||
FOR_EACH_SSA_DEF_OPERAND (def_p, t, iter, SSA_OP_VIRTUAL_DEFS)
|
||
{
|
||
tree def = DEF_FROM_PTR (def_p);
|
||
mark_sym_for_renaming (SSA_NAME_VAR (def));
|
||
}
|
||
bsi_remove (i, true);
|
||
release_defs (t);
|
||
}
|
||
|
||
/* Print out removed statement statistics. */
|
||
|
||
static void
|
||
print_stats (void)
|
||
{
|
||
if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
|
||
{
|
||
float percg;
|
||
|
||
percg = ((float) stats.removed / (float) stats.total) * 100;
|
||
fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
|
||
stats.removed, stats.total, (int) percg);
|
||
|
||
if (stats.total_phis == 0)
|
||
percg = 0;
|
||
else
|
||
percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
|
||
|
||
fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
|
||
stats.removed_phis, stats.total_phis, (int) percg);
|
||
}
|
||
}
|
||
|
||
/* Initialization for this pass. Set up the used data structures. */
|
||
|
||
static void
|
||
tree_dce_init (bool aggressive)
|
||
{
|
||
memset ((void *) &stats, 0, sizeof (stats));
|
||
|
||
if (aggressive)
|
||
{
|
||
int i;
|
||
|
||
control_dependence_map = XNEWVEC (bitmap, last_basic_block);
|
||
for (i = 0; i < last_basic_block; ++i)
|
||
control_dependence_map[i] = BITMAP_ALLOC (NULL);
|
||
|
||
last_stmt_necessary = sbitmap_alloc (last_basic_block);
|
||
sbitmap_zero (last_stmt_necessary);
|
||
}
|
||
|
||
processed = sbitmap_alloc (num_ssa_names + 1);
|
||
sbitmap_zero (processed);
|
||
|
||
worklist = VEC_alloc (tree, heap, 64);
|
||
cfg_altered = false;
|
||
}
|
||
|
||
/* Cleanup after this pass. */
|
||
|
||
static void
|
||
tree_dce_done (bool aggressive)
|
||
{
|
||
if (aggressive)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < last_basic_block; ++i)
|
||
BITMAP_FREE (control_dependence_map[i]);
|
||
free (control_dependence_map);
|
||
|
||
sbitmap_free (visited_control_parents);
|
||
sbitmap_free (last_stmt_necessary);
|
||
}
|
||
|
||
sbitmap_free (processed);
|
||
|
||
VEC_free (tree, heap, worklist);
|
||
}
|
||
|
||
/* Main routine to eliminate dead code.
|
||
|
||
AGGRESSIVE controls the aggressiveness of the algorithm.
|
||
In conservative mode, we ignore control dependence and simply declare
|
||
all but the most trivially dead branches necessary. This mode is fast.
|
||
In aggressive mode, control dependences are taken into account, which
|
||
results in more dead code elimination, but at the cost of some time.
|
||
|
||
FIXME: Aggressive mode before PRE doesn't work currently because
|
||
the dominance info is not invalidated after DCE1. This is
|
||
not an issue right now because we only run aggressive DCE
|
||
as the last tree SSA pass, but keep this in mind when you
|
||
start experimenting with pass ordering. */
|
||
|
||
static void
|
||
perform_tree_ssa_dce (bool aggressive)
|
||
{
|
||
struct edge_list *el = NULL;
|
||
|
||
tree_dce_init (aggressive);
|
||
|
||
if (aggressive)
|
||
{
|
||
/* Compute control dependence. */
|
||
timevar_push (TV_CONTROL_DEPENDENCES);
|
||
calculate_dominance_info (CDI_POST_DOMINATORS);
|
||
el = create_edge_list ();
|
||
find_all_control_dependences (el);
|
||
timevar_pop (TV_CONTROL_DEPENDENCES);
|
||
|
||
visited_control_parents = sbitmap_alloc (last_basic_block);
|
||
sbitmap_zero (visited_control_parents);
|
||
|
||
mark_dfs_back_edges ();
|
||
}
|
||
|
||
find_obviously_necessary_stmts (el);
|
||
|
||
propagate_necessity (el);
|
||
|
||
mark_really_necessary_kill_operand_phis ();
|
||
eliminate_unnecessary_stmts ();
|
||
|
||
if (aggressive)
|
||
free_dominance_info (CDI_POST_DOMINATORS);
|
||
|
||
/* If we removed paths in the CFG, then we need to update
|
||
dominators as well. I haven't investigated the possibility
|
||
of incrementally updating dominators. */
|
||
if (cfg_altered)
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
|
||
/* Debugging dumps. */
|
||
if (dump_file)
|
||
print_stats ();
|
||
|
||
tree_dce_done (aggressive);
|
||
|
||
free_edge_list (el);
|
||
}
|
||
|
||
/* Pass entry points. */
|
||
static unsigned int
|
||
tree_ssa_dce (void)
|
||
{
|
||
perform_tree_ssa_dce (/*aggressive=*/false);
|
||
return 0;
|
||
}
|
||
|
||
static unsigned int
|
||
tree_ssa_dce_loop (void)
|
||
{
|
||
perform_tree_ssa_dce (/*aggressive=*/false);
|
||
free_numbers_of_iterations_estimates (current_loops);
|
||
scev_reset ();
|
||
return 0;
|
||
}
|
||
|
||
static unsigned int
|
||
tree_ssa_cd_dce (void)
|
||
{
|
||
perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
|
||
return 0;
|
||
}
|
||
|
||
static bool
|
||
gate_dce (void)
|
||
{
|
||
return flag_tree_dce != 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_dce =
|
||
{
|
||
"dce", /* name */
|
||
gate_dce, /* gate */
|
||
tree_ssa_dce, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_TREE_DCE, /* tv_id */
|
||
PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func
|
||
| TODO_update_ssa
|
||
| TODO_cleanup_cfg
|
||
| TODO_ggc_collect
|
||
| TODO_verify_ssa
|
||
| TODO_remove_unused_locals, /* todo_flags_finish */
|
||
0 /* letter */
|
||
};
|
||
|
||
struct tree_opt_pass pass_dce_loop =
|
||
{
|
||
"dceloop", /* name */
|
||
gate_dce, /* gate */
|
||
tree_ssa_dce_loop, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_TREE_DCE, /* tv_id */
|
||
PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func
|
||
| TODO_update_ssa
|
||
| TODO_cleanup_cfg
|
||
| TODO_verify_ssa, /* todo_flags_finish */
|
||
0 /* letter */
|
||
};
|
||
|
||
struct tree_opt_pass pass_cd_dce =
|
||
{
|
||
"cddce", /* name */
|
||
gate_dce, /* gate */
|
||
tree_ssa_cd_dce, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_TREE_CD_DCE, /* tv_id */
|
||
PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func
|
||
| TODO_update_ssa
|
||
| TODO_cleanup_cfg
|
||
| TODO_ggc_collect
|
||
| TODO_verify_ssa
|
||
| TODO_verify_flow, /* todo_flags_finish */
|
||
0 /* letter */
|
||
};
|