freebsd-dev/sys/dev/mge/if_mge.c
Ian Lepore add35ed5b8 Follow r261352 by updating all drivers which are children of simplebus
to check the status property in their probe routines.

Simplebus used to only instantiate its children whose status="okay"
but that was improper behavior, fixed in r261352.  Now that it doesn't
check anymore and probes all its children; the children all have to
do the check because really only the children know how to properly
interpret their status property strings.

Right now all existing drivers only understand "okay" versus something-
that's-not-okay, so they all use the new ofw_bus_status_okay() helper.
2014-02-02 19:17:28 +00:00

1907 lines
47 KiB
C

/*-
* Copyright (C) 2008 MARVELL INTERNATIONAL LTD.
* All rights reserved.
*
* Developed by Semihalf.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of MARVELL nor the names of contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/endian.h>
#include <sys/mbuf.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <net/ethernet.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <sys/sockio.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/mge/if_mgevar.h>
#include <arm/mv/mvreg.h>
#include <arm/mv/mvvar.h>
#include "miibus_if.h"
static int mge_probe(device_t dev);
static int mge_attach(device_t dev);
static int mge_detach(device_t dev);
static int mge_shutdown(device_t dev);
static int mge_suspend(device_t dev);
static int mge_resume(device_t dev);
static int mge_miibus_readreg(device_t dev, int phy, int reg);
static int mge_miibus_writereg(device_t dev, int phy, int reg, int value);
static int mge_ifmedia_upd(struct ifnet *ifp);
static void mge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
static void mge_init(void *arg);
static void mge_init_locked(void *arg);
static void mge_start(struct ifnet *ifp);
static void mge_start_locked(struct ifnet *ifp);
static void mge_watchdog(struct mge_softc *sc);
static int mge_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
static uint32_t mge_tfut_ipg(uint32_t val, int ver);
static uint32_t mge_rx_ipg(uint32_t val, int ver);
static void mge_ver_params(struct mge_softc *sc);
static void mge_intrs_ctrl(struct mge_softc *sc, int enable);
static void mge_intr_rxtx(void *arg);
static void mge_intr_rx(void *arg);
static void mge_intr_rx_check(struct mge_softc *sc, uint32_t int_cause,
uint32_t int_cause_ext);
static int mge_intr_rx_locked(struct mge_softc *sc, int count);
static void mge_intr_tx(void *arg);
static void mge_intr_tx_locked(struct mge_softc *sc);
static void mge_intr_misc(void *arg);
static void mge_intr_sum(void *arg);
static void mge_intr_err(void *arg);
static void mge_stop(struct mge_softc *sc);
static void mge_tick(void *msc);
static uint32_t mge_set_port_serial_control(uint32_t media);
static void mge_get_mac_address(struct mge_softc *sc, uint8_t *addr);
static void mge_set_mac_address(struct mge_softc *sc);
static void mge_set_ucast_address(struct mge_softc *sc, uint8_t last_byte,
uint8_t queue);
static void mge_set_prom_mode(struct mge_softc *sc, uint8_t queue);
static int mge_allocate_dma(struct mge_softc *sc);
static int mge_alloc_desc_dma(struct mge_softc *sc,
struct mge_desc_wrapper* desc_tab, uint32_t size, bus_dma_tag_t *buffer_tag);
static int mge_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map,
struct mbuf **mbufp, bus_addr_t *paddr);
static void mge_get_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error);
static void mge_free_dma(struct mge_softc *sc);
static void mge_free_desc(struct mge_softc *sc, struct mge_desc_wrapper* tab, uint32_t size,
bus_dma_tag_t buffer_tag, uint8_t free_mbufs);
static void mge_offload_process_frame(struct ifnet *ifp, struct mbuf *frame,
uint32_t status, uint16_t bufsize);
static void mge_offload_setup_descriptor(struct mge_softc *sc,
struct mge_desc_wrapper *dw);
static uint8_t mge_crc8(uint8_t *data, int size);
static void mge_setup_multicast(struct mge_softc *sc);
static void mge_set_rxic(struct mge_softc *sc);
static void mge_set_txic(struct mge_softc *sc);
static void mge_add_sysctls(struct mge_softc *sc);
static int mge_sysctl_ic(SYSCTL_HANDLER_ARGS);
static device_method_t mge_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, mge_probe),
DEVMETHOD(device_attach, mge_attach),
DEVMETHOD(device_detach, mge_detach),
DEVMETHOD(device_shutdown, mge_shutdown),
DEVMETHOD(device_suspend, mge_suspend),
DEVMETHOD(device_resume, mge_resume),
/* MII interface */
DEVMETHOD(miibus_readreg, mge_miibus_readreg),
DEVMETHOD(miibus_writereg, mge_miibus_writereg),
{ 0, 0 }
};
static driver_t mge_driver = {
"mge",
mge_methods,
sizeof(struct mge_softc),
};
static devclass_t mge_devclass;
DRIVER_MODULE(mge, simplebus, mge_driver, mge_devclass, 0, 0);
DRIVER_MODULE(miibus, mge, miibus_driver, miibus_devclass, 0, 0);
MODULE_DEPEND(mge, ether, 1, 1, 1);
MODULE_DEPEND(mge, miibus, 1, 1, 1);
static struct resource_spec res_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0 }
};
static struct {
driver_intr_t *handler;
char * description;
} mge_intrs[MGE_INTR_COUNT + 1] = {
{ mge_intr_rxtx,"GbE aggregated interrupt" },
{ mge_intr_rx, "GbE receive interrupt" },
{ mge_intr_tx, "GbE transmit interrupt" },
{ mge_intr_misc,"GbE misc interrupt" },
{ mge_intr_sum, "GbE summary interrupt" },
{ mge_intr_err, "GbE error interrupt" },
};
static void
mge_get_mac_address(struct mge_softc *sc, uint8_t *addr)
{
uint32_t mac_l, mac_h;
uint8_t lmac[6];
int i, valid;
/*
* Retrieve hw address from the device tree.
*/
i = OF_getprop(sc->node, "local-mac-address", (void *)lmac, 6);
if (i == 6) {
valid = 0;
for (i = 0; i < 6; i++)
if (lmac[i] != 0) {
valid = 1;
break;
}
if (valid) {
bcopy(lmac, addr, 6);
return;
}
}
/*
* Fall back -- use the currently programmed address.
*/
mac_l = MGE_READ(sc, MGE_MAC_ADDR_L);
mac_h = MGE_READ(sc, MGE_MAC_ADDR_H);
addr[0] = (mac_h & 0xff000000) >> 24;
addr[1] = (mac_h & 0x00ff0000) >> 16;
addr[2] = (mac_h & 0x0000ff00) >> 8;
addr[3] = (mac_h & 0x000000ff);
addr[4] = (mac_l & 0x0000ff00) >> 8;
addr[5] = (mac_l & 0x000000ff);
}
static uint32_t
mge_tfut_ipg(uint32_t val, int ver)
{
switch (ver) {
case 1:
return ((val & 0x3fff) << 4);
case 2:
default:
return ((val & 0xffff) << 4);
}
}
static uint32_t
mge_rx_ipg(uint32_t val, int ver)
{
switch (ver) {
case 1:
return ((val & 0x3fff) << 8);
case 2:
default:
return (((val & 0x8000) << 10) | ((val & 0x7fff) << 7));
}
}
static void
mge_ver_params(struct mge_softc *sc)
{
uint32_t d, r;
soc_id(&d, &r);
if (d == MV_DEV_88F6281 || d == MV_DEV_88F6781 ||
d == MV_DEV_88F6282 ||
d == MV_DEV_MV78100 ||
d == MV_DEV_MV78100_Z0 ||
(d & MV_DEV_FAMILY_MASK) == MV_DEV_DISCOVERY) {
sc->mge_ver = 2;
sc->mge_mtu = 0x4e8;
sc->mge_tfut_ipg_max = 0xFFFF;
sc->mge_rx_ipg_max = 0xFFFF;
sc->mge_tx_arb_cfg = 0xFC0000FF;
sc->mge_tx_tok_cfg = 0xFFFF7FFF;
sc->mge_tx_tok_cnt = 0x3FFFFFFF;
} else {
sc->mge_ver = 1;
sc->mge_mtu = 0x458;
sc->mge_tfut_ipg_max = 0x3FFF;
sc->mge_rx_ipg_max = 0x3FFF;
sc->mge_tx_arb_cfg = 0x000000FF;
sc->mge_tx_tok_cfg = 0x3FFFFFFF;
sc->mge_tx_tok_cnt = 0x3FFFFFFF;
}
if (d == MV_DEV_88RC8180)
sc->mge_intr_cnt = 1;
else
sc->mge_intr_cnt = 2;
if (d == MV_DEV_MV78160 || d == MV_DEV_MV78260 || d == MV_DEV_MV78460)
sc->mge_hw_csum = 0;
else
sc->mge_hw_csum = 1;
}
static void
mge_set_mac_address(struct mge_softc *sc)
{
char *if_mac;
uint32_t mac_l, mac_h;
MGE_GLOBAL_LOCK_ASSERT(sc);
if_mac = (char *)IF_LLADDR(sc->ifp);
mac_l = (if_mac[4] << 8) | (if_mac[5]);
mac_h = (if_mac[0] << 24)| (if_mac[1] << 16) |
(if_mac[2] << 8) | (if_mac[3] << 0);
MGE_WRITE(sc, MGE_MAC_ADDR_L, mac_l);
MGE_WRITE(sc, MGE_MAC_ADDR_H, mac_h);
mge_set_ucast_address(sc, if_mac[5], MGE_RX_DEFAULT_QUEUE);
}
static void
mge_set_ucast_address(struct mge_softc *sc, uint8_t last_byte, uint8_t queue)
{
uint32_t reg_idx, reg_off, reg_val, i;
last_byte &= 0xf;
reg_idx = last_byte / MGE_UCAST_REG_NUMBER;
reg_off = (last_byte % MGE_UCAST_REG_NUMBER) * 8;
reg_val = (1 | (queue << 1)) << reg_off;
for (i = 0; i < MGE_UCAST_REG_NUMBER; i++) {
if ( i == reg_idx)
MGE_WRITE(sc, MGE_DA_FILTER_UCAST(i), reg_val);
else
MGE_WRITE(sc, MGE_DA_FILTER_UCAST(i), 0);
}
}
static void
mge_set_prom_mode(struct mge_softc *sc, uint8_t queue)
{
uint32_t port_config;
uint32_t reg_val, i;
/* Enable or disable promiscuous mode as needed */
if (sc->ifp->if_flags & IFF_PROMISC) {
port_config = MGE_READ(sc, MGE_PORT_CONFIG);
port_config |= PORT_CONFIG_UPM;
MGE_WRITE(sc, MGE_PORT_CONFIG, port_config);
reg_val = ((1 | (queue << 1)) | (1 | (queue << 1)) << 8 |
(1 | (queue << 1)) << 16 | (1 | (queue << 1)) << 24);
for (i = 0; i < MGE_MCAST_REG_NUMBER; i++) {
MGE_WRITE(sc, MGE_DA_FILTER_SPEC_MCAST(i), reg_val);
MGE_WRITE(sc, MGE_DA_FILTER_OTH_MCAST(i), reg_val);
}
for (i = 0; i < MGE_UCAST_REG_NUMBER; i++)
MGE_WRITE(sc, MGE_DA_FILTER_UCAST(i), reg_val);
} else {
port_config = MGE_READ(sc, MGE_PORT_CONFIG);
port_config &= ~PORT_CONFIG_UPM;
MGE_WRITE(sc, MGE_PORT_CONFIG, port_config);
for (i = 0; i < MGE_MCAST_REG_NUMBER; i++) {
MGE_WRITE(sc, MGE_DA_FILTER_SPEC_MCAST(i), 0);
MGE_WRITE(sc, MGE_DA_FILTER_OTH_MCAST(i), 0);
}
mge_set_mac_address(sc);
}
}
static void
mge_get_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
u_int32_t *paddr;
KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
paddr = arg;
*paddr = segs->ds_addr;
}
static int
mge_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp,
bus_addr_t *paddr)
{
struct mbuf *new_mbuf;
bus_dma_segment_t seg[1];
int error;
int nsegs;
KASSERT(mbufp != NULL, ("NULL mbuf pointer!"));
new_mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (new_mbuf == NULL)
return (ENOBUFS);
new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size;
if (*mbufp) {
bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(tag, map);
}
error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs,
BUS_DMA_NOWAIT);
KASSERT(nsegs == 1, ("Too many segments returned!"));
if (nsegs != 1 || error)
panic("mge_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error);
bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD);
(*mbufp) = new_mbuf;
(*paddr) = seg->ds_addr;
return (0);
}
static int
mge_alloc_desc_dma(struct mge_softc *sc, struct mge_desc_wrapper* tab,
uint32_t size, bus_dma_tag_t *buffer_tag)
{
struct mge_desc_wrapper *dw;
bus_addr_t desc_paddr;
int i, error;
desc_paddr = 0;
for (i = size - 1; i >= 0; i--) {
dw = &(tab[i]);
error = bus_dmamem_alloc(sc->mge_desc_dtag,
(void**)&(dw->mge_desc),
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&(dw->desc_dmap));
if (error) {
if_printf(sc->ifp, "failed to allocate DMA memory\n");
dw->mge_desc = NULL;
return (ENXIO);
}
error = bus_dmamap_load(sc->mge_desc_dtag, dw->desc_dmap,
dw->mge_desc, sizeof(struct mge_desc), mge_get_dma_addr,
&(dw->mge_desc_paddr), BUS_DMA_NOWAIT);
if (error) {
if_printf(sc->ifp, "can't load descriptor\n");
bus_dmamem_free(sc->mge_desc_dtag, dw->mge_desc,
dw->desc_dmap);
dw->mge_desc = NULL;
return (ENXIO);
}
/* Chain descriptors */
dw->mge_desc->next_desc = desc_paddr;
desc_paddr = dw->mge_desc_paddr;
}
tab[size - 1].mge_desc->next_desc = desc_paddr;
/* Allocate a busdma tag for mbufs. */
error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
MCLBYTES, 1, /* maxsize, nsegments */
MCLBYTES, 0, /* maxsegsz, flags */
NULL, NULL, /* lockfunc, lockfuncarg */
buffer_tag); /* dmat */
if (error) {
if_printf(sc->ifp, "failed to create busdma tag for mbufs\n");
return (ENXIO);
}
/* Create TX busdma maps */
for (i = 0; i < size; i++) {
dw = &(tab[i]);
error = bus_dmamap_create(*buffer_tag, 0, &dw->buffer_dmap);
if (error) {
if_printf(sc->ifp, "failed to create map for mbuf\n");
return (ENXIO);
}
dw->buffer = (struct mbuf*)NULL;
dw->mge_desc->buffer = (bus_addr_t)NULL;
}
return (0);
}
static int
mge_allocate_dma(struct mge_softc *sc)
{
int error;
struct mge_desc_wrapper *dw;
int i;
/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent */
16, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
sizeof(struct mge_desc), 1, /* maxsize, nsegments */
sizeof(struct mge_desc), 0, /* maxsegsz, flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&sc->mge_desc_dtag); /* dmat */
mge_alloc_desc_dma(sc, sc->mge_tx_desc, MGE_TX_DESC_NUM,
&sc->mge_tx_dtag);
mge_alloc_desc_dma(sc, sc->mge_rx_desc, MGE_RX_DESC_NUM,
&sc->mge_rx_dtag);
for (i = 0; i < MGE_RX_DESC_NUM; i++) {
dw = &(sc->mge_rx_desc[i]);
mge_new_rxbuf(sc->mge_rx_dtag, dw->buffer_dmap, &dw->buffer,
&dw->mge_desc->buffer);
}
sc->tx_desc_start = sc->mge_tx_desc[0].mge_desc_paddr;
sc->rx_desc_start = sc->mge_rx_desc[0].mge_desc_paddr;
return (0);
}
static void
mge_free_desc(struct mge_softc *sc, struct mge_desc_wrapper* tab,
uint32_t size, bus_dma_tag_t buffer_tag, uint8_t free_mbufs)
{
struct mge_desc_wrapper *dw;
int i;
for (i = 0; i < size; i++) {
/* Free RX mbuf */
dw = &(tab[i]);
if (dw->buffer_dmap) {
if (free_mbufs) {
bus_dmamap_sync(buffer_tag, dw->buffer_dmap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(buffer_tag, dw->buffer_dmap);
}
bus_dmamap_destroy(buffer_tag, dw->buffer_dmap);
if (free_mbufs)
m_freem(dw->buffer);
}
/* Free RX descriptors */
if (dw->desc_dmap) {
bus_dmamap_sync(sc->mge_desc_dtag, dw->desc_dmap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->mge_desc_dtag, dw->desc_dmap);
bus_dmamem_free(sc->mge_desc_dtag, dw->mge_desc,
dw->desc_dmap);
}
}
}
static void
mge_free_dma(struct mge_softc *sc)
{
/* Free desciptors and mbufs */
mge_free_desc(sc, sc->mge_rx_desc, MGE_RX_DESC_NUM, sc->mge_rx_dtag, 1);
mge_free_desc(sc, sc->mge_tx_desc, MGE_TX_DESC_NUM, sc->mge_tx_dtag, 0);
/* Destroy mbuf dma tag */
bus_dma_tag_destroy(sc->mge_tx_dtag);
bus_dma_tag_destroy(sc->mge_rx_dtag);
/* Destroy descriptors tag */
bus_dma_tag_destroy(sc->mge_desc_dtag);
}
static void
mge_reinit_rx(struct mge_softc *sc)
{
struct mge_desc_wrapper *dw;
int i;
MGE_RECEIVE_LOCK_ASSERT(sc);
mge_free_desc(sc, sc->mge_rx_desc, MGE_RX_DESC_NUM, sc->mge_rx_dtag, 1);
mge_alloc_desc_dma(sc, sc->mge_rx_desc, MGE_RX_DESC_NUM,
&sc->mge_rx_dtag);
for (i = 0; i < MGE_RX_DESC_NUM; i++) {
dw = &(sc->mge_rx_desc[i]);
mge_new_rxbuf(sc->mge_rx_dtag, dw->buffer_dmap, &dw->buffer,
&dw->mge_desc->buffer);
}
sc->rx_desc_start = sc->mge_rx_desc[0].mge_desc_paddr;
sc->rx_desc_curr = 0;
MGE_WRITE(sc, MGE_RX_CUR_DESC_PTR(MGE_RX_DEFAULT_QUEUE),
sc->rx_desc_start);
/* Enable RX queue */
MGE_WRITE(sc, MGE_RX_QUEUE_CMD, MGE_ENABLE_RXQ(MGE_RX_DEFAULT_QUEUE));
}
#ifdef DEVICE_POLLING
static poll_handler_t mge_poll;
static int
mge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct mge_softc *sc = ifp->if_softc;
uint32_t int_cause, int_cause_ext;
int rx_npkts = 0;
MGE_GLOBAL_LOCK(sc);
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
MGE_GLOBAL_UNLOCK(sc);
return (rx_npkts);
}
if (cmd == POLL_AND_CHECK_STATUS) {
int_cause = MGE_READ(sc, MGE_PORT_INT_CAUSE);
int_cause_ext = MGE_READ(sc, MGE_PORT_INT_CAUSE_EXT);
/* Check for resource error */
if (int_cause & MGE_PORT_INT_RXERRQ0)
mge_reinit_rx(sc);
if (int_cause || int_cause_ext) {
MGE_WRITE(sc, MGE_PORT_INT_CAUSE, ~int_cause);
MGE_WRITE(sc, MGE_PORT_INT_CAUSE_EXT, ~int_cause_ext);
}
}
mge_intr_tx_locked(sc);
rx_npkts = mge_intr_rx_locked(sc, count);
MGE_GLOBAL_UNLOCK(sc);
return (rx_npkts);
}
#endif /* DEVICE_POLLING */
static int
mge_attach(device_t dev)
{
struct mge_softc *sc;
struct mii_softc *miisc;
struct ifnet *ifp;
uint8_t hwaddr[ETHER_ADDR_LEN];
int i, error, phy;
sc = device_get_softc(dev);
sc->dev = dev;
sc->node = ofw_bus_get_node(dev);
/* Set chip version-dependent parameters */
mge_ver_params(sc);
/* Get phy address and used softc from fdt */
if (fdt_get_phyaddr(sc->node, sc->dev, &phy, (void **)&sc->phy_sc) != 0)
return (ENXIO);
/* Initialize mutexes */
mtx_init(&sc->transmit_lock, device_get_nameunit(dev), "mge TX lock", MTX_DEF);
mtx_init(&sc->receive_lock, device_get_nameunit(dev), "mge RX lock", MTX_DEF);
/* Allocate IO and IRQ resources */
error = bus_alloc_resources(dev, res_spec, sc->res);
if (error) {
device_printf(dev, "could not allocate resources\n");
mge_detach(dev);
return (ENXIO);
}
/* Allocate DMA, buffers, buffer descriptors */
error = mge_allocate_dma(sc);
if (error) {
mge_detach(dev);
return (ENXIO);
}
sc->tx_desc_curr = 0;
sc->rx_desc_curr = 0;
sc->tx_desc_used_idx = 0;
sc->tx_desc_used_count = 0;
/* Configure defaults for interrupts coalescing */
sc->rx_ic_time = 768;
sc->tx_ic_time = 768;
mge_add_sysctls(sc);
/* Allocate network interface */
ifp = sc->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "if_alloc() failed\n");
mge_detach(dev);
return (ENOMEM);
}
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_softc = sc;
ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
ifp->if_capabilities = IFCAP_VLAN_MTU;
if (sc->mge_hw_csum) {
ifp->if_capabilities |= IFCAP_HWCSUM;
ifp->if_hwassist = MGE_CHECKSUM_FEATURES;
}
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
/* Advertise that polling is supported */
ifp->if_capabilities |= IFCAP_POLLING;
#endif
ifp->if_init = mge_init;
ifp->if_start = mge_start;
ifp->if_ioctl = mge_ioctl;
ifp->if_snd.ifq_drv_maxlen = MGE_TX_DESC_NUM - 1;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
mge_get_mac_address(sc, hwaddr);
ether_ifattach(ifp, hwaddr);
callout_init(&sc->wd_callout, 0);
/* Attach PHY(s) */
error = mii_attach(dev, &sc->miibus, ifp, mge_ifmedia_upd,
mge_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
if (error) {
device_printf(dev, "attaching PHYs failed\n");
mge_detach(dev);
return (error);
}
sc->mii = device_get_softc(sc->miibus);
/* Tell the MAC where to find the PHY so autoneg works */
miisc = LIST_FIRST(&sc->mii->mii_phys);
MGE_WRITE(sc, MGE_REG_PHYDEV, miisc->mii_phy);
/* Attach interrupt handlers */
/* TODO: review flags, in part. mark RX as INTR_ENTROPY ? */
for (i = 1; i <= sc->mge_intr_cnt; ++i) {
error = bus_setup_intr(dev, sc->res[i],
INTR_TYPE_NET | INTR_MPSAFE,
NULL, *mge_intrs[(sc->mge_intr_cnt == 1 ? 0 : i)].handler,
sc, &sc->ih_cookie[i - 1]);
if (error) {
device_printf(dev, "could not setup %s\n",
mge_intrs[(sc->mge_intr_cnt == 1 ? 0 : i)].description);
mge_detach(dev);
return (error);
}
}
return (0);
}
static int
mge_detach(device_t dev)
{
struct mge_softc *sc;
int error,i;
sc = device_get_softc(dev);
/* Stop controller and free TX queue */
if (sc->ifp)
mge_shutdown(dev);
/* Wait for stopping ticks */
callout_drain(&sc->wd_callout);
/* Stop and release all interrupts */
for (i = 0; i < sc->mge_intr_cnt; ++i) {
if (!sc->ih_cookie[i])
continue;
error = bus_teardown_intr(dev, sc->res[1 + i], sc->ih_cookie[i]);
if (error)
device_printf(dev, "could not release %s\n",
mge_intrs[(sc->mge_intr_cnt == 1 ? 0 : i + 1)].description);
}
/* Detach network interface */
if (sc->ifp) {
ether_ifdetach(sc->ifp);
if_free(sc->ifp);
}
/* Free DMA resources */
mge_free_dma(sc);
/* Free IO memory handler */
bus_release_resources(dev, res_spec, sc->res);
/* Destroy mutexes */
mtx_destroy(&sc->receive_lock);
mtx_destroy(&sc->transmit_lock);
return (0);
}
static void
mge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct mge_softc *sc = ifp->if_softc;
struct mii_data *mii;
MGE_TRANSMIT_LOCK(sc);
mii = sc->mii;
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
MGE_TRANSMIT_UNLOCK(sc);
}
static uint32_t
mge_set_port_serial_control(uint32_t media)
{
uint32_t port_config;
port_config = PORT_SERIAL_RES_BIT9 | PORT_SERIAL_FORCE_LINK_FAIL |
PORT_SERIAL_MRU(PORT_SERIAL_MRU_1552);
if (IFM_TYPE(media) == IFM_ETHER) {
switch(IFM_SUBTYPE(media)) {
case IFM_AUTO:
break;
case IFM_1000_T:
port_config |= (PORT_SERIAL_GMII_SPEED_1000 |
PORT_SERIAL_AUTONEG | PORT_SERIAL_AUTONEG_FC |
PORT_SERIAL_SPEED_AUTONEG);
break;
case IFM_100_TX:
port_config |= (PORT_SERIAL_MII_SPEED_100 |
PORT_SERIAL_AUTONEG | PORT_SERIAL_AUTONEG_FC |
PORT_SERIAL_SPEED_AUTONEG);
break;
case IFM_10_T:
port_config |= (PORT_SERIAL_AUTONEG |
PORT_SERIAL_AUTONEG_FC |
PORT_SERIAL_SPEED_AUTONEG);
break;
}
if (media & IFM_FDX)
port_config |= PORT_SERIAL_FULL_DUPLEX;
}
return (port_config);
}
static int
mge_ifmedia_upd(struct ifnet *ifp)
{
struct mge_softc *sc = ifp->if_softc;
if (ifp->if_flags & IFF_UP) {
MGE_GLOBAL_LOCK(sc);
sc->mge_media_status = sc->mii->mii_media.ifm_media;
mii_mediachg(sc->mii);
mge_init_locked(sc);
MGE_GLOBAL_UNLOCK(sc);
}
return (0);
}
static void
mge_init(void *arg)
{
struct mge_softc *sc = arg;
MGE_GLOBAL_LOCK(sc);
mge_init_locked(arg);
MGE_GLOBAL_UNLOCK(sc);
}
static void
mge_init_locked(void *arg)
{
struct mge_softc *sc = arg;
struct mge_desc_wrapper *dw;
volatile uint32_t reg_val;
int i, count;
MGE_GLOBAL_LOCK_ASSERT(sc);
/* Stop interface */
mge_stop(sc);
/* Disable interrupts */
mge_intrs_ctrl(sc, 0);
/* Set MAC address */
mge_set_mac_address(sc);
/* Setup multicast filters */
mge_setup_multicast(sc);
if (sc->mge_ver == 2) {
MGE_WRITE(sc, MGE_PORT_SERIAL_CTRL1, MGE_RGMII_EN);
MGE_WRITE(sc, MGE_FIXED_PRIO_CONF, MGE_FIXED_PRIO_EN(0));
}
/* Initialize TX queue configuration registers */
MGE_WRITE(sc, MGE_TX_TOKEN_COUNT(0), sc->mge_tx_tok_cnt);
MGE_WRITE(sc, MGE_TX_TOKEN_CONF(0), sc->mge_tx_tok_cfg);
MGE_WRITE(sc, MGE_TX_ARBITER_CONF(0), sc->mge_tx_arb_cfg);
/* Clear TX queue configuration registers for unused queues */
for (i = 1; i < 7; i++) {
MGE_WRITE(sc, MGE_TX_TOKEN_COUNT(i), 0);
MGE_WRITE(sc, MGE_TX_TOKEN_CONF(i), 0);
MGE_WRITE(sc, MGE_TX_ARBITER_CONF(i), 0);
}
/* Set default MTU */
MGE_WRITE(sc, sc->mge_mtu, 0);
/* Port configuration */
MGE_WRITE(sc, MGE_PORT_CONFIG,
PORT_CONFIG_RXCS | PORT_CONFIG_DFLT_RXQ(0) |
PORT_CONFIG_ARO_RXQ(0));
MGE_WRITE(sc, MGE_PORT_EXT_CONFIG , 0x0);
/* Setup port configuration */
reg_val = mge_set_port_serial_control(sc->mge_media_status);
MGE_WRITE(sc, MGE_PORT_SERIAL_CTRL, reg_val);
/* Setup SDMA configuration */
MGE_WRITE(sc, MGE_SDMA_CONFIG , MGE_SDMA_RX_BYTE_SWAP |
MGE_SDMA_TX_BYTE_SWAP |
MGE_SDMA_RX_BURST_SIZE(MGE_SDMA_BURST_16_WORD) |
MGE_SDMA_TX_BURST_SIZE(MGE_SDMA_BURST_16_WORD));
MGE_WRITE(sc, MGE_TX_FIFO_URGENT_TRSH, 0x0);
MGE_WRITE(sc, MGE_TX_CUR_DESC_PTR, sc->tx_desc_start);
MGE_WRITE(sc, MGE_RX_CUR_DESC_PTR(MGE_RX_DEFAULT_QUEUE),
sc->rx_desc_start);
/* Reset descriptor indexes */
sc->tx_desc_curr = 0;
sc->rx_desc_curr = 0;
sc->tx_desc_used_idx = 0;
sc->tx_desc_used_count = 0;
/* Enable RX descriptors */
for (i = 0; i < MGE_RX_DESC_NUM; i++) {
dw = &sc->mge_rx_desc[i];
dw->mge_desc->cmd_status = MGE_RX_ENABLE_INT | MGE_DMA_OWNED;
dw->mge_desc->buff_size = MCLBYTES;
bus_dmamap_sync(sc->mge_desc_dtag, dw->desc_dmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
/* Enable RX queue */
MGE_WRITE(sc, MGE_RX_QUEUE_CMD, MGE_ENABLE_RXQ(MGE_RX_DEFAULT_QUEUE));
/* Enable port */
reg_val = MGE_READ(sc, MGE_PORT_SERIAL_CTRL);
reg_val |= PORT_SERIAL_ENABLE;
MGE_WRITE(sc, MGE_PORT_SERIAL_CTRL, reg_val);
count = 0x100000;
for (;;) {
reg_val = MGE_READ(sc, MGE_PORT_STATUS);
if (reg_val & MGE_STATUS_LINKUP)
break;
DELAY(100);
if (--count == 0) {
if_printf(sc->ifp, "Timeout on link-up\n");
break;
}
}
/* Setup interrupts coalescing */
mge_set_rxic(sc);
mge_set_txic(sc);
/* Enable interrupts */
#ifdef DEVICE_POLLING
/*
* * ...only if polling is not turned on. Disable interrupts explicitly
* if polling is enabled.
*/
if (sc->ifp->if_capenable & IFCAP_POLLING)
mge_intrs_ctrl(sc, 0);
else
#endif /* DEVICE_POLLING */
mge_intrs_ctrl(sc, 1);
/* Activate network interface */
sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->wd_timer = 0;
/* Schedule watchdog timeout */
callout_reset(&sc->wd_callout, hz, mge_tick, sc);
}
static void
mge_intr_rxtx(void *arg)
{
struct mge_softc *sc = arg;
uint32_t int_cause, int_cause_ext;
MGE_GLOBAL_LOCK(sc);
#ifdef DEVICE_POLLING
if (sc->ifp->if_capenable & IFCAP_POLLING) {
MGE_GLOBAL_UNLOCK(sc);
return;
}
#endif
/* Get interrupt cause */
int_cause = MGE_READ(sc, MGE_PORT_INT_CAUSE);
int_cause_ext = MGE_READ(sc, MGE_PORT_INT_CAUSE_EXT);
/* Check for Transmit interrupt */
if (int_cause_ext & (MGE_PORT_INT_EXT_TXBUF0 |
MGE_PORT_INT_EXT_TXUR)) {
MGE_WRITE(sc, MGE_PORT_INT_CAUSE_EXT, ~(int_cause_ext &
(MGE_PORT_INT_EXT_TXBUF0 | MGE_PORT_INT_EXT_TXUR)));
mge_intr_tx_locked(sc);
}
MGE_TRANSMIT_UNLOCK(sc);
/* Check for Receive interrupt */
mge_intr_rx_check(sc, int_cause, int_cause_ext);
MGE_RECEIVE_UNLOCK(sc);
}
static void
mge_intr_err(void *arg)
{
struct mge_softc *sc = arg;
struct ifnet *ifp;
ifp = sc->ifp;
if_printf(ifp, "%s\n", __FUNCTION__);
}
static void
mge_intr_misc(void *arg)
{
struct mge_softc *sc = arg;
struct ifnet *ifp;
ifp = sc->ifp;
if_printf(ifp, "%s\n", __FUNCTION__);
}
static void
mge_intr_rx(void *arg) {
struct mge_softc *sc = arg;
uint32_t int_cause, int_cause_ext;
MGE_RECEIVE_LOCK(sc);
#ifdef DEVICE_POLLING
if (sc->ifp->if_capenable & IFCAP_POLLING) {
MGE_RECEIVE_UNLOCK(sc);
return;
}
#endif
/* Get interrupt cause */
int_cause = MGE_READ(sc, MGE_PORT_INT_CAUSE);
int_cause_ext = MGE_READ(sc, MGE_PORT_INT_CAUSE_EXT);
mge_intr_rx_check(sc, int_cause, int_cause_ext);
MGE_RECEIVE_UNLOCK(sc);
}
static void
mge_intr_rx_check(struct mge_softc *sc, uint32_t int_cause,
uint32_t int_cause_ext)
{
/* Check for resource error */
if (int_cause & MGE_PORT_INT_RXERRQ0) {
mge_reinit_rx(sc);
MGE_WRITE(sc, MGE_PORT_INT_CAUSE,
~(int_cause & MGE_PORT_INT_RXERRQ0));
}
int_cause &= MGE_PORT_INT_RXQ0;
int_cause_ext &= MGE_PORT_INT_EXT_RXOR;
if (int_cause || int_cause_ext) {
MGE_WRITE(sc, MGE_PORT_INT_CAUSE, ~int_cause);
MGE_WRITE(sc, MGE_PORT_INT_CAUSE_EXT, ~int_cause_ext);
mge_intr_rx_locked(sc, -1);
}
}
static int
mge_intr_rx_locked(struct mge_softc *sc, int count)
{
struct ifnet *ifp = sc->ifp;
uint32_t status;
uint16_t bufsize;
struct mge_desc_wrapper* dw;
struct mbuf *mb;
int rx_npkts = 0;
MGE_RECEIVE_LOCK_ASSERT(sc);
while (count != 0) {
dw = &sc->mge_rx_desc[sc->rx_desc_curr];
bus_dmamap_sync(sc->mge_desc_dtag, dw->desc_dmap,
BUS_DMASYNC_POSTREAD);
/* Get status */
status = dw->mge_desc->cmd_status;
bufsize = dw->mge_desc->buff_size;
if ((status & MGE_DMA_OWNED) != 0)
break;
if (dw->mge_desc->byte_count &&
~(status & MGE_ERR_SUMMARY)) {
bus_dmamap_sync(sc->mge_rx_dtag, dw->buffer_dmap,
BUS_DMASYNC_POSTREAD);
mb = m_devget(dw->buffer->m_data,
dw->mge_desc->byte_count - ETHER_CRC_LEN,
0, ifp, NULL);
if (mb == NULL)
/* Give up if no mbufs */
break;
mb->m_len -= 2;
mb->m_pkthdr.len -= 2;
mb->m_data += 2;
mge_offload_process_frame(ifp, mb, status,
bufsize);
MGE_RECEIVE_UNLOCK(sc);
(*ifp->if_input)(ifp, mb);
MGE_RECEIVE_LOCK(sc);
rx_npkts++;
}
dw->mge_desc->byte_count = 0;
dw->mge_desc->cmd_status = MGE_RX_ENABLE_INT | MGE_DMA_OWNED;
sc->rx_desc_curr = (++sc->rx_desc_curr % MGE_RX_DESC_NUM);
bus_dmamap_sync(sc->mge_desc_dtag, dw->desc_dmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (count > 0)
count -= 1;
}
return (rx_npkts);
}
static void
mge_intr_sum(void *arg)
{
struct mge_softc *sc = arg;
struct ifnet *ifp;
ifp = sc->ifp;
if_printf(ifp, "%s\n", __FUNCTION__);
}
static void
mge_intr_tx(void *arg)
{
struct mge_softc *sc = arg;
uint32_t int_cause_ext;
MGE_TRANSMIT_LOCK(sc);
#ifdef DEVICE_POLLING
if (sc->ifp->if_capenable & IFCAP_POLLING) {
MGE_TRANSMIT_UNLOCK(sc);
return;
}
#endif
/* Ack the interrupt */
int_cause_ext = MGE_READ(sc, MGE_PORT_INT_CAUSE_EXT);
MGE_WRITE(sc, MGE_PORT_INT_CAUSE_EXT, ~(int_cause_ext &
(MGE_PORT_INT_EXT_TXBUF0 | MGE_PORT_INT_EXT_TXUR)));
mge_intr_tx_locked(sc);
MGE_TRANSMIT_UNLOCK(sc);
}
static void
mge_intr_tx_locked(struct mge_softc *sc)
{
struct ifnet *ifp = sc->ifp;
struct mge_desc_wrapper *dw;
struct mge_desc *desc;
uint32_t status;
int send = 0;
MGE_TRANSMIT_LOCK_ASSERT(sc);
/* Disable watchdog */
sc->wd_timer = 0;
while (sc->tx_desc_used_count) {
/* Get the descriptor */
dw = &sc->mge_tx_desc[sc->tx_desc_used_idx];
desc = dw->mge_desc;
bus_dmamap_sync(sc->mge_desc_dtag, dw->desc_dmap,
BUS_DMASYNC_POSTREAD);
/* Get descriptor status */
status = desc->cmd_status;
if (status & MGE_DMA_OWNED)
break;
sc->tx_desc_used_idx =
(++sc->tx_desc_used_idx) % MGE_TX_DESC_NUM;
sc->tx_desc_used_count--;
/* Update collision statistics */
if (status & MGE_ERR_SUMMARY) {
if ((status & MGE_ERR_MASK) == MGE_TX_ERROR_LC)
ifp->if_collisions++;
if ((status & MGE_ERR_MASK) == MGE_TX_ERROR_RL)
ifp->if_collisions += 16;
}
bus_dmamap_sync(sc->mge_tx_dtag, dw->buffer_dmap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->mge_tx_dtag, dw->buffer_dmap);
m_freem(dw->buffer);
dw->buffer = (struct mbuf*)NULL;
send++;
ifp->if_opackets++;
}
if (send) {
/* Now send anything that was pending */
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
mge_start_locked(ifp);
}
}
static int
mge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct mge_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int mask, error;
uint32_t flags;
error = 0;
switch (command) {
case SIOCSIFFLAGS:
MGE_GLOBAL_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
flags = ifp->if_flags ^ sc->mge_if_flags;
if (flags & IFF_PROMISC)
mge_set_prom_mode(sc,
MGE_RX_DEFAULT_QUEUE);
if (flags & IFF_ALLMULTI)
mge_setup_multicast(sc);
} else
mge_init_locked(sc);
}
else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
mge_stop(sc);
sc->mge_if_flags = ifp->if_flags;
MGE_GLOBAL_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
MGE_GLOBAL_LOCK(sc);
mge_setup_multicast(sc);
MGE_GLOBAL_UNLOCK(sc);
}
break;
case SIOCSIFCAP:
mask = ifp->if_capenable ^ ifr->ifr_reqcap;
if (mask & IFCAP_HWCSUM) {
ifp->if_capenable &= ~IFCAP_HWCSUM;
ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
if (ifp->if_capenable & IFCAP_TXCSUM)
ifp->if_hwassist = MGE_CHECKSUM_FEATURES;
else
ifp->if_hwassist = 0;
}
#ifdef DEVICE_POLLING
if (mask & IFCAP_POLLING) {
if (ifr->ifr_reqcap & IFCAP_POLLING) {
error = ether_poll_register(mge_poll, ifp);
if (error)
return(error);
MGE_GLOBAL_LOCK(sc);
mge_intrs_ctrl(sc, 0);
ifp->if_capenable |= IFCAP_POLLING;
MGE_GLOBAL_UNLOCK(sc);
} else {
error = ether_poll_deregister(ifp);
MGE_GLOBAL_LOCK(sc);
mge_intrs_ctrl(sc, 1);
ifp->if_capenable &= ~IFCAP_POLLING;
MGE_GLOBAL_UNLOCK(sc);
}
}
#endif
break;
case SIOCGIFMEDIA: /* fall through */
case SIOCSIFMEDIA:
if (IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T
&& !(ifr->ifr_media & IFM_FDX)) {
device_printf(sc->dev,
"1000baseTX half-duplex unsupported\n");
return 0;
}
error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
break;
default:
error = ether_ioctl(ifp, command, data);
}
return (error);
}
static int
mge_miibus_readreg(device_t dev, int phy, int reg)
{
struct mge_softc *sc;
uint32_t retries;
sc = device_get_softc(dev);
MGE_WRITE(sc->phy_sc, MGE_REG_SMI, 0x1fffffff &
(MGE_SMI_READ | (reg << 21) | (phy << 16)));
retries = MGE_SMI_READ_RETRIES;
while (--retries &&
!(MGE_READ(sc->phy_sc, MGE_REG_SMI) & MGE_SMI_READVALID))
DELAY(MGE_SMI_READ_DELAY);
if (retries == 0)
device_printf(dev, "Timeout while reading from PHY\n");
return (MGE_READ(sc->phy_sc, MGE_REG_SMI) & 0xffff);
}
static int
mge_miibus_writereg(device_t dev, int phy, int reg, int value)
{
struct mge_softc *sc;
uint32_t retries;
sc = device_get_softc(dev);
MGE_WRITE(sc->phy_sc, MGE_REG_SMI, 0x1fffffff &
(MGE_SMI_WRITE | (reg << 21) | (phy << 16) | (value & 0xffff)));
retries = MGE_SMI_WRITE_RETRIES;
while (--retries && MGE_READ(sc->phy_sc, MGE_REG_SMI) & MGE_SMI_BUSY)
DELAY(MGE_SMI_WRITE_DELAY);
if (retries == 0)
device_printf(dev, "Timeout while writing to PHY\n");
return (0);
}
static int
mge_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "mrvl,ge"))
return (ENXIO);
device_set_desc(dev, "Marvell Gigabit Ethernet controller");
return (BUS_PROBE_DEFAULT);
}
static int
mge_resume(device_t dev)
{
device_printf(dev, "%s\n", __FUNCTION__);
return (0);
}
static int
mge_shutdown(device_t dev)
{
struct mge_softc *sc = device_get_softc(dev);
MGE_GLOBAL_LOCK(sc);
#ifdef DEVICE_POLLING
if (sc->ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(sc->ifp);
#endif
mge_stop(sc);
MGE_GLOBAL_UNLOCK(sc);
return (0);
}
static int
mge_encap(struct mge_softc *sc, struct mbuf *m0)
{
struct mge_desc_wrapper *dw = NULL;
struct ifnet *ifp;
bus_dma_segment_t segs[MGE_TX_DESC_NUM];
bus_dmamap_t mapp;
int error;
int seg, nsegs;
int desc_no;
ifp = sc->ifp;
/* Check for free descriptors */
if (sc->tx_desc_used_count + 1 >= MGE_TX_DESC_NUM) {
/* No free descriptors */
return (-1);
}
/* Fetch unused map */
desc_no = sc->tx_desc_curr;
dw = &sc->mge_tx_desc[desc_no];
mapp = dw->buffer_dmap;
/* Create mapping in DMA memory */
error = bus_dmamap_load_mbuf_sg(sc->mge_tx_dtag, mapp, m0, segs, &nsegs,
BUS_DMA_NOWAIT);
if (error != 0 || nsegs != 1 ) {
bus_dmamap_unload(sc->mge_tx_dtag, mapp);
return ((error != 0) ? error : -1);
}
bus_dmamap_sync(sc->mge_tx_dtag, mapp, BUS_DMASYNC_PREWRITE);
/* Everything is ok, now we can send buffers */
for (seg = 0; seg < nsegs; seg++) {
dw->mge_desc->byte_count = segs[seg].ds_len;
dw->mge_desc->buffer = segs[seg].ds_addr;
dw->buffer = m0;
dw->mge_desc->cmd_status = 0;
if (seg == 0)
mge_offload_setup_descriptor(sc, dw);
dw->mge_desc->cmd_status |= MGE_TX_LAST | MGE_TX_FIRST |
MGE_TX_ETH_CRC | MGE_TX_EN_INT | MGE_TX_PADDING |
MGE_DMA_OWNED;
}
bus_dmamap_sync(sc->mge_desc_dtag, dw->desc_dmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc->tx_desc_curr = (++sc->tx_desc_curr) % MGE_TX_DESC_NUM;
sc->tx_desc_used_count++;
return (0);
}
static void
mge_tick(void *msc)
{
struct mge_softc *sc = msc;
/* Check for TX timeout */
mge_watchdog(sc);
mii_tick(sc->mii);
/* Check for media type change */
if(sc->mge_media_status != sc->mii->mii_media.ifm_media)
mge_ifmedia_upd(sc->ifp);
/* Schedule another timeout one second from now */
callout_reset(&sc->wd_callout, hz, mge_tick, sc);
}
static void
mge_watchdog(struct mge_softc *sc)
{
struct ifnet *ifp;
ifp = sc->ifp;
MGE_GLOBAL_LOCK(sc);
if (sc->wd_timer == 0 || --sc->wd_timer) {
MGE_GLOBAL_UNLOCK(sc);
return;
}
ifp->if_oerrors++;
if_printf(ifp, "watchdog timeout\n");
mge_stop(sc);
mge_init_locked(sc);
MGE_GLOBAL_UNLOCK(sc);
}
static void
mge_start(struct ifnet *ifp)
{
struct mge_softc *sc = ifp->if_softc;
MGE_TRANSMIT_LOCK(sc);
mge_start_locked(ifp);
MGE_TRANSMIT_UNLOCK(sc);
}
static void
mge_start_locked(struct ifnet *ifp)
{
struct mge_softc *sc;
struct mbuf *m0, *mtmp;
uint32_t reg_val, queued = 0;
sc = ifp->if_softc;
MGE_TRANSMIT_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
return;
for (;;) {
/* Get packet from the queue */
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
mtmp = m_defrag(m0, M_NOWAIT);
if (mtmp)
m0 = mtmp;
if (mge_encap(sc, m0)) {
IF_PREPEND(&ifp->if_snd, m0);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
queued++;
BPF_MTAP(ifp, m0);
}
if (queued) {
/* Enable transmitter and watchdog timer */
reg_val = MGE_READ(sc, MGE_TX_QUEUE_CMD);
MGE_WRITE(sc, MGE_TX_QUEUE_CMD, reg_val | MGE_ENABLE_TXQ);
sc->wd_timer = 5;
}
}
static void
mge_stop(struct mge_softc *sc)
{
struct ifnet *ifp;
volatile uint32_t reg_val, status;
struct mge_desc_wrapper *dw;
struct mge_desc *desc;
int count;
ifp = sc->ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
/* Stop tick engine */
callout_stop(&sc->wd_callout);
/* Disable interface */
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->wd_timer = 0;
/* Disable interrupts */
mge_intrs_ctrl(sc, 0);
/* Disable Rx and Tx */
reg_val = MGE_READ(sc, MGE_TX_QUEUE_CMD);
MGE_WRITE(sc, MGE_TX_QUEUE_CMD, reg_val | MGE_DISABLE_TXQ);
MGE_WRITE(sc, MGE_RX_QUEUE_CMD, MGE_DISABLE_RXQ_ALL);
/* Remove pending data from TX queue */
while (sc->tx_desc_used_idx != sc->tx_desc_curr &&
sc->tx_desc_used_count) {
/* Get the descriptor */
dw = &sc->mge_tx_desc[sc->tx_desc_used_idx];
desc = dw->mge_desc;
bus_dmamap_sync(sc->mge_desc_dtag, dw->desc_dmap,
BUS_DMASYNC_POSTREAD);
/* Get descriptor status */
status = desc->cmd_status;
if (status & MGE_DMA_OWNED)
break;
sc->tx_desc_used_idx = (++sc->tx_desc_used_idx) %
MGE_TX_DESC_NUM;
sc->tx_desc_used_count--;
bus_dmamap_sync(sc->mge_tx_dtag, dw->buffer_dmap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->mge_tx_dtag, dw->buffer_dmap);
m_freem(dw->buffer);
dw->buffer = (struct mbuf*)NULL;
}
/* Wait for end of transmission */
count = 0x100000;
while (count--) {
reg_val = MGE_READ(sc, MGE_PORT_STATUS);
if ( !(reg_val & MGE_STATUS_TX_IN_PROG) &&
(reg_val & MGE_STATUS_TX_FIFO_EMPTY))
break;
DELAY(100);
}
if(!count)
if_printf(ifp, "%s: timeout while waiting for end of transmission\n",
__FUNCTION__);
reg_val = MGE_READ(sc, MGE_PORT_SERIAL_CTRL);
reg_val &= ~(PORT_SERIAL_ENABLE);
MGE_WRITE(sc, MGE_PORT_SERIAL_CTRL ,reg_val);
}
static int
mge_suspend(device_t dev)
{
device_printf(dev, "%s\n", __FUNCTION__);
return (0);
}
static void
mge_offload_process_frame(struct ifnet *ifp, struct mbuf *frame,
uint32_t status, uint16_t bufsize)
{
int csum_flags = 0;
if (ifp->if_capenable & IFCAP_RXCSUM) {
if ((status & MGE_RX_L3_IS_IP) && (status & MGE_RX_IP_OK))
csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
if ((bufsize & MGE_RX_IP_FRAGMENT) == 0 &&
(MGE_RX_L4_IS_TCP(status) || MGE_RX_L4_IS_UDP(status)) &&
(status & MGE_RX_L4_CSUM_OK)) {
csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
frame->m_pkthdr.csum_data = 0xFFFF;
}
frame->m_pkthdr.csum_flags = csum_flags;
}
}
static void
mge_offload_setup_descriptor(struct mge_softc *sc, struct mge_desc_wrapper *dw)
{
struct mbuf *m0 = dw->buffer;
struct ether_vlan_header *eh = mtod(m0, struct ether_vlan_header *);
int csum_flags = m0->m_pkthdr.csum_flags;
int cmd_status = 0;
struct ip *ip;
int ehlen, etype;
if (csum_flags) {
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
etype = ntohs(eh->evl_proto);
ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
csum_flags |= MGE_TX_VLAN_TAGGED;
} else {
etype = ntohs(eh->evl_encap_proto);
ehlen = ETHER_HDR_LEN;
}
if (etype != ETHERTYPE_IP) {
if_printf(sc->ifp,
"TCP/IP Offload enabled for unsupported "
"protocol!\n");
return;
}
ip = (struct ip *)(m0->m_data + ehlen);
cmd_status |= MGE_TX_IP_HDR_SIZE(ip->ip_hl);
cmd_status |= MGE_TX_NOT_FRAGMENT;
}
if (csum_flags & CSUM_IP)
cmd_status |= MGE_TX_GEN_IP_CSUM;
if (csum_flags & CSUM_TCP)
cmd_status |= MGE_TX_GEN_L4_CSUM;
if (csum_flags & CSUM_UDP)
cmd_status |= MGE_TX_GEN_L4_CSUM | MGE_TX_UDP;
dw->mge_desc->cmd_status |= cmd_status;
}
static void
mge_intrs_ctrl(struct mge_softc *sc, int enable)
{
if (enable) {
MGE_WRITE(sc, MGE_PORT_INT_MASK , MGE_PORT_INT_RXQ0 |
MGE_PORT_INT_EXTEND | MGE_PORT_INT_RXERRQ0);
MGE_WRITE(sc, MGE_PORT_INT_MASK_EXT , MGE_PORT_INT_EXT_TXERR0 |
MGE_PORT_INT_EXT_RXOR | MGE_PORT_INT_EXT_TXUR |
MGE_PORT_INT_EXT_TXBUF0);
} else {
MGE_WRITE(sc, MGE_INT_CAUSE, 0x0);
MGE_WRITE(sc, MGE_INT_MASK, 0x0);
MGE_WRITE(sc, MGE_PORT_INT_CAUSE, 0x0);
MGE_WRITE(sc, MGE_PORT_INT_CAUSE_EXT, 0x0);
MGE_WRITE(sc, MGE_PORT_INT_MASK, 0x0);
MGE_WRITE(sc, MGE_PORT_INT_MASK_EXT, 0x0);
}
}
static uint8_t
mge_crc8(uint8_t *data, int size)
{
uint8_t crc = 0;
static const uint8_t ct[256] = {
0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B, 0x12, 0x15,
0x38, 0x3F, 0x36, 0x31, 0x24, 0x23, 0x2A, 0x2D,
0x70, 0x77, 0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65,
0x48, 0x4F, 0x46, 0x41, 0x54, 0x53, 0x5A, 0x5D,
0xE0, 0xE7, 0xEE, 0xE9, 0xFC, 0xFB, 0xF2, 0xF5,
0xD8, 0xDF, 0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD,
0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B, 0x82, 0x85,
0xA8, 0xAF, 0xA6, 0xA1, 0xB4, 0xB3, 0xBA, 0xBD,
0xC7, 0xC0, 0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2,
0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4, 0xED, 0xEA,
0xB7, 0xB0, 0xB9, 0xBE, 0xAB, 0xAC, 0xA5, 0xA2,
0x8F, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A,
0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C, 0x35, 0x32,
0x1F, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0D, 0x0A,
0x57, 0x50, 0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42,
0x6F, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7D, 0x7A,
0x89, 0x8E, 0x87, 0x80, 0x95, 0x92, 0x9B, 0x9C,
0xB1, 0xB6, 0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4,
0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2, 0xEB, 0xEC,
0xC1, 0xC6, 0xCF, 0xC8, 0xDD, 0xDA, 0xD3, 0xD4,
0x69, 0x6E, 0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C,
0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A, 0x43, 0x44,
0x19, 0x1E, 0x17, 0x10, 0x05, 0x02, 0x0B, 0x0C,
0x21, 0x26, 0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34,
0x4E, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5C, 0x5B,
0x76, 0x71, 0x78, 0x7F, 0x6A, 0x6D, 0x64, 0x63,
0x3E, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B,
0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D, 0x14, 0x13,
0xAE, 0xA9, 0xA0, 0xA7, 0xB2, 0xB5, 0xBC, 0xBB,
0x96, 0x91, 0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83,
0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5, 0xCC, 0xCB,
0xE6, 0xE1, 0xE8, 0xEF, 0xFA, 0xFD, 0xF4, 0xF3
};
while(size--)
crc = ct[crc ^ *(data++)];
return(crc);
}
static void
mge_setup_multicast(struct mge_softc *sc)
{
uint8_t special[5] = { 0x01, 0x00, 0x5E, 0x00, 0x00 };
uint8_t v = (MGE_RX_DEFAULT_QUEUE << 1) | 1;
uint32_t smt[MGE_MCAST_REG_NUMBER];
uint32_t omt[MGE_MCAST_REG_NUMBER];
struct ifnet *ifp = sc->ifp;
struct ifmultiaddr *ifma;
uint8_t *mac;
int i;
if (ifp->if_flags & IFF_ALLMULTI) {
for (i = 0; i < MGE_MCAST_REG_NUMBER; i++)
smt[i] = omt[i] = (v << 24) | (v << 16) | (v << 8) | v;
} else {
memset(smt, 0, sizeof(smt));
memset(omt, 0, sizeof(omt));
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
mac = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
if (memcmp(mac, special, sizeof(special)) == 0) {
i = mac[5];
smt[i >> 2] |= v << ((i & 0x03) << 3);
} else {
i = mge_crc8(mac, ETHER_ADDR_LEN);
omt[i >> 2] |= v << ((i & 0x03) << 3);
}
}
if_maddr_runlock(ifp);
}
for (i = 0; i < MGE_MCAST_REG_NUMBER; i++) {
MGE_WRITE(sc, MGE_DA_FILTER_SPEC_MCAST(i), smt[i]);
MGE_WRITE(sc, MGE_DA_FILTER_OTH_MCAST(i), omt[i]);
}
}
static void
mge_set_rxic(struct mge_softc *sc)
{
uint32_t reg;
if (sc->rx_ic_time > sc->mge_rx_ipg_max)
sc->rx_ic_time = sc->mge_rx_ipg_max;
reg = MGE_READ(sc, MGE_SDMA_CONFIG);
reg &= ~mge_rx_ipg(sc->mge_rx_ipg_max, sc->mge_ver);
reg |= mge_rx_ipg(sc->rx_ic_time, sc->mge_ver);
MGE_WRITE(sc, MGE_SDMA_CONFIG, reg);
}
static void
mge_set_txic(struct mge_softc *sc)
{
uint32_t reg;
if (sc->tx_ic_time > sc->mge_tfut_ipg_max)
sc->tx_ic_time = sc->mge_tfut_ipg_max;
reg = MGE_READ(sc, MGE_TX_FIFO_URGENT_TRSH);
reg &= ~mge_tfut_ipg(sc->mge_tfut_ipg_max, sc->mge_ver);
reg |= mge_tfut_ipg(sc->tx_ic_time, sc->mge_ver);
MGE_WRITE(sc, MGE_TX_FIFO_URGENT_TRSH, reg);
}
static int
mge_sysctl_ic(SYSCTL_HANDLER_ARGS)
{
struct mge_softc *sc = (struct mge_softc *)arg1;
uint32_t time;
int error;
time = (arg2 == MGE_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time;
error = sysctl_handle_int(oidp, &time, 0, req);
if (error != 0)
return(error);
MGE_GLOBAL_LOCK(sc);
if (arg2 == MGE_IC_RX) {
sc->rx_ic_time = time;
mge_set_rxic(sc);
} else {
sc->tx_ic_time = time;
mge_set_txic(sc);
}
MGE_GLOBAL_UNLOCK(sc);
return(0);
}
static void
mge_add_sysctls(struct mge_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *children;
struct sysctl_oid *tree;
ctx = device_get_sysctl_ctx(sc->dev);
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal",
CTLFLAG_RD, 0, "MGE Interrupts coalescing");
children = SYSCTL_CHILDREN(tree);
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time",
CTLTYPE_UINT | CTLFLAG_RW, sc, MGE_IC_RX, mge_sysctl_ic,
"I", "IC RX time threshold");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time",
CTLTYPE_UINT | CTLFLAG_RW, sc, MGE_IC_TX, mge_sysctl_ic,
"I", "IC TX time threshold");
}