freebsd-dev/sys/kern/uipc_socket.c
Dag-Erling Smørgrav a3ea6d41b9 First step towards an MP-safe zone allocator:
- have zalloc() and zfree() always lock the vm_zone.
 - remove zalloci() and zfreei(), which are now redundant.

Reviewed by:	bmilekic, jasone
2001-01-21 22:23:11 +00:00

1634 lines
39 KiB
C

/*
* Copyright (c) 1982, 1986, 1988, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94
* $FreeBSD$
*/
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/fcntl.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
#include <sys/file.h> /* for struct knote */
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/event.h>
#include <sys/poll.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
#include <sys/sysctl.h>
#include <sys/uio.h>
#include <sys/jail.h>
#include <vm/vm_zone.h>
#include <machine/limits.h>
#ifdef INET
static int do_setopt_accept_filter(struct socket *so, struct sockopt *sopt);
#endif
static int filt_sorattach(struct knote *kn);
static void filt_sordetach(struct knote *kn);
static int filt_soread(struct knote *kn, long hint);
static int filt_sowattach(struct knote *kn);
static void filt_sowdetach(struct knote *kn);
static int filt_sowrite(struct knote *kn, long hint);
static int filt_solisten(struct knote *kn, long hint);
static struct filterops solisten_filtops =
{ 1, filt_sorattach, filt_sordetach, filt_solisten };
struct filterops so_rwfiltops[] = {
{ 1, filt_sorattach, filt_sordetach, filt_soread },
{ 1, filt_sowattach, filt_sowdetach, filt_sowrite },
};
struct vm_zone *socket_zone;
so_gen_t so_gencnt; /* generation count for sockets */
MALLOC_DEFINE(M_SONAME, "soname", "socket name");
MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
SYSCTL_DECL(_kern_ipc);
static int somaxconn = SOMAXCONN;
SYSCTL_INT(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLFLAG_RW,
&somaxconn, 0, "Maximum pending socket connection queue size");
/*
* Socket operation routines.
* These routines are called by the routines in
* sys_socket.c or from a system process, and
* implement the semantics of socket operations by
* switching out to the protocol specific routines.
*/
/*
* Get a socket structure from our zone, and initialize it.
* We don't implement `waitok' yet (see comments in uipc_domain.c).
* Note that it would probably be better to allocate socket
* and PCB at the same time, but I'm not convinced that all
* the protocols can be easily modified to do this.
*/
struct socket *
soalloc(waitok)
int waitok;
{
struct socket *so;
so = zalloc(socket_zone);
if (so) {
/* XXX race condition for reentrant kernel */
bzero(so, sizeof *so);
so->so_gencnt = ++so_gencnt;
so->so_zone = socket_zone;
TAILQ_INIT(&so->so_aiojobq);
}
return so;
}
int
socreate(dom, aso, type, proto, p)
int dom;
struct socket **aso;
register int type;
int proto;
struct proc *p;
{
register struct protosw *prp;
register struct socket *so;
register int error;
if (proto)
prp = pffindproto(dom, proto, type);
else
prp = pffindtype(dom, type);
if (prp == 0 || prp->pr_usrreqs->pru_attach == 0)
return (EPROTONOSUPPORT);
if (p->p_prison && jail_socket_unixiproute_only &&
prp->pr_domain->dom_family != PF_LOCAL &&
prp->pr_domain->dom_family != PF_INET &&
prp->pr_domain->dom_family != PF_ROUTE) {
return (EPROTONOSUPPORT);
}
if (prp->pr_type != type)
return (EPROTOTYPE);
so = soalloc(p != 0);
if (so == 0)
return (ENOBUFS);
TAILQ_INIT(&so->so_incomp);
TAILQ_INIT(&so->so_comp);
so->so_type = type;
so->so_cred = p->p_ucred;
crhold(so->so_cred);
so->so_proto = prp;
error = (*prp->pr_usrreqs->pru_attach)(so, proto, p);
if (error) {
so->so_state |= SS_NOFDREF;
sofree(so);
return (error);
}
*aso = so;
return (0);
}
int
sobind(so, nam, p)
struct socket *so;
struct sockaddr *nam;
struct proc *p;
{
int s = splnet();
int error;
error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, p);
splx(s);
return (error);
}
void
sodealloc(so)
struct socket *so;
{
so->so_gencnt = ++so_gencnt;
if (so->so_rcv.sb_hiwat)
(void)chgsbsize(so->so_cred->cr_uidinfo,
&so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
if (so->so_snd.sb_hiwat)
(void)chgsbsize(so->so_cred->cr_uidinfo,
&so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
#ifdef INET
if (so->so_accf != NULL) {
if (so->so_accf->so_accept_filter != NULL &&
so->so_accf->so_accept_filter->accf_destroy != NULL) {
so->so_accf->so_accept_filter->accf_destroy(so);
}
if (so->so_accf->so_accept_filter_str != NULL)
FREE(so->so_accf->so_accept_filter_str, M_ACCF);
FREE(so->so_accf, M_ACCF);
}
#endif
crfree(so->so_cred);
zfree(so->so_zone, so);
}
int
solisten(so, backlog, p)
register struct socket *so;
int backlog;
struct proc *p;
{
int s, error;
s = splnet();
error = (*so->so_proto->pr_usrreqs->pru_listen)(so, p);
if (error) {
splx(s);
return (error);
}
if (TAILQ_EMPTY(&so->so_comp))
so->so_options |= SO_ACCEPTCONN;
if (backlog < 0 || backlog > somaxconn)
backlog = somaxconn;
so->so_qlimit = backlog;
splx(s);
return (0);
}
void
sofree(so)
register struct socket *so;
{
struct socket *head = so->so_head;
if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
return;
if (head != NULL) {
if (so->so_state & SS_INCOMP) {
TAILQ_REMOVE(&head->so_incomp, so, so_list);
head->so_incqlen--;
} else if (so->so_state & SS_COMP) {
/*
* We must not decommission a socket that's
* on the accept(2) queue. If we do, then
* accept(2) may hang after select(2) indicated
* that the listening socket was ready.
*/
return;
} else {
panic("sofree: not queued");
}
head->so_qlen--;
so->so_state &= ~SS_INCOMP;
so->so_head = NULL;
}
sbrelease(&so->so_snd, so);
sorflush(so);
sodealloc(so);
}
/*
* Close a socket on last file table reference removal.
* Initiate disconnect if connected.
* Free socket when disconnect complete.
*/
int
soclose(so)
register struct socket *so;
{
int s = splnet(); /* conservative */
int error = 0;
funsetown(so->so_sigio);
if (so->so_options & SO_ACCEPTCONN) {
struct socket *sp, *sonext;
sp = TAILQ_FIRST(&so->so_incomp);
for (; sp != NULL; sp = sonext) {
sonext = TAILQ_NEXT(sp, so_list);
(void) soabort(sp);
}
for (sp = TAILQ_FIRST(&so->so_comp); sp != NULL; sp = sonext) {
sonext = TAILQ_NEXT(sp, so_list);
/* Dequeue from so_comp since sofree() won't do it */
TAILQ_REMOVE(&so->so_comp, sp, so_list);
so->so_qlen--;
sp->so_state &= ~SS_COMP;
sp->so_head = NULL;
(void) soabort(sp);
}
}
if (so->so_pcb == 0)
goto discard;
if (so->so_state & SS_ISCONNECTED) {
if ((so->so_state & SS_ISDISCONNECTING) == 0) {
error = sodisconnect(so);
if (error)
goto drop;
}
if (so->so_options & SO_LINGER) {
if ((so->so_state & SS_ISDISCONNECTING) &&
(so->so_state & SS_NBIO))
goto drop;
while (so->so_state & SS_ISCONNECTED) {
error = tsleep((caddr_t)&so->so_timeo,
PSOCK | PCATCH, "soclos", so->so_linger * hz);
if (error)
break;
}
}
}
drop:
if (so->so_pcb) {
int error2 = (*so->so_proto->pr_usrreqs->pru_detach)(so);
if (error == 0)
error = error2;
}
discard:
if (so->so_state & SS_NOFDREF)
panic("soclose: NOFDREF");
so->so_state |= SS_NOFDREF;
sofree(so);
splx(s);
return (error);
}
/*
* Must be called at splnet...
*/
int
soabort(so)
struct socket *so;
{
int error;
error = (*so->so_proto->pr_usrreqs->pru_abort)(so);
if (error) {
sofree(so);
return error;
}
return (0);
}
int
soaccept(so, nam)
register struct socket *so;
struct sockaddr **nam;
{
int s = splnet();
int error;
if ((so->so_state & SS_NOFDREF) == 0)
panic("soaccept: !NOFDREF");
so->so_state &= ~SS_NOFDREF;
if ((so->so_state & SS_ISDISCONNECTED) == 0)
error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
else {
if (nam)
*nam = 0;
error = 0;
}
splx(s);
return (error);
}
int
soconnect(so, nam, p)
register struct socket *so;
struct sockaddr *nam;
struct proc *p;
{
int s;
int error;
if (so->so_options & SO_ACCEPTCONN)
return (EOPNOTSUPP);
s = splnet();
/*
* If protocol is connection-based, can only connect once.
* Otherwise, if connected, try to disconnect first.
* This allows user to disconnect by connecting to, e.g.,
* a null address.
*/
if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
(error = sodisconnect(so))))
error = EISCONN;
else
error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, p);
splx(s);
return (error);
}
int
soconnect2(so1, so2)
register struct socket *so1;
struct socket *so2;
{
int s = splnet();
int error;
error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
splx(s);
return (error);
}
int
sodisconnect(so)
register struct socket *so;
{
int s = splnet();
int error;
if ((so->so_state & SS_ISCONNECTED) == 0) {
error = ENOTCONN;
goto bad;
}
if (so->so_state & SS_ISDISCONNECTING) {
error = EALREADY;
goto bad;
}
error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
bad:
splx(s);
return (error);
}
#define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
/*
* Send on a socket.
* If send must go all at once and message is larger than
* send buffering, then hard error.
* Lock against other senders.
* If must go all at once and not enough room now, then
* inform user that this would block and do nothing.
* Otherwise, if nonblocking, send as much as possible.
* The data to be sent is described by "uio" if nonzero,
* otherwise by the mbuf chain "top" (which must be null
* if uio is not). Data provided in mbuf chain must be small
* enough to send all at once.
*
* Returns nonzero on error, timeout or signal; callers
* must check for short counts if EINTR/ERESTART are returned.
* Data and control buffers are freed on return.
*/
int
sosend(so, addr, uio, top, control, flags, p)
register struct socket *so;
struct sockaddr *addr;
struct uio *uio;
struct mbuf *top;
struct mbuf *control;
int flags;
struct proc *p;
{
struct mbuf **mp;
register struct mbuf *m;
register long space, len, resid;
int clen = 0, error, s, dontroute, mlen;
int atomic = sosendallatonce(so) || top;
if (uio)
resid = uio->uio_resid;
else
resid = top->m_pkthdr.len;
/*
* In theory resid should be unsigned.
* However, space must be signed, as it might be less than 0
* if we over-committed, and we must use a signed comparison
* of space and resid. On the other hand, a negative resid
* causes us to loop sending 0-length segments to the protocol.
*
* Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
* type sockets since that's an error.
*/
if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
error = EINVAL;
goto out;
}
dontroute =
(flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
(so->so_proto->pr_flags & PR_ATOMIC);
if (p)
p->p_stats->p_ru.ru_msgsnd++;
if (control)
clen = control->m_len;
#define snderr(errno) { error = errno; splx(s); goto release; }
restart:
error = sblock(&so->so_snd, SBLOCKWAIT(flags));
if (error)
goto out;
do {
s = splnet();
if (so->so_state & SS_CANTSENDMORE)
snderr(EPIPE);
if (so->so_error) {
error = so->so_error;
so->so_error = 0;
splx(s);
goto release;
}
if ((so->so_state & SS_ISCONNECTED) == 0) {
/*
* `sendto' and `sendmsg' is allowed on a connection-
* based socket if it supports implied connect.
* Return ENOTCONN if not connected and no address is
* supplied.
*/
if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
(so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
if ((so->so_state & SS_ISCONFIRMING) == 0 &&
!(resid == 0 && clen != 0))
snderr(ENOTCONN);
} else if (addr == 0)
snderr(so->so_proto->pr_flags & PR_CONNREQUIRED ?
ENOTCONN : EDESTADDRREQ);
}
space = sbspace(&so->so_snd);
if (flags & MSG_OOB)
space += 1024;
if ((atomic && resid > so->so_snd.sb_hiwat) ||
clen > so->so_snd.sb_hiwat)
snderr(EMSGSIZE);
if (space < resid + clen && uio &&
(atomic || space < so->so_snd.sb_lowat || space < clen)) {
if (so->so_state & SS_NBIO)
snderr(EWOULDBLOCK);
sbunlock(&so->so_snd);
error = sbwait(&so->so_snd);
splx(s);
if (error)
goto out;
goto restart;
}
splx(s);
mp = &top;
space -= clen;
do {
if (uio == NULL) {
/*
* Data is prepackaged in "top".
*/
resid = 0;
if (flags & MSG_EOR)
top->m_flags |= M_EOR;
} else do {
if (top == 0) {
MGETHDR(m, M_TRYWAIT, MT_DATA);
if (m == NULL) {
error = ENOBUFS;
goto release;
}
mlen = MHLEN;
m->m_pkthdr.len = 0;
m->m_pkthdr.rcvif = (struct ifnet *)0;
} else {
MGET(m, M_TRYWAIT, MT_DATA);
if (m == NULL) {
error = ENOBUFS;
goto release;
}
mlen = MLEN;
}
if (resid >= MINCLSIZE) {
MCLGET(m, M_TRYWAIT);
if ((m->m_flags & M_EXT) == 0)
goto nopages;
mlen = MCLBYTES;
len = min(min(mlen, resid), space);
} else {
nopages:
len = min(min(mlen, resid), space);
/*
* For datagram protocols, leave room
* for protocol headers in first mbuf.
*/
if (atomic && top == 0 && len < mlen)
MH_ALIGN(m, len);
}
space -= len;
error = uiomove(mtod(m, caddr_t), (int)len, uio);
resid = uio->uio_resid;
m->m_len = len;
*mp = m;
top->m_pkthdr.len += len;
if (error)
goto release;
mp = &m->m_next;
if (resid <= 0) {
if (flags & MSG_EOR)
top->m_flags |= M_EOR;
break;
}
} while (space > 0 && atomic);
if (dontroute)
so->so_options |= SO_DONTROUTE;
s = splnet(); /* XXX */
/*
* XXX all the SS_CANTSENDMORE checks previously
* done could be out of date. We could have recieved
* a reset packet in an interrupt or maybe we slept
* while doing page faults in uiomove() etc. We could
* probably recheck again inside the splnet() protection
* here, but there are probably other places that this
* also happens. We must rethink this.
*/
error = (*so->so_proto->pr_usrreqs->pru_send)(so,
(flags & MSG_OOB) ? PRUS_OOB :
/*
* If the user set MSG_EOF, the protocol
* understands this flag and nothing left to
* send then use PRU_SEND_EOF instead of PRU_SEND.
*/
((flags & MSG_EOF) &&
(so->so_proto->pr_flags & PR_IMPLOPCL) &&
(resid <= 0)) ?
PRUS_EOF :
/* If there is more to send set PRUS_MORETOCOME */
(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
top, addr, control, p);
splx(s);
if (dontroute)
so->so_options &= ~SO_DONTROUTE;
clen = 0;
control = 0;
top = 0;
mp = &top;
if (error)
goto release;
} while (resid && space > 0);
} while (resid);
release:
sbunlock(&so->so_snd);
out:
if (top)
m_freem(top);
if (control)
m_freem(control);
return (error);
}
/*
* Implement receive operations on a socket.
* We depend on the way that records are added to the sockbuf
* by sbappend*. In particular, each record (mbufs linked through m_next)
* must begin with an address if the protocol so specifies,
* followed by an optional mbuf or mbufs containing ancillary data,
* and then zero or more mbufs of data.
* In order to avoid blocking network interrupts for the entire time here,
* we splx() while doing the actual copy to user space.
* Although the sockbuf is locked, new data may still be appended,
* and thus we must maintain consistency of the sockbuf during that time.
*
* The caller may receive the data as a single mbuf chain by supplying
* an mbuf **mp0 for use in returning the chain. The uio is then used
* only for the count in uio_resid.
*/
int
soreceive(so, psa, uio, mp0, controlp, flagsp)
register struct socket *so;
struct sockaddr **psa;
struct uio *uio;
struct mbuf **mp0;
struct mbuf **controlp;
int *flagsp;
{
register struct mbuf *m, **mp;
register int flags, len, error, s, offset;
struct protosw *pr = so->so_proto;
struct mbuf *nextrecord;
int moff, type = 0;
int orig_resid = uio->uio_resid;
mp = mp0;
if (psa)
*psa = 0;
if (controlp)
*controlp = 0;
if (flagsp)
flags = *flagsp &~ MSG_EOR;
else
flags = 0;
if (flags & MSG_OOB) {
m = m_get(M_TRYWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
if (error)
goto bad;
do {
error = uiomove(mtod(m, caddr_t),
(int) min(uio->uio_resid, m->m_len), uio);
m = m_free(m);
} while (uio->uio_resid && error == 0 && m);
bad:
if (m)
m_freem(m);
return (error);
}
if (mp)
*mp = (struct mbuf *)0;
if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
(*pr->pr_usrreqs->pru_rcvd)(so, 0);
restart:
error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
if (error)
return (error);
s = splnet();
m = so->so_rcv.sb_mb;
/*
* If we have less data than requested, block awaiting more
* (subject to any timeout) if:
* 1. the current count is less than the low water mark, or
* 2. MSG_WAITALL is set, and it is possible to do the entire
* receive operation at once if we block (resid <= hiwat).
* 3. MSG_DONTWAIT is not set
* If MSG_WAITALL is set but resid is larger than the receive buffer,
* we have to do the receive in sections, and thus risk returning
* a short count if a timeout or signal occurs after we start.
*/
if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
so->so_rcv.sb_cc < uio->uio_resid) &&
(so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
KASSERT(m != 0 || !so->so_rcv.sb_cc, ("receive 1"));
if (so->so_error) {
if (m)
goto dontblock;
error = so->so_error;
if ((flags & MSG_PEEK) == 0)
so->so_error = 0;
goto release;
}
if (so->so_state & SS_CANTRCVMORE) {
if (m)
goto dontblock;
else
goto release;
}
for (; m; m = m->m_next)
if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
m = so->so_rcv.sb_mb;
goto dontblock;
}
if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
(so->so_proto->pr_flags & PR_CONNREQUIRED)) {
error = ENOTCONN;
goto release;
}
if (uio->uio_resid == 0)
goto release;
if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
error = EWOULDBLOCK;
goto release;
}
sbunlock(&so->so_rcv);
error = sbwait(&so->so_rcv);
splx(s);
if (error)
return (error);
goto restart;
}
dontblock:
if (uio->uio_procp)
uio->uio_procp->p_stats->p_ru.ru_msgrcv++;
nextrecord = m->m_nextpkt;
if (pr->pr_flags & PR_ADDR) {
KASSERT(m->m_type == MT_SONAME, ("receive 1a"));
orig_resid = 0;
if (psa)
*psa = dup_sockaddr(mtod(m, struct sockaddr *),
mp0 == 0);
if (flags & MSG_PEEK) {
m = m->m_next;
} else {
sbfree(&so->so_rcv, m);
MFREE(m, so->so_rcv.sb_mb);
m = so->so_rcv.sb_mb;
}
}
while (m && m->m_type == MT_CONTROL && error == 0) {
if (flags & MSG_PEEK) {
if (controlp)
*controlp = m_copy(m, 0, m->m_len);
m = m->m_next;
} else {
sbfree(&so->so_rcv, m);
if (controlp) {
if (pr->pr_domain->dom_externalize &&
mtod(m, struct cmsghdr *)->cmsg_type ==
SCM_RIGHTS)
error = (*pr->pr_domain->dom_externalize)(m);
*controlp = m;
so->so_rcv.sb_mb = m->m_next;
m->m_next = 0;
m = so->so_rcv.sb_mb;
} else {
MFREE(m, so->so_rcv.sb_mb);
m = so->so_rcv.sb_mb;
}
}
if (controlp) {
orig_resid = 0;
controlp = &(*controlp)->m_next;
}
}
if (m) {
if ((flags & MSG_PEEK) == 0)
m->m_nextpkt = nextrecord;
type = m->m_type;
if (type == MT_OOBDATA)
flags |= MSG_OOB;
}
moff = 0;
offset = 0;
while (m && uio->uio_resid > 0 && error == 0) {
if (m->m_type == MT_OOBDATA) {
if (type != MT_OOBDATA)
break;
} else if (type == MT_OOBDATA)
break;
else
KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER,
("receive 3"));
so->so_state &= ~SS_RCVATMARK;
len = uio->uio_resid;
if (so->so_oobmark && len > so->so_oobmark - offset)
len = so->so_oobmark - offset;
if (len > m->m_len - moff)
len = m->m_len - moff;
/*
* If mp is set, just pass back the mbufs.
* Otherwise copy them out via the uio, then free.
* Sockbuf must be consistent here (points to current mbuf,
* it points to next record) when we drop priority;
* we must note any additions to the sockbuf when we
* block interrupts again.
*/
if (mp == 0) {
splx(s);
error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
s = splnet();
if (error)
goto release;
} else
uio->uio_resid -= len;
if (len == m->m_len - moff) {
if (m->m_flags & M_EOR)
flags |= MSG_EOR;
if (flags & MSG_PEEK) {
m = m->m_next;
moff = 0;
} else {
nextrecord = m->m_nextpkt;
sbfree(&so->so_rcv, m);
if (mp) {
*mp = m;
mp = &m->m_next;
so->so_rcv.sb_mb = m = m->m_next;
*mp = (struct mbuf *)0;
} else {
MFREE(m, so->so_rcv.sb_mb);
m = so->so_rcv.sb_mb;
}
if (m)
m->m_nextpkt = nextrecord;
}
} else {
if (flags & MSG_PEEK)
moff += len;
else {
if (mp)
*mp = m_copym(m, 0, len, M_TRYWAIT);
m->m_data += len;
m->m_len -= len;
so->so_rcv.sb_cc -= len;
}
}
if (so->so_oobmark) {
if ((flags & MSG_PEEK) == 0) {
so->so_oobmark -= len;
if (so->so_oobmark == 0) {
so->so_state |= SS_RCVATMARK;
break;
}
} else {
offset += len;
if (offset == so->so_oobmark)
break;
}
}
if (flags & MSG_EOR)
break;
/*
* If the MSG_WAITALL flag is set (for non-atomic socket),
* we must not quit until "uio->uio_resid == 0" or an error
* termination. If a signal/timeout occurs, return
* with a short count but without error.
* Keep sockbuf locked against other readers.
*/
while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
!sosendallatonce(so) && !nextrecord) {
if (so->so_error || so->so_state & SS_CANTRCVMORE)
break;
error = sbwait(&so->so_rcv);
if (error) {
sbunlock(&so->so_rcv);
splx(s);
return (0);
}
m = so->so_rcv.sb_mb;
if (m)
nextrecord = m->m_nextpkt;
}
}
if (m && pr->pr_flags & PR_ATOMIC) {
flags |= MSG_TRUNC;
if ((flags & MSG_PEEK) == 0)
(void) sbdroprecord(&so->so_rcv);
}
if ((flags & MSG_PEEK) == 0) {
if (m == 0)
so->so_rcv.sb_mb = nextrecord;
if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
(*pr->pr_usrreqs->pru_rcvd)(so, flags);
}
if (orig_resid == uio->uio_resid && orig_resid &&
(flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
sbunlock(&so->so_rcv);
splx(s);
goto restart;
}
if (flagsp)
*flagsp |= flags;
release:
sbunlock(&so->so_rcv);
splx(s);
return (error);
}
int
soshutdown(so, how)
register struct socket *so;
register int how;
{
register struct protosw *pr = so->so_proto;
how++;
if (how & FREAD)
sorflush(so);
if (how & FWRITE)
return ((*pr->pr_usrreqs->pru_shutdown)(so));
return (0);
}
void
sorflush(so)
register struct socket *so;
{
register struct sockbuf *sb = &so->so_rcv;
register struct protosw *pr = so->so_proto;
register int s;
struct sockbuf asb;
sb->sb_flags |= SB_NOINTR;
(void) sblock(sb, M_WAITOK);
s = splimp();
socantrcvmore(so);
sbunlock(sb);
asb = *sb;
bzero((caddr_t)sb, sizeof (*sb));
splx(s);
if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
(*pr->pr_domain->dom_dispose)(asb.sb_mb);
sbrelease(&asb, so);
}
#ifdef INET
static int
do_setopt_accept_filter(so, sopt)
struct socket *so;
struct sockopt *sopt;
{
struct accept_filter_arg *afap = NULL;
struct accept_filter *afp;
struct so_accf *af = so->so_accf;
int error = 0;
/* do not set/remove accept filters on non listen sockets */
if ((so->so_options & SO_ACCEPTCONN) == 0) {
error = EINVAL;
goto out;
}
/* removing the filter */
if (sopt == NULL) {
if (af != NULL) {
if (af->so_accept_filter != NULL &&
af->so_accept_filter->accf_destroy != NULL) {
af->so_accept_filter->accf_destroy(so);
}
if (af->so_accept_filter_str != NULL) {
FREE(af->so_accept_filter_str, M_ACCF);
}
FREE(af, M_ACCF);
so->so_accf = NULL;
}
so->so_options &= ~SO_ACCEPTFILTER;
return (0);
}
/* adding a filter */
/* must remove previous filter first */
if (af != NULL) {
error = EINVAL;
goto out;
}
/* don't put large objects on the kernel stack */
MALLOC(afap, struct accept_filter_arg *, sizeof(*afap), M_TEMP, M_WAITOK);
error = sooptcopyin(sopt, afap, sizeof *afap, sizeof *afap);
afap->af_name[sizeof(afap->af_name)-1] = '\0';
afap->af_arg[sizeof(afap->af_arg)-1] = '\0';
if (error)
goto out;
afp = accept_filt_get(afap->af_name);
if (afp == NULL) {
error = ENOENT;
goto out;
}
MALLOC(af, struct so_accf *, sizeof(*af), M_ACCF, M_WAITOK | M_ZERO);
if (afp->accf_create != NULL) {
if (afap->af_name[0] != '\0') {
int len = strlen(afap->af_name) + 1;
MALLOC(af->so_accept_filter_str, char *, len, M_ACCF, M_WAITOK);
strcpy(af->so_accept_filter_str, afap->af_name);
}
af->so_accept_filter_arg = afp->accf_create(so, afap->af_arg);
if (af->so_accept_filter_arg == NULL) {
FREE(af->so_accept_filter_str, M_ACCF);
FREE(af, M_ACCF);
so->so_accf = NULL;
error = EINVAL;
goto out;
}
}
af->so_accept_filter = afp;
so->so_accf = af;
so->so_options |= SO_ACCEPTFILTER;
out:
if (afap != NULL)
FREE(afap, M_TEMP);
return (error);
}
#endif /* INET */
/*
* Perhaps this routine, and sooptcopyout(), below, ought to come in
* an additional variant to handle the case where the option value needs
* to be some kind of integer, but not a specific size.
* In addition to their use here, these functions are also called by the
* protocol-level pr_ctloutput() routines.
*/
int
sooptcopyin(sopt, buf, len, minlen)
struct sockopt *sopt;
void *buf;
size_t len;
size_t minlen;
{
size_t valsize;
/*
* If the user gives us more than we wanted, we ignore it,
* but if we don't get the minimum length the caller
* wants, we return EINVAL. On success, sopt->sopt_valsize
* is set to however much we actually retrieved.
*/
if ((valsize = sopt->sopt_valsize) < minlen)
return EINVAL;
if (valsize > len)
sopt->sopt_valsize = valsize = len;
if (sopt->sopt_p != 0)
return (copyin(sopt->sopt_val, buf, valsize));
bcopy(sopt->sopt_val, buf, valsize);
return 0;
}
int
sosetopt(so, sopt)
struct socket *so;
struct sockopt *sopt;
{
int error, optval;
struct linger l;
struct timeval tv;
u_long val;
error = 0;
if (sopt->sopt_level != SOL_SOCKET) {
if (so->so_proto && so->so_proto->pr_ctloutput)
return ((*so->so_proto->pr_ctloutput)
(so, sopt));
error = ENOPROTOOPT;
} else {
switch (sopt->sopt_name) {
#ifdef INET
case SO_ACCEPTFILTER:
error = do_setopt_accept_filter(so, sopt);
if (error)
goto bad;
break;
#endif
case SO_LINGER:
error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
if (error)
goto bad;
so->so_linger = l.l_linger;
if (l.l_onoff)
so->so_options |= SO_LINGER;
else
so->so_options &= ~SO_LINGER;
break;
case SO_DEBUG:
case SO_KEEPALIVE:
case SO_DONTROUTE:
case SO_USELOOPBACK:
case SO_BROADCAST:
case SO_REUSEADDR:
case SO_REUSEPORT:
case SO_OOBINLINE:
case SO_TIMESTAMP:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
goto bad;
if (optval)
so->so_options |= sopt->sopt_name;
else
so->so_options &= ~sopt->sopt_name;
break;
case SO_SNDBUF:
case SO_RCVBUF:
case SO_SNDLOWAT:
case SO_RCVLOWAT:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
goto bad;
/*
* Values < 1 make no sense for any of these
* options, so disallow them.
*/
if (optval < 1) {
error = EINVAL;
goto bad;
}
switch (sopt->sopt_name) {
case SO_SNDBUF:
case SO_RCVBUF:
if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
&so->so_snd : &so->so_rcv, (u_long)optval,
so, curproc) == 0) {
error = ENOBUFS;
goto bad;
}
break;
/*
* Make sure the low-water is never greater than
* the high-water.
*/
case SO_SNDLOWAT:
so->so_snd.sb_lowat =
(optval > so->so_snd.sb_hiwat) ?
so->so_snd.sb_hiwat : optval;
break;
case SO_RCVLOWAT:
so->so_rcv.sb_lowat =
(optval > so->so_rcv.sb_hiwat) ?
so->so_rcv.sb_hiwat : optval;
break;
}
break;
case SO_SNDTIMEO:
case SO_RCVTIMEO:
error = sooptcopyin(sopt, &tv, sizeof tv,
sizeof tv);
if (error)
goto bad;
/* assert(hz > 0); */
if (tv.tv_sec < 0 || tv.tv_sec > SHRT_MAX / hz ||
tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
error = EDOM;
goto bad;
}
/* assert(tick > 0); */
/* assert(ULONG_MAX - SHRT_MAX >= 1000000); */
val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
if (val > SHRT_MAX) {
error = EDOM;
goto bad;
}
switch (sopt->sopt_name) {
case SO_SNDTIMEO:
so->so_snd.sb_timeo = val;
break;
case SO_RCVTIMEO:
so->so_rcv.sb_timeo = val;
break;
}
break;
default:
error = ENOPROTOOPT;
break;
}
if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
(void) ((*so->so_proto->pr_ctloutput)
(so, sopt));
}
}
bad:
return (error);
}
/* Helper routine for getsockopt */
int
sooptcopyout(sopt, buf, len)
struct sockopt *sopt;
void *buf;
size_t len;
{
int error;
size_t valsize;
error = 0;
/*
* Documented get behavior is that we always return a value,
* possibly truncated to fit in the user's buffer.
* Traditional behavior is that we always tell the user
* precisely how much we copied, rather than something useful
* like the total amount we had available for her.
* Note that this interface is not idempotent; the entire answer must
* generated ahead of time.
*/
valsize = min(len, sopt->sopt_valsize);
sopt->sopt_valsize = valsize;
if (sopt->sopt_val != 0) {
if (sopt->sopt_p != 0)
error = copyout(buf, sopt->sopt_val, valsize);
else
bcopy(buf, sopt->sopt_val, valsize);
}
return error;
}
int
sogetopt(so, sopt)
struct socket *so;
struct sockopt *sopt;
{
int error, optval;
struct linger l;
struct timeval tv;
#ifdef INET
struct accept_filter_arg *afap;
#endif
error = 0;
if (sopt->sopt_level != SOL_SOCKET) {
if (so->so_proto && so->so_proto->pr_ctloutput) {
return ((*so->so_proto->pr_ctloutput)
(so, sopt));
} else
return (ENOPROTOOPT);
} else {
switch (sopt->sopt_name) {
#ifdef INET
case SO_ACCEPTFILTER:
if ((so->so_options & SO_ACCEPTCONN) == 0)
return (EINVAL);
MALLOC(afap, struct accept_filter_arg *, sizeof(*afap),
M_TEMP, M_WAITOK | M_ZERO);
if ((so->so_options & SO_ACCEPTFILTER) != 0) {
strcpy(afap->af_name, so->so_accf->so_accept_filter->accf_name);
if (so->so_accf->so_accept_filter_str != NULL)
strcpy(afap->af_arg, so->so_accf->so_accept_filter_str);
}
error = sooptcopyout(sopt, afap, sizeof(*afap));
FREE(afap, M_TEMP);
break;
#endif
case SO_LINGER:
l.l_onoff = so->so_options & SO_LINGER;
l.l_linger = so->so_linger;
error = sooptcopyout(sopt, &l, sizeof l);
break;
case SO_USELOOPBACK:
case SO_DONTROUTE:
case SO_DEBUG:
case SO_KEEPALIVE:
case SO_REUSEADDR:
case SO_REUSEPORT:
case SO_BROADCAST:
case SO_OOBINLINE:
case SO_TIMESTAMP:
optval = so->so_options & sopt->sopt_name;
integer:
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
case SO_TYPE:
optval = so->so_type;
goto integer;
case SO_ERROR:
optval = so->so_error;
so->so_error = 0;
goto integer;
case SO_SNDBUF:
optval = so->so_snd.sb_hiwat;
goto integer;
case SO_RCVBUF:
optval = so->so_rcv.sb_hiwat;
goto integer;
case SO_SNDLOWAT:
optval = so->so_snd.sb_lowat;
goto integer;
case SO_RCVLOWAT:
optval = so->so_rcv.sb_lowat;
goto integer;
case SO_SNDTIMEO:
case SO_RCVTIMEO:
optval = (sopt->sopt_name == SO_SNDTIMEO ?
so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
tv.tv_sec = optval / hz;
tv.tv_usec = (optval % hz) * tick;
error = sooptcopyout(sopt, &tv, sizeof tv);
break;
default:
error = ENOPROTOOPT;
break;
}
return (error);
}
}
/* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
int
soopt_getm(struct sockopt *sopt, struct mbuf **mp)
{
struct mbuf *m, *m_prev;
int sopt_size = sopt->sopt_valsize;
MGET(m, sopt->sopt_p ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
if (m == 0)
return ENOBUFS;
if (sopt_size > MLEN) {
MCLGET(m, sopt->sopt_p ? M_TRYWAIT : M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_free(m);
return ENOBUFS;
}
m->m_len = min(MCLBYTES, sopt_size);
} else {
m->m_len = min(MLEN, sopt_size);
}
sopt_size -= m->m_len;
*mp = m;
m_prev = m;
while (sopt_size) {
MGET(m, sopt->sopt_p ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
if (m == 0) {
m_freem(*mp);
return ENOBUFS;
}
if (sopt_size > MLEN) {
MCLGET(m, sopt->sopt_p ? M_TRYWAIT : M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(*mp);
return ENOBUFS;
}
m->m_len = min(MCLBYTES, sopt_size);
} else {
m->m_len = min(MLEN, sopt_size);
}
sopt_size -= m->m_len;
m_prev->m_next = m;
m_prev = m;
}
return 0;
}
/* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
int
soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
{
struct mbuf *m0 = m;
if (sopt->sopt_val == NULL)
return 0;
while (m != NULL && sopt->sopt_valsize >= m->m_len) {
if (sopt->sopt_p != NULL) {
int error;
error = copyin(sopt->sopt_val, mtod(m, char *),
m->m_len);
if (error != 0) {
m_freem(m0);
return(error);
}
} else
bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
sopt->sopt_valsize -= m->m_len;
(caddr_t)sopt->sopt_val += m->m_len;
m = m->m_next;
}
if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
panic("ip6_sooptmcopyin");
return 0;
}
/* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
int
soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
{
struct mbuf *m0 = m;
size_t valsize = 0;
if (sopt->sopt_val == NULL)
return 0;
while (m != NULL && sopt->sopt_valsize >= m->m_len) {
if (sopt->sopt_p != NULL) {
int error;
error = copyout(mtod(m, char *), sopt->sopt_val,
m->m_len);
if (error != 0) {
m_freem(m0);
return(error);
}
} else
bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
sopt->sopt_valsize -= m->m_len;
(caddr_t)sopt->sopt_val += m->m_len;
valsize += m->m_len;
m = m->m_next;
}
if (m != NULL) {
/* enough soopt buffer should be given from user-land */
m_freem(m0);
return(EINVAL);
}
sopt->sopt_valsize = valsize;
return 0;
}
void
sohasoutofband(so)
register struct socket *so;
{
if (so->so_sigio != NULL)
pgsigio(so->so_sigio, SIGURG, 0);
selwakeup(&so->so_rcv.sb_sel);
}
int
sopoll(struct socket *so, int events, struct ucred *cred, struct proc *p)
{
int revents = 0;
int s = splnet();
if (events & (POLLIN | POLLRDNORM))
if (soreadable(so))
revents |= events & (POLLIN | POLLRDNORM);
if (events & (POLLOUT | POLLWRNORM))
if (sowriteable(so))
revents |= events & (POLLOUT | POLLWRNORM);
if (events & (POLLPRI | POLLRDBAND))
if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
revents |= events & (POLLPRI | POLLRDBAND);
if (revents == 0) {
if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
selrecord(p, &so->so_rcv.sb_sel);
so->so_rcv.sb_flags |= SB_SEL;
}
if (events & (POLLOUT | POLLWRNORM)) {
selrecord(p, &so->so_snd.sb_sel);
so->so_snd.sb_flags |= SB_SEL;
}
}
splx(s);
return (revents);
}
static int
filt_sorattach(struct knote *kn)
{
struct socket *so = (struct socket *)kn->kn_fp->f_data;
int s = splnet();
if (so->so_options & SO_ACCEPTCONN)
kn->kn_fop = &solisten_filtops;
SLIST_INSERT_HEAD(&so->so_rcv.sb_sel.si_note, kn, kn_selnext);
so->so_rcv.sb_flags |= SB_KNOTE;
splx(s);
return (0);
}
static void
filt_sordetach(struct knote *kn)
{
struct socket *so = (struct socket *)kn->kn_fp->f_data;
int s = splnet();
SLIST_REMOVE(&so->so_rcv.sb_sel.si_note, kn, knote, kn_selnext);
if (SLIST_EMPTY(&so->so_rcv.sb_sel.si_note))
so->so_rcv.sb_flags &= ~SB_KNOTE;
splx(s);
}
/*ARGSUSED*/
static int
filt_soread(struct knote *kn, long hint)
{
struct socket *so = (struct socket *)kn->kn_fp->f_data;
kn->kn_data = so->so_rcv.sb_cc;
if (so->so_state & SS_CANTRCVMORE) {
kn->kn_flags |= EV_EOF;
return (1);
}
if (so->so_error) /* temporary udp error */
return (1);
return (kn->kn_data >= so->so_rcv.sb_lowat);
}
static int
filt_sowattach(struct knote *kn)
{
struct socket *so = (struct socket *)kn->kn_fp->f_data;
int s = splnet();
SLIST_INSERT_HEAD(&so->so_snd.sb_sel.si_note, kn, kn_selnext);
so->so_snd.sb_flags |= SB_KNOTE;
splx(s);
return (0);
}
static void
filt_sowdetach(struct knote *kn)
{
struct socket *so = (struct socket *)kn->kn_fp->f_data;
int s = splnet();
SLIST_REMOVE(&so->so_snd.sb_sel.si_note, kn, knote, kn_selnext);
if (SLIST_EMPTY(&so->so_snd.sb_sel.si_note))
so->so_snd.sb_flags &= ~SB_KNOTE;
splx(s);
}
/*ARGSUSED*/
static int
filt_sowrite(struct knote *kn, long hint)
{
struct socket *so = (struct socket *)kn->kn_fp->f_data;
kn->kn_data = sbspace(&so->so_snd);
if (so->so_state & SS_CANTSENDMORE) {
kn->kn_flags |= EV_EOF;
return (1);
}
if (so->so_error) /* temporary udp error */
return (1);
if (((so->so_state & SS_ISCONNECTED) == 0) &&
(so->so_proto->pr_flags & PR_CONNREQUIRED))
return (0);
return (kn->kn_data >= so->so_snd.sb_lowat);
}
/*ARGSUSED*/
static int
filt_solisten(struct knote *kn, long hint)
{
struct socket *so = (struct socket *)kn->kn_fp->f_data;
kn->kn_data = so->so_qlen - so->so_incqlen;
return (! TAILQ_EMPTY(&so->so_comp));
}