freebsd-dev/sys/cam/scsi/scsi_xpt.c
Alexander Motin 0191d9b367 One more major cam_periph_error() rewrite to improve error handling and
reporting. It includes:
 - removing of error messages controlled by bootverbose, replacing them
with more universal and informative debugging on CAM_DEBUG_INFO level,
that is now built into the kernel by default;
 - more close following to the arguments submitted by caller, such as
SF_PRINT_ALWAYS, SF_QUIET_IR and SF_NO_PRINT; consumer knows better which
errors are usual/expected at this point and which are really informative;
 - adding two new flags SF_NO_RECOVERY and SF_NO_RETRY to allow caller
specify how much assistance it needs at this point; previously consumers
controlled that by not calling cam_periph_error() at all, but that made
behavior inconsistent and debugging complicated;
 - tuning debug messages and taken actions order to make debugging output
more readable and cause-effect relationships visible;
 - making camperiphdone() (common device recovery completion handler) to
also use cam_periph_error() in most cases, instead of own dumb code;
 - removing manual sense fetching code from cam_periph_error(); I was told
by number of people that it is SIM obligation to fetch sense data, so this
code is useless and only significantly complicates recovery logic;
 - making ada, da and pass driver to use cam_periph_error() with new limited
recovery options to handle error recovery and debugging in common way;
as one of results, CAM_REQUEUE_REQ and other retrying statuses are now
working fine with pass driver, that caused many problems before.
 - reverting r186891 by raj@ to avoid burning few seconds in tight DELAY()
loops on device probe, while device simply loads media; I think that problem
may already be fixed in other way, and even if it is not, solution must be
different.

Sponsored by:	iXsystems, Inc.
MFC after:	2 weeks
2012-06-09 13:07:44 +00:00

3074 lines
86 KiB
C

/*-
* Implementation of the SCSI Transport
*
* Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
* Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/md5.h>
#include <sys/interrupt.h>
#include <sys/sbuf.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_queue.h>
#include <cam/cam_periph.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_xpt_internal.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <cam/scsi/scsi_pass.h>
#include <machine/stdarg.h> /* for xpt_print below */
#include "opt_cam.h"
struct scsi_quirk_entry {
struct scsi_inquiry_pattern inq_pat;
u_int8_t quirks;
#define CAM_QUIRK_NOLUNS 0x01
#define CAM_QUIRK_NOVPDS 0x02
#define CAM_QUIRK_HILUNS 0x04
#define CAM_QUIRK_NOHILUNS 0x08
#define CAM_QUIRK_NORPTLUNS 0x10
u_int mintags;
u_int maxtags;
};
#define SCSI_QUIRK(dev) ((struct scsi_quirk_entry *)((dev)->quirk))
static int cam_srch_hi = 0;
TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
sysctl_cam_search_luns, "I",
"allow search above LUN 7 for SCSI3 and greater devices");
#define CAM_SCSI2_MAXLUN 8
#define CAM_CAN_GET_SIMPLE_LUN(x, i) \
((((x)->luns[i].lundata[0] & RPL_LUNDATA_ATYP_MASK) == \
RPL_LUNDATA_ATYP_PERIPH) || \
(((x)->luns[i].lundata[0] & RPL_LUNDATA_ATYP_MASK) == \
RPL_LUNDATA_ATYP_FLAT))
#define CAM_GET_SIMPLE_LUN(lp, i, lval) \
if (((lp)->luns[(i)].lundata[0] & RPL_LUNDATA_ATYP_MASK) == \
RPL_LUNDATA_ATYP_PERIPH) { \
(lval) = (lp)->luns[(i)].lundata[1]; \
} else { \
(lval) = (lp)->luns[(i)].lundata[0]; \
(lval) &= RPL_LUNDATA_FLAT_LUN_MASK; \
(lval) <<= 8; \
(lval) |= (lp)->luns[(i)].lundata[1]; \
}
/*
* If we're not quirked to search <= the first 8 luns
* and we are either quirked to search above lun 8,
* or we're > SCSI-2 and we've enabled hilun searching,
* or we're > SCSI-2 and the last lun was a success,
* we can look for luns above lun 8.
*/
#define CAN_SRCH_HI_SPARSE(dv) \
(((SCSI_QUIRK(dv)->quirks & CAM_QUIRK_NOHILUNS) == 0) \
&& ((SCSI_QUIRK(dv)->quirks & CAM_QUIRK_HILUNS) \
|| (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
#define CAN_SRCH_HI_DENSE(dv) \
(((SCSI_QUIRK(dv)->quirks & CAM_QUIRK_NOHILUNS) == 0) \
&& ((SCSI_QUIRK(dv)->quirks & CAM_QUIRK_HILUNS) \
|| (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
static periph_init_t probe_periph_init;
static struct periph_driver probe_driver =
{
probe_periph_init, "probe",
TAILQ_HEAD_INITIALIZER(probe_driver.units), /* generation */ 0,
CAM_PERIPH_DRV_EARLY
};
PERIPHDRIVER_DECLARE(probe, probe_driver);
typedef enum {
PROBE_TUR,
PROBE_INQUIRY, /* this counts as DV0 for Basic Domain Validation */
PROBE_FULL_INQUIRY,
PROBE_REPORT_LUNS,
PROBE_MODE_SENSE,
PROBE_SUPPORTED_VPD_LIST,
PROBE_DEVICE_ID,
PROBE_SERIAL_NUM,
PROBE_TUR_FOR_NEGOTIATION,
PROBE_INQUIRY_BASIC_DV1,
PROBE_INQUIRY_BASIC_DV2,
PROBE_DV_EXIT,
PROBE_DONE,
PROBE_INVALID
} probe_action;
static char *probe_action_text[] = {
"PROBE_TUR",
"PROBE_INQUIRY",
"PROBE_FULL_INQUIRY",
"PROBE_REPORT_LUNS",
"PROBE_MODE_SENSE",
"PROBE_SUPPORTED_VPD_LIST",
"PROBE_DEVICE_ID",
"PROBE_SERIAL_NUM",
"PROBE_TUR_FOR_NEGOTIATION",
"PROBE_INQUIRY_BASIC_DV1",
"PROBE_INQUIRY_BASIC_DV2",
"PROBE_DV_EXIT",
"PROBE_DONE",
"PROBE_INVALID"
};
#define PROBE_SET_ACTION(softc, newaction) \
do { \
char **text; \
text = probe_action_text; \
CAM_DEBUG((softc)->periph->path, CAM_DEBUG_PROBE, \
("Probe %s to %s\n", text[(softc)->action], \
text[(newaction)])); \
(softc)->action = (newaction); \
} while(0)
typedef enum {
PROBE_INQUIRY_CKSUM = 0x01,
PROBE_SERIAL_CKSUM = 0x02,
PROBE_NO_ANNOUNCE = 0x04
} probe_flags;
typedef struct {
TAILQ_HEAD(, ccb_hdr) request_ccbs;
probe_action action;
union ccb saved_ccb;
probe_flags flags;
MD5_CTX context;
u_int8_t digest[16];
struct cam_periph *periph;
} probe_softc;
static const char quantum[] = "QUANTUM";
static const char sony[] = "SONY";
static const char west_digital[] = "WDIGTL";
static const char samsung[] = "SAMSUNG";
static const char seagate[] = "SEAGATE";
static const char microp[] = "MICROP";
static struct scsi_quirk_entry scsi_quirk_table[] =
{
{
/* Reports QUEUE FULL for temporary resource shortages */
{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
/*quirks*/0, /*mintags*/24, /*maxtags*/32
},
{
/* Reports QUEUE FULL for temporary resource shortages */
{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
/*quirks*/0, /*mintags*/24, /*maxtags*/32
},
{
/* Reports QUEUE FULL for temporary resource shortages */
{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
/*quirks*/0, /*mintags*/24, /*maxtags*/32
},
{
/* Broken tagged queuing drive */
{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
/*quirks*/0, /*mintags*/0, /*maxtags*/0
},
{
/* Broken tagged queuing drive */
{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
/*quirks*/0, /*mintags*/0, /*maxtags*/0
},
{
/* Broken tagged queuing drive */
{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
/*quirks*/0, /*mintags*/0, /*maxtags*/0
},
{
/*
* Unfortunately, the Quantum Atlas III has the same
* problem as the Atlas II drives above.
* Reported by: "Johan Granlund" <johan@granlund.nu>
*
* For future reference, the drive with the problem was:
* QUANTUM QM39100TD-SW N1B0
*
* It's possible that Quantum will fix the problem in later
* firmware revisions. If that happens, the quirk entry
* will need to be made specific to the firmware revisions
* with the problem.
*
*/
/* Reports QUEUE FULL for temporary resource shortages */
{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
/*quirks*/0, /*mintags*/24, /*maxtags*/32
},
{
/*
* 18 Gig Atlas III, same problem as the 9G version.
* Reported by: Andre Albsmeier
* <andre.albsmeier@mchp.siemens.de>
*
* For future reference, the drive with the problem was:
* QUANTUM QM318000TD-S N491
*/
/* Reports QUEUE FULL for temporary resource shortages */
{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
/*quirks*/0, /*mintags*/24, /*maxtags*/32
},
{
/*
* Broken tagged queuing drive
* Reported by: Bret Ford <bford@uop.cs.uop.edu>
* and: Martin Renters <martin@tdc.on.ca>
*/
{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
/*quirks*/0, /*mintags*/0, /*maxtags*/0
},
/*
* The Seagate Medalist Pro drives have very poor write
* performance with anything more than 2 tags.
*
* Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl>
* Drive: <SEAGATE ST36530N 1444>
*
* Reported by: Jeremy Lea <reg@shale.csir.co.za>
* Drive: <SEAGATE ST34520W 1281>
*
* No one has actually reported that the 9G version
* (ST39140*) of the Medalist Pro has the same problem, but
* we're assuming that it does because the 4G and 6.5G
* versions of the drive are broken.
*/
{
{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
/*quirks*/0, /*mintags*/2, /*maxtags*/2
},
{
{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
/*quirks*/0, /*mintags*/2, /*maxtags*/2
},
{
{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
/*quirks*/0, /*mintags*/2, /*maxtags*/2
},
{
/*
* Experiences command timeouts under load with a
* tag count higher than 55.
*/
{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST3146855LW", "*"},
/*quirks*/0, /*mintags*/2, /*maxtags*/55
},
{
/*
* Slow when tagged queueing is enabled. Write performance
* steadily drops off with more and more concurrent
* transactions. Best sequential write performance with
* tagged queueing turned off and write caching turned on.
*
* PR: kern/10398
* Submitted by: Hideaki Okada <hokada@isl.melco.co.jp>
* Drive: DCAS-34330 w/ "S65A" firmware.
*
* The drive with the problem had the "S65A" firmware
* revision, and has also been reported (by Stephen J.
* Roznowski <sjr@home.net>) for a drive with the "S61A"
* firmware revision.
*
* Although no one has reported problems with the 2 gig
* version of the DCAS drive, the assumption is that it
* has the same problems as the 4 gig version. Therefore
* this quirk entries disables tagged queueing for all
* DCAS drives.
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
/*quirks*/0, /*mintags*/0, /*maxtags*/0
},
{
/* Broken tagged queuing drive */
{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
/*quirks*/0, /*mintags*/0, /*maxtags*/0
},
{
/* Broken tagged queuing drive */
{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
/*quirks*/0, /*mintags*/0, /*maxtags*/0
},
{
/* This does not support other than LUN 0 */
{ T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
},
{
/*
* Broken tagged queuing drive.
* Submitted by:
* NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
* in PR kern/9535
*/
{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
/*quirks*/0, /*mintags*/0, /*maxtags*/0
},
{
/*
* Slow when tagged queueing is enabled. (1.5MB/sec versus
* 8MB/sec.)
* Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
* Best performance with these drives is achieved with
* tagged queueing turned off, and write caching turned on.
*/
{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
/*quirks*/0, /*mintags*/0, /*maxtags*/0
},
{
/*
* Slow when tagged queueing is enabled. (1.5MB/sec versus
* 8MB/sec.)
* Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
* Best performance with these drives is achieved with
* tagged queueing turned off, and write caching turned on.
*/
{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
/*quirks*/0, /*mintags*/0, /*maxtags*/0
},
{
/*
* Doesn't handle queue full condition correctly,
* so we need to limit maxtags to what the device
* can handle instead of determining this automatically.
*/
{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
/*quirks*/0, /*mintags*/2, /*maxtags*/32
},
{
/* Really only one LUN */
{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/* I can't believe we need a quirk for DPT volumes. */
{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
CAM_QUIRK_NOLUNS,
/*mintags*/0, /*maxtags*/255
},
{
/*
* Many Sony CDROM drives don't like multi-LUN probing.
*/
{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/*
* This drive doesn't like multiple LUN probing.
* Submitted by: Parag Patel <parag@cgt.com>
*/
{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" },
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/*
* The 8200 doesn't like multi-lun probing, and probably
* don't like serial number requests either.
*/
{
T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
"EXB-8200*", "*"
},
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/*
* Let's try the same as above, but for a drive that says
* it's an IPL-6860 but is actually an EXB 8200.
*/
{
T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
"IPL-6860*", "*"
},
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/*
* These Hitachi drives don't like multi-lun probing.
* The PR submitter has a DK319H, but says that the Linux
* kernel has a similar work-around for the DK312 and DK314,
* so all DK31* drives are quirked here.
* PR: misc/18793
* Submitted by: Paul Haddad <paul@pth.com>
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
},
{
/*
* The Hitachi CJ series with J8A8 firmware apparantly has
* problems with tagged commands.
* PR: 23536
* Reported by: amagai@nue.org
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/*
* These are the large storage arrays.
* Submitted by: William Carrel <william.carrel@infospace.com>
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
CAM_QUIRK_HILUNS, 2, 1024
},
{
/*
* This old revision of the TDC3600 is also SCSI-1, and
* hangs upon serial number probing.
*/
{
T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
" TDC 3600", "U07:"
},
CAM_QUIRK_NOVPDS, /*mintags*/0, /*maxtags*/0
},
{
/*
* Would repond to all LUNs if asked for.
*/
{
T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
"CP150", "*"
},
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/*
* Would repond to all LUNs if asked for.
*/
{
T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
"96X2*", "*"
},
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/* Submitted by: Matthew Dodd <winter@jurai.net> */
{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/* Submitted by: Matthew Dodd <winter@jurai.net> */
{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/* TeraSolutions special settings for TRC-22 RAID */
{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
/*quirks*/0, /*mintags*/55, /*maxtags*/255
},
{
/* Veritas Storage Appliance */
{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
},
{
/*
* Would respond to all LUNs. Device type and removable
* flag are jumper-selectable.
*/
{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
"Tahiti 1", "*"
},
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/* EasyRAID E5A aka. areca ARC-6010 */
{ T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
},
{
{ T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
{ T_DIRECT, SIP_MEDIA_REMOVABLE, "Garmin", "*", "*" },
CAM_QUIRK_NORPTLUNS, /*mintags*/2, /*maxtags*/255
},
{
/* Default tagged queuing parameters for all devices */
{
T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
/*vendor*/"*", /*product*/"*", /*revision*/"*"
},
/*quirks*/0, /*mintags*/2, /*maxtags*/255
},
};
static const int scsi_quirk_table_size =
sizeof(scsi_quirk_table) / sizeof(*scsi_quirk_table);
static cam_status proberegister(struct cam_periph *periph,
void *arg);
static void probeschedule(struct cam_periph *probe_periph);
static int device_has_vpd(struct cam_ed *device, uint8_t page_id);
static void probestart(struct cam_periph *periph, union ccb *start_ccb);
static void proberequestdefaultnegotiation(struct cam_periph *periph);
static int proberequestbackoff(struct cam_periph *periph,
struct cam_ed *device);
static void probedone(struct cam_periph *periph, union ccb *done_ccb);
static int probe_strange_rpl_data(struct scsi_report_luns_data *rp,
uint32_t maxlun);
static void probe_purge_old(struct cam_path *path,
struct scsi_report_luns_data *new);
static void probecleanup(struct cam_periph *periph);
static void scsi_find_quirk(struct cam_ed *device);
static void scsi_scan_bus(struct cam_periph *periph, union ccb *ccb);
static void scsi_scan_lun(struct cam_periph *periph,
struct cam_path *path, cam_flags flags,
union ccb *ccb);
static void xptscandone(struct cam_periph *periph, union ccb *done_ccb);
static struct cam_ed *
scsi_alloc_device(struct cam_eb *bus, struct cam_et *target,
lun_id_t lun_id);
static void scsi_devise_transport(struct cam_path *path);
static void scsi_set_transfer_settings(struct ccb_trans_settings *cts,
struct cam_ed *device,
int async_update);
static void scsi_toggle_tags(struct cam_path *path);
static void scsi_dev_async(u_int32_t async_code,
struct cam_eb *bus,
struct cam_et *target,
struct cam_ed *device,
void *async_arg);
static void scsi_action(union ccb *start_ccb);
static void scsi_announce_periph(struct cam_periph *periph);
static struct xpt_xport scsi_xport = {
.alloc_device = scsi_alloc_device,
.action = scsi_action,
.async = scsi_dev_async,
.announce = scsi_announce_periph,
};
struct xpt_xport *
scsi_get_xport(void)
{
return (&scsi_xport);
}
static void
probe_periph_init()
{
}
static cam_status
proberegister(struct cam_periph *periph, void *arg)
{
union ccb *request_ccb; /* CCB representing the probe request */
cam_status status;
probe_softc *softc;
request_ccb = (union ccb *)arg;
if (periph == NULL) {
printf("proberegister: periph was NULL!!\n");
return(CAM_REQ_CMP_ERR);
}
if (request_ccb == NULL) {
printf("proberegister: no probe CCB, "
"can't register device\n");
return(CAM_REQ_CMP_ERR);
}
softc = (probe_softc *)malloc(sizeof(*softc), M_CAMXPT, M_NOWAIT);
if (softc == NULL) {
printf("proberegister: Unable to probe new device. "
"Unable to allocate softc\n");
return(CAM_REQ_CMP_ERR);
}
TAILQ_INIT(&softc->request_ccbs);
TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
periph_links.tqe);
softc->flags = 0;
periph->softc = softc;
softc->periph = periph;
softc->action = PROBE_INVALID;
status = cam_periph_acquire(periph);
if (status != CAM_REQ_CMP) {
return (status);
}
CAM_DEBUG(periph->path, CAM_DEBUG_PROBE, ("Probe started\n"));
/*
* Ensure we've waited at least a bus settle
* delay before attempting to probe the device.
* For HBAs that don't do bus resets, this won't make a difference.
*/
cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
scsi_delay);
/*
* Ensure nobody slip in until probe finish.
*/
cam_freeze_devq_arg(periph->path,
RELSIM_RELEASE_RUNLEVEL, CAM_RL_XPT + 1);
probeschedule(periph);
return(CAM_REQ_CMP);
}
static void
probeschedule(struct cam_periph *periph)
{
struct ccb_pathinq cpi;
union ccb *ccb;
probe_softc *softc;
softc = (probe_softc *)periph->softc;
ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NONE);
cpi.ccb_h.func_code = XPT_PATH_INQ;
xpt_action((union ccb *)&cpi);
/*
* If a device has gone away and another device, or the same one,
* is back in the same place, it should have a unit attention
* condition pending. It will not report the unit attention in
* response to an inquiry, which may leave invalid transfer
* negotiations in effect. The TUR will reveal the unit attention
* condition. Only send the TUR for lun 0, since some devices
* will get confused by commands other than inquiry to non-existent
* luns. If you think a device has gone away start your scan from
* lun 0. This will insure that any bogus transfer settings are
* invalidated.
*
* If we haven't seen the device before and the controller supports
* some kind of transfer negotiation, negotiate with the first
* sent command if no bus reset was performed at startup. This
* ensures that the device is not confused by transfer negotiation
* settings left over by loader or BIOS action.
*/
if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
&& (ccb->ccb_h.target_lun == 0)) {
PROBE_SET_ACTION(softc, PROBE_TUR);
} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
&& (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
proberequestdefaultnegotiation(periph);
PROBE_SET_ACTION(softc, PROBE_INQUIRY);
} else {
PROBE_SET_ACTION(softc, PROBE_INQUIRY);
}
if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
softc->flags |= PROBE_NO_ANNOUNCE;
else
softc->flags &= ~PROBE_NO_ANNOUNCE;
xpt_schedule(periph, CAM_PRIORITY_XPT);
}
static int
device_has_vpd(struct cam_ed *device, uint8_t page_id)
{
int i, num_pages;
struct scsi_vpd_supported_pages *vpds;
vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds;
num_pages = device->supported_vpds_len - SVPD_SUPPORTED_PAGES_HDR_LEN;
for (i = 0;i < num_pages;i++)
if (vpds->page_list[i] == page_id)
return 1;
return 0;
}
static void
probestart(struct cam_periph *periph, union ccb *start_ccb)
{
/* Probe the device that our peripheral driver points to */
struct ccb_scsiio *csio;
probe_softc *softc;
CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
softc = (probe_softc *)periph->softc;
csio = &start_ccb->csio;
again:
switch (softc->action) {
case PROBE_TUR:
case PROBE_TUR_FOR_NEGOTIATION:
case PROBE_DV_EXIT:
{
scsi_test_unit_ready(csio,
/*retries*/4,
probedone,
MSG_SIMPLE_Q_TAG,
SSD_FULL_SIZE,
/*timeout*/60000);
break;
}
case PROBE_INQUIRY:
case PROBE_FULL_INQUIRY:
case PROBE_INQUIRY_BASIC_DV1:
case PROBE_INQUIRY_BASIC_DV2:
{
u_int inquiry_len;
struct scsi_inquiry_data *inq_buf;
inq_buf = &periph->path->device->inq_data;
/*
* If the device is currently configured, we calculate an
* MD5 checksum of the inquiry data, and if the serial number
* length is greater than 0, add the serial number data
* into the checksum as well. Once the inquiry and the
* serial number check finish, we attempt to figure out
* whether we still have the same device.
*/
if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
MD5Init(&softc->context);
MD5Update(&softc->context, (unsigned char *)inq_buf,
sizeof(struct scsi_inquiry_data));
softc->flags |= PROBE_INQUIRY_CKSUM;
if (periph->path->device->serial_num_len > 0) {
MD5Update(&softc->context,
periph->path->device->serial_num,
periph->path->device->serial_num_len);
softc->flags |= PROBE_SERIAL_CKSUM;
}
MD5Final(softc->digest, &softc->context);
}
if (softc->action == PROBE_INQUIRY)
inquiry_len = SHORT_INQUIRY_LENGTH;
else
inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf);
/*
* Some parallel SCSI devices fail to send an
* ignore wide residue message when dealing with
* odd length inquiry requests. Round up to be
* safe.
*/
inquiry_len = roundup2(inquiry_len, 2);
if (softc->action == PROBE_INQUIRY_BASIC_DV1
|| softc->action == PROBE_INQUIRY_BASIC_DV2) {
inq_buf = malloc(inquiry_len, M_CAMXPT, M_NOWAIT);
}
if (inq_buf == NULL) {
xpt_print(periph->path, "malloc failure- skipping Basic"
"Domain Validation\n");
PROBE_SET_ACTION(softc, PROBE_DV_EXIT);
scsi_test_unit_ready(csio,
/*retries*/4,
probedone,
MSG_SIMPLE_Q_TAG,
SSD_FULL_SIZE,
/*timeout*/60000);
break;
}
scsi_inquiry(csio,
/*retries*/4,
probedone,
MSG_SIMPLE_Q_TAG,
(u_int8_t *)inq_buf,
inquiry_len,
/*evpd*/FALSE,
/*page_code*/0,
SSD_MIN_SIZE,
/*timeout*/60 * 1000);
break;
}
case PROBE_REPORT_LUNS:
{
void *rp;
rp = malloc(periph->path->target->rpl_size,
M_CAMXPT, M_NOWAIT | M_ZERO);
if (rp == NULL) {
struct scsi_inquiry_data *inq_buf;
inq_buf = &periph->path->device->inq_data;
xpt_print(periph->path,
"Unable to alloc report luns storage\n");
if (INQ_DATA_TQ_ENABLED(inq_buf))
PROBE_SET_ACTION(softc, PROBE_MODE_SENSE);
else
PROBE_SET_ACTION(softc,
PROBE_SUPPORTED_VPD_LIST);
goto again;
}
scsi_report_luns(csio, 5, probedone, MSG_SIMPLE_Q_TAG,
RPL_REPORT_DEFAULT, rp, periph->path->target->rpl_size,
SSD_FULL_SIZE, 60000); break;
break;
}
case PROBE_MODE_SENSE:
{
void *mode_buf;
int mode_buf_len;
mode_buf_len = sizeof(struct scsi_mode_header_6)
+ sizeof(struct scsi_mode_blk_desc)
+ sizeof(struct scsi_control_page);
mode_buf = malloc(mode_buf_len, M_CAMXPT, M_NOWAIT);
if (mode_buf != NULL) {
scsi_mode_sense(csio,
/*retries*/4,
probedone,
MSG_SIMPLE_Q_TAG,
/*dbd*/FALSE,
SMS_PAGE_CTRL_CURRENT,
SMS_CONTROL_MODE_PAGE,
mode_buf,
mode_buf_len,
SSD_FULL_SIZE,
/*timeout*/60000);
break;
}
xpt_print(periph->path, "Unable to mode sense control page - "
"malloc failure\n");
PROBE_SET_ACTION(softc, PROBE_SUPPORTED_VPD_LIST);
}
/* FALLTHROUGH */
case PROBE_SUPPORTED_VPD_LIST:
{
struct scsi_vpd_supported_page_list *vpd_list;
struct cam_ed *device;
vpd_list = NULL;
device = periph->path->device;
if ((SCSI_QUIRK(device)->quirks & CAM_QUIRK_NOVPDS) == 0)
vpd_list = malloc(sizeof(*vpd_list), M_CAMXPT,
M_NOWAIT | M_ZERO);
if (vpd_list != NULL) {
scsi_inquiry(csio,
/*retries*/4,
probedone,
MSG_SIMPLE_Q_TAG,
(u_int8_t *)vpd_list,
sizeof(*vpd_list),
/*evpd*/TRUE,
SVPD_SUPPORTED_PAGE_LIST,
SSD_MIN_SIZE,
/*timeout*/60 * 1000);
break;
}
/*
* We'll have to do without, let our probedone
* routine finish up for us.
*/
start_ccb->csio.data_ptr = NULL;
probedone(periph, start_ccb);
return;
}
case PROBE_DEVICE_ID:
{
struct scsi_vpd_device_id *devid;
struct cam_ed *device;
devid = NULL;
device = periph->path->device;
if (device_has_vpd(device, SVPD_DEVICE_ID))
devid = malloc(SVPD_DEVICE_ID_MAX_SIZE, M_CAMXPT,
M_NOWAIT | M_ZERO);
if (devid != NULL) {
scsi_inquiry(csio,
/*retries*/4,
probedone,
MSG_SIMPLE_Q_TAG,
(uint8_t *)devid,
SVPD_DEVICE_ID_MAX_SIZE,
/*evpd*/TRUE,
SVPD_DEVICE_ID,
SSD_MIN_SIZE,
/*timeout*/60 * 1000);
break;
}
/*
* We'll have to do without, let our probedone
* routine finish up for us.
*/
start_ccb->csio.data_ptr = NULL;
probedone(periph, start_ccb);
return;
}
case PROBE_SERIAL_NUM:
{
struct scsi_vpd_unit_serial_number *serial_buf;
struct cam_ed* device;
serial_buf = NULL;
device = periph->path->device;
if (device->serial_num != NULL) {
free(device->serial_num, M_CAMXPT);
device->serial_num = NULL;
device->serial_num_len = 0;
}
if (device_has_vpd(device, SVPD_UNIT_SERIAL_NUMBER))
serial_buf = (struct scsi_vpd_unit_serial_number *)
malloc(sizeof(*serial_buf), M_CAMXPT,
M_NOWAIT|M_ZERO);
if (serial_buf != NULL) {
scsi_inquiry(csio,
/*retries*/4,
probedone,
MSG_SIMPLE_Q_TAG,
(u_int8_t *)serial_buf,
sizeof(*serial_buf),
/*evpd*/TRUE,
SVPD_UNIT_SERIAL_NUMBER,
SSD_MIN_SIZE,
/*timeout*/60 * 1000);
break;
}
/*
* We'll have to do without, let our probedone
* routine finish up for us.
*/
start_ccb->csio.data_ptr = NULL;
probedone(periph, start_ccb);
return;
}
default:
panic("probestart: invalid action state 0x%x\n", softc->action);
}
xpt_action(start_ccb);
}
static void
proberequestdefaultnegotiation(struct cam_periph *periph)
{
struct ccb_trans_settings cts;
xpt_setup_ccb(&cts.ccb_h, periph->path, CAM_PRIORITY_NONE);
cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
cts.type = CTS_TYPE_USER_SETTINGS;
xpt_action((union ccb *)&cts);
if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
return;
}
cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
cts.type = CTS_TYPE_CURRENT_SETTINGS;
xpt_action((union ccb *)&cts);
}
/*
* Backoff Negotiation Code- only pertinent for SPI devices.
*/
static int
proberequestbackoff(struct cam_periph *periph, struct cam_ed *device)
{
struct ccb_trans_settings cts;
struct ccb_trans_settings_spi *spi;
memset(&cts, 0, sizeof (cts));
xpt_setup_ccb(&cts.ccb_h, periph->path, CAM_PRIORITY_NONE);
cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
cts.type = CTS_TYPE_CURRENT_SETTINGS;
xpt_action((union ccb *)&cts);
if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
if (bootverbose) {
xpt_print(periph->path,
"failed to get current device settings\n");
}
return (0);
}
if (cts.transport != XPORT_SPI) {
if (bootverbose) {
xpt_print(periph->path, "not SPI transport\n");
}
return (0);
}
spi = &cts.xport_specific.spi;
/*
* We cannot renegotiate sync rate if we don't have one.
*/
if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
if (bootverbose) {
xpt_print(periph->path, "no sync rate known\n");
}
return (0);
}
/*
* We'll assert that we don't have to touch PPR options- the
* SIM will see what we do with period and offset and adjust
* the PPR options as appropriate.
*/
/*
* A sync rate with unknown or zero offset is nonsensical.
* A sync period of zero means Async.
*/
if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0
|| spi->sync_offset == 0 || spi->sync_period == 0) {
if (bootverbose) {
xpt_print(periph->path, "no sync rate available\n");
}
return (0);
}
if (device->flags & CAM_DEV_DV_HIT_BOTTOM) {
CAM_DEBUG(periph->path, CAM_DEBUG_PROBE,
("hit async: giving up on DV\n"));
return (0);
}
/*
* Jump sync_period up by one, but stop at 5MHz and fall back to Async.
* We don't try to remember 'last' settings to see if the SIM actually
* gets into the speed we want to set. We check on the SIM telling
* us that a requested speed is bad, but otherwise don't try and
* check the speed due to the asynchronous and handshake nature
* of speed setting.
*/
spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET;
for (;;) {
spi->sync_period++;
if (spi->sync_period >= 0xf) {
spi->sync_period = 0;
spi->sync_offset = 0;
CAM_DEBUG(periph->path, CAM_DEBUG_PROBE,
("setting to async for DV\n"));
/*
* Once we hit async, we don't want to try
* any more settings.
*/
device->flags |= CAM_DEV_DV_HIT_BOTTOM;
} else if (bootverbose) {
CAM_DEBUG(periph->path, CAM_DEBUG_PROBE,
("DV: period 0x%x\n", spi->sync_period));
printf("setting period to 0x%x\n", spi->sync_period);
}
cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
cts.type = CTS_TYPE_CURRENT_SETTINGS;
xpt_action((union ccb *)&cts);
if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
break;
}
CAM_DEBUG(periph->path, CAM_DEBUG_PROBE,
("DV: failed to set period 0x%x\n", spi->sync_period));
if (spi->sync_period == 0) {
return (0);
}
}
return (1);
}
#define CCB_COMPLETED_OK(ccb) (((ccb).status & CAM_STATUS_MASK) == CAM_REQ_CMP)
static void
probedone(struct cam_periph *periph, union ccb *done_ccb)
{
probe_softc *softc;
struct cam_path *path;
u_int32_t priority;
CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
softc = (probe_softc *)periph->softc;
path = done_ccb->ccb_h.path;
priority = done_ccb->ccb_h.pinfo.priority;
switch (softc->action) {
case PROBE_TUR:
{
if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
if (cam_periph_error(done_ccb, 0,
SF_NO_PRINT, NULL) == ERESTART)
return;
else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
/* Don't wedge the queue */
xpt_release_devq(done_ccb->ccb_h.path,
/*count*/1,
/*run_queue*/TRUE);
}
PROBE_SET_ACTION(softc, PROBE_INQUIRY);
xpt_release_ccb(done_ccb);
xpt_schedule(periph, priority);
return;
}
case PROBE_INQUIRY:
case PROBE_FULL_INQUIRY:
{
if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
struct scsi_inquiry_data *inq_buf;
u_int8_t periph_qual;
path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
inq_buf = &path->device->inq_data;
periph_qual = SID_QUAL(inq_buf);
if (periph_qual == SID_QUAL_LU_CONNECTED) {
u_int8_t len;
/*
* We conservatively request only
* SHORT_INQUIRY_LEN bytes of inquiry
* information during our first try
* at sending an INQUIRY. If the device
* has more information to give,
* perform a second request specifying
* the amount of information the device
* is willing to give.
*/
len = inq_buf->additional_length
+ offsetof(struct scsi_inquiry_data,
additional_length) + 1;
if (softc->action == PROBE_INQUIRY
&& len > SHORT_INQUIRY_LENGTH) {
PROBE_SET_ACTION(softc, PROBE_FULL_INQUIRY);
xpt_release_ccb(done_ccb);
xpt_schedule(periph, priority);
return;
}
scsi_find_quirk(path->device);
scsi_devise_transport(path);
if (path->device->lun_id == 0 &&
SID_ANSI_REV(inq_buf) > SCSI_REV_SPC2 &&
(SCSI_QUIRK(path->device)->quirks &
CAM_QUIRK_NORPTLUNS) == 0) {
PROBE_SET_ACTION(softc,
PROBE_REPORT_LUNS);
/*
* Start with room for *one* lun.
*/
periph->path->target->rpl_size = 16;
} else if (INQ_DATA_TQ_ENABLED(inq_buf))
PROBE_SET_ACTION(softc,
PROBE_MODE_SENSE);
else
PROBE_SET_ACTION(softc,
PROBE_SUPPORTED_VPD_LIST);
if (path->device->flags & CAM_DEV_UNCONFIGURED) {
path->device->flags &= ~CAM_DEV_UNCONFIGURED;
xpt_acquire_device(path->device);
}
xpt_release_ccb(done_ccb);
xpt_schedule(periph, priority);
return;
} else if (path->device->lun_id == 0 &&
SID_ANSI_REV(inq_buf) > SCSI_REV_SPC2 &&
(SCSI_QUIRK(path->device)->quirks &
CAM_QUIRK_NORPTLUNS) == 0) {
if (path->device->flags &
CAM_DEV_UNCONFIGURED) {
path->device->flags &=
~CAM_DEV_UNCONFIGURED;
xpt_acquire_device(path->device);
}
PROBE_SET_ACTION(softc, PROBE_REPORT_LUNS);
periph->path->target->rpl_size = 16;
xpt_release_ccb(done_ccb);
xpt_schedule(periph, priority);
return;
}
} else if (cam_periph_error(done_ccb, 0,
done_ccb->ccb_h.target_lun > 0
? SF_RETRY_UA|SF_QUIET_IR
: SF_RETRY_UA,
&softc->saved_ccb) == ERESTART) {
return;
} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
/* Don't wedge the queue */
xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
/*run_queue*/TRUE);
}
/*
* If we get to this point, we got an error status back
* from the inquiry and the error status doesn't require
* automatically retrying the command. Therefore, the
* inquiry failed. If we had inquiry information before
* for this device, but this latest inquiry command failed,
* the device has probably gone away. If this device isn't
* already marked unconfigured, notify the peripheral
* drivers that this device is no more.
*/
if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
/* Send the async notification. */
xpt_async(AC_LOST_DEVICE, path, NULL);
PROBE_SET_ACTION(softc, PROBE_INVALID);
xpt_release_ccb(done_ccb);
break;
}
case PROBE_REPORT_LUNS:
{
struct ccb_scsiio *csio;
struct scsi_report_luns_data *lp;
u_int nlun, maxlun;
csio = &done_ccb->csio;
lp = (struct scsi_report_luns_data *)csio->data_ptr;
nlun = scsi_4btoul(lp->length) / 8;
maxlun = (csio->dxfer_len / 8) - 1;
if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
if (cam_periph_error(done_ccb, 0,
done_ccb->ccb_h.target_lun > 0 ?
SF_RETRY_UA|SF_QUIET_IR : SF_RETRY_UA,
&softc->saved_ccb) == ERESTART) {
return;
}
if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
xpt_release_devq(done_ccb->ccb_h.path, 1,
TRUE);
}
free(lp, M_CAMXPT);
lp = NULL;
} else if (nlun > maxlun) {
/*
* Reallocate and retry to cover all luns
*/
CAM_DEBUG(path, CAM_DEBUG_PROBE,
("Probe: reallocating REPORT_LUNS for %u luns\n",
nlun));
free(lp, M_CAMXPT);
path->target->rpl_size = (nlun << 3) + 8;
xpt_release_ccb(done_ccb);
xpt_schedule(periph, priority);
return;
} else if (nlun == 0) {
/*
* If there don't appear to be any luns, bail.
*/
free(lp, M_CAMXPT);
lp = NULL;
} else if (probe_strange_rpl_data(lp, maxlun)) {
/*
* If we can't understand the lun format
* of any entry, bail.
*/
free(lp, M_CAMXPT);
lp = NULL;
} else {
lun_id_t lun;
int idx;
CAM_DEBUG(path, CAM_DEBUG_PROBE,
("Probe: %u lun(s) reported\n", nlun));
CAM_GET_SIMPLE_LUN(lp, 0, lun);
/*
* If the first lun is not lun 0, then either there
* is no lun 0 in the list, or the list is unsorted.
*/
if (lun != 0) {
for (idx = 0; idx < nlun; idx++) {
CAM_GET_SIMPLE_LUN(lp, idx, lun);
if (lun == 0) {
break;
}
}
if (idx != nlun) {
uint8_t tlun[8];
memcpy(tlun,
lp->luns[0].lundata, 8);
memcpy(lp->luns[0].lundata,
lp->luns[idx].lundata, 8);
memcpy(lp->luns[idx].lundata,
tlun, 8);
CAM_DEBUG(path, CAM_DEBUG_PROBE,
("lun 0 in position %u\n", idx));
} else {
/*
* There is no lun 0 in our list. Destroy
* the validity of the inquiry data so we
* bail here and now.
*/
path->device->flags &=
~CAM_DEV_INQUIRY_DATA_VALID;
}
}
/*
* If we have an old lun list, We can either
* retest luns that appear to have been dropped,
* or just nuke them. We'll opt for the latter.
* This function will also install the new list
* in the target structure.
*/
probe_purge_old(path, lp);
lp = NULL;
}
if (path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) {
struct scsi_inquiry_data *inq_buf;
inq_buf = &path->device->inq_data;
if (INQ_DATA_TQ_ENABLED(inq_buf))
PROBE_SET_ACTION(softc, PROBE_MODE_SENSE);
else
PROBE_SET_ACTION(softc,
PROBE_SUPPORTED_VPD_LIST);
xpt_release_ccb(done_ccb);
xpt_schedule(periph, priority);
return;
}
if (lp) {
free(lp, M_CAMXPT);
}
break;
}
case PROBE_MODE_SENSE:
{
struct ccb_scsiio *csio;
struct scsi_mode_header_6 *mode_hdr;
csio = &done_ccb->csio;
mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
struct scsi_control_page *page;
u_int8_t *offset;
offset = ((u_int8_t *)&mode_hdr[1])
+ mode_hdr->blk_desc_len;
page = (struct scsi_control_page *)offset;
path->device->queue_flags = page->queue_flags;
} else if (cam_periph_error(done_ccb, 0,
SF_RETRY_UA|SF_NO_PRINT,
&softc->saved_ccb) == ERESTART) {
return;
} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
/* Don't wedge the queue */
xpt_release_devq(done_ccb->ccb_h.path,
/*count*/1, /*run_queue*/TRUE);
}
xpt_release_ccb(done_ccb);
free(mode_hdr, M_CAMXPT);
PROBE_SET_ACTION(softc, PROBE_SUPPORTED_VPD_LIST);
xpt_schedule(periph, priority);
return;
}
case PROBE_SUPPORTED_VPD_LIST:
{
struct ccb_scsiio *csio;
struct scsi_vpd_supported_page_list *page_list;
csio = &done_ccb->csio;
page_list =
(struct scsi_vpd_supported_page_list *)csio->data_ptr;
if (path->device->supported_vpds != NULL) {
free(path->device->supported_vpds, M_CAMXPT);
path->device->supported_vpds = NULL;
path->device->supported_vpds_len = 0;
}
if (page_list == NULL) {
/*
* Don't process the command as it was never sent
*/
} else if (CCB_COMPLETED_OK(csio->ccb_h)) {
/* Got vpd list */
path->device->supported_vpds_len = page_list->length +
SVPD_SUPPORTED_PAGES_HDR_LEN;
path->device->supported_vpds = (uint8_t *)page_list;
xpt_release_ccb(done_ccb);
PROBE_SET_ACTION(softc, PROBE_DEVICE_ID);
xpt_schedule(periph, priority);
return;
} else if (cam_periph_error(done_ccb, 0,
SF_RETRY_UA|SF_NO_PRINT,
&softc->saved_ccb) == ERESTART) {
return;
} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
/* Don't wedge the queue */
xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
/*run_queue*/TRUE);
}
if (page_list)
free(page_list, M_CAMXPT);
/* No VPDs available, skip to device check. */
csio->data_ptr = NULL;
goto probe_device_check;
}
case PROBE_DEVICE_ID:
{
struct scsi_vpd_device_id *devid;
struct ccb_scsiio *csio;
uint32_t length = 0;
csio = &done_ccb->csio;
devid = (struct scsi_vpd_device_id *)csio->data_ptr;
/* Clean up from previous instance of this device */
if (path->device->device_id != NULL) {
path->device->device_id_len = 0;
free(path->device->device_id, M_CAMXPT);
path->device->device_id = NULL;
}
if (devid == NULL) {
/* Don't process the command as it was never sent */
} else if (CCB_COMPLETED_OK(csio->ccb_h)) {
length = scsi_2btoul(devid->length);
if (length != 0) {
/*
* NB: device_id_len is actual response
* size, not buffer size.
*/
path->device->device_id_len = length +
SVPD_DEVICE_ID_HDR_LEN;
path->device->device_id = (uint8_t *)devid;
}
} else if (cam_periph_error(done_ccb, 0,
SF_RETRY_UA,
&softc->saved_ccb) == ERESTART) {
return;
} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
/* Don't wedge the queue */
xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
/*run_queue*/TRUE);
}
/* Free the device id space if we don't use it */
if (devid && length == 0)
free(devid, M_CAMXPT);
xpt_release_ccb(done_ccb);
PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM);
xpt_schedule(periph, priority);
return;
}
probe_device_check:
case PROBE_SERIAL_NUM:
{
struct ccb_scsiio *csio;
struct scsi_vpd_unit_serial_number *serial_buf;
u_int32_t priority;
int changed;
int have_serialnum;
changed = 1;
have_serialnum = 0;
csio = &done_ccb->csio;
priority = done_ccb->ccb_h.pinfo.priority;
serial_buf =
(struct scsi_vpd_unit_serial_number *)csio->data_ptr;
if (serial_buf == NULL) {
/*
* Don't process the command as it was never sent
*/
} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
&& (serial_buf->length > 0)) {
have_serialnum = 1;
path->device->serial_num =
(u_int8_t *)malloc((serial_buf->length + 1),
M_CAMXPT, M_NOWAIT);
if (path->device->serial_num != NULL) {
memcpy(path->device->serial_num,
serial_buf->serial_num,
serial_buf->length);
path->device->serial_num_len =
serial_buf->length;
path->device->serial_num[serial_buf->length]
= '\0';
}
} else if (cam_periph_error(done_ccb, 0,
SF_RETRY_UA|SF_NO_PRINT,
&softc->saved_ccb) == ERESTART) {
return;
} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
/* Don't wedge the queue */
xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
/*run_queue*/TRUE);
}
/*
* Let's see if we have seen this device before.
*/
if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
MD5_CTX context;
u_int8_t digest[16];
MD5Init(&context);
MD5Update(&context,
(unsigned char *)&path->device->inq_data,
sizeof(struct scsi_inquiry_data));
if (have_serialnum)
MD5Update(&context, serial_buf->serial_num,
serial_buf->length);
MD5Final(digest, &context);
if (bcmp(softc->digest, digest, 16) == 0)
changed = 0;
/*
* XXX Do we need to do a TUR in order to ensure
* that the device really hasn't changed???
*/
if ((changed != 0)
&& ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
xpt_async(AC_LOST_DEVICE, path, NULL);
}
if (serial_buf != NULL)
free(serial_buf, M_CAMXPT);
if (changed != 0) {
/*
* Now that we have all the necessary
* information to safely perform transfer
* negotiations... Controllers don't perform
* any negotiation or tagged queuing until
* after the first XPT_SET_TRAN_SETTINGS ccb is
* received. So, on a new device, just retrieve
* the user settings, and set them as the current
* settings to set the device up.
*/
proberequestdefaultnegotiation(periph);
xpt_release_ccb(done_ccb);
/*
* Perform a TUR to allow the controller to
* perform any necessary transfer negotiation.
*/
PROBE_SET_ACTION(softc, PROBE_TUR_FOR_NEGOTIATION);
xpt_schedule(periph, priority);
return;
}
xpt_release_ccb(done_ccb);
break;
}
case PROBE_TUR_FOR_NEGOTIATION:
case PROBE_DV_EXIT:
if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
cam_periph_error(done_ccb, 0,
SF_NO_PRINT | SF_NO_RECOVERY | SF_NO_RETRY, NULL);
}
if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
/* Don't wedge the queue */
xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
/*run_queue*/TRUE);
}
/*
* Do Domain Validation for lun 0 on devices that claim
* to support Synchronous Transfer modes.
*/
if (softc->action == PROBE_TUR_FOR_NEGOTIATION
&& done_ccb->ccb_h.target_lun == 0
&& (path->device->inq_data.flags & SID_Sync) != 0
&& (path->device->flags & CAM_DEV_IN_DV) == 0) {
CAM_DEBUG(periph->path, CAM_DEBUG_PROBE,
("Begin Domain Validation\n"));
path->device->flags |= CAM_DEV_IN_DV;
xpt_release_ccb(done_ccb);
PROBE_SET_ACTION(softc, PROBE_INQUIRY_BASIC_DV1);
xpt_schedule(periph, priority);
return;
}
if (softc->action == PROBE_DV_EXIT) {
CAM_DEBUG(periph->path, CAM_DEBUG_PROBE,
("Leave Domain Validation\n"));
}
if (path->device->flags & CAM_DEV_UNCONFIGURED) {
path->device->flags &= ~CAM_DEV_UNCONFIGURED;
xpt_acquire_device(path->device);
}
path->device->flags &=
~(CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
/* Inform the XPT that a new device has been found */
done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action(done_ccb);
xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
done_ccb);
}
PROBE_SET_ACTION(softc, PROBE_DONE);
xpt_release_ccb(done_ccb);
break;
case PROBE_INQUIRY_BASIC_DV1:
case PROBE_INQUIRY_BASIC_DV2:
{
struct scsi_inquiry_data *nbuf;
struct ccb_scsiio *csio;
if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
cam_periph_error(done_ccb, 0,
SF_NO_PRINT | SF_NO_RECOVERY | SF_NO_RETRY, NULL);
}
if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
/* Don't wedge the queue */
xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
/*run_queue*/TRUE);
}
csio = &done_ccb->csio;
nbuf = (struct scsi_inquiry_data *)csio->data_ptr;
if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) {
xpt_print(path,
"inquiry data fails comparison at DV%d step\n",
softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2);
if (proberequestbackoff(periph, path->device)) {
path->device->flags &= ~CAM_DEV_IN_DV;
PROBE_SET_ACTION(softc, PROBE_TUR_FOR_NEGOTIATION);
} else {
/* give up */
PROBE_SET_ACTION(softc, PROBE_DV_EXIT);
}
free(nbuf, M_CAMXPT);
xpt_release_ccb(done_ccb);
xpt_schedule(periph, priority);
return;
}
free(nbuf, M_CAMXPT);
if (softc->action == PROBE_INQUIRY_BASIC_DV1) {
PROBE_SET_ACTION(softc, PROBE_INQUIRY_BASIC_DV2);
xpt_release_ccb(done_ccb);
xpt_schedule(periph, priority);
return;
}
if (softc->action == PROBE_INQUIRY_BASIC_DV2) {
CAM_DEBUG(periph->path, CAM_DEBUG_PROBE,
("Leave Domain Validation Successfully\n"));
}
if (path->device->flags & CAM_DEV_UNCONFIGURED) {
path->device->flags &= ~CAM_DEV_UNCONFIGURED;
xpt_acquire_device(path->device);
}
path->device->flags &=
~(CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
/* Inform the XPT that a new device has been found */
done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action(done_ccb);
xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
done_ccb);
}
PROBE_SET_ACTION(softc, PROBE_DONE);
xpt_release_ccb(done_ccb);
break;
}
default:
panic("probedone: invalid action state 0x%x\n", softc->action);
}
done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
done_ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(done_ccb);
if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
CAM_DEBUG(periph->path, CAM_DEBUG_PROBE, ("Probe completed\n"));
cam_periph_invalidate(periph);
cam_release_devq(periph->path,
RELSIM_RELEASE_RUNLEVEL, 0, CAM_RL_XPT + 1, FALSE);
cam_periph_release_locked(periph);
} else {
probeschedule(periph);
}
}
static int
probe_strange_rpl_data(struct scsi_report_luns_data *rp, uint32_t maxlun)
{
uint32_t idx;
uint32_t nlun = MIN(maxlun, (scsi_4btoul(rp->length) / 8));
for (idx = 0; idx < nlun; idx++) {
if (!CAM_CAN_GET_SIMPLE_LUN(rp, idx)) {
return (-1);
}
}
return (0);
}
static void
probe_purge_old(struct cam_path *path, struct scsi_report_luns_data *new)
{
struct cam_path *tp;
struct scsi_report_luns_data *old;
u_int idx1, idx2, nlun_old, nlun_new, this_lun;
u_int8_t *ol, *nl;
if (path->target == NULL) {
return;
}
if (path->target->luns == NULL) {
path->target->luns = new;
return;
}
old = path->target->luns;
nlun_old = scsi_4btoul(old->length) / 8;
nlun_new = scsi_4btoul(new->length) / 8;
/*
* We are not going to assume sorted lists. Deal.
*/
for (idx1 = 0; idx1 < nlun_old; idx1++) {
ol = old->luns[idx1].lundata;
for (idx2 = 0; idx2 < nlun_new; idx2++) {
nl = new->luns[idx2].lundata;
if (memcmp(nl, ol, 8) == 0) {
break;
}
}
if (idx2 < nlun_new) {
continue;
}
/*
* An 'old' item not in the 'new' list.
* Nuke it. Except that if it is lun 0,
* that would be what the probe state
* machine is currently working on,
* so we won't do that.
*
* We also cannot nuke it if it is
* not in a lun format we understand.
*/
if (!CAM_CAN_GET_SIMPLE_LUN(old, idx1)) {
continue;
}
CAM_GET_SIMPLE_LUN(old, idx1, this_lun);
if (this_lun == 0) {
continue;
}
if (xpt_create_path(&tp, NULL, xpt_path_path_id(path),
xpt_path_target_id(path), this_lun) == CAM_REQ_CMP) {
xpt_async(AC_LOST_DEVICE, tp, NULL);
xpt_free_path(tp);
}
}
free(old, M_CAMXPT);
path->target->luns = new;
}
static void
probecleanup(struct cam_periph *periph)
{
free(periph->softc, M_CAMXPT);
}
static void
scsi_find_quirk(struct cam_ed *device)
{
struct scsi_quirk_entry *quirk;
caddr_t match;
match = cam_quirkmatch((caddr_t)&device->inq_data,
(caddr_t)scsi_quirk_table,
sizeof(scsi_quirk_table) /
sizeof(*scsi_quirk_table),
sizeof(*scsi_quirk_table), scsi_inquiry_match);
if (match == NULL)
panic("xpt_find_quirk: device didn't match wildcard entry!!");
quirk = (struct scsi_quirk_entry *)match;
device->quirk = quirk;
device->mintags = quirk->mintags;
device->maxtags = quirk->maxtags;
}
static int
sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS)
{
int error, val;
val = cam_srch_hi;
error = sysctl_handle_int(oidp, &val, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (val == 0 || val == 1) {
cam_srch_hi = val;
return (0);
} else {
return (EINVAL);
}
}
typedef struct {
union ccb *request_ccb;
struct ccb_pathinq *cpi;
int counter;
int lunindex[0];
} scsi_scan_bus_info;
/*
* To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
* As the scan progresses, scsi_scan_bus is used as the
* callback on completion function.
*/
static void
scsi_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
{
CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
("scsi_scan_bus\n"));
switch (request_ccb->ccb_h.func_code) {
case XPT_SCAN_BUS:
case XPT_SCAN_TGT:
{
scsi_scan_bus_info *scan_info;
union ccb *work_ccb, *reset_ccb;
struct cam_path *path;
u_int i;
u_int low_target, max_target;
u_int initiator_id;
/* Find out the characteristics of the bus */
work_ccb = xpt_alloc_ccb_nowait();
if (work_ccb == NULL) {
request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
xpt_done(request_ccb);
return;
}
xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
request_ccb->ccb_h.pinfo.priority);
work_ccb->ccb_h.func_code = XPT_PATH_INQ;
xpt_action(work_ccb);
if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
request_ccb->ccb_h.status = work_ccb->ccb_h.status;
xpt_free_ccb(work_ccb);
xpt_done(request_ccb);
return;
}
if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
/*
* Can't scan the bus on an adapter that
* cannot perform the initiator role.
*/
request_ccb->ccb_h.status = CAM_REQ_CMP;
xpt_free_ccb(work_ccb);
xpt_done(request_ccb);
return;
}
/* We may need to reset bus first, if we haven't done it yet. */
if ((work_ccb->cpi.hba_inquiry &
(PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) &&
!(work_ccb->cpi.hba_misc & PIM_NOBUSRESET) &&
!timevalisset(&request_ccb->ccb_h.path->bus->last_reset)) {
reset_ccb = xpt_alloc_ccb_nowait();
xpt_setup_ccb(&reset_ccb->ccb_h, request_ccb->ccb_h.path,
CAM_PRIORITY_NONE);
reset_ccb->ccb_h.func_code = XPT_RESET_BUS;
xpt_action(reset_ccb);
if (reset_ccb->ccb_h.status != CAM_REQ_CMP) {
request_ccb->ccb_h.status = reset_ccb->ccb_h.status;
xpt_free_ccb(reset_ccb);
xpt_free_ccb(work_ccb);
xpt_done(request_ccb);
return;
}
xpt_free_ccb(reset_ccb);
}
/* Save some state for use while we probe for devices */
scan_info = (scsi_scan_bus_info *) malloc(sizeof(scsi_scan_bus_info) +
(work_ccb->cpi.max_target * sizeof (u_int)), M_CAMXPT, M_ZERO|M_NOWAIT);
if (scan_info == NULL) {
request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
xpt_done(request_ccb);
return;
}
CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
("SCAN start for %p\n", scan_info));
scan_info->request_ccb = request_ccb;
scan_info->cpi = &work_ccb->cpi;
/* Cache on our stack so we can work asynchronously */
max_target = scan_info->cpi->max_target;
low_target = 0;
initiator_id = scan_info->cpi->initiator_id;
/*
* We can scan all targets in parallel, or do it sequentially.
*/
if (request_ccb->ccb_h.func_code == XPT_SCAN_TGT) {
max_target = low_target = request_ccb->ccb_h.target_id;
scan_info->counter = 0;
} else if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
max_target = 0;
scan_info->counter = 0;
} else {
scan_info->counter = scan_info->cpi->max_target + 1;
if (scan_info->cpi->initiator_id < scan_info->counter) {
scan_info->counter--;
}
}
for (i = low_target; i <= max_target; i++) {
cam_status status;
if (i == initiator_id)
continue;
status = xpt_create_path(&path, xpt_periph,
request_ccb->ccb_h.path_id,
i, 0);
if (status != CAM_REQ_CMP) {
printf("scsi_scan_bus: xpt_create_path failed"
" with status %#x, bus scan halted\n",
status);
free(scan_info, M_CAMXPT);
request_ccb->ccb_h.status = status;
xpt_free_ccb(work_ccb);
xpt_done(request_ccb);
break;
}
work_ccb = xpt_alloc_ccb_nowait();
if (work_ccb == NULL) {
xpt_free_ccb((union ccb *)scan_info->cpi);
free(scan_info, M_CAMXPT);
xpt_free_path(path);
request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
xpt_done(request_ccb);
break;
}
xpt_setup_ccb(&work_ccb->ccb_h, path,
request_ccb->ccb_h.pinfo.priority);
work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
work_ccb->ccb_h.cbfcnp = scsi_scan_bus;
work_ccb->ccb_h.ppriv_ptr0 = scan_info;
work_ccb->crcn.flags = request_ccb->crcn.flags;
xpt_action(work_ccb);
}
break;
}
case XPT_SCAN_LUN:
{
cam_status status;
struct cam_path *path, *oldpath;
scsi_scan_bus_info *scan_info;
struct cam_et *target;
struct cam_ed *device;
int next_target;
path_id_t path_id;
target_id_t target_id;
lun_id_t lun_id;
oldpath = request_ccb->ccb_h.path;
status = request_ccb->ccb_h.status & CAM_STATUS_MASK;
/* Reuse the same CCB to query if a device was really found */
scan_info = (scsi_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
request_ccb->ccb_h.pinfo.priority);
request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
path_id = request_ccb->ccb_h.path_id;
target_id = request_ccb->ccb_h.target_id;
lun_id = request_ccb->ccb_h.target_lun;
xpt_action(request_ccb);
target = request_ccb->ccb_h.path->target;
next_target = 1;
if (target->luns) {
uint32_t first;
u_int nluns = scsi_4btoul(target->luns->length) / 8;
/*
* Make sure we skip over lun 0 if it's the first member
* of the list as we've actually just finished probing
* it.
*/
CAM_GET_SIMPLE_LUN(target->luns, 0, first);
if (first == 0 && scan_info->lunindex[target_id] == 0) {
scan_info->lunindex[target_id]++;
}
if (scan_info->lunindex[target_id] < nluns) {
CAM_GET_SIMPLE_LUN(target->luns,
scan_info->lunindex[target_id], lun_id);
next_target = 0;
CAM_DEBUG(request_ccb->ccb_h.path,
CAM_DEBUG_PROBE,
("next lun to try at index %u is %u\n",
scan_info->lunindex[target_id], lun_id));
scan_info->lunindex[target_id]++;
} else {
/*
* We're done with scanning all luns.
*
* Nuke the bogus device for lun 0 if lun 0
* wasn't on the list.
*/
if (first != 0) {
TAILQ_FOREACH(device,
&target->ed_entries, links) {
if (device->lun_id == 0) {
break;
}
}
if (device) {
xpt_release_device(device);
}
}
}
} else if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
int phl;
/*
* If we already probed lun 0 successfully, or
* we have additional configured luns on this
* target that might have "gone away", go onto
* the next lun.
*/
/*
* We may touch devices that we don't
* hold references too, so ensure they
* don't disappear out from under us.
* The target above is referenced by the
* path in the request ccb.
*/
phl = 0;
device = TAILQ_FIRST(&target->ed_entries);
if (device != NULL) {
phl = CAN_SRCH_HI_SPARSE(device);
if (device->lun_id == 0)
device = TAILQ_NEXT(device, links);
}
if ((lun_id != 0) || (device != NULL)) {
if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl) {
lun_id++;
next_target = 0;
}
}
if (lun_id == request_ccb->ccb_h.target_lun
|| lun_id > scan_info->cpi->max_lun)
next_target = 1;
} else {
device = request_ccb->ccb_h.path->device;
if ((SCSI_QUIRK(device)->quirks &
CAM_QUIRK_NOLUNS) == 0) {
/* Try the next lun */
if (lun_id < (CAM_SCSI2_MAXLUN-1)
|| CAN_SRCH_HI_DENSE(device)) {
lun_id++;
next_target = 0;
}
}
if (lun_id == request_ccb->ccb_h.target_lun
|| lun_id > scan_info->cpi->max_lun)
next_target = 1;
}
/*
* Check to see if we scan any further luns.
*/
if (next_target) {
int done;
/*
* Free the current request path- we're done with it.
*/
xpt_free_path(oldpath);
hop_again:
done = 0;
if (scan_info->request_ccb->ccb_h.func_code == XPT_SCAN_TGT) {
done = 1;
} else if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
scan_info->counter++;
if (scan_info->counter ==
scan_info->cpi->initiator_id) {
scan_info->counter++;
}
if (scan_info->counter >=
scan_info->cpi->max_target+1) {
done = 1;
}
} else {
scan_info->counter--;
if (scan_info->counter == 0) {
done = 1;
}
}
if (done) {
xpt_free_ccb(request_ccb);
xpt_free_ccb((union ccb *)scan_info->cpi);
request_ccb = scan_info->request_ccb;
CAM_DEBUG(request_ccb->ccb_h.path,
CAM_DEBUG_TRACE,
("SCAN done for %p\n", scan_info));
free(scan_info, M_CAMXPT);
request_ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(request_ccb);
break;
}
if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) {
xpt_free_ccb(request_ccb);
break;
}
status = xpt_create_path(&path, xpt_periph,
scan_info->request_ccb->ccb_h.path_id,
scan_info->counter, 0);
if (status != CAM_REQ_CMP) {
printf("scsi_scan_bus: xpt_create_path failed"
" with status %#x, bus scan halted\n",
status);
xpt_free_ccb(request_ccb);
xpt_free_ccb((union ccb *)scan_info->cpi);
request_ccb = scan_info->request_ccb;
free(scan_info, M_CAMXPT);
request_ccb->ccb_h.status = status;
xpt_done(request_ccb);
break;
}
xpt_setup_ccb(&request_ccb->ccb_h, path,
request_ccb->ccb_h.pinfo.priority);
request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
request_ccb->ccb_h.cbfcnp = scsi_scan_bus;
request_ccb->ccb_h.ppriv_ptr0 = scan_info;
request_ccb->crcn.flags =
scan_info->request_ccb->crcn.flags;
} else {
status = xpt_create_path(&path, xpt_periph,
path_id, target_id, lun_id);
/*
* Free the old request path- we're done with it. We
* do this *after* creating the new path so that
* we don't remove a target that has our lun list
* in the case that lun 0 is not present.
*/
xpt_free_path(oldpath);
if (status != CAM_REQ_CMP) {
printf("scsi_scan_bus: xpt_create_path failed "
"with status %#x, halting LUN scan\n",
status);
goto hop_again;
}
xpt_setup_ccb(&request_ccb->ccb_h, path,
request_ccb->ccb_h.pinfo.priority);
request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
request_ccb->ccb_h.cbfcnp = scsi_scan_bus;
request_ccb->ccb_h.ppriv_ptr0 = scan_info;
request_ccb->crcn.flags =
scan_info->request_ccb->crcn.flags;
}
xpt_action(request_ccb);
break;
}
default:
break;
}
}
static void
scsi_scan_lun(struct cam_periph *periph, struct cam_path *path,
cam_flags flags, union ccb *request_ccb)
{
struct ccb_pathinq cpi;
cam_status status;
struct cam_path *new_path;
struct cam_periph *old_periph;
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("scsi_scan_lun\n"));
xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NONE);
cpi.ccb_h.func_code = XPT_PATH_INQ;
xpt_action((union ccb *)&cpi);
if (cpi.ccb_h.status != CAM_REQ_CMP) {
if (request_ccb != NULL) {
request_ccb->ccb_h.status = cpi.ccb_h.status;
xpt_done(request_ccb);
}
return;
}
if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
/*
* Can't scan the bus on an adapter that
* cannot perform the initiator role.
*/
if (request_ccb != NULL) {
request_ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(request_ccb);
}
return;
}
if (request_ccb == NULL) {
request_ccb = malloc(sizeof(union ccb), M_CAMXPT, M_NOWAIT);
if (request_ccb == NULL) {
xpt_print(path, "scsi_scan_lun: can't allocate CCB, "
"can't continue\n");
return;
}
new_path = malloc(sizeof(*new_path), M_CAMXPT, M_NOWAIT);
if (new_path == NULL) {
xpt_print(path, "scsi_scan_lun: can't allocate path, "
"can't continue\n");
free(request_ccb, M_CAMXPT);
return;
}
status = xpt_compile_path(new_path, xpt_periph,
path->bus->path_id,
path->target->target_id,
path->device->lun_id);
if (status != CAM_REQ_CMP) {
xpt_print(path, "scsi_scan_lun: can't compile path, "
"can't continue\n");
free(request_ccb, M_CAMXPT);
free(new_path, M_CAMXPT);
return;
}
xpt_setup_ccb(&request_ccb->ccb_h, new_path, CAM_PRIORITY_XPT);
request_ccb->ccb_h.cbfcnp = xptscandone;
request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
request_ccb->crcn.flags = flags;
}
if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
if ((old_periph->flags & CAM_PERIPH_INVALID) == 0) {
probe_softc *softc;
softc = (probe_softc *)old_periph->softc;
TAILQ_INSERT_TAIL(&softc->request_ccbs,
&request_ccb->ccb_h, periph_links.tqe);
} else {
request_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
xpt_done(request_ccb);
}
} else {
status = cam_periph_alloc(proberegister, NULL, probecleanup,
probestart, "probe",
CAM_PERIPH_BIO,
request_ccb->ccb_h.path, NULL, 0,
request_ccb);
if (status != CAM_REQ_CMP) {
xpt_print(path, "scsi_scan_lun: cam_alloc_periph "
"returned an error, can't continue probe\n");
request_ccb->ccb_h.status = status;
xpt_done(request_ccb);
}
}
}
static void
xptscandone(struct cam_periph *periph, union ccb *done_ccb)
{
xpt_release_path(done_ccb->ccb_h.path);
free(done_ccb->ccb_h.path, M_CAMXPT);
free(done_ccb, M_CAMXPT);
}
static struct cam_ed *
scsi_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
{
struct cam_path path;
struct scsi_quirk_entry *quirk;
struct cam_ed *device;
struct cam_ed *cur_device;
device = xpt_alloc_device(bus, target, lun_id);
if (device == NULL)
return (NULL);
/*
* Take the default quirk entry until we have inquiry
* data and can determine a better quirk to use.
*/
quirk = &scsi_quirk_table[scsi_quirk_table_size - 1];
device->quirk = (void *)quirk;
device->mintags = quirk->mintags;
device->maxtags = quirk->maxtags;
bzero(&device->inq_data, sizeof(device->inq_data));
device->inq_flags = 0;
device->queue_flags = 0;
device->serial_num = NULL;
device->serial_num_len = 0;
device->device_id = NULL;
device->device_id_len = 0;
device->supported_vpds = NULL;
device->supported_vpds_len = 0;
/*
* XXX should be limited by number of CCBs this bus can
* do.
*/
bus->sim->max_ccbs += device->ccbq.devq_openings;
/* Insertion sort into our target's device list */
cur_device = TAILQ_FIRST(&target->ed_entries);
while (cur_device != NULL && cur_device->lun_id < lun_id)
cur_device = TAILQ_NEXT(cur_device, links);
if (cur_device != NULL) {
TAILQ_INSERT_BEFORE(cur_device, device, links);
} else {
TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
}
target->generation++;
if (lun_id != CAM_LUN_WILDCARD) {
xpt_compile_path(&path,
NULL,
bus->path_id,
target->target_id,
lun_id);
scsi_devise_transport(&path);
xpt_release_path(&path);
}
return (device);
}
static void
scsi_devise_transport(struct cam_path *path)
{
struct ccb_pathinq cpi;
struct ccb_trans_settings cts;
struct scsi_inquiry_data *inq_buf;
/* Get transport information from the SIM */
xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NONE);
cpi.ccb_h.func_code = XPT_PATH_INQ;
xpt_action((union ccb *)&cpi);
inq_buf = NULL;
if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
inq_buf = &path->device->inq_data;
path->device->protocol = PROTO_SCSI;
path->device->protocol_version =
inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
path->device->transport = cpi.transport;
path->device->transport_version = cpi.transport_version;
/*
* Any device not using SPI3 features should
* be considered SPI2 or lower.
*/
if (inq_buf != NULL) {
if (path->device->transport == XPORT_SPI
&& (inq_buf->spi3data & SID_SPI_MASK) == 0
&& path->device->transport_version > 2)
path->device->transport_version = 2;
} else {
struct cam_ed* otherdev;
for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
otherdev != NULL;
otherdev = TAILQ_NEXT(otherdev, links)) {
if (otherdev != path->device)
break;
}
if (otherdev != NULL) {
/*
* Initially assume the same versioning as
* prior luns for this target.
*/
path->device->protocol_version =
otherdev->protocol_version;
path->device->transport_version =
otherdev->transport_version;
} else {
/* Until we know better, opt for safty */
path->device->protocol_version = 2;
if (path->device->transport == XPORT_SPI)
path->device->transport_version = 2;
else
path->device->transport_version = 0;
}
}
/*
* XXX
* For a device compliant with SPC-2 we should be able
* to determine the transport version supported by
* scrutinizing the version descriptors in the
* inquiry buffer.
*/
/* Tell the controller what we think */
xpt_setup_ccb(&cts.ccb_h, path, CAM_PRIORITY_NONE);
cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
cts.type = CTS_TYPE_CURRENT_SETTINGS;
cts.transport = path->device->transport;
cts.transport_version = path->device->transport_version;
cts.protocol = path->device->protocol;
cts.protocol_version = path->device->protocol_version;
cts.proto_specific.valid = 0;
cts.xport_specific.valid = 0;
xpt_action((union ccb *)&cts);
}
static void
scsi_dev_advinfo(union ccb *start_ccb)
{
struct cam_ed *device;
struct ccb_dev_advinfo *cdai;
off_t amt;
start_ccb->ccb_h.status = CAM_REQ_INVALID;
device = start_ccb->ccb_h.path->device;
cdai = &start_ccb->cdai;
switch(cdai->buftype) {
case CDAI_TYPE_SCSI_DEVID:
if (cdai->flags & CDAI_FLAG_STORE)
return;
cdai->provsiz = device->device_id_len;
if (device->device_id_len == 0)
break;
amt = device->device_id_len;
if (cdai->provsiz > cdai->bufsiz)
amt = cdai->bufsiz;
memcpy(cdai->buf, device->device_id, amt);
break;
case CDAI_TYPE_SERIAL_NUM:
if (cdai->flags & CDAI_FLAG_STORE)
return;
cdai->provsiz = device->serial_num_len;
if (device->serial_num_len == 0)
break;
amt = device->serial_num_len;
if (cdai->provsiz > cdai->bufsiz)
amt = cdai->bufsiz;
memcpy(cdai->buf, device->serial_num, amt);
break;
case CDAI_TYPE_PHYS_PATH:
if (cdai->flags & CDAI_FLAG_STORE) {
if (device->physpath != NULL) {
free(device->physpath, M_CAMXPT);
device->physpath = NULL;
}
device->physpath_len = cdai->bufsiz;
/* Clear existing buffer if zero length */
if (cdai->bufsiz == 0)
break;
device->physpath = malloc(cdai->bufsiz, M_CAMXPT, M_NOWAIT);
if (device->physpath == NULL) {
start_ccb->ccb_h.status = CAM_REQ_ABORTED;
return;
}
memcpy(device->physpath, cdai->buf, cdai->bufsiz);
} else {
cdai->provsiz = device->physpath_len;
if (device->physpath_len == 0)
break;
amt = device->physpath_len;
if (cdai->provsiz > cdai->bufsiz)
amt = cdai->bufsiz;
memcpy(cdai->buf, device->physpath, amt);
}
break;
case CDAI_TYPE_RCAPLONG:
if (cdai->flags & CDAI_FLAG_STORE) {
if (device->rcap_buf != NULL) {
free(device->rcap_buf, M_CAMXPT);
device->rcap_buf = NULL;
}
device->rcap_len = cdai->bufsiz;
/* Clear existing buffer if zero length */
if (cdai->bufsiz == 0)
break;
device->rcap_buf = malloc(cdai->bufsiz, M_CAMXPT,
M_NOWAIT);
if (device->rcap_buf == NULL) {
start_ccb->ccb_h.status = CAM_REQ_ABORTED;
return;
}
memcpy(device->rcap_buf, cdai->buf, cdai->bufsiz);
} else {
cdai->provsiz = device->rcap_len;
if (device->rcap_len == 0)
break;
amt = device->rcap_len;
if (cdai->provsiz > cdai->bufsiz)
amt = cdai->bufsiz;
memcpy(cdai->buf, device->rcap_buf, amt);
}
break;
default:
return;
}
start_ccb->ccb_h.status = CAM_REQ_CMP;
if (cdai->flags & CDAI_FLAG_STORE) {
int owned;
owned = mtx_owned(start_ccb->ccb_h.path->bus->sim->mtx);
if (owned == 0)
mtx_lock(start_ccb->ccb_h.path->bus->sim->mtx);
xpt_async(AC_ADVINFO_CHANGED, start_ccb->ccb_h.path,
(void *)(uintptr_t)cdai->buftype);
if (owned == 0)
mtx_unlock(start_ccb->ccb_h.path->bus->sim->mtx);
}
}
static void
scsi_action(union ccb *start_ccb)
{
switch (start_ccb->ccb_h.func_code) {
case XPT_SET_TRAN_SETTINGS:
{
scsi_set_transfer_settings(&start_ccb->cts,
start_ccb->ccb_h.path->device,
/*async_update*/FALSE);
break;
}
case XPT_SCAN_BUS:
case XPT_SCAN_TGT:
scsi_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
break;
case XPT_SCAN_LUN:
scsi_scan_lun(start_ccb->ccb_h.path->periph,
start_ccb->ccb_h.path, start_ccb->crcn.flags,
start_ccb);
break;
case XPT_GET_TRAN_SETTINGS:
{
struct cam_sim *sim;
sim = start_ccb->ccb_h.path->bus->sim;
(*(sim->sim_action))(sim, start_ccb);
break;
}
case XPT_DEV_ADVINFO:
{
scsi_dev_advinfo(start_ccb);
break;
}
default:
xpt_action_default(start_ccb);
break;
}
}
static void
scsi_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
int async_update)
{
struct ccb_pathinq cpi;
struct ccb_trans_settings cur_cts;
struct ccb_trans_settings_scsi *scsi;
struct ccb_trans_settings_scsi *cur_scsi;
struct cam_sim *sim;
struct scsi_inquiry_data *inq_data;
if (device == NULL) {
cts->ccb_h.status = CAM_PATH_INVALID;
xpt_done((union ccb *)cts);
return;
}
if (cts->protocol == PROTO_UNKNOWN
|| cts->protocol == PROTO_UNSPECIFIED) {
cts->protocol = device->protocol;
cts->protocol_version = device->protocol_version;
}
if (cts->protocol_version == PROTO_VERSION_UNKNOWN
|| cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
cts->protocol_version = device->protocol_version;
if (cts->protocol != device->protocol) {
xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n",
cts->protocol, device->protocol);
cts->protocol = device->protocol;
}
if (cts->protocol_version > device->protocol_version) {
if (bootverbose) {
xpt_print(cts->ccb_h.path, "Down reving Protocol "
"Version from %d to %d?\n", cts->protocol_version,
device->protocol_version);
}
cts->protocol_version = device->protocol_version;
}
if (cts->transport == XPORT_UNKNOWN
|| cts->transport == XPORT_UNSPECIFIED) {
cts->transport = device->transport;
cts->transport_version = device->transport_version;
}
if (cts->transport_version == XPORT_VERSION_UNKNOWN
|| cts->transport_version == XPORT_VERSION_UNSPECIFIED)
cts->transport_version = device->transport_version;
if (cts->transport != device->transport) {
xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n",
cts->transport, device->transport);
cts->transport = device->transport;
}
if (cts->transport_version > device->transport_version) {
if (bootverbose) {
xpt_print(cts->ccb_h.path, "Down reving Transport "
"Version from %d to %d?\n", cts->transport_version,
device->transport_version);
}
cts->transport_version = device->transport_version;
}
sim = cts->ccb_h.path->bus->sim;
/*
* Nothing more of interest to do unless
* this is a device connected via the
* SCSI protocol.
*/
if (cts->protocol != PROTO_SCSI) {
if (async_update == FALSE)
(*(sim->sim_action))(sim, (union ccb *)cts);
return;
}
inq_data = &device->inq_data;
scsi = &cts->proto_specific.scsi;
xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, CAM_PRIORITY_NONE);
cpi.ccb_h.func_code = XPT_PATH_INQ;
xpt_action((union ccb *)&cpi);
/* SCSI specific sanity checking */
if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
|| (INQ_DATA_TQ_ENABLED(inq_data)) == 0
|| (device->queue_flags & SCP_QUEUE_DQUE) != 0
|| (device->mintags == 0)) {
/*
* Can't tag on hardware that doesn't support tags,
* doesn't have it enabled, or has broken tag support.
*/
scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
}
if (async_update == FALSE) {
/*
* Perform sanity checking against what the
* controller and device can do.
*/
xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, CAM_PRIORITY_NONE);
cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
cur_cts.type = cts->type;
xpt_action((union ccb *)&cur_cts);
if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
return;
}
cur_scsi = &cur_cts.proto_specific.scsi;
if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
}
if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
}
/* SPI specific sanity checking */
if (cts->transport == XPORT_SPI && async_update == FALSE) {
u_int spi3caps;
struct ccb_trans_settings_spi *spi;
struct ccb_trans_settings_spi *cur_spi;
spi = &cts->xport_specific.spi;
cur_spi = &cur_cts.xport_specific.spi;
/* Fill in any gaps in what the user gave us */
if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
spi->sync_period = cur_spi->sync_period;
if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
spi->sync_period = 0;
if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
spi->sync_offset = cur_spi->sync_offset;
if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
spi->sync_offset = 0;
if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
spi->ppr_options = cur_spi->ppr_options;
if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
spi->ppr_options = 0;
if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
spi->bus_width = cur_spi->bus_width;
if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
spi->bus_width = 0;
if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
}
if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
&& (inq_data->flags & SID_Sync) == 0
&& cts->type == CTS_TYPE_CURRENT_SETTINGS)
|| ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)) {
/* Force async */
spi->sync_period = 0;
spi->sync_offset = 0;
}
switch (spi->bus_width) {
case MSG_EXT_WDTR_BUS_32_BIT:
if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
|| (inq_data->flags & SID_WBus32) != 0
|| cts->type == CTS_TYPE_USER_SETTINGS)
&& (cpi.hba_inquiry & PI_WIDE_32) != 0)
break;
/* Fall Through to 16-bit */
case MSG_EXT_WDTR_BUS_16_BIT:
if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
|| (inq_data->flags & SID_WBus16) != 0
|| cts->type == CTS_TYPE_USER_SETTINGS)
&& (cpi.hba_inquiry & PI_WIDE_16) != 0) {
spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
break;
}
/* Fall Through to 8-bit */
default: /* New bus width?? */
case MSG_EXT_WDTR_BUS_8_BIT:
/* All targets can do this */
spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
break;
}
spi3caps = cpi.xport_specific.spi.ppr_options;
if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
&& cts->type == CTS_TYPE_CURRENT_SETTINGS)
spi3caps &= inq_data->spi3data;
if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
if ((spi3caps & SID_SPI_IUS) == 0)
spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
if ((spi3caps & SID_SPI_QAS) == 0)
spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
/* No SPI Transfer settings are allowed unless we are wide */
if (spi->bus_width == 0)
spi->ppr_options = 0;
if ((spi->valid & CTS_SPI_VALID_DISC)
&& ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0)) {
/*
* Can't tag queue without disconnection.
*/
scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
scsi->valid |= CTS_SCSI_VALID_TQ;
}
/*
* If we are currently performing tagged transactions to
* this device and want to change its negotiation parameters,
* go non-tagged for a bit to give the controller a chance to
* negotiate unhampered by tag messages.
*/
if (cts->type == CTS_TYPE_CURRENT_SETTINGS
&& (device->inq_flags & SID_CmdQue) != 0
&& (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
&& (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
CTS_SPI_VALID_SYNC_OFFSET|
CTS_SPI_VALID_BUS_WIDTH)) != 0)
scsi_toggle_tags(cts->ccb_h.path);
}
if (cts->type == CTS_TYPE_CURRENT_SETTINGS
&& (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
int device_tagenb;
/*
* If we are transitioning from tags to no-tags or
* vice-versa, we need to carefully freeze and restart
* the queue so that we don't overlap tagged and non-tagged
* commands. We also temporarily stop tags if there is
* a change in transfer negotiation settings to allow
* "tag-less" negotiation.
*/
if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
|| (device->inq_flags & SID_CmdQue) != 0)
device_tagenb = TRUE;
else
device_tagenb = FALSE;
if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
&& device_tagenb == FALSE)
|| ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
&& device_tagenb == TRUE)) {
if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
/*
* Delay change to use tags until after a
* few commands have gone to this device so
* the controller has time to perform transfer
* negotiations without tagged messages getting
* in the way.
*/
device->tag_delay_count = CAM_TAG_DELAY_COUNT;
device->flags |= CAM_DEV_TAG_AFTER_COUNT;
} else {
xpt_stop_tags(cts->ccb_h.path);
}
}
}
if (async_update == FALSE)
(*(sim->sim_action))(sim, (union ccb *)cts);
}
static void
scsi_toggle_tags(struct cam_path *path)
{
struct cam_ed *dev;
/*
* Give controllers a chance to renegotiate
* before starting tag operations. We
* "toggle" tagged queuing off then on
* which causes the tag enable command delay
* counter to come into effect.
*/
dev = path->device;
if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
|| ((dev->inq_flags & SID_CmdQue) != 0
&& (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
struct ccb_trans_settings cts;
xpt_setup_ccb(&cts.ccb_h, path, CAM_PRIORITY_NONE);
cts.protocol = PROTO_SCSI;
cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
cts.transport = XPORT_UNSPECIFIED;
cts.transport_version = XPORT_VERSION_UNSPECIFIED;
cts.proto_specific.scsi.flags = 0;
cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
scsi_set_transfer_settings(&cts, path->device,
/*async_update*/TRUE);
cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
scsi_set_transfer_settings(&cts, path->device,
/*async_update*/TRUE);
}
}
/*
* Handle any per-device event notifications that require action by the XPT.
*/
static void
scsi_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
struct cam_ed *device, void *async_arg)
{
cam_status status;
struct cam_path newpath;
/*
* We only need to handle events for real devices.
*/
if (target->target_id == CAM_TARGET_WILDCARD
|| device->lun_id == CAM_LUN_WILDCARD)
return;
/*
* We need our own path with wildcards expanded to
* handle certain types of events.
*/
if ((async_code == AC_SENT_BDR)
|| (async_code == AC_BUS_RESET)
|| (async_code == AC_INQ_CHANGED))
status = xpt_compile_path(&newpath, NULL,
bus->path_id,
target->target_id,
device->lun_id);
else
status = CAM_REQ_CMP_ERR;
if (status == CAM_REQ_CMP) {
/*
* Allow transfer negotiation to occur in a
* tag free environment and after settle delay.
*/
if (async_code == AC_SENT_BDR
|| async_code == AC_BUS_RESET) {
cam_freeze_devq(&newpath);
cam_release_devq(&newpath,
RELSIM_RELEASE_AFTER_TIMEOUT,
/*reduction*/0,
/*timeout*/scsi_delay,
/*getcount_only*/0);
scsi_toggle_tags(&newpath);
}
if (async_code == AC_INQ_CHANGED) {
/*
* We've sent a start unit command, or
* something similar to a device that
* may have caused its inquiry data to
* change. So we re-scan the device to
* refresh the inquiry data for it.
*/
scsi_scan_lun(newpath.periph, &newpath,
CAM_EXPECT_INQ_CHANGE, NULL);
}
xpt_release_path(&newpath);
} else if (async_code == AC_LOST_DEVICE &&
(device->flags & CAM_DEV_UNCONFIGURED) == 0) {
device->flags |= CAM_DEV_UNCONFIGURED;
xpt_release_device(device);
} else if (async_code == AC_TRANSFER_NEG) {
struct ccb_trans_settings *settings;
settings = (struct ccb_trans_settings *)async_arg;
scsi_set_transfer_settings(settings, device,
/*async_update*/TRUE);
}
}
static void
scsi_announce_periph(struct cam_periph *periph)
{
struct ccb_pathinq cpi;
struct ccb_trans_settings cts;
struct cam_path *path = periph->path;
u_int speed;
u_int freq;
u_int mb;
mtx_assert(periph->sim->mtx, MA_OWNED);
xpt_setup_ccb(&cts.ccb_h, path, CAM_PRIORITY_NORMAL);
cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
cts.type = CTS_TYPE_CURRENT_SETTINGS;
xpt_action((union ccb*)&cts);
if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
return;
/* Ask the SIM for its base transfer speed */
xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
cpi.ccb_h.func_code = XPT_PATH_INQ;
xpt_action((union ccb *)&cpi);
/* Report connection speed */
speed = cpi.base_transfer_speed;
freq = 0;
if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
struct ccb_trans_settings_spi *spi =
&cts.xport_specific.spi;
if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
&& spi->sync_offset != 0) {
freq = scsi_calc_syncsrate(spi->sync_period);
speed = freq;
}
if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
speed *= (0x01 << spi->bus_width);
}
if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
struct ccb_trans_settings_fc *fc =
&cts.xport_specific.fc;
if (fc->valid & CTS_FC_VALID_SPEED)
speed = fc->bitrate;
}
if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
struct ccb_trans_settings_sas *sas =
&cts.xport_specific.sas;
if (sas->valid & CTS_SAS_VALID_SPEED)
speed = sas->bitrate;
}
mb = speed / 1000;
if (mb > 0)
printf("%s%d: %d.%03dMB/s transfers",
periph->periph_name, periph->unit_number,
mb, speed % 1000);
else
printf("%s%d: %dKB/s transfers", periph->periph_name,
periph->unit_number, speed);
/* Report additional information about SPI connections */
if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
struct ccb_trans_settings_spi *spi;
spi = &cts.xport_specific.spi;
if (freq != 0) {
printf(" (%d.%03dMHz%s, offset %d", freq / 1000,
freq % 1000,
(spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
? " DT" : "",
spi->sync_offset);
}
if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
&& spi->bus_width > 0) {
if (freq != 0) {
printf(", ");
} else {
printf(" (");
}
printf("%dbit)", 8 * (0x01 << spi->bus_width));
} else if (freq != 0) {
printf(")");
}
}
if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
struct ccb_trans_settings_fc *fc;
fc = &cts.xport_specific.fc;
if (fc->valid & CTS_FC_VALID_WWNN)
printf(" WWNN 0x%llx", (long long) fc->wwnn);
if (fc->valid & CTS_FC_VALID_WWPN)
printf(" WWPN 0x%llx", (long long) fc->wwpn);
if (fc->valid & CTS_FC_VALID_PORT)
printf(" PortID 0x%x", fc->port);
}
printf("\n");
}