freebsd-dev/sys/net/mp_ring.c
Stephen Hurd d300df0182 Roll up iflib commits from github. This pulls in most of the work done
by Matt Macy as well as other changes which he has accepted via pull
request to his github repo at https://github.com/mattmacy/networking/

This should bring -CURRENT and the github repo into close enough sync to
allow small feature branches rather than a large chain of interdependant
patches being developed out of tree.  The reset of the synchronization
should be able to be completed on github by splitting the remaining
changes that are not yet ready into short feature branches for later
review as smaller commits.

Here is a summary of changes included in this patch:

1)  More checks when INVARIANTS are enabled for eariler problem
    detection
2)  Group Task Queue cleanups
    - Fix use of duplicate shortdesc for gtaskqueue malloc type.
      Some interfaces such as memguard(9) use the short description to
      identify malloc types, so duplicates should be avoided.
3)  Allow gtaskqueues to use ithreads in addition to taskqueues
    - In some cases, this can improve performance
4)  Better logging when taskqgroup_attach*() fails to set interrupt
    affinity.
5)  Do not start gtaskqueues until they're needed
6)  Have mp_ring enqueue function enter the ABDICATED rather than BUSY
    state.  This moves the TX to the gtaskq and allows processing to
    continue faster as well as make TX batching more likely.
7)  Add an ift_txd_errata function to struct if_txrx.  This allows
    drivers to inspect/modify mbufs before transmission.
8)  Add a new IFLIB_NEED_ZERO_CSUM for drivers to indicate they need
    checksums zeroed for checksum offload to work.  This avoids modifying
    packet data in the TX path when possible.
9)  Use ithreads for iflib I/O instead of taskqueues
10) Clean up ioctl and support async ioctl functions
11) Prefetch two cachlines from each mbuf instead of one up to 128B.  We
    often need to parse packet header info beyond 64B.
12) Fix potential memory corruption due to fence post error in
    bit_nclear() usage.
13) Improved hang detection and handling
14) If the packet is smaller than MTU, disable the TSO flags.
    This avoids extra packet parsing when not needed.
15) Move TCP header parsing inside the IS_TSO?() test.
    This avoids extra packet parsing when not needed.
16) Pass chains of mbufs that are not consumed by lro to if_input()
    rather call if_input() for each mbuf.
17) Re-arrange packet header loads to get as much work as possible done
    before a cache stall.
18) Lock the context when calling IFDI_ATTACH_PRE()/IFDI_ATTACH_POST()/
    IFDI_DETACH();
19) Attempt to distribute RX/TX tasks across cores more sensibly,
    especially when RX and TX share an interrupt.  RX will attempt to
    take the first threads on a core, and TX will attempt to take
    successive threads.
20) Allow iflib_softirq_alloc_generic() to request affinity to the same
    cpus an interrupt has affinity with.  This allows TX queues to
    ensure they are serviced by the socket the device is on.
21) Add new iflib sysctls to net.iflib:
    - timer_int - interval at which to run per-queue timers in ticks
    - force_busdma
22) Add new per-device iflib sysctls to dev.X.Y.iflib
    - rx_budget allows tuning the batch size on the RX path
    - watchdog_events Count of watchdog events seen since load
23) Fix error where netmap_rxq_init() could get called before
    IFDI_INIT()
24) e1000: Fixed version of r323008: post-cold sleep instead of DELAY
    when waiting for firmware
    - After interrupts are enabled, convert all waits to sleeps
    - Eliminates e1000 software/firmware synchronization busy waits after
      startup
25) e1000: Remove special case for budget=1 in em_txrx.c
    - Premature optimization which may actually be incorrect with
      multi-segment packets
26) e1000: Split out TX interrupt rather than share an interrupt for
    RX and TX.
    - Allows better performance by keeping RX and TX paths separate
27) e1000: Separate igb from em code where suitable
    Much easier to understand separate functions and "if (is_igb)" than
    previous tests like "if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))"

#blamebruno

Reviewed by:	sbruno
Approved by:	sbruno (mentor)
Sponsored by:	Limelight Networks
Differential Revision:	https://reviews.freebsd.org/D12235
2017-09-13 01:18:42 +00:00

545 lines
13 KiB
C

/*-
* Copyright (c) 2014 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/counter.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/malloc.h>
#include <machine/cpu.h>
#if defined(__powerpc__) || defined(__mips__)
#define NO_64BIT_ATOMICS
#endif
#if defined(__i386__)
#define atomic_cmpset_acq_64 atomic_cmpset_64
#define atomic_cmpset_rel_64 atomic_cmpset_64
#endif
#include <net/mp_ring.h>
union ring_state {
struct {
uint16_t pidx_head;
uint16_t pidx_tail;
uint16_t cidx;
uint16_t flags;
};
uint64_t state;
};
enum {
IDLE = 0, /* consumer ran to completion, nothing more to do. */
BUSY, /* consumer is running already, or will be shortly. */
STALLED, /* consumer stopped due to lack of resources. */
ABDICATED, /* consumer stopped even though there was work to be
done because it wants another thread to take over. */
};
static inline uint16_t
space_available(struct ifmp_ring *r, union ring_state s)
{
uint16_t x = r->size - 1;
if (s.cidx == s.pidx_head)
return (x);
else if (s.cidx > s.pidx_head)
return (s.cidx - s.pidx_head - 1);
else
return (x - s.pidx_head + s.cidx);
}
static inline uint16_t
increment_idx(struct ifmp_ring *r, uint16_t idx, uint16_t n)
{
int x = r->size - idx;
MPASS(x > 0);
return (x > n ? idx + n : n - x);
}
/* Consumer is about to update the ring's state to s */
static inline uint16_t
state_to_flags(union ring_state s, int abdicate)
{
if (s.cidx == s.pidx_tail)
return (IDLE);
else if (abdicate && s.pidx_tail != s.pidx_head)
return (ABDICATED);
return (BUSY);
}
#ifdef NO_64BIT_ATOMICS
static void
drain_ring_locked(struct ifmp_ring *r, union ring_state os, uint16_t prev, int budget)
{
union ring_state ns;
int n, pending, total;
uint16_t cidx = os.cidx;
uint16_t pidx = os.pidx_tail;
MPASS(os.flags == BUSY);
MPASS(cidx != pidx);
if (prev == IDLE)
counter_u64_add(r->starts, 1);
pending = 0;
total = 0;
while (cidx != pidx) {
/* Items from cidx to pidx are available for consumption. */
n = r->drain(r, cidx, pidx);
if (n == 0) {
os.state = ns.state = r->state;
ns.cidx = cidx;
ns.flags = STALLED;
r->state = ns.state;
if (prev != STALLED)
counter_u64_add(r->stalls, 1);
else if (total > 0) {
counter_u64_add(r->restarts, 1);
counter_u64_add(r->stalls, 1);
}
break;
}
cidx = increment_idx(r, cidx, n);
pending += n;
total += n;
/*
* We update the cidx only if we've caught up with the pidx, the
* real cidx is getting too far ahead of the one visible to
* everyone else, or we have exceeded our budget.
*/
if (cidx != pidx && pending < 64 && total < budget)
continue;
os.state = ns.state = r->state;
ns.cidx = cidx;
ns.flags = state_to_flags(ns, total >= budget);
r->state = ns.state;
if (ns.flags == ABDICATED)
counter_u64_add(r->abdications, 1);
if (ns.flags != BUSY) {
/* Wrong loop exit if we're going to stall. */
MPASS(ns.flags != STALLED);
if (prev == STALLED) {
MPASS(total > 0);
counter_u64_add(r->restarts, 1);
}
break;
}
/*
* The acquire style atomic above guarantees visibility of items
* associated with any pidx change that we notice here.
*/
pidx = ns.pidx_tail;
pending = 0;
}
}
#else
/*
* Caller passes in a state, with a guarantee that there is work to do and that
* all items up to the pidx_tail in the state are visible.
*/
static void
drain_ring_lockless(struct ifmp_ring *r, union ring_state os, uint16_t prev, int budget)
{
union ring_state ns;
int n, pending, total;
uint16_t cidx = os.cidx;
uint16_t pidx = os.pidx_tail;
MPASS(os.flags == BUSY);
MPASS(cidx != pidx);
if (prev == IDLE)
counter_u64_add(r->starts, 1);
pending = 0;
total = 0;
while (cidx != pidx) {
/* Items from cidx to pidx are available for consumption. */
n = r->drain(r, cidx, pidx);
if (n == 0) {
critical_enter();
do {
os.state = ns.state = r->state;
ns.cidx = cidx;
ns.flags = STALLED;
} while (atomic_cmpset_64(&r->state, os.state,
ns.state) == 0);
critical_exit();
if (prev != STALLED)
counter_u64_add(r->stalls, 1);
else if (total > 0) {
counter_u64_add(r->restarts, 1);
counter_u64_add(r->stalls, 1);
}
break;
}
cidx = increment_idx(r, cidx, n);
pending += n;
total += n;
/*
* We update the cidx only if we've caught up with the pidx, the
* real cidx is getting too far ahead of the one visible to
* everyone else, or we have exceeded our budget.
*/
if (cidx != pidx && pending < 64 && total < budget)
continue;
critical_enter();
os.state = ns.state = r->state;
ns.cidx = cidx;
ns.flags = state_to_flags(ns, total >= budget);
while (atomic_cmpset_acq_64(&r->state, os.state, ns.state) == 0) {
cpu_spinwait();
os.state = ns.state = r->state;
ns.cidx = cidx;
ns.flags = state_to_flags(ns, total >= budget);
}
critical_exit();
if (ns.flags == ABDICATED)
counter_u64_add(r->abdications, 1);
if (ns.flags != BUSY) {
/* Wrong loop exit if we're going to stall. */
MPASS(ns.flags != STALLED);
if (prev == STALLED) {
MPASS(total > 0);
counter_u64_add(r->restarts, 1);
}
break;
}
/*
* The acquire style atomic above guarantees visibility of items
* associated with any pidx change that we notice here.
*/
pidx = ns.pidx_tail;
pending = 0;
}
}
#endif
int
ifmp_ring_alloc(struct ifmp_ring **pr, int size, void *cookie, mp_ring_drain_t drain,
mp_ring_can_drain_t can_drain, struct malloc_type *mt, int flags)
{
struct ifmp_ring *r;
/* All idx are 16b so size can be 65536 at most */
if (pr == NULL || size < 2 || size > 65536 || drain == NULL ||
can_drain == NULL)
return (EINVAL);
*pr = NULL;
flags &= M_NOWAIT | M_WAITOK;
MPASS(flags != 0);
r = malloc(__offsetof(struct ifmp_ring, items[size]), mt, flags | M_ZERO);
if (r == NULL)
return (ENOMEM);
r->size = size;
r->cookie = cookie;
r->mt = mt;
r->drain = drain;
r->can_drain = can_drain;
r->enqueues = counter_u64_alloc(flags);
r->drops = counter_u64_alloc(flags);
r->starts = counter_u64_alloc(flags);
r->stalls = counter_u64_alloc(flags);
r->restarts = counter_u64_alloc(flags);
r->abdications = counter_u64_alloc(flags);
if (r->enqueues == NULL || r->drops == NULL || r->starts == NULL ||
r->stalls == NULL || r->restarts == NULL ||
r->abdications == NULL) {
ifmp_ring_free(r);
return (ENOMEM);
}
*pr = r;
#ifdef NO_64BIT_ATOMICS
mtx_init(&r->lock, "mp_ring lock", NULL, MTX_DEF);
#endif
return (0);
}
void
ifmp_ring_free(struct ifmp_ring *r)
{
if (r == NULL)
return;
if (r->enqueues != NULL)
counter_u64_free(r->enqueues);
if (r->drops != NULL)
counter_u64_free(r->drops);
if (r->starts != NULL)
counter_u64_free(r->starts);
if (r->stalls != NULL)
counter_u64_free(r->stalls);
if (r->restarts != NULL)
counter_u64_free(r->restarts);
if (r->abdications != NULL)
counter_u64_free(r->abdications);
free(r, r->mt);
}
/*
* Enqueue n items and maybe drain the ring for some time.
*
* Returns an errno.
*/
#ifdef NO_64BIT_ATOMICS
int
ifmp_ring_enqueue(struct ifmp_ring *r, void **items, int n, int budget)
{
union ring_state os, ns;
uint16_t pidx_start, pidx_stop;
int i;
MPASS(items != NULL);
MPASS(n > 0);
mtx_lock(&r->lock);
/*
* Reserve room for the new items. Our reservation, if successful, is
* from 'pidx_start' to 'pidx_stop'.
*/
os.state = r->state;
if (n >= space_available(r, os)) {
counter_u64_add(r->drops, n);
MPASS(os.flags != IDLE);
if (os.flags == STALLED)
ifmp_ring_check_drainage(r, 0);
return (ENOBUFS);
}
ns.state = os.state;
ns.pidx_head = increment_idx(r, os.pidx_head, n);
r->state = ns.state;
pidx_start = os.pidx_head;
pidx_stop = ns.pidx_head;
/*
* Wait for other producers who got in ahead of us to enqueue their
* items, one producer at a time. It is our turn when the ring's
* pidx_tail reaches the beginning of our reservation (pidx_start).
*/
while (ns.pidx_tail != pidx_start) {
cpu_spinwait();
ns.state = r->state;
}
/* Now it is our turn to fill up the area we reserved earlier. */
i = pidx_start;
do {
r->items[i] = *items++;
if (__predict_false(++i == r->size))
i = 0;
} while (i != pidx_stop);
/*
* Update the ring's pidx_tail. The release style atomic guarantees
* that the items are visible to any thread that sees the updated pidx.
*/
os.state = ns.state = r->state;
ns.pidx_tail = pidx_stop;
ns.flags = BUSY;
r->state = ns.state;
counter_u64_add(r->enqueues, n);
/*
* Turn into a consumer if some other thread isn't active as a consumer
* already.
*/
if (os.flags != BUSY)
drain_ring_locked(r, ns, os.flags, budget);
mtx_unlock(&r->lock);
return (0);
}
#else
int
ifmp_ring_enqueue(struct ifmp_ring *r, void **items, int n, int budget)
{
union ring_state os, ns;
uint16_t pidx_start, pidx_stop;
int i;
MPASS(items != NULL);
MPASS(n > 0);
/*
* Reserve room for the new items. Our reservation, if successful, is
* from 'pidx_start' to 'pidx_stop'.
*/
for (;;) {
os.state = r->state;
if (n >= space_available(r, os)) {
counter_u64_add(r->drops, n);
MPASS(os.flags != IDLE);
if (os.flags == STALLED)
ifmp_ring_check_drainage(r, 0);
return (ENOBUFS);
}
ns.state = os.state;
ns.pidx_head = increment_idx(r, os.pidx_head, n);
critical_enter();
if (atomic_cmpset_64(&r->state, os.state, ns.state))
break;
critical_exit();
cpu_spinwait();
}
pidx_start = os.pidx_head;
pidx_stop = ns.pidx_head;
/*
* Wait for other producers who got in ahead of us to enqueue their
* items, one producer at a time. It is our turn when the ring's
* pidx_tail reaches the beginning of our reservation (pidx_start).
*/
while (ns.pidx_tail != pidx_start) {
cpu_spinwait();
ns.state = r->state;
}
/* Now it is our turn to fill up the area we reserved earlier. */
i = pidx_start;
do {
r->items[i] = *items++;
if (__predict_false(++i == r->size))
i = 0;
} while (i != pidx_stop);
/*
* Update the ring's pidx_tail. The release style atomic guarantees
* that the items are visible to any thread that sees the updated pidx.
*/
do {
os.state = ns.state = r->state;
ns.pidx_tail = pidx_stop;
if (os.flags == IDLE)
ns.flags = ABDICATED;
} while (atomic_cmpset_rel_64(&r->state, os.state, ns.state) == 0);
critical_exit();
counter_u64_add(r->enqueues, n);
return (0);
}
#endif
void
ifmp_ring_check_drainage(struct ifmp_ring *r, int budget)
{
union ring_state os, ns;
os.state = r->state;
if ((os.flags != STALLED && os.flags != ABDICATED) || // Only continue in STALLED and ABDICATED
os.pidx_head != os.pidx_tail || // Require work to be available
(os.flags != ABDICATED && r->can_drain(r) == 0)) // Can either drain, or everyone left
return;
MPASS(os.cidx != os.pidx_tail); /* implied by STALLED */
ns.state = os.state;
ns.flags = BUSY;
#ifdef NO_64BIT_ATOMICS
mtx_lock(&r->lock);
if (r->state != os.state) {
mtx_unlock(&r->lock);
return;
}
r->state = ns.state;
drain_ring_locked(r, ns, os.flags, budget);
mtx_unlock(&r->lock);
#else
/*
* The acquire style atomic guarantees visibility of items associated
* with the pidx that we read here.
*/
if (!atomic_cmpset_acq_64(&r->state, os.state, ns.state))
return;
drain_ring_lockless(r, ns, os.flags, budget);
#endif
}
void
ifmp_ring_reset_stats(struct ifmp_ring *r)
{
counter_u64_zero(r->enqueues);
counter_u64_zero(r->drops);
counter_u64_zero(r->starts);
counter_u64_zero(r->stalls);
counter_u64_zero(r->restarts);
counter_u64_zero(r->abdications);
}
int
ifmp_ring_is_idle(struct ifmp_ring *r)
{
union ring_state s;
s.state = r->state;
if (s.pidx_head == s.pidx_tail && s.pidx_tail == s.cidx &&
s.flags == IDLE)
return (1);
return (0);
}
int
ifmp_ring_is_stalled(struct ifmp_ring *r)
{
union ring_state s;
s.state = r->state;
if (s.pidx_head == s.pidx_tail && s.flags == STALLED)
return (1);
return (0);
}