freebsd-dev/sys/dev/ath/ath_hal/ar5416/ar5416_xmit.c
Adrian Chadd d39a3a978b Don't incorrectly set the burst duration setting in the TX descriptor.
After inspecting the ath9k source, it seems the AR5416 and later MACs
don't take an explicit RTS/CTS duration. A per-scenario (ie, what multi-
rate retry became) rts/cts control flag and packet duration is provided;
the hardware then apparently fills in whatever details are required.
The per-rate sp/lpack duration calculation just isn't used anywhere
in the ath9k TX packet length calculations.

The burst duration register controls something different; it seems to
be involved with RTS/CTS protection of 11n aggregate frames and is set
via a call to ar5416Set11nBurstDuration().

I've done some light testing with rts/cts protected frames and nothing
seems to break; but this may break said RTS/CTS and CTS-to-self protection.
2011-01-31 15:42:42 +00:00

728 lines
21 KiB
C

/*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_desc.h"
#include "ah_internal.h"
#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"
#include "ar5416/ar5416desc.h"
/*
* Stop transmit on the specified queue
*/
HAL_BOOL
ar5416StopTxDma(struct ath_hal *ah, u_int q)
{
#define STOP_DMA_TIMEOUT 4000 /* us */
#define STOP_DMA_ITER 100 /* us */
u_int i;
HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
OS_REG_WRITE(ah, AR_Q_TXD, 1 << q);
for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) {
if (ar5212NumTxPending(ah, q) == 0)
break;
OS_DELAY(STOP_DMA_ITER);
}
#ifdef AH_DEBUG
if (i == 0) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: queue %u DMA did not stop in 400 msec\n", __func__, q);
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n", __func__,
OS_REG_READ(ah, AR_QSTS(q)), OS_REG_READ(ah, AR_Q_TXE),
OS_REG_READ(ah, AR_Q_TXD), OS_REG_READ(ah, AR_QCBRCFG(q)));
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n",
__func__, OS_REG_READ(ah, AR_QMISC(q)),
OS_REG_READ(ah, AR_QRDYTIMECFG(q)),
OS_REG_READ(ah, AR_Q_RDYTIMESHDN));
}
#endif /* AH_DEBUG */
/* ar5416 and up can kill packets at the PCU level */
if (ar5212NumTxPending(ah, q)) {
uint32_t j;
HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
"%s: Num of pending TX Frames %d on Q %d\n",
__func__, ar5212NumTxPending(ah, q), q);
/* Kill last PCU Tx Frame */
/* TODO - save off and restore current values of Q1/Q2? */
for (j = 0; j < 2; j++) {
uint32_t tsfLow = OS_REG_READ(ah, AR_TSF_L32);
OS_REG_WRITE(ah, AR_QUIET2,
SM(10, AR_QUIET2_QUIET_DUR));
OS_REG_WRITE(ah, AR_QUIET_PERIOD, 100);
OS_REG_WRITE(ah, AR_NEXT_QUIET, tsfLow >> 10);
OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
if ((OS_REG_READ(ah, AR_TSF_L32)>>10) == (tsfLow>>10))
break;
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: TSF moved while trying to set quiet time "
"TSF: 0x%08x\n", __func__, tsfLow);
HALASSERT(j < 1); /* TSF shouldn't count twice or reg access is taking forever */
}
OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
/* Allow the quiet mechanism to do its work */
OS_DELAY(200);
OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
/* Verify the transmit q is empty */
for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) {
if (ar5212NumTxPending(ah, q) == 0)
break;
OS_DELAY(STOP_DMA_ITER);
}
if (i == 0) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: Failed to stop Tx DMA in %d msec after killing"
" last frame\n", __func__, STOP_DMA_TIMEOUT / 1000);
}
OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
}
OS_REG_WRITE(ah, AR_Q_TXD, 0);
return (i != 0);
#undef STOP_DMA_ITER
#undef STOP_DMA_TIMEOUT
}
#define VALID_KEY_TYPES \
((1 << HAL_KEY_TYPE_CLEAR) | (1 << HAL_KEY_TYPE_WEP)|\
(1 << HAL_KEY_TYPE_AES) | (1 << HAL_KEY_TYPE_TKIP))
#define isValidKeyType(_t) ((1 << (_t)) & VALID_KEY_TYPES)
#define set11nTries(_series, _index) \
(SM((_series)[_index].Tries, AR_XmitDataTries##_index))
#define set11nRate(_series, _index) \
(SM((_series)[_index].Rate, AR_XmitRate##_index))
#define set11nPktDurRTSCTS(_series, _index) \
(SM((_series)[_index].PktDuration, AR_PacketDur##_index) |\
((_series)[_index].RateFlags & HAL_RATESERIES_RTS_CTS ?\
AR_RTSCTSQual##_index : 0))
#define set11nRateFlags(_series, _index) \
((_series)[_index].RateFlags & HAL_RATESERIES_2040 ? AR_2040_##_index : 0) \
|((_series)[_index].RateFlags & HAL_RATESERIES_HALFGI ? AR_GI##_index : 0) \
|SM((_series)[_index].ChSel, AR_ChainSel##_index)
/*
* Descriptor Access Functions
*/
#define VALID_PKT_TYPES \
((1<<HAL_PKT_TYPE_NORMAL)|(1<<HAL_PKT_TYPE_ATIM)|\
(1<<HAL_PKT_TYPE_PSPOLL)|(1<<HAL_PKT_TYPE_PROBE_RESP)|\
(1<<HAL_PKT_TYPE_BEACON)|(1<<HAL_PKT_TYPE_AMPDU))
#define isValidPktType(_t) ((1<<(_t)) & VALID_PKT_TYPES)
#define VALID_TX_RATES \
((1<<0x0b)|(1<<0x0f)|(1<<0x0a)|(1<<0x0e)|(1<<0x09)|(1<<0x0d)|\
(1<<0x08)|(1<<0x0c)|(1<<0x1b)|(1<<0x1a)|(1<<0x1e)|(1<<0x19)|\
(1<<0x1d)|(1<<0x18)|(1<<0x1c))
#define isValidTxRate(_r) ((1<<(_r)) & VALID_TX_RATES)
HAL_BOOL
ar5416SetupTxDesc(struct ath_hal *ah, struct ath_desc *ds,
u_int pktLen,
u_int hdrLen,
HAL_PKT_TYPE type,
u_int txPower,
u_int txRate0, u_int txTries0,
u_int keyIx,
u_int antMode,
u_int flags,
u_int rtsctsRate,
u_int rtsctsDuration,
u_int compicvLen,
u_int compivLen,
u_int comp)
{
#define RTSCTS (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)
struct ar5416_desc *ads = AR5416DESC(ds);
struct ath_hal_5416 *ahp = AH5416(ah);
(void) hdrLen;
HALASSERT(txTries0 != 0);
HALASSERT(isValidPktType(type));
HALASSERT(isValidTxRate(txRate0));
HALASSERT((flags & RTSCTS) != RTSCTS);
/* XXX validate antMode */
txPower = (txPower + AH5212(ah)->ah_txPowerIndexOffset);
if (txPower > 63)
txPower = 63;
ads->ds_ctl0 = (pktLen & AR_FrameLen)
| (txPower << AR_XmitPower_S)
| (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0)
| (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
| (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0)
;
ads->ds_ctl1 = (type << AR_FrameType_S)
| (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0)
;
ads->ds_ctl2 = SM(txTries0, AR_XmitDataTries0)
| (flags & HAL_TXDESC_DURENA ? AR_DurUpdateEn : 0)
;
ads->ds_ctl3 = (txRate0 << AR_XmitRate0_S)
;
ads->ds_ctl4 = 0;
ads->ds_ctl5 = 0;
ads->ds_ctl6 = 0;
ads->ds_ctl7 = SM(ahp->ah_tx_chainmask, AR_ChainSel0)
| SM(ahp->ah_tx_chainmask, AR_ChainSel1)
| SM(ahp->ah_tx_chainmask, AR_ChainSel2)
| SM(ahp->ah_tx_chainmask, AR_ChainSel3)
;
ads->ds_ctl8 = 0;
ads->ds_ctl9 = (txPower << 24); /* XXX? */
ads->ds_ctl10 = (txPower << 24); /* XXX? */
ads->ds_ctl11 = (txPower << 24); /* XXX? */
if (keyIx != HAL_TXKEYIX_INVALID) {
/* XXX validate key index */
ads->ds_ctl1 |= SM(keyIx, AR_DestIdx);
ads->ds_ctl0 |= AR_DestIdxValid;
ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType);
}
if (flags & RTSCTS) {
if (!isValidTxRate(rtsctsRate)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: invalid rts/cts rate 0x%x\n",
__func__, rtsctsRate);
return AH_FALSE;
}
/* XXX validate rtsctsDuration */
ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0)
| (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0)
;
ads->ds_ctl7 |= (rtsctsRate << AR_RTSCTSRate_S);
}
if (AR_SREV_KITE(ah)) {
ads->ds_ctl8 = 0;
ads->ds_ctl9 = 0;
ads->ds_ctl10 = 0;
ads->ds_ctl11 = 0;
}
return AH_TRUE;
#undef RTSCTS
}
HAL_BOOL
ar5416SetupXTxDesc(struct ath_hal *ah, struct ath_desc *ds,
u_int txRate1, u_int txTries1,
u_int txRate2, u_int txTries2,
u_int txRate3, u_int txTries3)
{
struct ar5416_desc *ads = AR5416DESC(ds);
if (txTries1) {
HALASSERT(isValidTxRate(txRate1));
ads->ds_ctl2 |= SM(txTries1, AR_XmitDataTries1);
ads->ds_ctl3 |= (txRate1 << AR_XmitRate1_S);
}
if (txTries2) {
HALASSERT(isValidTxRate(txRate2));
ads->ds_ctl2 |= SM(txTries2, AR_XmitDataTries2);
ads->ds_ctl3 |= (txRate2 << AR_XmitRate2_S);
}
if (txTries3) {
HALASSERT(isValidTxRate(txRate3));
ads->ds_ctl2 |= SM(txTries3, AR_XmitDataTries3);
ads->ds_ctl3 |= (txRate3 << AR_XmitRate3_S);
}
return AH_TRUE;
}
HAL_BOOL
ar5416FillTxDesc(struct ath_hal *ah, struct ath_desc *ds,
u_int segLen, HAL_BOOL firstSeg, HAL_BOOL lastSeg,
const struct ath_desc *ds0)
{
struct ar5416_desc *ads = AR5416DESC(ds);
HALASSERT((segLen &~ AR_BufLen) == 0);
if (firstSeg) {
/*
* First descriptor, don't clobber xmit control data
* setup by ar5212SetupTxDesc.
*/
ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
} else if (lastSeg) { /* !firstSeg && lastSeg */
/*
* Last descriptor in a multi-descriptor frame,
* copy the multi-rate transmit parameters from
* the first frame for processing on completion.
*/
ads->ds_ctl0 = 0;
ads->ds_ctl1 = segLen;
#ifdef AH_NEED_DESC_SWAP
ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2);
ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3);
#else
ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
#endif
} else { /* !firstSeg && !lastSeg */
/*
* Intermediate descriptor in a multi-descriptor frame.
*/
ads->ds_ctl0 = 0;
ads->ds_ctl1 = segLen | AR_TxMore;
ads->ds_ctl2 = 0;
ads->ds_ctl3 = 0;
}
/* XXX only on last descriptor? */
OS_MEMZERO(ads->u.tx.status, sizeof(ads->u.tx.status));
return AH_TRUE;
}
HAL_BOOL
ar5416ChainTxDesc(struct ath_hal *ah, struct ath_desc *ds,
u_int pktLen,
u_int hdrLen,
HAL_PKT_TYPE type,
u_int keyIx,
HAL_CIPHER cipher,
uint8_t delims,
u_int segLen,
HAL_BOOL firstSeg,
HAL_BOOL lastSeg)
{
struct ar5416_desc *ads = AR5416DESC(ds);
uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
struct ath_hal_5416 *ahp = AH5416(ah);
int isaggr = 0;
(void) hdrLen;
(void) ah;
HALASSERT((segLen &~ AR_BufLen) == 0);
HALASSERT(isValidPktType(type));
if (type == HAL_PKT_TYPE_AMPDU) {
type = HAL_PKT_TYPE_NORMAL;
isaggr = 1;
}
if (!firstSeg) {
OS_MEMZERO(ds->ds_hw, AR5416_DESC_TX_CTL_SZ);
}
ads->ds_ctl0 = (pktLen & AR_FrameLen);
ads->ds_ctl1 = (type << AR_FrameType_S)
| (isaggr ? (AR_IsAggr | AR_MoreAggr) : 0);
ads->ds_ctl2 = 0;
ads->ds_ctl3 = 0;
if (keyIx != HAL_TXKEYIX_INVALID) {
/* XXX validate key index */
ads->ds_ctl1 |= SM(keyIx, AR_DestIdx);
ads->ds_ctl0 |= AR_DestIdxValid;
}
ads->ds_ctl6 = SM(ahp->ah_keytype[cipher], AR_EncrType);
if (isaggr) {
ads->ds_ctl6 |= SM(delims, AR_PadDelim);
}
if (firstSeg) {
ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
} else if (lastSeg) { /* !firstSeg && lastSeg */
ads->ds_ctl0 = 0;
ads->ds_ctl1 |= segLen;
} else { /* !firstSeg && !lastSeg */
/*
* Intermediate descriptor in a multi-descriptor frame.
*/
ads->ds_ctl0 = 0;
ads->ds_ctl1 |= segLen | AR_TxMore;
}
ds_txstatus[0] = ds_txstatus[1] = 0;
ds_txstatus[9] &= ~AR_TxDone;
return AH_TRUE;
}
HAL_BOOL
ar5416SetupFirstTxDesc(struct ath_hal *ah, struct ath_desc *ds,
u_int aggrLen, u_int flags, u_int txPower,
u_int txRate0, u_int txTries0, u_int antMode,
u_int rtsctsRate, u_int rtsctsDuration)
{
#define RTSCTS (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)
struct ar5416_desc *ads = AR5416DESC(ds);
struct ath_hal_5212 *ahp = AH5212(ah);
HALASSERT(txTries0 != 0);
HALASSERT(isValidTxRate(txRate0));
HALASSERT((flags & RTSCTS) != RTSCTS);
/* XXX validate antMode */
txPower = (txPower + ahp->ah_txPowerIndexOffset );
if(txPower > 63) txPower=63;
ads->ds_ctl0 |= (txPower << AR_XmitPower_S)
| (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0)
| (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
| (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0);
ads->ds_ctl1 |= (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0);
ads->ds_ctl2 |= SM(txTries0, AR_XmitDataTries0);
ads->ds_ctl3 |= (txRate0 << AR_XmitRate0_S);
ads->ds_ctl7 = SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel0)
| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel1)
| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel2)
| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel3);
/* NB: no V1 WAR */
ads->ds_ctl8 = 0;
ads->ds_ctl9 = (txPower << 24);
ads->ds_ctl10 = (txPower << 24);
ads->ds_ctl11 = (txPower << 24);
ads->ds_ctl6 &= ~(0xffff);
ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen);
if (flags & RTSCTS) {
/* XXX validate rtsctsDuration */
ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0)
| (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0);
}
if (AR_SREV_KITE(ah)) {
ads->ds_ctl8 = 0;
ads->ds_ctl9 = 0;
ads->ds_ctl10 = 0;
ads->ds_ctl11 = 0;
}
return AH_TRUE;
#undef RTSCTS
}
HAL_BOOL
ar5416SetupLastTxDesc(struct ath_hal *ah, struct ath_desc *ds,
const struct ath_desc *ds0)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_ctl1 &= ~AR_MoreAggr;
ads->ds_ctl6 &= ~AR_PadDelim;
/* hack to copy rate info to last desc for later processing */
#ifdef AH_NEED_DESC_SWAP
ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2);
ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3);
#else
ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
#endif
return AH_TRUE;
}
#ifdef AH_NEED_DESC_SWAP
/* Swap transmit descriptor */
static __inline void
ar5416SwapTxDesc(struct ath_desc *ds)
{
ds->ds_data = __bswap32(ds->ds_data);
ds->ds_ctl0 = __bswap32(ds->ds_ctl0);
ds->ds_ctl1 = __bswap32(ds->ds_ctl1);
ds->ds_hw[0] = __bswap32(ds->ds_hw[0]);
ds->ds_hw[1] = __bswap32(ds->ds_hw[1]);
ds->ds_hw[2] = __bswap32(ds->ds_hw[2]);
ds->ds_hw[3] = __bswap32(ds->ds_hw[3]);
}
#endif
/*
* Processing of HW TX descriptor.
*/
HAL_STATUS
ar5416ProcTxDesc(struct ath_hal *ah,
struct ath_desc *ds, struct ath_tx_status *ts)
{
struct ar5416_desc *ads = AR5416DESC(ds);
uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
#ifdef AH_NEED_DESC_SWAP
if ((ds_txstatus[9] & __bswap32(AR_TxDone)) == 0)
return HAL_EINPROGRESS;
ar5416SwapTxDesc(ds);
#else
if ((ds_txstatus[9] & AR_TxDone) == 0)
return HAL_EINPROGRESS;
#endif
/* Update software copies of the HW status */
ts->ts_seqnum = MS(ds_txstatus[9], AR_SeqNum);
ts->ts_tstamp = AR_SendTimestamp(ds_txstatus);
ts->ts_status = 0;
if (ds_txstatus[1] & AR_ExcessiveRetries)
ts->ts_status |= HAL_TXERR_XRETRY;
if (ds_txstatus[1] & AR_Filtered)
ts->ts_status |= HAL_TXERR_FILT;
if (ds_txstatus[1] & AR_FIFOUnderrun)
ts->ts_status |= HAL_TXERR_FIFO;
if (ds_txstatus[9] & AR_TxOpExceeded)
ts->ts_status |= HAL_TXERR_XTXOP;
if (ds_txstatus[1] & AR_TxTimerExpired)
ts->ts_status |= HAL_TXERR_TIMER_EXPIRED;
ts->ts_flags = 0;
if (ds_txstatus[0] & AR_TxBaStatus) {
ts->ts_flags |= HAL_TX_BA;
ts->ts_ba_low = AR_BaBitmapLow(ds_txstatus);
ts->ts_ba_high = AR_BaBitmapHigh(ds_txstatus);
}
if (ds->ds_ctl1 & AR_IsAggr)
ts->ts_flags |= HAL_TX_AGGR;
if (ds_txstatus[1] & AR_DescCfgErr)
ts->ts_flags |= HAL_TX_DESC_CFG_ERR;
if (ds_txstatus[1] & AR_TxDataUnderrun)
ts->ts_flags |= HAL_TX_DATA_UNDERRUN;
if (ds_txstatus[1] & AR_TxDelimUnderrun)
ts->ts_flags |= HAL_TX_DELIM_UNDERRUN;
/*
* Extract the transmit rate used and mark the rate as
* ``alternate'' if it wasn't the series 0 rate.
*/
ts->ts_finaltsi = MS(ds_txstatus[9], AR_FinalTxIdx);
switch (ts->ts_finaltsi) {
case 0:
ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate0);
break;
case 1:
ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate1);
break;
case 2:
ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate2);
break;
case 3:
ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate3);
break;
}
ts->ts_rssi = MS(ds_txstatus[5], AR_TxRSSICombined);
ts->ts_rssi_ctl[0] = MS(ds_txstatus[0], AR_TxRSSIAnt00);
ts->ts_rssi_ctl[1] = MS(ds_txstatus[0], AR_TxRSSIAnt01);
ts->ts_rssi_ctl[2] = MS(ds_txstatus[0], AR_TxRSSIAnt02);
ts->ts_rssi_ext[0] = MS(ds_txstatus[5], AR_TxRSSIAnt10);
ts->ts_rssi_ext[1] = MS(ds_txstatus[5], AR_TxRSSIAnt11);
ts->ts_rssi_ext[2] = MS(ds_txstatus[5], AR_TxRSSIAnt12);
ts->ts_evm0 = AR_TxEVM0(ds_txstatus);
ts->ts_evm1 = AR_TxEVM1(ds_txstatus);
ts->ts_evm2 = AR_TxEVM2(ds_txstatus);
ts->ts_shortretry = MS(ds_txstatus[1], AR_RTSFailCnt);
ts->ts_longretry = MS(ds_txstatus[1], AR_DataFailCnt);
/*
* The retry count has the number of un-acked tries for the
* final series used. When doing multi-rate retry we must
* fixup the retry count by adding in the try counts for
* each series that was fully-processed. Beware that this
* takes values from the try counts in the final descriptor.
* These are not required by the hardware. We assume they
* are placed there by the driver as otherwise we have no
* access and the driver can't do the calculation because it
* doesn't know the descriptor format.
*/
switch (ts->ts_finaltsi) {
case 3: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries2);
case 2: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries1);
case 1: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries0);
}
/*
* These fields are not used. Zero these to preserve compatability
* with existing drivers.
*/
ts->ts_virtcol = MS(ads->ds_ctl1, AR_VirtRetryCnt);
ts->ts_antenna = 0; /* We don't switch antennas on Owl*/
/* handle tx trigger level changes internally */
if ((ts->ts_status & HAL_TXERR_FIFO) ||
(ts->ts_flags & (HAL_TX_DATA_UNDERRUN | HAL_TX_DELIM_UNDERRUN)))
ar5212UpdateTxTrigLevel(ah, AH_TRUE);
return HAL_OK;
}
HAL_BOOL
ar5416SetGlobalTxTimeout(struct ath_hal *ah, u_int tu)
{
struct ath_hal_5416 *ahp = AH5416(ah);
if (tu > 0xFFFF) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad global tx timeout %u\n",
__func__, tu);
/* restore default handling */
ahp->ah_globaltxtimeout = (u_int) -1;
return AH_FALSE;
}
OS_REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
ahp->ah_globaltxtimeout = tu;
return AH_TRUE;
}
u_int
ar5416GetGlobalTxTimeout(struct ath_hal *ah)
{
return MS(OS_REG_READ(ah, AR_GTXTO), AR_GTXTO_TIMEOUT_LIMIT);
}
void
ar5416Set11nRateScenario(struct ath_hal *ah, struct ath_desc *ds,
u_int durUpdateEn, u_int rtsctsRate,
HAL_11N_RATE_SERIES series[], u_int nseries, u_int flags)
{
struct ar5416_desc *ads = AR5416DESC(ds);
uint32_t ds_ctl0;
HALASSERT(nseries == 4);
(void)nseries;
/*
* Only one of RTS and CTS enable must be set.
* If a frame has both set, just do RTS protection -
* that's enough to satisfy legacy protection.
*/
if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
ds_ctl0 = ads->ds_ctl0;
if (flags & HAL_TXDESC_RTSENA) {
ds_ctl0 &= ~AR_CTSEnable;
ds_ctl0 |= AR_RTSEnable;
} else {
ds_ctl0 &= ~AR_RTSEnable;
ds_ctl0 |= AR_CTSEnable;
}
ads->ds_ctl0 = ds_ctl0;
} else {
ads->ds_ctl0 =
(ads->ds_ctl0 & ~(AR_RTSEnable | AR_CTSEnable));
}
ads->ds_ctl2 = set11nTries(series, 0)
| set11nTries(series, 1)
| set11nTries(series, 2)
| set11nTries(series, 3)
| (durUpdateEn ? AR_DurUpdateEn : 0);
ads->ds_ctl3 = set11nRate(series, 0)
| set11nRate(series, 1)
| set11nRate(series, 2)
| set11nRate(series, 3);
ads->ds_ctl4 = set11nPktDurRTSCTS(series, 0)
| set11nPktDurRTSCTS(series, 1);
ads->ds_ctl5 = set11nPktDurRTSCTS(series, 2)
| set11nPktDurRTSCTS(series, 3);
ads->ds_ctl7 = set11nRateFlags(series, 0)
| set11nRateFlags(series, 1)
| set11nRateFlags(series, 2)
| set11nRateFlags(series, 3)
| SM(rtsctsRate, AR_RTSCTSRate);
}
void
ar5416Set11nAggrMiddle(struct ath_hal *ah, struct ath_desc *ds, u_int numDelims)
{
struct ar5416_desc *ads = AR5416DESC(ds);
uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
ads->ds_ctl6 &= ~AR_PadDelim;
ads->ds_ctl6 |= SM(numDelims, AR_PadDelim);
ads->ds_ctl6 &= ~AR_AggrLen;
/*
* Clear the TxDone status here, may need to change
* func name to reflect this
*/
ds_txstatus[9] &= ~AR_TxDone;
}
void
ar5416Clr11nAggr(struct ath_hal *ah, struct ath_desc *ds)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_ctl1 &= (~AR_IsAggr & ~AR_MoreAggr);
ads->ds_ctl6 &= ~AR_PadDelim;
ads->ds_ctl6 &= ~AR_AggrLen;
}
void
ar5416Set11nBurstDuration(struct ath_hal *ah, struct ath_desc *ds,
u_int burstDuration)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_ctl2 &= ~AR_BurstDur;
ads->ds_ctl2 |= SM(burstDuration, AR_BurstDur);
}
/*
* Retrieve the rate table from the given TX completion descriptor
*/
HAL_BOOL
ar5416GetTxCompletionRates(struct ath_hal *ah, const struct ath_desc *ds0, int *rates, int *tries)
{
const struct ar5416_desc *ads = AR5416DESC_CONST(ds0);
rates[0] = MS(ads->ds_ctl3, AR_XmitRate0);
rates[1] = MS(ads->ds_ctl3, AR_XmitRate1);
rates[2] = MS(ads->ds_ctl3, AR_XmitRate2);
rates[3] = MS(ads->ds_ctl3, AR_XmitRate3);
tries[0] = MS(ads->ds_ctl2, AR_XmitDataTries0);
tries[1] = MS(ads->ds_ctl2, AR_XmitDataTries1);
tries[2] = MS(ads->ds_ctl2, AR_XmitDataTries2);
tries[3] = MS(ads->ds_ctl2, AR_XmitDataTries3);
return AH_TRUE;
}