a3a10d1c3c
clause of an if-else statement was removed. Reviewed by: no response from maintainer in 12 days
2727 lines
68 KiB
C
2727 lines
68 KiB
C
/*
|
|
* Copyright (c) 1990 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Don Ahn.
|
|
*
|
|
* Libretto PCMCIA floppy support by David Horwitt (dhorwitt@ucsd.edu)
|
|
* aided by the Linux floppy driver modifications from David Bateman
|
|
* (dbateman@eng.uts.edu.au).
|
|
*
|
|
* Copyright (c) 1993, 1994 by
|
|
* jc@irbs.UUCP (John Capo)
|
|
* vak@zebub.msk.su (Serge Vakulenko)
|
|
* ache@astral.msk.su (Andrew A. Chernov)
|
|
*
|
|
* Copyright (c) 1993, 1994, 1995 by
|
|
* joerg_wunsch@uriah.sax.de (Joerg Wunsch)
|
|
* dufault@hda.com (Peter Dufault)
|
|
*
|
|
* Copyright (c) 2001 Joerg Wunsch,
|
|
* joerg_wunsch@uriah.heep.sax.de (Joerg Wunsch)
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)fd.c 7.4 (Berkeley) 5/25/91
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_fdc.h"
|
|
#include "card.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/devicestat.h>
|
|
#include <sys/disk.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/fdcio.h>
|
|
#include <sys/filio.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/module.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/syslog.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <machine/clock.h>
|
|
#include <machine/resource.h>
|
|
#include <machine/stdarg.h>
|
|
|
|
#include <isa/isavar.h>
|
|
#include <isa/isareg.h>
|
|
#include <isa/fdreg.h>
|
|
#include <isa/rtc.h>
|
|
|
|
enum fdc_type
|
|
{
|
|
FDC_NE765, FDC_ENHANCED, FDC_UNKNOWN = -1
|
|
};
|
|
|
|
enum fdc_states {
|
|
DEVIDLE,
|
|
FINDWORK,
|
|
DOSEEK,
|
|
SEEKCOMPLETE ,
|
|
IOCOMPLETE,
|
|
RECALCOMPLETE,
|
|
STARTRECAL,
|
|
RESETCTLR,
|
|
SEEKWAIT,
|
|
RECALWAIT,
|
|
MOTORWAIT,
|
|
IOTIMEDOUT,
|
|
RESETCOMPLETE,
|
|
PIOREAD
|
|
};
|
|
|
|
#ifdef FDC_DEBUG
|
|
static char const * const fdstates[] = {
|
|
"DEVIDLE",
|
|
"FINDWORK",
|
|
"DOSEEK",
|
|
"SEEKCOMPLETE",
|
|
"IOCOMPLETE",
|
|
"RECALCOMPLETE",
|
|
"STARTRECAL",
|
|
"RESETCTLR",
|
|
"SEEKWAIT",
|
|
"RECALWAIT",
|
|
"MOTORWAIT",
|
|
"IOTIMEDOUT",
|
|
"RESETCOMPLETE",
|
|
"PIOREAD"
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* Per controller structure (softc).
|
|
*/
|
|
struct fdc_data
|
|
{
|
|
int fdcu; /* our unit number */
|
|
int dmachan;
|
|
int flags;
|
|
#define FDC_ATTACHED 0x01
|
|
#define FDC_STAT_VALID 0x08
|
|
#define FDC_HAS_FIFO 0x10
|
|
#define FDC_NEEDS_RESET 0x20
|
|
#define FDC_NODMA 0x40
|
|
#define FDC_ISPNP 0x80
|
|
#define FDC_ISPCMCIA 0x100
|
|
struct fd_data *fd;
|
|
int fdu; /* the active drive */
|
|
enum fdc_states state;
|
|
int retry;
|
|
int fdout; /* mirror of the w/o digital output reg */
|
|
u_int status[7]; /* copy of the registers */
|
|
enum fdc_type fdct; /* chip version of FDC */
|
|
int fdc_errs; /* number of logged errors */
|
|
int dma_overruns; /* number of DMA overruns */
|
|
struct bio_queue_head head;
|
|
struct bio *bp; /* active buffer */
|
|
struct resource *res_ioport, *res_ctl, *res_irq, *res_drq;
|
|
int rid_ioport, rid_ctl, rid_irq, rid_drq;
|
|
int port_off;
|
|
bus_space_tag_t portt;
|
|
bus_space_handle_t porth;
|
|
bus_space_tag_t ctlt;
|
|
bus_space_handle_t ctlh;
|
|
void *fdc_intr;
|
|
struct device *fdc_dev;
|
|
void (*fdctl_wr)(struct fdc_data *fdc, u_int8_t v);
|
|
};
|
|
|
|
#define FDBIO_FORMAT BIO_CMD2
|
|
|
|
typedef int fdu_t;
|
|
typedef int fdcu_t;
|
|
typedef int fdsu_t;
|
|
typedef struct fd_data *fd_p;
|
|
typedef struct fdc_data *fdc_p;
|
|
typedef enum fdc_type fdc_t;
|
|
|
|
/*
|
|
* fdc maintains a set (1!) of ivars per child of each controller.
|
|
*/
|
|
enum fdc_device_ivars {
|
|
FDC_IVAR_FDUNIT,
|
|
};
|
|
|
|
/*
|
|
* Simple access macros for the ivars.
|
|
*/
|
|
#define FDC_ACCESSOR(A, B, T) \
|
|
static __inline T fdc_get_ ## A(device_t dev) \
|
|
{ \
|
|
uintptr_t v; \
|
|
BUS_READ_IVAR(device_get_parent(dev), dev, FDC_IVAR_ ## B, &v); \
|
|
return (T) v; \
|
|
}
|
|
FDC_ACCESSOR(fdunit, FDUNIT, int)
|
|
|
|
/* configuration flags for fdc */
|
|
#define FDC_NO_FIFO (1 << 2) /* do not enable FIFO */
|
|
|
|
/* error returns for fd_cmd() */
|
|
#define FD_FAILED -1
|
|
#define FD_NOT_VALID -2
|
|
#define FDC_ERRMAX 100 /* do not log more */
|
|
/*
|
|
* Stop retrying after this many DMA overruns. Since each retry takes
|
|
* one revolution, with 300 rpm., 25 retries take approximately 5
|
|
* seconds which the read attempt will block in case the DMA overrun
|
|
* is persistent.
|
|
*/
|
|
#define FDC_DMAOV_MAX 25
|
|
|
|
/*
|
|
* Timeout value for the PIO loops to wait until the FDC main status
|
|
* register matches our expectations (request for master, direction
|
|
* bit). This is supposed to be a number of microseconds, although
|
|
* timing might actually not be very accurate.
|
|
*
|
|
* Timeouts of 100 msec are believed to be required for some broken
|
|
* (old) hardware.
|
|
*/
|
|
#define FDSTS_TIMEOUT 100000
|
|
|
|
/*
|
|
* Number of subdevices that can be used for different density types.
|
|
*/
|
|
#define NUMDENS 16
|
|
|
|
#define FDBIO_RDSECTID BIO_CMD1
|
|
|
|
/*
|
|
* List of native drive densities. Order must match enum fd_drivetype
|
|
* in <sys/fdcio.h>. Upon attaching the drive, each of the
|
|
* programmable subdevices is initialized with the native density
|
|
* definition.
|
|
*/
|
|
static struct fd_type fd_native_types[] =
|
|
{
|
|
{ 0 }, /* FDT_NONE */
|
|
{ 9,2,0xFF,0x2A,40, 720,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* FDT_360K */
|
|
{ 15,2,0xFF,0x1B,80,2400,FDC_500KBPS,2,0x54,1,0,FL_MFM }, /* FDT_12M */
|
|
{ 9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* FDT_720K */
|
|
{ 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* FDT_144M */
|
|
#if 0 /* we currently don't handle 2.88 MB */
|
|
{ 36,2,0xFF,0x1B,80,5760,FDC_1MBPS, 2,0x4C,1,1,FL_MFM|FL_PERPND } /*FDT_288M*/
|
|
#else
|
|
{ 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* FDT_144M */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* 360 KB 5.25" and 720 KB 3.5" drives don't have automatic density
|
|
* selection, they just start out with their native density (or lose).
|
|
* So 1.2 MB 5.25", 1.44 MB 3.5", and 2.88 MB 3.5" drives have their
|
|
* respective lists of densities to search for.
|
|
*/
|
|
static struct fd_type fd_searchlist_12m[] = {
|
|
{ 15,2,0xFF,0x1B,80,2400,FDC_500KBPS,2,0x54,1,0,FL_MFM }, /* 1.2M */
|
|
{ 9,2,0xFF,0x23,40, 720,FDC_300KBPS,2,0x50,1,0,FL_MFM|FL_2STEP }, /* 360K */
|
|
{ 9,2,0xFF,0x20,80,1440,FDC_300KBPS,2,0x50,1,0,FL_MFM }, /* 720K */
|
|
};
|
|
|
|
static struct fd_type fd_searchlist_144m[] = {
|
|
{ 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* 1.44M */
|
|
{ 9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* 720K */
|
|
};
|
|
|
|
/* We search for 1.44M first since this is the most common case. */
|
|
static struct fd_type fd_searchlist_288m[] = {
|
|
{ 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* 1.44M */
|
|
#if 0
|
|
{ 36,2,0xFF,0x1B,80,5760,FDC_1MBPS, 2,0x4C,1,1,FL_MFM|FL_PERPND } /* 2.88M */
|
|
#endif
|
|
{ 9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* 720K */
|
|
};
|
|
|
|
#define MAX_SEC_SIZE (128 << 3)
|
|
#define MAX_CYLINDER 85 /* some people really stress their drives
|
|
* up to cyl 82 */
|
|
#define MAX_HEAD 1
|
|
|
|
static devclass_t fdc_devclass;
|
|
|
|
/*
|
|
* Per drive structure (softc).
|
|
*/
|
|
struct fd_data {
|
|
struct fdc_data *fdc; /* pointer to controller structure */
|
|
int fdsu; /* this units number on this controller */
|
|
enum fd_drivetype type; /* drive type */
|
|
struct fd_type *ft; /* pointer to current type descriptor */
|
|
struct fd_type fts[NUMDENS]; /* type descriptors */
|
|
int flags;
|
|
#define FD_OPEN 0x01 /* it's open */
|
|
#define FD_NONBLOCK 0x02 /* O_NONBLOCK set */
|
|
#define FD_ACTIVE 0x04 /* it's active */
|
|
#define FD_MOTOR 0x08 /* motor should be on */
|
|
#define FD_MOTOR_WAIT 0x10 /* motor coming up */
|
|
#define FD_UA 0x20 /* force unit attention */
|
|
int skip;
|
|
int hddrv;
|
|
#define FD_NO_TRACK -2
|
|
int track; /* where we think the head is */
|
|
int options; /* user configurable options, see fdcio.h */
|
|
struct callout_handle toffhandle;
|
|
struct callout_handle tohandle;
|
|
struct devstat *device_stats;
|
|
dev_t masterdev;
|
|
device_t dev;
|
|
fdu_t fdu;
|
|
};
|
|
|
|
struct fdc_ivars {
|
|
int fdunit;
|
|
};
|
|
static devclass_t fd_devclass;
|
|
|
|
/* configuration flags for fd */
|
|
#define FD_TYPEMASK 0x0f /* drive type, matches enum
|
|
* fd_drivetype; on i386 machines, if
|
|
* given as 0, use RTC type for fd0
|
|
* and fd1 */
|
|
#define FD_DTYPE(flags) ((flags) & FD_TYPEMASK)
|
|
#define FD_NO_CHLINE 0x10 /* drive does not support changeline
|
|
* aka. unit attention */
|
|
#define FD_NO_PROBE 0x20 /* don't probe drive (seek test), just
|
|
* assume it is there */
|
|
|
|
/*
|
|
* Throughout this file the following conventions will be used:
|
|
*
|
|
* fd is a pointer to the fd_data struct for the drive in question
|
|
* fdc is a pointer to the fdc_data struct for the controller
|
|
* fdu is the floppy drive unit number
|
|
* fdcu is the floppy controller unit number
|
|
* fdsu is the floppy drive unit number on that controller. (sub-unit)
|
|
*/
|
|
|
|
/*
|
|
* Function declarations, same (chaotic) order as they appear in the
|
|
* file. Re-ordering is too late now, it would only obfuscate the
|
|
* diffs against old and offspring versions (like the PC98 one).
|
|
*
|
|
* Anyone adding functions here, please keep this sequence the same
|
|
* as below -- makes locating a particular function in the body much
|
|
* easier.
|
|
*/
|
|
static void fdout_wr(fdc_p, u_int8_t);
|
|
static u_int8_t fdsts_rd(fdc_p);
|
|
static void fddata_wr(fdc_p, u_int8_t);
|
|
static u_int8_t fddata_rd(fdc_p);
|
|
static void fdctl_wr_isa(fdc_p, u_int8_t);
|
|
#if NCARD > 0
|
|
static void fdctl_wr_pcmcia(fdc_p, u_int8_t);
|
|
#endif
|
|
#if 0
|
|
static u_int8_t fdin_rd(fdc_p);
|
|
#endif
|
|
static int fdc_err(struct fdc_data *, const char *);
|
|
static int fd_cmd(struct fdc_data *, int, ...);
|
|
static int enable_fifo(fdc_p fdc);
|
|
static int fd_sense_drive_status(fdc_p, int *);
|
|
static int fd_sense_int(fdc_p, int *, int *);
|
|
static int fd_read_status(fdc_p);
|
|
static int fdc_alloc_resources(struct fdc_data *);
|
|
static void fdc_release_resources(struct fdc_data *);
|
|
static int fdc_read_ivar(device_t, device_t, int, uintptr_t *);
|
|
static int fdc_probe(device_t);
|
|
#if NCARD > 0
|
|
static int fdc_pccard_probe(device_t);
|
|
#endif
|
|
static int fdc_detach(device_t dev);
|
|
static void fdc_add_child(device_t, const char *, int);
|
|
static int fdc_attach(device_t);
|
|
static int fdc_print_child(device_t, device_t);
|
|
static int fd_probe(device_t);
|
|
static int fd_attach(device_t);
|
|
static int fd_detach(device_t);
|
|
static void set_motor(struct fdc_data *, int, int);
|
|
# define TURNON 1
|
|
# define TURNOFF 0
|
|
static timeout_t fd_turnoff;
|
|
static timeout_t fd_motor_on;
|
|
static void fd_turnon(struct fd_data *);
|
|
static void fdc_reset(fdc_p);
|
|
static int fd_in(struct fdc_data *, int *);
|
|
static int out_fdc(struct fdc_data *, int);
|
|
/*
|
|
* The open function is named fdopen() to avoid confusion with fdopen()
|
|
* in fd(4). The difference is now only meaningful for debuggers.
|
|
*/
|
|
static d_open_t fdopen;
|
|
static d_close_t fdclose;
|
|
static d_strategy_t fdstrategy;
|
|
static void fdstart(struct fdc_data *);
|
|
static timeout_t fd_iotimeout;
|
|
static timeout_t fd_pseudointr;
|
|
static driver_intr_t fdc_intr;
|
|
static int fdcpio(fdc_p, long, caddr_t, u_int);
|
|
static int fdautoselect(dev_t);
|
|
static int fdstate(struct fdc_data *);
|
|
static int retrier(struct fdc_data *);
|
|
static void fdbiodone(struct bio *);
|
|
static int fdmisccmd(dev_t, u_int, void *);
|
|
static d_ioctl_t fdioctl;
|
|
|
|
static int fifo_threshold = 8; /* XXX: should be accessible via sysctl */
|
|
|
|
#ifdef FDC_DEBUG
|
|
/* CAUTION: fd_debug causes huge amounts of logging output */
|
|
static int volatile fd_debug = 0;
|
|
#define TRACE0(arg) do { if (fd_debug) printf(arg); } while (0)
|
|
#define TRACE1(arg1, arg2) do { if (fd_debug) printf(arg1, arg2); } while (0)
|
|
#else /* FDC_DEBUG */
|
|
#define TRACE0(arg) do { } while (0)
|
|
#define TRACE1(arg1, arg2) do { } while (0)
|
|
#endif /* FDC_DEBUG */
|
|
|
|
/*
|
|
* Bus space handling (access to low-level IO).
|
|
*/
|
|
static void
|
|
fdout_wr(fdc_p fdc, u_int8_t v)
|
|
{
|
|
bus_space_write_1(fdc->portt, fdc->porth, FDOUT+fdc->port_off, v);
|
|
}
|
|
|
|
static u_int8_t
|
|
fdsts_rd(fdc_p fdc)
|
|
{
|
|
return bus_space_read_1(fdc->portt, fdc->porth, FDSTS+fdc->port_off);
|
|
}
|
|
|
|
static void
|
|
fddata_wr(fdc_p fdc, u_int8_t v)
|
|
{
|
|
bus_space_write_1(fdc->portt, fdc->porth, FDDATA+fdc->port_off, v);
|
|
}
|
|
|
|
static u_int8_t
|
|
fddata_rd(fdc_p fdc)
|
|
{
|
|
return bus_space_read_1(fdc->portt, fdc->porth, FDDATA+fdc->port_off);
|
|
}
|
|
|
|
static void
|
|
fdctl_wr_isa(fdc_p fdc, u_int8_t v)
|
|
{
|
|
bus_space_write_1(fdc->ctlt, fdc->ctlh, 0, v);
|
|
}
|
|
|
|
#if NCARD > 0
|
|
static void
|
|
fdctl_wr_pcmcia(fdc_p fdc, u_int8_t v)
|
|
{
|
|
bus_space_write_1(fdc->portt, fdc->porth, FDCTL+fdc->port_off, v);
|
|
}
|
|
#endif
|
|
|
|
static u_int8_t
|
|
fdin_rd(fdc_p fdc)
|
|
{
|
|
return bus_space_read_1(fdc->portt, fdc->porth, FDIN);
|
|
}
|
|
|
|
static struct cdevsw fd_cdevsw = {
|
|
.d_version = D_VERSION,
|
|
.d_open = fdopen,
|
|
.d_close = fdclose,
|
|
.d_read = physread,
|
|
.d_write = physwrite,
|
|
.d_ioctl = fdioctl,
|
|
.d_strategy = fdstrategy,
|
|
.d_name = "fd",
|
|
.d_flags = D_DISK | D_NEEDGIANT,
|
|
};
|
|
|
|
/*
|
|
* Auxiliary functions. Well, some only. Others are scattered
|
|
* throughout the entire file.
|
|
*/
|
|
static int
|
|
fdc_err(struct fdc_data *fdc, const char *s)
|
|
{
|
|
fdc->fdc_errs++;
|
|
if (s) {
|
|
if (fdc->fdc_errs < FDC_ERRMAX)
|
|
device_printf(fdc->fdc_dev, "%s", s);
|
|
else if (fdc->fdc_errs == FDC_ERRMAX)
|
|
device_printf(fdc->fdc_dev, "too many errors, not "
|
|
"logging any more\n");
|
|
}
|
|
|
|
return FD_FAILED;
|
|
}
|
|
|
|
/*
|
|
* fd_cmd: Send a command to the chip. Takes a varargs with this structure:
|
|
* Unit number,
|
|
* # of output bytes, output bytes as ints ...,
|
|
* # of input bytes, input bytes as ints ...
|
|
*/
|
|
static int
|
|
fd_cmd(struct fdc_data *fdc, int n_out, ...)
|
|
{
|
|
u_char cmd;
|
|
int n_in;
|
|
int n;
|
|
va_list ap;
|
|
|
|
va_start(ap, n_out);
|
|
cmd = (u_char)(va_arg(ap, int));
|
|
va_end(ap);
|
|
va_start(ap, n_out);
|
|
for (n = 0; n < n_out; n++)
|
|
{
|
|
if (out_fdc(fdc, va_arg(ap, int)) < 0)
|
|
{
|
|
char msg[50];
|
|
snprintf(msg, sizeof(msg),
|
|
"cmd %x failed at out byte %d of %d\n",
|
|
cmd, n + 1, n_out);
|
|
return fdc_err(fdc, msg);
|
|
}
|
|
}
|
|
n_in = va_arg(ap, int);
|
|
for (n = 0; n < n_in; n++)
|
|
{
|
|
int *ptr = va_arg(ap, int *);
|
|
if (fd_in(fdc, ptr) < 0)
|
|
{
|
|
char msg[50];
|
|
snprintf(msg, sizeof(msg),
|
|
"cmd %02x failed at in byte %d of %d\n",
|
|
cmd, n + 1, n_in);
|
|
return fdc_err(fdc, msg);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
enable_fifo(fdc_p fdc)
|
|
{
|
|
int i, j;
|
|
|
|
if ((fdc->flags & FDC_HAS_FIFO) == 0) {
|
|
|
|
/*
|
|
* Cannot use fd_cmd the normal way here, since
|
|
* this might be an invalid command. Thus we send the
|
|
* first byte, and check for an early turn of data directon.
|
|
*/
|
|
|
|
if (out_fdc(fdc, I8207X_CONFIGURE) < 0)
|
|
return fdc_err(fdc, "Enable FIFO failed\n");
|
|
|
|
/* If command is invalid, return */
|
|
j = FDSTS_TIMEOUT;
|
|
while ((i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM))
|
|
!= NE7_RQM && j-- > 0) {
|
|
if (i == (NE7_DIO | NE7_RQM)) {
|
|
fdc_reset(fdc);
|
|
return FD_FAILED;
|
|
}
|
|
DELAY(1);
|
|
}
|
|
if (j<0 ||
|
|
fd_cmd(fdc, 3,
|
|
0, (fifo_threshold - 1) & 0xf, 0, 0) < 0) {
|
|
fdc_reset(fdc);
|
|
return fdc_err(fdc, "Enable FIFO failed\n");
|
|
}
|
|
fdc->flags |= FDC_HAS_FIFO;
|
|
return 0;
|
|
}
|
|
if (fd_cmd(fdc, 4,
|
|
I8207X_CONFIGURE, 0, (fifo_threshold - 1) & 0xf, 0, 0) < 0)
|
|
return fdc_err(fdc, "Re-enable FIFO failed\n");
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fd_sense_drive_status(fdc_p fdc, int *st3p)
|
|
{
|
|
int st3;
|
|
|
|
if (fd_cmd(fdc, 2, NE7CMD_SENSED, fdc->fdu, 1, &st3))
|
|
{
|
|
return fdc_err(fdc, "Sense Drive Status failed\n");
|
|
}
|
|
if (st3p)
|
|
*st3p = st3;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fd_sense_int(fdc_p fdc, int *st0p, int *cylp)
|
|
{
|
|
int cyl, st0, ret;
|
|
|
|
ret = fd_cmd(fdc, 1, NE7CMD_SENSEI, 1, &st0);
|
|
if (ret) {
|
|
(void)fdc_err(fdc,
|
|
"sense intr err reading stat reg 0\n");
|
|
return ret;
|
|
}
|
|
|
|
if (st0p)
|
|
*st0p = st0;
|
|
|
|
if ((st0 & NE7_ST0_IC) == NE7_ST0_IC_IV) {
|
|
/*
|
|
* There doesn't seem to have been an interrupt.
|
|
*/
|
|
return FD_NOT_VALID;
|
|
}
|
|
|
|
if (fd_in(fdc, &cyl) < 0) {
|
|
return fdc_err(fdc, "can't get cyl num\n");
|
|
}
|
|
|
|
if (cylp)
|
|
*cylp = cyl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
fd_read_status(fdc_p fdc)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = ret = 0; i < 7; i++) {
|
|
/*
|
|
* XXX types are poorly chosen. Only bytes can be read
|
|
* from the hardware, but fdc->status[] wants u_ints and
|
|
* fd_in() gives ints.
|
|
*/
|
|
int status;
|
|
|
|
ret = fd_in(fdc, &status);
|
|
fdc->status[i] = status;
|
|
if (ret != 0)
|
|
break;
|
|
}
|
|
|
|
if (ret == 0)
|
|
fdc->flags |= FDC_STAT_VALID;
|
|
else
|
|
fdc->flags &= ~FDC_STAT_VALID;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
fdc_alloc_resources(struct fdc_data *fdc)
|
|
{
|
|
device_t dev;
|
|
int ispnp, ispcmcia, nports;
|
|
|
|
dev = fdc->fdc_dev;
|
|
ispnp = (fdc->flags & FDC_ISPNP) != 0;
|
|
ispcmcia = (fdc->flags & FDC_ISPCMCIA) != 0;
|
|
fdc->rid_ioport = fdc->rid_irq = fdc->rid_drq = 0;
|
|
fdc->res_ioport = fdc->res_irq = fdc->res_drq = 0;
|
|
fdc->rid_ctl = 1;
|
|
|
|
/*
|
|
* On standard ISA, we don't just use an 8 port range
|
|
* (e.g. 0x3f0-0x3f7) since that covers an IDE control
|
|
* register at 0x3f6.
|
|
*
|
|
* Isn't PC hardware wonderful.
|
|
*
|
|
* The Y-E Data PCMCIA FDC doesn't have this problem, it
|
|
* uses the register with offset 6 for pseudo-DMA, and the
|
|
* one with offset 7 as control register.
|
|
*/
|
|
nports = ispcmcia ? 8 : (ispnp ? 1 : 6);
|
|
|
|
/*
|
|
* Some ACPI BIOSen have _CRS objects for the floppy device that
|
|
* split the I/O port resource into several resources. We detect
|
|
* this case by checking if there are more than 2 IOPORT resources.
|
|
* If so, we use the resource with the smallest start address as
|
|
* the port RID and the largest start address as the control RID.
|
|
*/
|
|
if (bus_get_resource_count(dev, SYS_RES_IOPORT, 2) != 0) {
|
|
u_long min_start, max_start, tmp;
|
|
int i;
|
|
|
|
/* Find the min/max start addresses and their RIDs. */
|
|
max_start = 0ul;
|
|
min_start = ~0ul;
|
|
for (i = 0; bus_get_resource_count(dev, SYS_RES_IOPORT, i) > 0;
|
|
i++) {
|
|
tmp = bus_get_resource_start(dev, SYS_RES_IOPORT, i);
|
|
KASSERT(tmp != 0, ("bogus resource"));
|
|
if (tmp < min_start) {
|
|
min_start = tmp;
|
|
fdc->rid_ioport = i;
|
|
}
|
|
if (tmp > max_start) {
|
|
max_start = tmp;
|
|
fdc->rid_ctl = i;
|
|
}
|
|
}
|
|
if (min_start + 7 != max_start) {
|
|
device_printf(dev, "I/O to control range incorrect\n");
|
|
return (ENXIO);
|
|
}
|
|
}
|
|
|
|
fdc->res_ioport = bus_alloc_resource(dev, SYS_RES_IOPORT,
|
|
&fdc->rid_ioport, 0ul, ~0ul,
|
|
nports, RF_ACTIVE);
|
|
if (fdc->res_ioport == 0) {
|
|
device_printf(dev, "cannot reserve I/O port range (%d ports)\n",
|
|
nports);
|
|
return ENXIO;
|
|
}
|
|
fdc->portt = rman_get_bustag(fdc->res_ioport);
|
|
fdc->porth = rman_get_bushandle(fdc->res_ioport);
|
|
|
|
if (!ispcmcia) {
|
|
/*
|
|
* Some BIOSen report the device at 0x3f2-0x3f5,0x3f7
|
|
* and some at 0x3f0-0x3f5,0x3f7. We detect the former
|
|
* by checking the size and adjust the port address
|
|
* accordingly.
|
|
*/
|
|
if (bus_get_resource_count(dev, SYS_RES_IOPORT, 0) == 4)
|
|
fdc->port_off = -2;
|
|
|
|
/*
|
|
* Register the control port range as rid 1 if it
|
|
* isn't there already. Most PnP BIOSen will have
|
|
* already done this but non-PnP configurations don't.
|
|
*
|
|
* And some (!!) report 0x3f2-0x3f5 and completely
|
|
* leave out the control register! It seems that some
|
|
* non-antique controller chips have a different
|
|
* method of programming the transfer speed which
|
|
* doesn't require the control register, but it's
|
|
* mighty bogus as the chip still responds to the
|
|
* address for the control register.
|
|
*/
|
|
if (bus_get_resource_count(dev, SYS_RES_IOPORT, 1) == 0) {
|
|
u_long ctlstart;
|
|
|
|
/* Find the control port, usually 0x3f7 */
|
|
ctlstart = rman_get_start(fdc->res_ioport) +
|
|
fdc->port_off + 7;
|
|
|
|
bus_set_resource(dev, SYS_RES_IOPORT, 1, ctlstart, 1);
|
|
}
|
|
|
|
/*
|
|
* Now (finally!) allocate the control port.
|
|
*/
|
|
fdc->res_ctl = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
|
|
&fdc->rid_ctl, RF_ACTIVE);
|
|
if (fdc->res_ctl == 0) {
|
|
device_printf(dev,
|
|
"cannot reserve control I/O port range (control port)\n");
|
|
return ENXIO;
|
|
}
|
|
fdc->ctlt = rman_get_bustag(fdc->res_ctl);
|
|
fdc->ctlh = rman_get_bushandle(fdc->res_ctl);
|
|
}
|
|
|
|
fdc->res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
|
|
&fdc->rid_irq, RF_ACTIVE);
|
|
if (fdc->res_irq == 0) {
|
|
device_printf(dev, "cannot reserve interrupt line\n");
|
|
return ENXIO;
|
|
}
|
|
|
|
if ((fdc->flags & FDC_NODMA) == 0) {
|
|
fdc->res_drq = bus_alloc_resource_any(dev, SYS_RES_DRQ,
|
|
&fdc->rid_drq,
|
|
RF_ACTIVE);
|
|
if (fdc->res_drq == 0) {
|
|
device_printf(dev, "cannot reserve DMA request line\n");
|
|
return ENXIO;
|
|
}
|
|
fdc->dmachan = fdc->res_drq->r_start;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
fdc_release_resources(struct fdc_data *fdc)
|
|
{
|
|
device_t dev;
|
|
|
|
dev = fdc->fdc_dev;
|
|
if (fdc->res_irq != 0) {
|
|
bus_deactivate_resource(dev, SYS_RES_IRQ, fdc->rid_irq,
|
|
fdc->res_irq);
|
|
bus_release_resource(dev, SYS_RES_IRQ, fdc->rid_irq,
|
|
fdc->res_irq);
|
|
}
|
|
if (fdc->res_ctl != 0) {
|
|
bus_deactivate_resource(dev, SYS_RES_IOPORT, fdc->rid_ctl,
|
|
fdc->res_ctl);
|
|
bus_release_resource(dev, SYS_RES_IOPORT, fdc->rid_ctl,
|
|
fdc->res_ctl);
|
|
}
|
|
if (fdc->res_ioport != 0) {
|
|
bus_deactivate_resource(dev, SYS_RES_IOPORT, fdc->rid_ioport,
|
|
fdc->res_ioport);
|
|
bus_release_resource(dev, SYS_RES_IOPORT, fdc->rid_ioport,
|
|
fdc->res_ioport);
|
|
}
|
|
if (fdc->res_drq != 0) {
|
|
bus_deactivate_resource(dev, SYS_RES_DRQ, fdc->rid_drq,
|
|
fdc->res_drq);
|
|
bus_release_resource(dev, SYS_RES_DRQ, fdc->rid_drq,
|
|
fdc->res_drq);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Configuration/initialization stuff, per controller.
|
|
*/
|
|
|
|
static struct isa_pnp_id fdc_ids[] = {
|
|
{0x0007d041, "PC standard floppy disk controller"}, /* PNP0700 */
|
|
{0x0107d041, "Standard floppy controller supporting MS Device Bay Spec"}, /* PNP0701 */
|
|
{0}
|
|
};
|
|
|
|
static int
|
|
fdc_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
|
|
{
|
|
struct fdc_ivars *ivars = device_get_ivars(child);
|
|
|
|
switch (which) {
|
|
case FDC_IVAR_FDUNIT:
|
|
*result = ivars->fdunit;
|
|
break;
|
|
default:
|
|
return ENOENT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fdc_probe(device_t dev)
|
|
{
|
|
int error, ic_type;
|
|
struct fdc_data *fdc;
|
|
|
|
fdc = device_get_softc(dev);
|
|
bzero(fdc, sizeof *fdc);
|
|
fdc->fdc_dev = dev;
|
|
fdc->fdctl_wr = fdctl_wr_isa;
|
|
|
|
/* Check pnp ids */
|
|
error = ISA_PNP_PROBE(device_get_parent(dev), dev, fdc_ids);
|
|
if (error == ENXIO)
|
|
return ENXIO;
|
|
if (error == 0)
|
|
fdc->flags |= FDC_ISPNP;
|
|
|
|
/* Attempt to allocate our resources for the duration of the probe */
|
|
error = fdc_alloc_resources(fdc);
|
|
if (error)
|
|
goto out;
|
|
|
|
/* First - lets reset the floppy controller */
|
|
fdout_wr(fdc, 0);
|
|
DELAY(100);
|
|
fdout_wr(fdc, FDO_FRST);
|
|
|
|
/* see if it can handle a command */
|
|
if (fd_cmd(fdc, 3, NE7CMD_SPECIFY, NE7_SPEC_1(3, 240),
|
|
NE7_SPEC_2(2, 0), 0)) {
|
|
error = ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
if (fd_cmd(fdc, 1, NE7CMD_VERSION, 1, &ic_type) == 0) {
|
|
ic_type = (u_char)ic_type;
|
|
switch (ic_type) {
|
|
case 0x80:
|
|
device_set_desc(dev, "NEC 765 or clone");
|
|
fdc->fdct = FDC_NE765;
|
|
break;
|
|
case 0x81: /* not mentioned in any hardware doc */
|
|
case 0x90:
|
|
device_set_desc(dev,
|
|
"Enhanced floppy controller (i82077, NE72065 or clone)");
|
|
fdc->fdct = FDC_ENHANCED;
|
|
break;
|
|
default:
|
|
device_set_desc(dev, "Generic floppy controller");
|
|
fdc->fdct = FDC_UNKNOWN;
|
|
break;
|
|
}
|
|
}
|
|
|
|
out:
|
|
fdc_release_resources(fdc);
|
|
return (error);
|
|
}
|
|
|
|
#if NCARD > 0
|
|
|
|
static int
|
|
fdc_pccard_probe(device_t dev)
|
|
{
|
|
int error;
|
|
struct fdc_data *fdc;
|
|
|
|
fdc = device_get_softc(dev);
|
|
bzero(fdc, sizeof *fdc);
|
|
fdc->fdc_dev = dev;
|
|
fdc->fdctl_wr = fdctl_wr_pcmcia;
|
|
|
|
fdc->flags |= FDC_ISPCMCIA | FDC_NODMA;
|
|
|
|
/* Attempt to allocate our resources for the duration of the probe */
|
|
error = fdc_alloc_resources(fdc);
|
|
if (error)
|
|
goto out;
|
|
|
|
/* First - lets reset the floppy controller */
|
|
fdout_wr(fdc, 0);
|
|
DELAY(100);
|
|
fdout_wr(fdc, FDO_FRST);
|
|
|
|
/* see if it can handle a command */
|
|
if (fd_cmd(fdc, 3, NE7CMD_SPECIFY, NE7_SPEC_1(3, 240),
|
|
NE7_SPEC_2(2, 0), 0)) {
|
|
error = ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
device_set_desc(dev, "Y-E Data PCMCIA floppy");
|
|
fdc->fdct = FDC_NE765;
|
|
|
|
out:
|
|
fdc_release_resources(fdc);
|
|
return (error);
|
|
}
|
|
|
|
#endif /* NCARD > 0 */
|
|
|
|
static int
|
|
fdc_detach(device_t dev)
|
|
{
|
|
struct fdc_data *fdc;
|
|
int error;
|
|
|
|
fdc = device_get_softc(dev);
|
|
|
|
/* have our children detached first */
|
|
if ((error = bus_generic_detach(dev)))
|
|
return (error);
|
|
|
|
/* reset controller, turn motor off */
|
|
fdout_wr(fdc, 0);
|
|
|
|
if ((fdc->flags & FDC_NODMA) == 0)
|
|
isa_dma_release(fdc->dmachan);
|
|
|
|
if ((fdc->flags & FDC_ATTACHED) == 0) {
|
|
device_printf(dev, "already unloaded\n");
|
|
return (0);
|
|
}
|
|
fdc->flags &= ~FDC_ATTACHED;
|
|
|
|
BUS_TEARDOWN_INTR(device_get_parent(dev), dev, fdc->res_irq,
|
|
fdc->fdc_intr);
|
|
fdc_release_resources(fdc);
|
|
device_printf(dev, "unload\n");
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Add a child device to the fdc controller. It will then be probed etc.
|
|
*/
|
|
static void
|
|
fdc_add_child(device_t dev, const char *name, int unit)
|
|
{
|
|
int flags;
|
|
struct fdc_ivars *ivar;
|
|
device_t child;
|
|
|
|
ivar = malloc(sizeof *ivar, M_DEVBUF /* XXX */, M_NOWAIT | M_ZERO);
|
|
if (ivar == NULL)
|
|
return;
|
|
if (resource_int_value(name, unit, "drive", &ivar->fdunit) != 0)
|
|
ivar->fdunit = 0;
|
|
child = device_add_child(dev, name, unit);
|
|
if (child == NULL) {
|
|
free(ivar, M_DEVBUF);
|
|
return;
|
|
}
|
|
device_set_ivars(child, ivar);
|
|
if (resource_int_value(name, unit, "flags", &flags) == 0)
|
|
device_set_flags(child, flags);
|
|
if (resource_disabled(name, unit))
|
|
device_disable(child);
|
|
}
|
|
|
|
static int
|
|
fdc_attach(device_t dev)
|
|
{
|
|
struct fdc_data *fdc;
|
|
const char *name, *dname;
|
|
int i, error, dunit;
|
|
|
|
fdc = device_get_softc(dev);
|
|
error = fdc_alloc_resources(fdc);
|
|
if (error) {
|
|
device_printf(dev, "cannot re-acquire resources\n");
|
|
return error;
|
|
}
|
|
error = BUS_SETUP_INTR(device_get_parent(dev), dev, fdc->res_irq,
|
|
INTR_TYPE_BIO | INTR_ENTROPY, fdc_intr, fdc,
|
|
&fdc->fdc_intr);
|
|
if (error) {
|
|
device_printf(dev, "cannot setup interrupt\n");
|
|
return error;
|
|
}
|
|
fdc->fdcu = device_get_unit(dev);
|
|
fdc->flags |= FDC_ATTACHED | FDC_NEEDS_RESET;
|
|
|
|
if ((fdc->flags & FDC_NODMA) == 0) {
|
|
/*
|
|
* Acquire the DMA channel forever, the driver will do
|
|
* the rest
|
|
* XXX should integrate with rman
|
|
*/
|
|
isa_dma_acquire(fdc->dmachan);
|
|
isa_dmainit(fdc->dmachan, MAX_SEC_SIZE);
|
|
}
|
|
fdc->state = DEVIDLE;
|
|
|
|
/* reset controller, turn motor off, clear fdout mirror reg */
|
|
fdout_wr(fdc, fdc->fdout = 0);
|
|
bioq_init(&fdc->head);
|
|
|
|
/*
|
|
* Probe and attach any children. We should probably detect
|
|
* devices from the BIOS unless overridden.
|
|
*/
|
|
name = device_get_nameunit(dev);
|
|
i = 0;
|
|
while ((resource_find_match(&i, &dname, &dunit, "at", name)) == 0)
|
|
fdc_add_child(dev, dname, dunit);
|
|
|
|
if ((error = bus_generic_attach(dev)) != 0)
|
|
return (error);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
fdc_print_child(device_t me, device_t child)
|
|
{
|
|
int retval = 0, flags;
|
|
|
|
retval += bus_print_child_header(me, child);
|
|
retval += printf(" on %s drive %d", device_get_nameunit(me),
|
|
fdc_get_fdunit(child));
|
|
if ((flags = device_get_flags(me)) != 0)
|
|
retval += printf(" flags %#x", flags);
|
|
retval += printf("\n");
|
|
|
|
return (retval);
|
|
}
|
|
|
|
static device_method_t fdc_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, fdc_probe),
|
|
DEVMETHOD(device_attach, fdc_attach),
|
|
DEVMETHOD(device_detach, fdc_detach),
|
|
DEVMETHOD(device_shutdown, bus_generic_shutdown),
|
|
DEVMETHOD(device_suspend, bus_generic_suspend),
|
|
DEVMETHOD(device_resume, bus_generic_resume),
|
|
|
|
/* Bus interface */
|
|
DEVMETHOD(bus_print_child, fdc_print_child),
|
|
DEVMETHOD(bus_read_ivar, fdc_read_ivar),
|
|
/* Our children never use any other bus interface methods. */
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t fdc_driver = {
|
|
"fdc",
|
|
fdc_methods,
|
|
sizeof(struct fdc_data)
|
|
};
|
|
|
|
DRIVER_MODULE(fdc, isa, fdc_driver, fdc_devclass, 0, 0);
|
|
DRIVER_MODULE(fdc, acpi, fdc_driver, fdc_devclass, 0, 0);
|
|
|
|
#if NCARD > 0
|
|
|
|
static device_method_t fdc_pccard_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, fdc_pccard_probe),
|
|
DEVMETHOD(device_attach, fdc_attach),
|
|
DEVMETHOD(device_detach, fdc_detach),
|
|
DEVMETHOD(device_shutdown, bus_generic_shutdown),
|
|
DEVMETHOD(device_suspend, bus_generic_suspend),
|
|
DEVMETHOD(device_resume, bus_generic_resume),
|
|
|
|
/* Bus interface */
|
|
DEVMETHOD(bus_print_child, fdc_print_child),
|
|
DEVMETHOD(bus_read_ivar, fdc_read_ivar),
|
|
/* Our children never use any other bus interface methods. */
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t fdc_pccard_driver = {
|
|
"fdc",
|
|
fdc_pccard_methods,
|
|
sizeof(struct fdc_data)
|
|
};
|
|
|
|
DRIVER_MODULE(fdc, pccard, fdc_pccard_driver, fdc_devclass, 0, 0);
|
|
|
|
#endif /* NCARD > 0 */
|
|
|
|
|
|
/*
|
|
* Configuration/initialization, per drive.
|
|
*/
|
|
static int
|
|
fd_probe(device_t dev)
|
|
{
|
|
int i;
|
|
u_int st0, st3;
|
|
struct fd_data *fd;
|
|
struct fdc_data *fdc;
|
|
fdsu_t fdsu;
|
|
int flags;
|
|
|
|
fdsu = *(int *)device_get_ivars(dev); /* xxx cheat a bit... */
|
|
fd = device_get_softc(dev);
|
|
fdc = device_get_softc(device_get_parent(dev));
|
|
flags = device_get_flags(dev);
|
|
|
|
bzero(fd, sizeof *fd);
|
|
fd->dev = dev;
|
|
fd->fdc = fdc;
|
|
fd->fdsu = fdsu;
|
|
fd->fdu = device_get_unit(dev);
|
|
fd->flags = FD_UA; /* make sure fdautoselect() will be called */
|
|
|
|
fd->type = FD_DTYPE(flags);
|
|
/*
|
|
* XXX I think using __i386__ is wrong here since we actually want to probe
|
|
* for the machine type, not the CPU type (so non-PC arch's like the PC98 will
|
|
* fail the probe). However, for whatever reason, testing for _MACHINE_ARCH
|
|
* == i386 breaks the test on FreeBSD/Alpha.
|
|
*/
|
|
#if defined(__i386__) || defined(__amd64__)
|
|
if (fd->type == FDT_NONE && (fd->fdu == 0 || fd->fdu == 1)) {
|
|
/* Look up what the BIOS thinks we have. */
|
|
if (fd->fdu == 0) {
|
|
if ((fdc->flags & FDC_ISPCMCIA))
|
|
/*
|
|
* Somewhat special. No need to force the
|
|
* user to set device flags, since the Y-E
|
|
* Data PCMCIA floppy is always a 1.44 MB
|
|
* device.
|
|
*/
|
|
fd->type = FDT_144M;
|
|
else
|
|
fd->type = (rtcin(RTC_FDISKETTE) & 0xf0) >> 4;
|
|
} else {
|
|
fd->type = rtcin(RTC_FDISKETTE) & 0x0f;
|
|
}
|
|
if (fd->type == FDT_288M_1)
|
|
fd->type = FDT_288M;
|
|
}
|
|
#endif /* __i386__ || __amd64__ */
|
|
/* is there a unit? */
|
|
if (fd->type == FDT_NONE)
|
|
return (ENXIO);
|
|
|
|
/* select it */
|
|
set_motor(fdc, fdsu, TURNON);
|
|
fdc_reset(fdc); /* XXX reset, then unreset, etc. */
|
|
DELAY(1000000); /* 1 sec */
|
|
|
|
/* XXX This doesn't work before the first set_motor() */
|
|
if ((fdc->flags & FDC_HAS_FIFO) == 0 &&
|
|
fdc->fdct == FDC_ENHANCED &&
|
|
(device_get_flags(fdc->fdc_dev) & FDC_NO_FIFO) == 0 &&
|
|
enable_fifo(fdc) == 0) {
|
|
device_printf(device_get_parent(dev),
|
|
"FIFO enabled, %d bytes threshold\n", fifo_threshold);
|
|
}
|
|
|
|
if ((flags & FD_NO_PROBE) == 0) {
|
|
/* If we're at track 0 first seek inwards. */
|
|
if ((fd_sense_drive_status(fdc, &st3) == 0) &&
|
|
(st3 & NE7_ST3_T0)) {
|
|
/* Seek some steps... */
|
|
if (fd_cmd(fdc, 3, NE7CMD_SEEK, fdsu, 10, 0) == 0) {
|
|
/* ...wait a moment... */
|
|
DELAY(300000);
|
|
/* make ctrlr happy: */
|
|
fd_sense_int(fdc, 0, 0);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
/*
|
|
* we must recalibrate twice, just in case the
|
|
* heads have been beyond cylinder 76, since
|
|
* most FDCs still barf when attempting to
|
|
* recalibrate more than 77 steps
|
|
*/
|
|
/* go back to 0: */
|
|
if (fd_cmd(fdc, 2, NE7CMD_RECAL, fdsu, 0) == 0) {
|
|
/* a second being enough for full stroke seek*/
|
|
DELAY(i == 0 ? 1000000 : 300000);
|
|
|
|
/* anything responding? */
|
|
if (fd_sense_int(fdc, &st0, 0) == 0 &&
|
|
(st0 & NE7_ST0_EC) == 0)
|
|
break; /* already probed succesfully */
|
|
}
|
|
}
|
|
}
|
|
|
|
set_motor(fdc, fdsu, TURNOFF);
|
|
|
|
if ((flags & FD_NO_PROBE) == 0 &&
|
|
(st0 & NE7_ST0_EC) != 0) /* no track 0 -> no drive present */
|
|
return (ENXIO);
|
|
|
|
switch (fd->type) {
|
|
case FDT_12M:
|
|
device_set_desc(dev, "1200-KB 5.25\" drive");
|
|
fd->type = FDT_12M;
|
|
break;
|
|
case FDT_144M:
|
|
device_set_desc(dev, "1440-KB 3.5\" drive");
|
|
fd->type = FDT_144M;
|
|
break;
|
|
case FDT_288M:
|
|
device_set_desc(dev, "2880-KB 3.5\" drive (in 1440-KB mode)");
|
|
fd->type = FDT_288M;
|
|
break;
|
|
case FDT_360K:
|
|
device_set_desc(dev, "360-KB 5.25\" drive");
|
|
fd->type = FDT_360K;
|
|
break;
|
|
case FDT_720K:
|
|
device_set_desc(dev, "720-KB 3.5\" drive");
|
|
fd->type = FDT_720K;
|
|
break;
|
|
default:
|
|
return (ENXIO);
|
|
}
|
|
fd->track = FD_NO_TRACK;
|
|
fd->fdc = fdc;
|
|
fd->fdsu = fdsu;
|
|
fd->options = 0;
|
|
callout_handle_init(&fd->toffhandle);
|
|
callout_handle_init(&fd->tohandle);
|
|
|
|
/* initialize densities for subdevices */
|
|
for (i = 0; i < NUMDENS; i++)
|
|
memcpy(fd->fts + i, fd_native_types + fd->type,
|
|
sizeof(struct fd_type));
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
fd_attach(device_t dev)
|
|
{
|
|
struct fd_data *fd;
|
|
|
|
fd = device_get_softc(dev);
|
|
fd->masterdev = make_dev(&fd_cdevsw, fd->fdu,
|
|
UID_ROOT, GID_OPERATOR, 0640, "fd%d", fd->fdu);
|
|
fd->masterdev->si_drv1 = fd;
|
|
fd->device_stats = devstat_new_entry(device_get_name(dev),
|
|
device_get_unit(dev), 0, DEVSTAT_NO_ORDERED_TAGS,
|
|
DEVSTAT_TYPE_FLOPPY | DEVSTAT_TYPE_IF_OTHER,
|
|
DEVSTAT_PRIORITY_FD);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
fd_detach(device_t dev)
|
|
{
|
|
struct fd_data *fd;
|
|
|
|
fd = device_get_softc(dev);
|
|
untimeout(fd_turnoff, fd, fd->toffhandle);
|
|
devstat_remove_entry(fd->device_stats);
|
|
destroy_dev(fd->masterdev);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static device_method_t fd_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, fd_probe),
|
|
DEVMETHOD(device_attach, fd_attach),
|
|
DEVMETHOD(device_detach, fd_detach),
|
|
DEVMETHOD(device_shutdown, bus_generic_shutdown),
|
|
DEVMETHOD(device_suspend, bus_generic_suspend), /* XXX */
|
|
DEVMETHOD(device_resume, bus_generic_resume), /* XXX */
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t fd_driver = {
|
|
"fd",
|
|
fd_methods,
|
|
sizeof(struct fd_data)
|
|
};
|
|
|
|
DRIVER_MODULE(fd, fdc, fd_driver, fd_devclass, 0, 0);
|
|
|
|
/*
|
|
* More auxiliary functions.
|
|
*/
|
|
/*
|
|
* Motor control stuff.
|
|
* Remember to not deselect the drive we're working on.
|
|
*/
|
|
static void
|
|
set_motor(struct fdc_data *fdc, int fdsu, int turnon)
|
|
{
|
|
int fdout;
|
|
|
|
fdout = fdc->fdout;
|
|
if (turnon) {
|
|
fdout &= ~FDO_FDSEL;
|
|
fdout |= (FDO_MOEN0 << fdsu) | FDO_FDMAEN | FDO_FRST | fdsu;
|
|
} else
|
|
fdout &= ~(FDO_MOEN0 << fdsu);
|
|
fdc->fdout = fdout;
|
|
fdout_wr(fdc, fdout);
|
|
TRACE1("[0x%x->FDOUT]", fdout);
|
|
}
|
|
|
|
static void
|
|
fd_turnoff(void *xfd)
|
|
{
|
|
int s;
|
|
fd_p fd = xfd;
|
|
|
|
TRACE1("[fd%d: turnoff]", fd->fdu);
|
|
|
|
s = splbio();
|
|
/*
|
|
* Don't turn off the motor yet if the drive is active.
|
|
*
|
|
* If we got here, this could only mean we missed an interrupt.
|
|
* This can e. g. happen on the Y-E Date PCMCIA floppy controller
|
|
* after a controller reset. Just schedule a pseudo-interrupt
|
|
* so the state machine gets re-entered.
|
|
*/
|
|
if (fd->fdc->state != DEVIDLE && fd->fdc->fdu == fd->fdu) {
|
|
fdc_intr(fd->fdc);
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
fd->flags &= ~FD_MOTOR;
|
|
set_motor(fd->fdc, fd->fdsu, TURNOFF);
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
fd_motor_on(void *xfd)
|
|
{
|
|
int s;
|
|
fd_p fd = xfd;
|
|
|
|
s = splbio();
|
|
fd->flags &= ~FD_MOTOR_WAIT;
|
|
if((fd->fdc->fd == fd) && (fd->fdc->state == MOTORWAIT))
|
|
{
|
|
fdc_intr(fd->fdc);
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
fd_turnon(fd_p fd)
|
|
{
|
|
if(!(fd->flags & FD_MOTOR))
|
|
{
|
|
fd->flags |= (FD_MOTOR + FD_MOTOR_WAIT);
|
|
set_motor(fd->fdc, fd->fdsu, TURNON);
|
|
timeout(fd_motor_on, fd, hz); /* in 1 sec its ok */
|
|
}
|
|
}
|
|
|
|
static void
|
|
fdc_reset(fdc_p fdc)
|
|
{
|
|
/* Try a reset, keep motor on */
|
|
fdout_wr(fdc, fdc->fdout & ~(FDO_FRST|FDO_FDMAEN));
|
|
TRACE1("[0x%x->FDOUT]", fdc->fdout & ~(FDO_FRST|FDO_FDMAEN));
|
|
DELAY(100);
|
|
/* enable FDC, but defer interrupts a moment */
|
|
fdout_wr(fdc, fdc->fdout & ~FDO_FDMAEN);
|
|
TRACE1("[0x%x->FDOUT]", fdc->fdout & ~FDO_FDMAEN);
|
|
DELAY(100);
|
|
fdout_wr(fdc, fdc->fdout);
|
|
TRACE1("[0x%x->FDOUT]", fdc->fdout);
|
|
|
|
/* XXX after a reset, silently believe the FDC will accept commands */
|
|
(void)fd_cmd(fdc, 3, NE7CMD_SPECIFY,
|
|
NE7_SPEC_1(3, 240), NE7_SPEC_2(2, 0),
|
|
0);
|
|
if (fdc->flags & FDC_HAS_FIFO)
|
|
(void) enable_fifo(fdc);
|
|
}
|
|
|
|
/*
|
|
* FDC IO functions, take care of the main status register, timeout
|
|
* in case the desired status bits are never set.
|
|
*
|
|
* These PIO loops initially start out with short delays between
|
|
* each iteration in the expectation that the required condition
|
|
* is usually met quickly, so it can be handled immediately. After
|
|
* about 1 ms, stepping is increased to achieve a better timing
|
|
* accuracy in the calls to DELAY().
|
|
*/
|
|
static int
|
|
fd_in(struct fdc_data *fdc, int *ptr)
|
|
{
|
|
int i, j, step;
|
|
|
|
for (j = 0, step = 1;
|
|
(i = fdsts_rd(fdc) & (NE7_DIO|NE7_RQM)) != (NE7_DIO|NE7_RQM) &&
|
|
j < FDSTS_TIMEOUT;
|
|
j += step) {
|
|
if (i == NE7_RQM)
|
|
return (fdc_err(fdc, "ready for output in input\n"));
|
|
if (j == 1000)
|
|
step = 1000;
|
|
DELAY(step);
|
|
}
|
|
if (j >= FDSTS_TIMEOUT)
|
|
return (fdc_err(fdc, bootverbose? "input ready timeout\n": 0));
|
|
#ifdef FDC_DEBUG
|
|
i = fddata_rd(fdc);
|
|
TRACE1("[FDDATA->0x%x]", (unsigned char)i);
|
|
*ptr = i;
|
|
return (0);
|
|
#else /* !FDC_DEBUG */
|
|
i = fddata_rd(fdc);
|
|
if (ptr)
|
|
*ptr = i;
|
|
return (0);
|
|
#endif /* FDC_DEBUG */
|
|
}
|
|
|
|
static int
|
|
out_fdc(struct fdc_data *fdc, int x)
|
|
{
|
|
int i, j, step;
|
|
|
|
for (j = 0, step = 1;
|
|
(i = fdsts_rd(fdc) & (NE7_DIO|NE7_RQM)) != NE7_RQM &&
|
|
j < FDSTS_TIMEOUT;
|
|
j += step) {
|
|
if (i == (NE7_DIO|NE7_RQM))
|
|
return (fdc_err(fdc, "ready for input in output\n"));
|
|
if (j == 1000)
|
|
step = 1000;
|
|
DELAY(step);
|
|
}
|
|
if (j >= FDSTS_TIMEOUT)
|
|
return (fdc_err(fdc, bootverbose? "output ready timeout\n": 0));
|
|
|
|
/* Send the command and return */
|
|
fddata_wr(fdc, x);
|
|
TRACE1("[0x%x->FDDATA]", x);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Block device driver interface functions (interspersed with even more
|
|
* auxiliary functions).
|
|
*/
|
|
static int
|
|
fdopen(dev_t dev, int flags, int mode, struct thread *td)
|
|
{
|
|
fd_p fd;
|
|
fdc_p fdc;
|
|
int rv, unitattn, dflags;
|
|
|
|
fd = dev->si_drv1;
|
|
if (fd == NULL)
|
|
return (ENXIO);
|
|
fdc = fd->fdc;
|
|
if ((fdc == NULL) || (fd->type == FDT_NONE))
|
|
return (ENXIO);
|
|
dflags = device_get_flags(fd->dev);
|
|
/*
|
|
* This is a bit bogus. It's still possible that e. g. a
|
|
* descriptor gets inherited to a child, but then it's at
|
|
* least for the same subdevice. By checking FD_OPEN here, we
|
|
* can ensure that a device isn't attempted to be opened with
|
|
* different densities at the same time where the second open
|
|
* could clobber the settings from the first one.
|
|
*/
|
|
if (fd->flags & FD_OPEN)
|
|
return (EBUSY);
|
|
|
|
if (flags & FNONBLOCK) {
|
|
/*
|
|
* Unfortunately, physio(9) discards its ioflag
|
|
* argument, thus preventing us from seeing the
|
|
* IO_NDELAY bit. So we need to keep track
|
|
* ourselves.
|
|
*/
|
|
fd->flags |= FD_NONBLOCK;
|
|
fd->ft = 0;
|
|
} else {
|
|
/*
|
|
* Figure out a unit attention condition.
|
|
*
|
|
* If UA has been forced, proceed.
|
|
*
|
|
* If the drive has no changeline support,
|
|
* or if the drive parameters have been lost
|
|
* due to previous non-blocking access,
|
|
* assume a forced UA condition.
|
|
*
|
|
* If motor is off, turn it on for a moment
|
|
* and select our drive, in order to read the
|
|
* UA hardware signal.
|
|
*
|
|
* If motor is on, and our drive is currently
|
|
* selected, just read the hardware bit.
|
|
*
|
|
* If motor is on, but active for another
|
|
* drive on that controller, we are lost. We
|
|
* cannot risk to deselect the other drive, so
|
|
* we just assume a forced UA condition to be
|
|
* on the safe side.
|
|
*/
|
|
unitattn = 0;
|
|
if ((dflags & FD_NO_CHLINE) != 0 ||
|
|
(fd->flags & FD_UA) != 0 ||
|
|
fd->ft == 0) {
|
|
unitattn = 1;
|
|
fd->flags &= ~FD_UA;
|
|
} else if (fdc->fdout & (FDO_MOEN0 | FDO_MOEN1 |
|
|
FDO_MOEN2 | FDO_MOEN3)) {
|
|
if ((fdc->fdout & FDO_FDSEL) == fd->fdsu)
|
|
unitattn = fdin_rd(fdc) & FDI_DCHG;
|
|
else
|
|
unitattn = 1;
|
|
} else {
|
|
set_motor(fdc, fd->fdsu, TURNON);
|
|
unitattn = fdin_rd(fdc) & FDI_DCHG;
|
|
set_motor(fdc, fd->fdsu, TURNOFF);
|
|
}
|
|
if (unitattn && (rv = fdautoselect(dev)) != 0)
|
|
return (rv);
|
|
}
|
|
fd->flags |= FD_OPEN;
|
|
/*
|
|
* Clearing the DMA overrun counter at open time is a bit messy.
|
|
* Since we're only managing one counter per controller, opening
|
|
* the second drive could mess it up. Anyway, if the DMA overrun
|
|
* condition is really persistent, it will eventually time out
|
|
* still. OTOH, clearing it here will ensure we'll at least start
|
|
* trying again after a previous (maybe even long ago) failure.
|
|
* Also, this is merely a stop-gap measure only that should not
|
|
* happen during normal operation, so we can tolerate it to be a
|
|
* bit sloppy about this.
|
|
*/
|
|
fdc->dma_overruns = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fdclose(dev_t dev, int flags, int mode, struct thread *td)
|
|
{
|
|
struct fd_data *fd;
|
|
|
|
fd = dev->si_drv1;
|
|
fd->flags &= ~(FD_OPEN | FD_NONBLOCK);
|
|
fd->options &= ~(FDOPT_NORETRY | FDOPT_NOERRLOG | FDOPT_NOERROR);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
fdstrategy(struct bio *bp)
|
|
{
|
|
long blknum, nblocks;
|
|
int s;
|
|
fdu_t fdu;
|
|
fdc_p fdc;
|
|
fd_p fd;
|
|
size_t fdblk;
|
|
|
|
fd = bp->bio_dev->si_drv1;
|
|
fdu = fd->fdu;
|
|
fdc = fd->fdc;
|
|
bp->bio_resid = bp->bio_bcount;
|
|
if (fd->type == FDT_NONE || fd->ft == 0) {
|
|
if (fd->type != FDT_NONE && (fd->flags & FD_NONBLOCK))
|
|
bp->bio_error = EAGAIN;
|
|
else
|
|
bp->bio_error = ENXIO;
|
|
bp->bio_flags |= BIO_ERROR;
|
|
goto bad;
|
|
}
|
|
fdblk = 128 << (fd->ft->secsize);
|
|
if (bp->bio_cmd != FDBIO_FORMAT && bp->bio_cmd != FDBIO_RDSECTID) {
|
|
if (fd->flags & FD_NONBLOCK) {
|
|
bp->bio_error = EAGAIN;
|
|
bp->bio_flags |= BIO_ERROR;
|
|
goto bad;
|
|
}
|
|
if (bp->bio_offset < 0) {
|
|
printf(
|
|
"fd%d: fdstrat: bad request offset = %ju, bcount = %ld\n",
|
|
fdu, (intmax_t)bp->bio_offset, bp->bio_bcount);
|
|
bp->bio_error = EINVAL;
|
|
bp->bio_flags |= BIO_ERROR;
|
|
goto bad;
|
|
}
|
|
if ((bp->bio_bcount % fdblk) != 0) {
|
|
bp->bio_error = EINVAL;
|
|
bp->bio_flags |= BIO_ERROR;
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set up block calculations.
|
|
*/
|
|
if (bp->bio_offset >= ((off_t)128 << fd->ft->secsize) * fd->ft->size) {
|
|
bp->bio_error = EINVAL;
|
|
bp->bio_flags |= BIO_ERROR;
|
|
goto bad;
|
|
}
|
|
blknum = bp->bio_offset / fdblk;
|
|
nblocks = fd->ft->size;
|
|
if (blknum + bp->bio_bcount / fdblk > nblocks) {
|
|
if (blknum >= nblocks) {
|
|
if (bp->bio_cmd != BIO_READ) {
|
|
bp->bio_error = ENOSPC;
|
|
bp->bio_flags |= BIO_ERROR;
|
|
}
|
|
goto bad; /* not always bad, but EOF */
|
|
}
|
|
bp->bio_bcount = (nblocks - blknum) * fdblk;
|
|
}
|
|
bp->bio_pblkno = blknum;
|
|
s = splbio();
|
|
bioq_disksort(&fdc->head, bp);
|
|
untimeout(fd_turnoff, fd, fd->toffhandle); /* a good idea */
|
|
devstat_start_transaction_bio(fd->device_stats, bp);
|
|
device_busy(fd->dev);
|
|
fdstart(fdc);
|
|
splx(s);
|
|
return;
|
|
|
|
bad:
|
|
biodone(bp);
|
|
}
|
|
|
|
/*
|
|
* fdstart
|
|
*
|
|
* We have just queued something. If the controller is not busy
|
|
* then simulate the case where it has just finished a command
|
|
* So that it (the interrupt routine) looks on the queue for more
|
|
* work to do and picks up what we just added.
|
|
*
|
|
* If the controller is already busy, we need do nothing, as it
|
|
* will pick up our work when the present work completes.
|
|
*/
|
|
static void
|
|
fdstart(struct fdc_data *fdc)
|
|
{
|
|
int s;
|
|
|
|
s = splbio();
|
|
if(fdc->state == DEVIDLE)
|
|
{
|
|
fdc_intr(fdc);
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
fd_iotimeout(void *xfdc)
|
|
{
|
|
fdc_p fdc;
|
|
int s;
|
|
|
|
fdc = xfdc;
|
|
TRACE1("fd%d[fd_iotimeout()]", fdc->fdu);
|
|
|
|
/*
|
|
* Due to IBM's brain-dead design, the FDC has a faked ready
|
|
* signal, hardwired to ready == true. Thus, any command
|
|
* issued if there's no diskette in the drive will _never_
|
|
* complete, and must be aborted by resetting the FDC.
|
|
* Many thanks, Big Blue!
|
|
* The FDC must not be reset directly, since that would
|
|
* interfere with the state machine. Instead, pretend that
|
|
* the command completed but was invalid. The state machine
|
|
* will reset the FDC and retry once.
|
|
*/
|
|
s = splbio();
|
|
fdc->status[0] = NE7_ST0_IC_IV;
|
|
fdc->flags &= ~FDC_STAT_VALID;
|
|
fdc->state = IOTIMEDOUT;
|
|
fdc_intr(fdc);
|
|
splx(s);
|
|
}
|
|
|
|
/* Just ensure it has the right spl. */
|
|
static void
|
|
fd_pseudointr(void *xfdc)
|
|
{
|
|
int s;
|
|
|
|
s = splbio();
|
|
fdc_intr(xfdc);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* fdc_intr
|
|
*
|
|
* Keep calling the state machine until it returns a 0.
|
|
* Always called at splbio.
|
|
*/
|
|
static void
|
|
fdc_intr(void *xfdc)
|
|
{
|
|
fdc_p fdc = xfdc;
|
|
while(fdstate(fdc))
|
|
;
|
|
}
|
|
|
|
/*
|
|
* Magic pseudo-DMA initialization for YE FDC. Sets count and
|
|
* direction.
|
|
*/
|
|
#define SET_BCDR(fdc,wr,cnt,port) \
|
|
bus_space_write_1(fdc->portt, fdc->porth, fdc->port_off + port, \
|
|
((cnt)-1) & 0xff); \
|
|
bus_space_write_1(fdc->portt, fdc->porth, fdc->port_off + port + 1, \
|
|
((wr ? 0x80 : 0) | ((((cnt)-1) >> 8) & 0x7f)));
|
|
|
|
/*
|
|
* fdcpio(): perform programmed IO read/write for YE PCMCIA floppy.
|
|
*/
|
|
static int
|
|
fdcpio(fdc_p fdc, long flags, caddr_t addr, u_int count)
|
|
{
|
|
u_char *cptr = (u_char *)addr;
|
|
|
|
if (flags == BIO_READ) {
|
|
if (fdc->state != PIOREAD) {
|
|
fdc->state = PIOREAD;
|
|
return(0);
|
|
}
|
|
SET_BCDR(fdc, 0, count, 0);
|
|
bus_space_read_multi_1(fdc->portt, fdc->porth, fdc->port_off +
|
|
FDC_YE_DATAPORT, cptr, count);
|
|
} else {
|
|
bus_space_write_multi_1(fdc->portt, fdc->porth, fdc->port_off +
|
|
FDC_YE_DATAPORT, cptr, count);
|
|
SET_BCDR(fdc, 0, count, 0);
|
|
}
|
|
return(1);
|
|
}
|
|
|
|
/*
|
|
* Try figuring out the density of the media present in our device.
|
|
*/
|
|
static int
|
|
fdautoselect(dev_t dev)
|
|
{
|
|
fd_p fd;
|
|
struct fd_type *fdtp;
|
|
struct fdc_readid id;
|
|
int i, n, oopts, rv;
|
|
|
|
fd = dev->si_drv1;
|
|
|
|
switch (fd->type) {
|
|
default:
|
|
return (ENXIO);
|
|
|
|
case FDT_360K:
|
|
case FDT_720K:
|
|
/* no autoselection on those drives */
|
|
fd->ft = fd_native_types + fd->type;
|
|
return (0);
|
|
|
|
case FDT_12M:
|
|
fdtp = fd_searchlist_12m;
|
|
n = sizeof fd_searchlist_12m / sizeof(struct fd_type);
|
|
break;
|
|
|
|
case FDT_144M:
|
|
fdtp = fd_searchlist_144m;
|
|
n = sizeof fd_searchlist_144m / sizeof(struct fd_type);
|
|
break;
|
|
|
|
case FDT_288M:
|
|
fdtp = fd_searchlist_288m;
|
|
n = sizeof fd_searchlist_288m / sizeof(struct fd_type);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Try reading sector ID fields, first at cylinder 0, head 0,
|
|
* then at cylinder 2, head N. We don't probe cylinder 1,
|
|
* since for 5.25in DD media in a HD drive, there are no data
|
|
* to read (2 step pulses per media cylinder required). For
|
|
* two-sided media, the second probe always goes to head 1, so
|
|
* we can tell them apart from single-sided media. As a
|
|
* side-effect this means that single-sided media should be
|
|
* mentioned in the search list after two-sided media of an
|
|
* otherwise identical density. Media with a different number
|
|
* of sectors per track but otherwise identical parameters
|
|
* cannot be distinguished at all.
|
|
*
|
|
* If we successfully read an ID field on both cylinders where
|
|
* the recorded values match our expectation, we are done.
|
|
* Otherwise, we try the next density entry from the table.
|
|
*
|
|
* Stepping to cylinder 2 has the side-effect of clearing the
|
|
* unit attention bit.
|
|
*/
|
|
oopts = fd->options;
|
|
fd->options |= FDOPT_NOERRLOG | FDOPT_NORETRY;
|
|
for (i = 0; i < n; i++, fdtp++) {
|
|
fd->ft = fdtp;
|
|
|
|
id.cyl = id.head = 0;
|
|
rv = fdmisccmd(dev, FDBIO_RDSECTID, &id);
|
|
if (rv != 0)
|
|
continue;
|
|
if (id.cyl != 0 || id.head != 0 ||
|
|
id.secshift != fdtp->secsize)
|
|
continue;
|
|
id.cyl = 2;
|
|
id.head = fd->ft->heads - 1;
|
|
rv = fdmisccmd(dev, FDBIO_RDSECTID, &id);
|
|
if (id.cyl != 2 || id.head != fdtp->heads - 1 ||
|
|
id.secshift != fdtp->secsize)
|
|
continue;
|
|
if (rv == 0)
|
|
break;
|
|
}
|
|
|
|
fd->options = oopts;
|
|
if (i == n) {
|
|
if (bootverbose)
|
|
device_printf(fd->dev, "autoselection failed\n");
|
|
fd->ft = 0;
|
|
return (EIO);
|
|
} else {
|
|
if (bootverbose)
|
|
device_printf(fd->dev, "autoselected %d KB medium\n",
|
|
fd->ft->size / 2);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* The controller state machine.
|
|
*
|
|
* If it returns a non zero value, it should be called again immediately.
|
|
*/
|
|
static int
|
|
fdstate(fdc_p fdc)
|
|
{
|
|
struct fdc_readid *idp;
|
|
int read, format, rdsectid, cylinder, head, i, sec = 0, sectrac;
|
|
int st0, cyl, st3, idf, ne7cmd, mfm, steptrac;
|
|
unsigned long blknum;
|
|
fdu_t fdu = fdc->fdu;
|
|
fd_p fd;
|
|
register struct bio *bp;
|
|
struct fd_formb *finfo = NULL;
|
|
size_t fdblk;
|
|
|
|
bp = fdc->bp;
|
|
if (bp == NULL) {
|
|
bp = bioq_first(&fdc->head);
|
|
if (bp != NULL) {
|
|
bioq_remove(&fdc->head, bp);
|
|
fdc->bp = bp;
|
|
}
|
|
}
|
|
if (bp == NULL) {
|
|
/*
|
|
* Nothing left for this controller to do,
|
|
* force into the IDLE state.
|
|
*/
|
|
fdc->state = DEVIDLE;
|
|
if (fdc->fd) {
|
|
device_printf(fdc->fdc_dev,
|
|
"unexpected valid fd pointer\n");
|
|
fdc->fd = (fd_p) 0;
|
|
fdc->fdu = -1;
|
|
}
|
|
TRACE1("[fdc%d IDLE]", fdc->fdcu);
|
|
return (0);
|
|
}
|
|
fd = bp->bio_dev->si_drv1;
|
|
fdu = fd->fdu;
|
|
fdblk = 128 << fd->ft->secsize;
|
|
if (fdc->fd && (fd != fdc->fd))
|
|
device_printf(fd->dev, "confused fd pointers\n");
|
|
read = bp->bio_cmd == BIO_READ;
|
|
mfm = (fd->ft->flags & FL_MFM)? NE7CMD_MFM: 0;
|
|
steptrac = (fd->ft->flags & FL_2STEP)? 2: 1;
|
|
if (read)
|
|
idf = ISADMA_READ;
|
|
else
|
|
idf = ISADMA_WRITE;
|
|
format = bp->bio_cmd == FDBIO_FORMAT;
|
|
rdsectid = bp->bio_cmd == FDBIO_RDSECTID;
|
|
if (format)
|
|
finfo = (struct fd_formb *)bp->bio_data;
|
|
TRACE1("fd%d", fdu);
|
|
TRACE1("[%s]", fdstates[fdc->state]);
|
|
TRACE1("(0x%x)", fd->flags);
|
|
untimeout(fd_turnoff, fd, fd->toffhandle);
|
|
fd->toffhandle = timeout(fd_turnoff, fd, 4 * hz);
|
|
switch (fdc->state)
|
|
{
|
|
case DEVIDLE:
|
|
case FINDWORK: /* we have found new work */
|
|
fdc->retry = 0;
|
|
fd->skip = 0;
|
|
fdc->fd = fd;
|
|
fdc->fdu = fdu;
|
|
fdc->fdctl_wr(fdc, fd->ft->trans);
|
|
TRACE1("[0x%x->FDCTL]", fd->ft->trans);
|
|
/*
|
|
* If the next drive has a motor startup pending, then
|
|
* it will start up in its own good time.
|
|
*/
|
|
if(fd->flags & FD_MOTOR_WAIT) {
|
|
fdc->state = MOTORWAIT;
|
|
return (0); /* will return later */
|
|
}
|
|
/*
|
|
* Maybe if it's not starting, it SHOULD be starting.
|
|
*/
|
|
if (!(fd->flags & FD_MOTOR))
|
|
{
|
|
fdc->state = MOTORWAIT;
|
|
fd_turnon(fd);
|
|
return (0); /* will return later */
|
|
}
|
|
else /* at least make sure we are selected */
|
|
{
|
|
set_motor(fdc, fd->fdsu, TURNON);
|
|
}
|
|
if (fdc->flags & FDC_NEEDS_RESET) {
|
|
fdc->state = RESETCTLR;
|
|
fdc->flags &= ~FDC_NEEDS_RESET;
|
|
} else
|
|
fdc->state = DOSEEK;
|
|
return (1); /* will return immediately */
|
|
|
|
case DOSEEK:
|
|
blknum = bp->bio_pblkno + fd->skip / fdblk;
|
|
cylinder = blknum / (fd->ft->sectrac * fd->ft->heads);
|
|
if (cylinder == fd->track)
|
|
{
|
|
fdc->state = SEEKCOMPLETE;
|
|
return (1); /* will return immediately */
|
|
}
|
|
if (fd_cmd(fdc, 3, NE7CMD_SEEK,
|
|
fd->fdsu, cylinder * steptrac, 0))
|
|
{
|
|
/*
|
|
* Seek command not accepted, looks like
|
|
* the FDC went off to the Saints...
|
|
*/
|
|
fdc->retry = 6; /* try a reset */
|
|
return(retrier(fdc));
|
|
}
|
|
fd->track = FD_NO_TRACK;
|
|
fdc->state = SEEKWAIT;
|
|
return(0); /* will return later */
|
|
|
|
case SEEKWAIT:
|
|
/* allow heads to settle */
|
|
timeout(fd_pseudointr, fdc, hz / 16);
|
|
fdc->state = SEEKCOMPLETE;
|
|
return(0); /* will return later */
|
|
|
|
case SEEKCOMPLETE : /* seek done, start DMA */
|
|
blknum = bp->bio_pblkno + fd->skip / fdblk;
|
|
cylinder = blknum / (fd->ft->sectrac * fd->ft->heads);
|
|
|
|
/* Make sure seek really happened. */
|
|
if(fd->track == FD_NO_TRACK) {
|
|
int descyl = cylinder * steptrac;
|
|
do {
|
|
/*
|
|
* This might be a "ready changed" interrupt,
|
|
* which cannot really happen since the
|
|
* RDY pin is hardwired to + 5 volts. This
|
|
* generally indicates a "bouncing" intr
|
|
* line, so do one of the following:
|
|
*
|
|
* When running on an enhanced FDC that is
|
|
* known to not go stuck after responding
|
|
* with INVALID, fetch all interrupt states
|
|
* until seeing either an INVALID or a
|
|
* real interrupt condition.
|
|
*
|
|
* When running on a dumb old NE765, give
|
|
* up immediately. The controller will
|
|
* provide up to four dummy RC interrupt
|
|
* conditions right after reset (for the
|
|
* corresponding four drives), so this is
|
|
* our only chance to get notice that it
|
|
* was not the FDC that caused the interrupt.
|
|
*/
|
|
if (fd_sense_int(fdc, &st0, &cyl)
|
|
== FD_NOT_VALID)
|
|
return (0); /* will return later */
|
|
if(fdc->fdct == FDC_NE765
|
|
&& (st0 & NE7_ST0_IC) == NE7_ST0_IC_RC)
|
|
return (0); /* hope for a real intr */
|
|
} while ((st0 & NE7_ST0_IC) == NE7_ST0_IC_RC);
|
|
|
|
if (0 == descyl) {
|
|
int failed = 0;
|
|
/*
|
|
* seek to cyl 0 requested; make sure we are
|
|
* really there
|
|
*/
|
|
if (fd_sense_drive_status(fdc, &st3))
|
|
failed = 1;
|
|
if ((st3 & NE7_ST3_T0) == 0) {
|
|
printf(
|
|
"fd%d: Seek to cyl 0, but not really there (ST3 = %b)\n",
|
|
fdu, st3, NE7_ST3BITS);
|
|
failed = 1;
|
|
}
|
|
|
|
if (failed) {
|
|
if(fdc->retry < 3)
|
|
fdc->retry = 3;
|
|
return (retrier(fdc));
|
|
}
|
|
}
|
|
|
|
if (cyl != descyl) {
|
|
printf(
|
|
"fd%d: Seek to cyl %d failed; am at cyl %d (ST0 = 0x%x)\n",
|
|
fdu, descyl, cyl, st0);
|
|
if (fdc->retry < 3)
|
|
fdc->retry = 3;
|
|
return (retrier(fdc));
|
|
}
|
|
}
|
|
|
|
fd->track = cylinder;
|
|
if (format)
|
|
fd->skip = (char *)&(finfo->fd_formb_cylno(0))
|
|
- (char *)finfo;
|
|
if (!rdsectid && !(fdc->flags & FDC_NODMA))
|
|
isa_dmastart(idf, bp->bio_data+fd->skip,
|
|
format ? bp->bio_bcount : fdblk, fdc->dmachan);
|
|
blknum = bp->bio_pblkno + fd->skip / fdblk;
|
|
sectrac = fd->ft->sectrac;
|
|
sec = blknum % (sectrac * fd->ft->heads);
|
|
head = sec / sectrac;
|
|
sec = sec % sectrac + 1;
|
|
if (head != 0 && fd->ft->offset_side2 != 0)
|
|
sec += fd->ft->offset_side2;
|
|
fd->hddrv = ((head&1)<<2)+fdu;
|
|
|
|
if(format || !(read || rdsectid))
|
|
{
|
|
/* make sure the drive is writable */
|
|
if(fd_sense_drive_status(fdc, &st3) != 0)
|
|
{
|
|
/* stuck controller? */
|
|
if (!(fdc->flags & FDC_NODMA))
|
|
isa_dmadone(idf,
|
|
bp->bio_data + fd->skip,
|
|
format ? bp->bio_bcount : fdblk,
|
|
fdc->dmachan);
|
|
fdc->retry = 6; /* reset the beast */
|
|
return (retrier(fdc));
|
|
}
|
|
if(st3 & NE7_ST3_WP)
|
|
{
|
|
/*
|
|
* XXX YES! this is ugly.
|
|
* in order to force the current operation
|
|
* to fail, we will have to fake an FDC
|
|
* error - all error handling is done
|
|
* by the retrier()
|
|
*/
|
|
fdc->status[0] = NE7_ST0_IC_AT;
|
|
fdc->status[1] = NE7_ST1_NW;
|
|
fdc->status[2] = 0;
|
|
fdc->status[3] = fd->track;
|
|
fdc->status[4] = head;
|
|
fdc->status[5] = sec;
|
|
fdc->retry = 8; /* break out immediately */
|
|
fdc->state = IOTIMEDOUT; /* not really... */
|
|
return (1); /* will return immediately */
|
|
}
|
|
}
|
|
|
|
if (format) {
|
|
ne7cmd = NE7CMD_FORMAT | mfm;
|
|
if (fdc->flags & FDC_NODMA) {
|
|
/*
|
|
* This seems to be necessary for
|
|
* whatever obscure reason; if we omit
|
|
* it, we end up filling the sector ID
|
|
* fields of the newly formatted track
|
|
* entirely with garbage, causing
|
|
* `wrong cylinder' errors all over
|
|
* the place when trying to read them
|
|
* back.
|
|
*
|
|
* Umpf.
|
|
*/
|
|
SET_BCDR(fdc, 1, bp->bio_bcount, 0);
|
|
|
|
(void)fdcpio(fdc,bp->bio_cmd,
|
|
bp->bio_data+fd->skip,
|
|
bp->bio_bcount);
|
|
|
|
}
|
|
/* formatting */
|
|
if(fd_cmd(fdc, 6, ne7cmd, head << 2 | fdu,
|
|
finfo->fd_formb_secshift,
|
|
finfo->fd_formb_nsecs,
|
|
finfo->fd_formb_gaplen,
|
|
finfo->fd_formb_fillbyte, 0)) {
|
|
/* controller fell over */
|
|
if (!(fdc->flags & FDC_NODMA))
|
|
isa_dmadone(idf,
|
|
bp->bio_data + fd->skip,
|
|
format ? bp->bio_bcount : fdblk,
|
|
fdc->dmachan);
|
|
fdc->retry = 6;
|
|
return (retrier(fdc));
|
|
}
|
|
} else if (rdsectid) {
|
|
ne7cmd = NE7CMD_READID | mfm;
|
|
if (fd_cmd(fdc, 2, ne7cmd, head << 2 | fdu, 0)) {
|
|
/* controller jamming */
|
|
fdc->retry = 6;
|
|
return (retrier(fdc));
|
|
}
|
|
} else {
|
|
/* read or write operation */
|
|
ne7cmd = (read ? NE7CMD_READ | NE7CMD_SK : NE7CMD_WRITE) | mfm;
|
|
if (fdc->flags & FDC_NODMA) {
|
|
/*
|
|
* This seems to be necessary even when
|
|
* reading data.
|
|
*/
|
|
SET_BCDR(fdc, 1, fdblk, 0);
|
|
|
|
/*
|
|
* Perform the write pseudo-DMA before
|
|
* the WRITE command is sent.
|
|
*/
|
|
if (!read)
|
|
(void)fdcpio(fdc,bp->bio_cmd,
|
|
bp->bio_data+fd->skip,
|
|
fdblk);
|
|
}
|
|
if (fd_cmd(fdc, 9,
|
|
ne7cmd,
|
|
head << 2 | fdu, /* head & unit */
|
|
fd->track, /* track */
|
|
head,
|
|
sec, /* sector + 1 */
|
|
fd->ft->secsize, /* sector size */
|
|
sectrac, /* sectors/track */
|
|
fd->ft->gap, /* gap size */
|
|
fd->ft->datalen, /* data length */
|
|
0)) {
|
|
/* the beast is sleeping again */
|
|
if (!(fdc->flags & FDC_NODMA))
|
|
isa_dmadone(idf,
|
|
bp->bio_data + fd->skip,
|
|
format ? bp->bio_bcount : fdblk,
|
|
fdc->dmachan);
|
|
fdc->retry = 6;
|
|
return (retrier(fdc));
|
|
}
|
|
}
|
|
if (!rdsectid && (fdc->flags & FDC_NODMA))
|
|
/*
|
|
* If this is a read, then simply await interrupt
|
|
* before performing PIO.
|
|
*/
|
|
if (read && !fdcpio(fdc,bp->bio_cmd,
|
|
bp->bio_data+fd->skip,fdblk)) {
|
|
fd->tohandle = timeout(fd_iotimeout, fdc, hz);
|
|
return(0); /* will return later */
|
|
}
|
|
|
|
/*
|
|
* Write (or format) operation will fall through and
|
|
* await completion interrupt.
|
|
*/
|
|
fdc->state = IOCOMPLETE;
|
|
fd->tohandle = timeout(fd_iotimeout, fdc, hz);
|
|
return (0); /* will return later */
|
|
|
|
case PIOREAD:
|
|
/*
|
|
* Actually perform the PIO read. The IOCOMPLETE case
|
|
* removes the timeout for us.
|
|
*/
|
|
(void)fdcpio(fdc,bp->bio_cmd,bp->bio_data+fd->skip,fdblk);
|
|
fdc->state = IOCOMPLETE;
|
|
/* FALLTHROUGH */
|
|
case IOCOMPLETE: /* IO done, post-analyze */
|
|
untimeout(fd_iotimeout, fdc, fd->tohandle);
|
|
|
|
if (fd_read_status(fdc)) {
|
|
if (!rdsectid && !(fdc->flags & FDC_NODMA))
|
|
isa_dmadone(idf, bp->bio_data + fd->skip,
|
|
format ? bp->bio_bcount : fdblk,
|
|
fdc->dmachan);
|
|
if (fdc->retry < 6)
|
|
fdc->retry = 6; /* force a reset */
|
|
return (retrier(fdc));
|
|
}
|
|
|
|
fdc->state = IOTIMEDOUT;
|
|
|
|
/* FALLTHROUGH */
|
|
case IOTIMEDOUT:
|
|
if (!rdsectid && !(fdc->flags & FDC_NODMA))
|
|
isa_dmadone(idf, bp->bio_data + fd->skip,
|
|
format ? bp->bio_bcount : fdblk, fdc->dmachan);
|
|
if (fdc->status[0] & NE7_ST0_IC) {
|
|
if ((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_AT
|
|
&& fdc->status[1] & NE7_ST1_OR) {
|
|
/*
|
|
* DMA overrun. Someone hogged the bus and
|
|
* didn't release it in time for the next
|
|
* FDC transfer.
|
|
*
|
|
* We normally restart this without bumping
|
|
* the retry counter. However, in case
|
|
* something is seriously messed up (like
|
|
* broken hardware), we rather limit the
|
|
* number of retries so the IO operation
|
|
* doesn't block indefinately.
|
|
*/
|
|
if (fdc->dma_overruns++ < FDC_DMAOV_MAX) {
|
|
fdc->state = SEEKCOMPLETE;
|
|
return (1);/* will return immediately */
|
|
} /* else fall through */
|
|
}
|
|
if((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_IV
|
|
&& fdc->retry < 6)
|
|
fdc->retry = 6; /* force a reset */
|
|
else if((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_AT
|
|
&& fdc->status[2] & NE7_ST2_WC
|
|
&& fdc->retry < 3)
|
|
fdc->retry = 3; /* force recalibrate */
|
|
return (retrier(fdc));
|
|
}
|
|
/* All OK */
|
|
if (rdsectid) {
|
|
/* copy out ID field contents */
|
|
idp = (struct fdc_readid *)bp->bio_data;
|
|
idp->cyl = fdc->status[3];
|
|
idp->head = fdc->status[4];
|
|
idp->sec = fdc->status[5];
|
|
idp->secshift = fdc->status[6];
|
|
}
|
|
/* Operation successful, retry DMA overruns again next time. */
|
|
fdc->dma_overruns = 0;
|
|
fd->skip += fdblk;
|
|
if (!rdsectid && !format && fd->skip < bp->bio_bcount) {
|
|
/* set up next transfer */
|
|
fdc->state = DOSEEK;
|
|
} else {
|
|
/* ALL DONE */
|
|
fd->skip = 0;
|
|
bp->bio_resid = 0;
|
|
fdc->bp = NULL;
|
|
device_unbusy(fd->dev);
|
|
biofinish(bp, fd->device_stats, 0);
|
|
fdc->fd = (fd_p) 0;
|
|
fdc->fdu = -1;
|
|
fdc->state = FINDWORK;
|
|
}
|
|
return (1); /* will return immediately */
|
|
|
|
case RESETCTLR:
|
|
fdc_reset(fdc);
|
|
fdc->retry++;
|
|
fdc->state = RESETCOMPLETE;
|
|
return (0); /* will return later */
|
|
|
|
case RESETCOMPLETE:
|
|
/*
|
|
* Discard all the results from the reset so that they
|
|
* can't cause an unexpected interrupt later.
|
|
*/
|
|
for (i = 0; i < 4; i++)
|
|
(void)fd_sense_int(fdc, &st0, &cyl);
|
|
fdc->state = STARTRECAL;
|
|
/* FALLTHROUGH */
|
|
case STARTRECAL:
|
|
if(fd_cmd(fdc, 2, NE7CMD_RECAL, fdu, 0)) {
|
|
/* arrgl */
|
|
fdc->retry = 6;
|
|
return (retrier(fdc));
|
|
}
|
|
fdc->state = RECALWAIT;
|
|
return (0); /* will return later */
|
|
|
|
case RECALWAIT:
|
|
/* allow heads to settle */
|
|
timeout(fd_pseudointr, fdc, hz / 8);
|
|
fdc->state = RECALCOMPLETE;
|
|
return (0); /* will return later */
|
|
|
|
case RECALCOMPLETE:
|
|
do {
|
|
/*
|
|
* See SEEKCOMPLETE for a comment on this:
|
|
*/
|
|
if (fd_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID)
|
|
return (0); /* will return later */
|
|
if(fdc->fdct == FDC_NE765
|
|
&& (st0 & NE7_ST0_IC) == NE7_ST0_IC_RC)
|
|
return (0); /* hope for a real intr */
|
|
} while ((st0 & NE7_ST0_IC) == NE7_ST0_IC_RC);
|
|
if ((st0 & NE7_ST0_IC) != NE7_ST0_IC_NT || cyl != 0)
|
|
{
|
|
if(fdc->retry > 3)
|
|
/*
|
|
* A recalibrate from beyond cylinder 77
|
|
* will "fail" due to the FDC limitations;
|
|
* since people used to complain much about
|
|
* the failure message, try not logging
|
|
* this one if it seems to be the first
|
|
* time in a line.
|
|
*/
|
|
printf("fd%d: recal failed ST0 %b cyl %d\n",
|
|
fdu, st0, NE7_ST0BITS, cyl);
|
|
if(fdc->retry < 3) fdc->retry = 3;
|
|
return (retrier(fdc));
|
|
}
|
|
fd->track = 0;
|
|
/* Seek (probably) necessary */
|
|
fdc->state = DOSEEK;
|
|
return (1); /* will return immediately */
|
|
|
|
case MOTORWAIT:
|
|
if(fd->flags & FD_MOTOR_WAIT)
|
|
{
|
|
return (0); /* time's not up yet */
|
|
}
|
|
if (fdc->flags & FDC_NEEDS_RESET) {
|
|
fdc->state = RESETCTLR;
|
|
fdc->flags &= ~FDC_NEEDS_RESET;
|
|
} else
|
|
fdc->state = DOSEEK;
|
|
return (1); /* will return immediately */
|
|
|
|
default:
|
|
device_printf(fdc->fdc_dev, "unexpected FD int->");
|
|
if (fd_read_status(fdc) == 0)
|
|
printf("FDC status :%x %x %x %x %x %x %x ",
|
|
fdc->status[0],
|
|
fdc->status[1],
|
|
fdc->status[2],
|
|
fdc->status[3],
|
|
fdc->status[4],
|
|
fdc->status[5],
|
|
fdc->status[6] );
|
|
else
|
|
printf("No status available ");
|
|
if (fd_sense_int(fdc, &st0, &cyl) != 0)
|
|
{
|
|
printf("[controller is dead now]\n");
|
|
return (0); /* will return later */
|
|
}
|
|
printf("ST0 = %x, PCN = %x\n", st0, cyl);
|
|
return (0); /* will return later */
|
|
}
|
|
/* noone should ever get here */
|
|
}
|
|
|
|
static int
|
|
retrier(struct fdc_data *fdc)
|
|
{
|
|
struct bio *bp;
|
|
struct fd_data *fd;
|
|
int fdu;
|
|
|
|
bp = fdc->bp;
|
|
|
|
/* XXX shouldn't this be cached somewhere? */
|
|
fd = bp->bio_dev->si_drv1;
|
|
fdu = fd->fdu;
|
|
if (fd->options & FDOPT_NORETRY)
|
|
goto fail;
|
|
|
|
switch (fdc->retry) {
|
|
case 0: case 1: case 2:
|
|
fdc->state = SEEKCOMPLETE;
|
|
break;
|
|
case 3: case 4: case 5:
|
|
fdc->state = STARTRECAL;
|
|
break;
|
|
case 6:
|
|
fdc->state = RESETCTLR;
|
|
break;
|
|
case 7:
|
|
break;
|
|
default:
|
|
fail:
|
|
if ((fd->options & FDOPT_NOERRLOG) == 0) {
|
|
disk_err(bp, "hard error",
|
|
fdc->fd->skip / DEV_BSIZE, 0);
|
|
if (fdc->flags & FDC_STAT_VALID) {
|
|
printf(
|
|
" (ST0 %b ST1 %b ST2 %b cyl %u hd %u sec %u)\n",
|
|
fdc->status[0], NE7_ST0BITS,
|
|
fdc->status[1], NE7_ST1BITS,
|
|
fdc->status[2], NE7_ST2BITS,
|
|
fdc->status[3], fdc->status[4],
|
|
fdc->status[5]);
|
|
}
|
|
else
|
|
printf(" (No status)\n");
|
|
}
|
|
if ((fd->options & FDOPT_NOERROR) == 0) {
|
|
bp->bio_flags |= BIO_ERROR;
|
|
bp->bio_error = EIO;
|
|
bp->bio_resid = bp->bio_bcount - fdc->fd->skip;
|
|
} else
|
|
bp->bio_resid = 0;
|
|
fdc->bp = NULL;
|
|
fdc->fd->skip = 0;
|
|
device_unbusy(fd->dev);
|
|
biofinish(bp, fdc->fd->device_stats, 0);
|
|
fdc->state = FINDWORK;
|
|
fdc->flags |= FDC_NEEDS_RESET;
|
|
fdc->fd = (fd_p) 0;
|
|
fdc->fdu = -1;
|
|
return (1);
|
|
}
|
|
fdc->retry++;
|
|
return (1);
|
|
}
|
|
|
|
static void
|
|
fdbiodone(struct bio *bp)
|
|
{
|
|
wakeup(bp);
|
|
}
|
|
|
|
static int
|
|
fdmisccmd(dev_t dev, u_int cmd, void *data)
|
|
{
|
|
fdu_t fdu;
|
|
fd_p fd;
|
|
struct bio *bp;
|
|
struct fd_formb *finfo;
|
|
struct fdc_readid *idfield;
|
|
size_t fdblk;
|
|
int error;
|
|
|
|
fd = dev->si_drv1;
|
|
fdu = fd->fdu;
|
|
fdblk = 128 << fd->ft->secsize;
|
|
finfo = (struct fd_formb *)data;
|
|
idfield = (struct fdc_readid *)data;
|
|
|
|
bp = malloc(sizeof(struct bio), M_TEMP, M_WAITOK | M_ZERO);
|
|
|
|
/*
|
|
* Set up a bio request for fdstrategy(). bio_offset is faked
|
|
* so that fdstrategy() will seek to the the requested
|
|
* cylinder, and use the desired head.
|
|
*/
|
|
bp->bio_cmd = cmd;
|
|
if (cmd == FDBIO_FORMAT) {
|
|
bp->bio_offset =
|
|
(finfo->cyl * (fd->ft->sectrac * fd->ft->heads) +
|
|
finfo->head * fd->ft->sectrac) * fdblk;
|
|
bp->bio_bcount = sizeof(struct fd_idfield_data) *
|
|
finfo->fd_formb_nsecs;
|
|
} else if (cmd == FDBIO_RDSECTID) {
|
|
bp->bio_offset =
|
|
(idfield->cyl * (fd->ft->sectrac * fd->ft->heads) +
|
|
idfield->head * fd->ft->sectrac) * fdblk;
|
|
bp->bio_bcount = sizeof(struct fdc_readid);
|
|
} else
|
|
panic("wrong cmd in fdmisccmd()");
|
|
bp->bio_data = data;
|
|
bp->bio_dev = dev;
|
|
bp->bio_done = fdbiodone;
|
|
bp->bio_flags = 0;
|
|
|
|
/* Now run the command. */
|
|
fdstrategy(bp);
|
|
error = biowait(bp, "fdcmd");
|
|
|
|
free(bp, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
fdioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
|
|
{
|
|
fdu_t fdu;
|
|
fd_p fd;
|
|
struct fdc_status *fsp;
|
|
struct fdc_readid *rid;
|
|
int error;
|
|
|
|
fd = dev->si_drv1;
|
|
fdu = fd->fdu;
|
|
|
|
/*
|
|
* First, handle everything that could be done with
|
|
* FD_NONBLOCK still being set.
|
|
*/
|
|
switch (cmd) {
|
|
|
|
case DIOCGMEDIASIZE:
|
|
if (fd->ft == 0)
|
|
return ((fd->flags & FD_NONBLOCK) ? EAGAIN : ENXIO);
|
|
*(off_t *)addr = (128 << (fd->ft->secsize)) * fd->ft->size;
|
|
return (0);
|
|
|
|
case DIOCGSECTORSIZE:
|
|
if (fd->ft == 0)
|
|
return ((fd->flags & FD_NONBLOCK) ? EAGAIN : ENXIO);
|
|
*(u_int *)addr = 128 << (fd->ft->secsize);
|
|
return (0);
|
|
|
|
case FIONBIO:
|
|
if (*(int *)addr != 0)
|
|
fd->flags |= FD_NONBLOCK;
|
|
else {
|
|
if (fd->ft == 0) {
|
|
/*
|
|
* No drive type has been selected yet,
|
|
* cannot turn FNONBLOCK off.
|
|
*/
|
|
return (EINVAL);
|
|
}
|
|
fd->flags &= ~FD_NONBLOCK;
|
|
}
|
|
return (0);
|
|
|
|
case FIOASYNC:
|
|
/* keep the generic fcntl() code happy */
|
|
return (0);
|
|
|
|
case FD_GTYPE: /* get drive type */
|
|
if (fd->ft == 0)
|
|
/* no type known yet, return the native type */
|
|
*(struct fd_type *)addr = fd_native_types[fd->type];
|
|
else
|
|
*(struct fd_type *)addr = *fd->ft;
|
|
return (0);
|
|
|
|
case FD_STYPE: /* set drive type */
|
|
/*
|
|
* Allow setting drive type temporarily iff
|
|
* currently unset. Used for fdformat so any
|
|
* user can set it, and then start formatting.
|
|
*/
|
|
if (fd->ft)
|
|
return (EINVAL); /* already set */
|
|
fd->fts[0] = *(struct fd_type *)addr;
|
|
fd->ft = &fd->fts[0];
|
|
fd->flags |= FD_UA;
|
|
return (0);
|
|
|
|
case FD_GOPTS: /* get drive options */
|
|
*(int *)addr = fd->options + FDOPT_AUTOSEL;
|
|
return (0);
|
|
|
|
case FD_SOPTS: /* set drive options */
|
|
fd->options = *(int *)addr & ~FDOPT_AUTOSEL;
|
|
return (0);
|
|
|
|
#ifdef FDC_DEBUG
|
|
case FD_DEBUG:
|
|
if ((fd_debug != 0) != (*(int *)addr != 0)) {
|
|
fd_debug = (*(int *)addr != 0);
|
|
printf("fd%d: debugging turned %s\n",
|
|
fd->fdu, fd_debug ? "on" : "off");
|
|
}
|
|
return (0);
|
|
#endif
|
|
|
|
case FD_CLRERR:
|
|
if (suser(td) != 0)
|
|
return (EPERM);
|
|
fd->fdc->fdc_errs = 0;
|
|
return (0);
|
|
|
|
case FD_GSTAT:
|
|
fsp = (struct fdc_status *)addr;
|
|
if ((fd->fdc->flags & FDC_STAT_VALID) == 0)
|
|
return (EINVAL);
|
|
memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int));
|
|
return (0);
|
|
|
|
case FD_GDTYPE:
|
|
*(enum fd_drivetype *)addr = fd->type;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Now handle everything else. Make sure we have a valid
|
|
* drive type.
|
|
*/
|
|
if (fd->flags & FD_NONBLOCK)
|
|
return (EAGAIN);
|
|
if (fd->ft == 0)
|
|
return (ENXIO);
|
|
error = 0;
|
|
|
|
switch (cmd) {
|
|
|
|
case FD_FORM:
|
|
if ((flag & FWRITE) == 0)
|
|
return (EBADF); /* must be opened for writing */
|
|
if (((struct fd_formb *)addr)->format_version !=
|
|
FD_FORMAT_VERSION)
|
|
return (EINVAL); /* wrong version of formatting prog */
|
|
error = fdmisccmd(dev, FDBIO_FORMAT, addr);
|
|
break;
|
|
|
|
case FD_GTYPE: /* get drive type */
|
|
*(struct fd_type *)addr = *fd->ft;
|
|
break;
|
|
|
|
case FD_STYPE: /* set drive type */
|
|
/* this is considered harmful; only allow for superuser */
|
|
if (suser(td) != 0)
|
|
return (EPERM);
|
|
*fd->ft = *(struct fd_type *)addr;
|
|
break;
|
|
|
|
case FD_GOPTS: /* get drive options */
|
|
*(int *)addr = fd->options;
|
|
break;
|
|
|
|
case FD_SOPTS: /* set drive options */
|
|
fd->options = *(int *)addr;
|
|
break;
|
|
|
|
#ifdef FDC_DEBUG
|
|
case FD_DEBUG:
|
|
if ((fd_debug != 0) != (*(int *)addr != 0)) {
|
|
fd_debug = (*(int *)addr != 0);
|
|
printf("fd%d: debugging turned %s\n",
|
|
fd->fdu, fd_debug ? "on" : "off");
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
case FD_CLRERR:
|
|
if (suser(td) != 0)
|
|
return (EPERM);
|
|
fd->fdc->fdc_errs = 0;
|
|
break;
|
|
|
|
case FD_GSTAT:
|
|
fsp = (struct fdc_status *)addr;
|
|
if ((fd->fdc->flags & FDC_STAT_VALID) == 0)
|
|
return (EINVAL);
|
|
memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int));
|
|
break;
|
|
|
|
case FD_READID:
|
|
rid = (struct fdc_readid *)addr;
|
|
if (rid->cyl > MAX_CYLINDER || rid->head > MAX_HEAD)
|
|
return (EINVAL);
|
|
error = fdmisccmd(dev, FDBIO_RDSECTID, addr);
|
|
break;
|
|
|
|
default:
|
|
error = ENOTTY;
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|