1ede983cc9
MFC after: 3 months
1100 lines
26 KiB
C
1100 lines
26 KiB
C
/*-
|
|
* Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
|
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
|
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/*
|
|
* BLIST.C - Bitmap allocator/deallocator, using a radix tree with hinting
|
|
*
|
|
* This module implements a general bitmap allocator/deallocator. The
|
|
* allocator eats around 2 bits per 'block'. The module does not
|
|
* try to interpret the meaning of a 'block' other then to return
|
|
* SWAPBLK_NONE on an allocation failure.
|
|
*
|
|
* A radix tree is used to maintain the bitmap. Two radix constants are
|
|
* involved: One for the bitmaps contained in the leaf nodes (typically
|
|
* 32), and one for the meta nodes (typically 16). Both meta and leaf
|
|
* nodes have a hint field. This field gives us a hint as to the largest
|
|
* free contiguous range of blocks under the node. It may contain a
|
|
* value that is too high, but will never contain a value that is too
|
|
* low. When the radix tree is searched, allocation failures in subtrees
|
|
* update the hint.
|
|
*
|
|
* The radix tree also implements two collapsed states for meta nodes:
|
|
* the ALL-ALLOCATED state and the ALL-FREE state. If a meta node is
|
|
* in either of these two states, all information contained underneath
|
|
* the node is considered stale. These states are used to optimize
|
|
* allocation and freeing operations.
|
|
*
|
|
* The hinting greatly increases code efficiency for allocations while
|
|
* the general radix structure optimizes both allocations and frees. The
|
|
* radix tree should be able to operate well no matter how much
|
|
* fragmentation there is and no matter how large a bitmap is used.
|
|
*
|
|
* Unlike the rlist code, the blist code wires all necessary memory at
|
|
* creation time. Neither allocations nor frees require interaction with
|
|
* the memory subsystem. In contrast, the rlist code may allocate memory
|
|
* on an rlist_free() call. The non-blocking features of the blist code
|
|
* are used to great advantage in the swap code (vm/nswap_pager.c). The
|
|
* rlist code uses a little less overall memory then the blist code (but
|
|
* due to swap interleaving not all that much less), but the blist code
|
|
* scales much, much better.
|
|
*
|
|
* LAYOUT: The radix tree is layed out recursively using a
|
|
* linear array. Each meta node is immediately followed (layed out
|
|
* sequentially in memory) by BLIST_META_RADIX lower level nodes. This
|
|
* is a recursive structure but one that can be easily scanned through
|
|
* a very simple 'skip' calculation. In order to support large radixes,
|
|
* portions of the tree may reside outside our memory allocation. We
|
|
* handle this with an early-termination optimization (when bighint is
|
|
* set to -1) on the scan. The memory allocation is only large enough
|
|
* to cover the number of blocks requested at creation time even if it
|
|
* must be encompassed in larger root-node radix.
|
|
*
|
|
* NOTE: the allocator cannot currently allocate more then
|
|
* BLIST_BMAP_RADIX blocks per call. It will panic with 'allocation too
|
|
* large' if you try. This is an area that could use improvement. The
|
|
* radix is large enough that this restriction does not effect the swap
|
|
* system, though. Currently only the allocation code is effected by
|
|
* this algorithmic unfeature. The freeing code can handle arbitrary
|
|
* ranges.
|
|
*
|
|
* This code can be compiled stand-alone for debugging.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#ifdef _KERNEL
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/blist.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/mutex.h>
|
|
|
|
#else
|
|
|
|
#ifndef BLIST_NO_DEBUG
|
|
#define BLIST_DEBUG
|
|
#endif
|
|
|
|
#define SWAPBLK_NONE ((daddr_t)-1)
|
|
|
|
#include <sys/types.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <stdarg.h>
|
|
|
|
#define malloc(a,b,c) calloc(a, 1)
|
|
#define free(a,b) free(a)
|
|
|
|
typedef unsigned int u_daddr_t;
|
|
|
|
#include <sys/blist.h>
|
|
|
|
void panic(const char *ctl, ...);
|
|
|
|
#endif
|
|
|
|
/*
|
|
* static support functions
|
|
*/
|
|
|
|
static daddr_t blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count);
|
|
static daddr_t blst_meta_alloc(blmeta_t *scan, daddr_t blk,
|
|
daddr_t count, daddr_t radix, int skip);
|
|
static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count);
|
|
static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count,
|
|
daddr_t radix, int skip, daddr_t blk);
|
|
static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
|
|
daddr_t skip, blist_t dest, daddr_t count);
|
|
static int blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count);
|
|
static int blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count,
|
|
daddr_t radix, int skip, daddr_t blk);
|
|
static daddr_t blst_radix_init(blmeta_t *scan, daddr_t radix,
|
|
int skip, daddr_t count);
|
|
#ifndef _KERNEL
|
|
static void blst_radix_print(blmeta_t *scan, daddr_t blk,
|
|
daddr_t radix, int skip, int tab);
|
|
#endif
|
|
|
|
#ifdef _KERNEL
|
|
static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
|
|
#endif
|
|
|
|
/*
|
|
* blist_create() - create a blist capable of handling up to the specified
|
|
* number of blocks
|
|
*
|
|
* blocks - must be greater then 0
|
|
* flags - malloc flags
|
|
*
|
|
* The smallest blist consists of a single leaf node capable of
|
|
* managing BLIST_BMAP_RADIX blocks.
|
|
*/
|
|
|
|
blist_t
|
|
blist_create(daddr_t blocks, int flags)
|
|
{
|
|
blist_t bl;
|
|
int radix;
|
|
int skip = 0;
|
|
|
|
/*
|
|
* Calculate radix and skip field used for scanning.
|
|
*/
|
|
radix = BLIST_BMAP_RADIX;
|
|
|
|
while (radix < blocks) {
|
|
radix *= BLIST_META_RADIX;
|
|
skip = (skip + 1) * BLIST_META_RADIX;
|
|
}
|
|
|
|
bl = malloc(sizeof(struct blist), M_SWAP, flags | M_ZERO);
|
|
|
|
bl->bl_blocks = blocks;
|
|
bl->bl_radix = radix;
|
|
bl->bl_skip = skip;
|
|
bl->bl_rootblks = 1 +
|
|
blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
|
|
bl->bl_root = malloc(sizeof(blmeta_t) * bl->bl_rootblks, M_SWAP, flags);
|
|
|
|
#if defined(BLIST_DEBUG)
|
|
printf(
|
|
"BLIST representing %lld blocks (%lld MB of swap)"
|
|
", requiring %lldK of ram\n",
|
|
(long long)bl->bl_blocks,
|
|
(long long)bl->bl_blocks * 4 / 1024,
|
|
(long long)(bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
|
|
);
|
|
printf("BLIST raw radix tree contains %lld records\n",
|
|
(long long)bl->bl_rootblks);
|
|
#endif
|
|
blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
|
|
|
|
return(bl);
|
|
}
|
|
|
|
void
|
|
blist_destroy(blist_t bl)
|
|
{
|
|
free(bl->bl_root, M_SWAP);
|
|
free(bl, M_SWAP);
|
|
}
|
|
|
|
/*
|
|
* blist_alloc() - reserve space in the block bitmap. Return the base
|
|
* of a contiguous region or SWAPBLK_NONE if space could
|
|
* not be allocated.
|
|
*/
|
|
|
|
daddr_t
|
|
blist_alloc(blist_t bl, daddr_t count)
|
|
{
|
|
daddr_t blk = SWAPBLK_NONE;
|
|
|
|
if (bl) {
|
|
if (bl->bl_radix == BLIST_BMAP_RADIX)
|
|
blk = blst_leaf_alloc(bl->bl_root, 0, count);
|
|
else
|
|
blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
|
|
if (blk != SWAPBLK_NONE)
|
|
bl->bl_free -= count;
|
|
}
|
|
return(blk);
|
|
}
|
|
|
|
/*
|
|
* blist_free() - free up space in the block bitmap. Return the base
|
|
* of a contiguous region. Panic if an inconsistancy is
|
|
* found.
|
|
*/
|
|
|
|
void
|
|
blist_free(blist_t bl, daddr_t blkno, daddr_t count)
|
|
{
|
|
if (bl) {
|
|
if (bl->bl_radix == BLIST_BMAP_RADIX)
|
|
blst_leaf_free(bl->bl_root, blkno, count);
|
|
else
|
|
blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
|
|
bl->bl_free += count;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* blist_fill() - mark a region in the block bitmap as off-limits
|
|
* to the allocator (i.e. allocate it), ignoring any
|
|
* existing allocations. Return the number of blocks
|
|
* actually filled that were free before the call.
|
|
*/
|
|
|
|
int
|
|
blist_fill(blist_t bl, daddr_t blkno, daddr_t count)
|
|
{
|
|
int filled;
|
|
|
|
if (bl) {
|
|
if (bl->bl_radix == BLIST_BMAP_RADIX)
|
|
filled = blst_leaf_fill(bl->bl_root, blkno, count);
|
|
else
|
|
filled = blst_meta_fill(bl->bl_root, blkno, count,
|
|
bl->bl_radix, bl->bl_skip, 0);
|
|
bl->bl_free -= filled;
|
|
return filled;
|
|
} else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* blist_resize() - resize an existing radix tree to handle the
|
|
* specified number of blocks. This will reallocate
|
|
* the tree and transfer the previous bitmap to the new
|
|
* one. When extending the tree you can specify whether
|
|
* the new blocks are to left allocated or freed.
|
|
*/
|
|
|
|
void
|
|
blist_resize(blist_t *pbl, daddr_t count, int freenew, int flags)
|
|
{
|
|
blist_t newbl = blist_create(count, flags);
|
|
blist_t save = *pbl;
|
|
|
|
*pbl = newbl;
|
|
if (count > save->bl_blocks)
|
|
count = save->bl_blocks;
|
|
blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
|
|
|
|
/*
|
|
* If resizing upwards, should we free the new space or not?
|
|
*/
|
|
if (freenew && count < newbl->bl_blocks) {
|
|
blist_free(newbl, count, newbl->bl_blocks - count);
|
|
}
|
|
blist_destroy(save);
|
|
}
|
|
|
|
#ifdef BLIST_DEBUG
|
|
|
|
/*
|
|
* blist_print() - dump radix tree
|
|
*/
|
|
|
|
void
|
|
blist_print(blist_t bl)
|
|
{
|
|
printf("BLIST {\n");
|
|
blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
|
|
printf("}\n");
|
|
}
|
|
|
|
#endif
|
|
|
|
/************************************************************************
|
|
* ALLOCATION SUPPORT FUNCTIONS *
|
|
************************************************************************
|
|
*
|
|
* These support functions do all the actual work. They may seem
|
|
* rather longish, but that's because I've commented them up. The
|
|
* actual code is straight forward.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* blist_leaf_alloc() - allocate at a leaf in the radix tree (a bitmap).
|
|
*
|
|
* This is the core of the allocator and is optimized for the 1 block
|
|
* and the BLIST_BMAP_RADIX block allocation cases. Other cases are
|
|
* somewhat slower. The 1 block allocation case is log2 and extremely
|
|
* quick.
|
|
*/
|
|
|
|
static daddr_t
|
|
blst_leaf_alloc(
|
|
blmeta_t *scan,
|
|
daddr_t blk,
|
|
int count
|
|
) {
|
|
u_daddr_t orig = scan->u.bmu_bitmap;
|
|
|
|
if (orig == 0) {
|
|
/*
|
|
* Optimize bitmap all-allocated case. Also, count = 1
|
|
* case assumes at least 1 bit is free in the bitmap, so
|
|
* we have to take care of this case here.
|
|
*/
|
|
scan->bm_bighint = 0;
|
|
return(SWAPBLK_NONE);
|
|
}
|
|
if (count == 1) {
|
|
/*
|
|
* Optimized code to allocate one bit out of the bitmap
|
|
*/
|
|
u_daddr_t mask;
|
|
int j = BLIST_BMAP_RADIX/2;
|
|
int r = 0;
|
|
|
|
mask = (u_daddr_t)-1 >> (BLIST_BMAP_RADIX/2);
|
|
|
|
while (j) {
|
|
if ((orig & mask) == 0) {
|
|
r += j;
|
|
orig >>= j;
|
|
}
|
|
j >>= 1;
|
|
mask >>= j;
|
|
}
|
|
scan->u.bmu_bitmap &= ~(1 << r);
|
|
return(blk + r);
|
|
}
|
|
if (count <= BLIST_BMAP_RADIX) {
|
|
/*
|
|
* non-optimized code to allocate N bits out of the bitmap.
|
|
* The more bits, the faster the code runs. It will run
|
|
* the slowest allocating 2 bits, but since there aren't any
|
|
* memory ops in the core loop (or shouldn't be, anyway),
|
|
* you probably won't notice the difference.
|
|
*/
|
|
int j;
|
|
int n = BLIST_BMAP_RADIX - count;
|
|
u_daddr_t mask;
|
|
|
|
mask = (u_daddr_t)-1 >> n;
|
|
|
|
for (j = 0; j <= n; ++j) {
|
|
if ((orig & mask) == mask) {
|
|
scan->u.bmu_bitmap &= ~mask;
|
|
return(blk + j);
|
|
}
|
|
mask = (mask << 1);
|
|
}
|
|
}
|
|
/*
|
|
* We couldn't allocate count in this subtree, update bighint.
|
|
*/
|
|
scan->bm_bighint = count - 1;
|
|
return(SWAPBLK_NONE);
|
|
}
|
|
|
|
/*
|
|
* blist_meta_alloc() - allocate at a meta in the radix tree.
|
|
*
|
|
* Attempt to allocate at a meta node. If we can't, we update
|
|
* bighint and return a failure. Updating bighint optimize future
|
|
* calls that hit this node. We have to check for our collapse cases
|
|
* and we have a few optimizations strewn in as well.
|
|
*/
|
|
|
|
static daddr_t
|
|
blst_meta_alloc(
|
|
blmeta_t *scan,
|
|
daddr_t blk,
|
|
daddr_t count,
|
|
daddr_t radix,
|
|
int skip
|
|
) {
|
|
int i;
|
|
int next_skip = ((u_int)skip / BLIST_META_RADIX);
|
|
|
|
if (scan->u.bmu_avail == 0) {
|
|
/*
|
|
* ALL-ALLOCATED special case
|
|
*/
|
|
scan->bm_bighint = count;
|
|
return(SWAPBLK_NONE);
|
|
}
|
|
|
|
if (scan->u.bmu_avail == radix) {
|
|
radix /= BLIST_META_RADIX;
|
|
|
|
/*
|
|
* ALL-FREE special case, initialize uninitialize
|
|
* sublevel.
|
|
*/
|
|
for (i = 1; i <= skip; i += next_skip) {
|
|
if (scan[i].bm_bighint == (daddr_t)-1)
|
|
break;
|
|
if (next_skip == 1) {
|
|
scan[i].u.bmu_bitmap = (u_daddr_t)-1;
|
|
scan[i].bm_bighint = BLIST_BMAP_RADIX;
|
|
} else {
|
|
scan[i].bm_bighint = radix;
|
|
scan[i].u.bmu_avail = radix;
|
|
}
|
|
}
|
|
} else {
|
|
radix /= BLIST_META_RADIX;
|
|
}
|
|
|
|
for (i = 1; i <= skip; i += next_skip) {
|
|
if (count <= scan[i].bm_bighint) {
|
|
/*
|
|
* count fits in object
|
|
*/
|
|
daddr_t r;
|
|
if (next_skip == 1) {
|
|
r = blst_leaf_alloc(&scan[i], blk, count);
|
|
} else {
|
|
r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
|
|
}
|
|
if (r != SWAPBLK_NONE) {
|
|
scan->u.bmu_avail -= count;
|
|
if (scan->bm_bighint > scan->u.bmu_avail)
|
|
scan->bm_bighint = scan->u.bmu_avail;
|
|
return(r);
|
|
}
|
|
} else if (scan[i].bm_bighint == (daddr_t)-1) {
|
|
/*
|
|
* Terminator
|
|
*/
|
|
break;
|
|
} else if (count > radix) {
|
|
/*
|
|
* count does not fit in object even if it were
|
|
* complete free.
|
|
*/
|
|
panic("blist_meta_alloc: allocation too large");
|
|
}
|
|
blk += radix;
|
|
}
|
|
|
|
/*
|
|
* We couldn't allocate count in this subtree, update bighint.
|
|
*/
|
|
if (scan->bm_bighint >= count)
|
|
scan->bm_bighint = count - 1;
|
|
return(SWAPBLK_NONE);
|
|
}
|
|
|
|
/*
|
|
* BLST_LEAF_FREE() - free allocated block from leaf bitmap
|
|
*
|
|
*/
|
|
|
|
static void
|
|
blst_leaf_free(
|
|
blmeta_t *scan,
|
|
daddr_t blk,
|
|
int count
|
|
) {
|
|
/*
|
|
* free some data in this bitmap
|
|
*
|
|
* e.g.
|
|
* 0000111111111110000
|
|
* \_________/\__/
|
|
* v n
|
|
*/
|
|
int n = blk & (BLIST_BMAP_RADIX - 1);
|
|
u_daddr_t mask;
|
|
|
|
mask = ((u_daddr_t)-1 << n) &
|
|
((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
|
|
|
|
if (scan->u.bmu_bitmap & mask)
|
|
panic("blst_radix_free: freeing free block");
|
|
scan->u.bmu_bitmap |= mask;
|
|
|
|
/*
|
|
* We could probably do a better job here. We are required to make
|
|
* bighint at least as large as the biggest contiguous block of
|
|
* data. If we just shoehorn it, a little extra overhead will
|
|
* be incured on the next allocation (but only that one typically).
|
|
*/
|
|
scan->bm_bighint = BLIST_BMAP_RADIX;
|
|
}
|
|
|
|
/*
|
|
* BLST_META_FREE() - free allocated blocks from radix tree meta info
|
|
*
|
|
* This support routine frees a range of blocks from the bitmap.
|
|
* The range must be entirely enclosed by this radix node. If a
|
|
* meta node, we break the range down recursively to free blocks
|
|
* in subnodes (which means that this code can free an arbitrary
|
|
* range whereas the allocation code cannot allocate an arbitrary
|
|
* range).
|
|
*/
|
|
|
|
static void
|
|
blst_meta_free(
|
|
blmeta_t *scan,
|
|
daddr_t freeBlk,
|
|
daddr_t count,
|
|
daddr_t radix,
|
|
int skip,
|
|
daddr_t blk
|
|
) {
|
|
int i;
|
|
int next_skip = ((u_int)skip / BLIST_META_RADIX);
|
|
|
|
#if 0
|
|
printf("free (%llx,%lld) FROM (%llx,%lld)\n",
|
|
(long long)freeBlk, (long long)count,
|
|
(long long)blk, (long long)radix
|
|
);
|
|
#endif
|
|
|
|
if (scan->u.bmu_avail == 0) {
|
|
/*
|
|
* ALL-ALLOCATED special case, with possible
|
|
* shortcut to ALL-FREE special case.
|
|
*/
|
|
scan->u.bmu_avail = count;
|
|
scan->bm_bighint = count;
|
|
|
|
if (count != radix) {
|
|
for (i = 1; i <= skip; i += next_skip) {
|
|
if (scan[i].bm_bighint == (daddr_t)-1)
|
|
break;
|
|
scan[i].bm_bighint = 0;
|
|
if (next_skip == 1) {
|
|
scan[i].u.bmu_bitmap = 0;
|
|
} else {
|
|
scan[i].u.bmu_avail = 0;
|
|
}
|
|
}
|
|
/* fall through */
|
|
}
|
|
} else {
|
|
scan->u.bmu_avail += count;
|
|
/* scan->bm_bighint = radix; */
|
|
}
|
|
|
|
/*
|
|
* ALL-FREE special case.
|
|
*/
|
|
|
|
if (scan->u.bmu_avail == radix)
|
|
return;
|
|
if (scan->u.bmu_avail > radix)
|
|
panic("blst_meta_free: freeing already free blocks (%lld) %lld/%lld",
|
|
(long long)count, (long long)scan->u.bmu_avail,
|
|
(long long)radix);
|
|
|
|
/*
|
|
* Break the free down into its components
|
|
*/
|
|
|
|
radix /= BLIST_META_RADIX;
|
|
|
|
i = (freeBlk - blk) / radix;
|
|
blk += i * radix;
|
|
i = i * next_skip + 1;
|
|
|
|
while (i <= skip && blk < freeBlk + count) {
|
|
daddr_t v;
|
|
|
|
v = blk + radix - freeBlk;
|
|
if (v > count)
|
|
v = count;
|
|
|
|
if (scan->bm_bighint == (daddr_t)-1)
|
|
panic("blst_meta_free: freeing unexpected range");
|
|
|
|
if (next_skip == 1) {
|
|
blst_leaf_free(&scan[i], freeBlk, v);
|
|
} else {
|
|
blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
|
|
}
|
|
if (scan->bm_bighint < scan[i].bm_bighint)
|
|
scan->bm_bighint = scan[i].bm_bighint;
|
|
count -= v;
|
|
freeBlk += v;
|
|
blk += radix;
|
|
i += next_skip;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* BLIST_RADIX_COPY() - copy one radix tree to another
|
|
*
|
|
* Locates free space in the source tree and frees it in the destination
|
|
* tree. The space may not already be free in the destination.
|
|
*/
|
|
|
|
static void blst_copy(
|
|
blmeta_t *scan,
|
|
daddr_t blk,
|
|
daddr_t radix,
|
|
daddr_t skip,
|
|
blist_t dest,
|
|
daddr_t count
|
|
) {
|
|
int next_skip;
|
|
int i;
|
|
|
|
/*
|
|
* Leaf node
|
|
*/
|
|
|
|
if (radix == BLIST_BMAP_RADIX) {
|
|
u_daddr_t v = scan->u.bmu_bitmap;
|
|
|
|
if (v == (u_daddr_t)-1) {
|
|
blist_free(dest, blk, count);
|
|
} else if (v != 0) {
|
|
int i;
|
|
|
|
for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
|
|
if (v & (1 << i))
|
|
blist_free(dest, blk + i, 1);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Meta node
|
|
*/
|
|
|
|
if (scan->u.bmu_avail == 0) {
|
|
/*
|
|
* Source all allocated, leave dest allocated
|
|
*/
|
|
return;
|
|
}
|
|
if (scan->u.bmu_avail == radix) {
|
|
/*
|
|
* Source all free, free entire dest
|
|
*/
|
|
if (count < radix)
|
|
blist_free(dest, blk, count);
|
|
else
|
|
blist_free(dest, blk, radix);
|
|
return;
|
|
}
|
|
|
|
|
|
radix /= BLIST_META_RADIX;
|
|
next_skip = ((u_int)skip / BLIST_META_RADIX);
|
|
|
|
for (i = 1; count && i <= skip; i += next_skip) {
|
|
if (scan[i].bm_bighint == (daddr_t)-1)
|
|
break;
|
|
|
|
if (count >= radix) {
|
|
blst_copy(
|
|
&scan[i],
|
|
blk,
|
|
radix,
|
|
next_skip - 1,
|
|
dest,
|
|
radix
|
|
);
|
|
count -= radix;
|
|
} else {
|
|
if (count) {
|
|
blst_copy(
|
|
&scan[i],
|
|
blk,
|
|
radix,
|
|
next_skip - 1,
|
|
dest,
|
|
count
|
|
);
|
|
}
|
|
count = 0;
|
|
}
|
|
blk += radix;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* BLST_LEAF_FILL() - allocate specific blocks in leaf bitmap
|
|
*
|
|
* This routine allocates all blocks in the specified range
|
|
* regardless of any existing allocations in that range. Returns
|
|
* the number of blocks allocated by the call.
|
|
*/
|
|
|
|
static int
|
|
blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count)
|
|
{
|
|
int n = blk & (BLIST_BMAP_RADIX - 1);
|
|
int nblks;
|
|
u_daddr_t mask, bitmap;
|
|
|
|
mask = ((u_daddr_t)-1 << n) &
|
|
((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
|
|
|
|
/* Count the number of blocks we're about to allocate */
|
|
bitmap = scan->u.bmu_bitmap & mask;
|
|
for (nblks = 0; bitmap != 0; nblks++)
|
|
bitmap &= bitmap - 1;
|
|
|
|
scan->u.bmu_bitmap &= ~mask;
|
|
return nblks;
|
|
}
|
|
|
|
/*
|
|
* BLIST_META_FILL() - allocate specific blocks at a meta node
|
|
*
|
|
* This routine allocates the specified range of blocks,
|
|
* regardless of any existing allocations in the range. The
|
|
* range must be within the extent of this node. Returns the
|
|
* number of blocks allocated by the call.
|
|
*/
|
|
static int
|
|
blst_meta_fill(
|
|
blmeta_t *scan,
|
|
daddr_t allocBlk,
|
|
daddr_t count,
|
|
daddr_t radix,
|
|
int skip,
|
|
daddr_t blk
|
|
) {
|
|
int i;
|
|
int next_skip = ((u_int)skip / BLIST_META_RADIX);
|
|
int nblks = 0;
|
|
|
|
if (count == radix || scan->u.bmu_avail == 0) {
|
|
/*
|
|
* ALL-ALLOCATED special case
|
|
*/
|
|
nblks = scan->u.bmu_avail;
|
|
scan->u.bmu_avail = 0;
|
|
scan->bm_bighint = count;
|
|
return nblks;
|
|
}
|
|
|
|
if (scan->u.bmu_avail == radix) {
|
|
radix /= BLIST_META_RADIX;
|
|
|
|
/*
|
|
* ALL-FREE special case, initialize sublevel
|
|
*/
|
|
for (i = 1; i <= skip; i += next_skip) {
|
|
if (scan[i].bm_bighint == (daddr_t)-1)
|
|
break;
|
|
if (next_skip == 1) {
|
|
scan[i].u.bmu_bitmap = (u_daddr_t)-1;
|
|
scan[i].bm_bighint = BLIST_BMAP_RADIX;
|
|
} else {
|
|
scan[i].bm_bighint = radix;
|
|
scan[i].u.bmu_avail = radix;
|
|
}
|
|
}
|
|
} else {
|
|
radix /= BLIST_META_RADIX;
|
|
}
|
|
|
|
if (count > radix)
|
|
panic("blist_meta_fill: allocation too large");
|
|
|
|
i = (allocBlk - blk) / radix;
|
|
blk += i * radix;
|
|
i = i * next_skip + 1;
|
|
|
|
while (i <= skip && blk < allocBlk + count) {
|
|
daddr_t v;
|
|
|
|
v = blk + radix - allocBlk;
|
|
if (v > count)
|
|
v = count;
|
|
|
|
if (scan->bm_bighint == (daddr_t)-1)
|
|
panic("blst_meta_fill: filling unexpected range");
|
|
|
|
if (next_skip == 1) {
|
|
nblks += blst_leaf_fill(&scan[i], allocBlk, v);
|
|
} else {
|
|
nblks += blst_meta_fill(&scan[i], allocBlk, v,
|
|
radix, next_skip - 1, blk);
|
|
}
|
|
count -= v;
|
|
allocBlk += v;
|
|
blk += radix;
|
|
i += next_skip;
|
|
}
|
|
scan->u.bmu_avail -= nblks;
|
|
return nblks;
|
|
}
|
|
|
|
/*
|
|
* BLST_RADIX_INIT() - initialize radix tree
|
|
*
|
|
* Initialize our meta structures and bitmaps and calculate the exact
|
|
* amount of space required to manage 'count' blocks - this space may
|
|
* be considerably less then the calculated radix due to the large
|
|
* RADIX values we use.
|
|
*/
|
|
|
|
static daddr_t
|
|
blst_radix_init(blmeta_t *scan, daddr_t radix, int skip, daddr_t count)
|
|
{
|
|
int i;
|
|
int next_skip;
|
|
daddr_t memindex = 0;
|
|
|
|
/*
|
|
* Leaf node
|
|
*/
|
|
|
|
if (radix == BLIST_BMAP_RADIX) {
|
|
if (scan) {
|
|
scan->bm_bighint = 0;
|
|
scan->u.bmu_bitmap = 0;
|
|
}
|
|
return(memindex);
|
|
}
|
|
|
|
/*
|
|
* Meta node. If allocating the entire object we can special
|
|
* case it. However, we need to figure out how much memory
|
|
* is required to manage 'count' blocks, so we continue on anyway.
|
|
*/
|
|
|
|
if (scan) {
|
|
scan->bm_bighint = 0;
|
|
scan->u.bmu_avail = 0;
|
|
}
|
|
|
|
radix /= BLIST_META_RADIX;
|
|
next_skip = ((u_int)skip / BLIST_META_RADIX);
|
|
|
|
for (i = 1; i <= skip; i += next_skip) {
|
|
if (count >= radix) {
|
|
/*
|
|
* Allocate the entire object
|
|
*/
|
|
memindex = i + blst_radix_init(
|
|
((scan) ? &scan[i] : NULL),
|
|
radix,
|
|
next_skip - 1,
|
|
radix
|
|
);
|
|
count -= radix;
|
|
} else if (count > 0) {
|
|
/*
|
|
* Allocate a partial object
|
|
*/
|
|
memindex = i + blst_radix_init(
|
|
((scan) ? &scan[i] : NULL),
|
|
radix,
|
|
next_skip - 1,
|
|
count
|
|
);
|
|
count = 0;
|
|
} else {
|
|
/*
|
|
* Add terminator and break out
|
|
*/
|
|
if (scan)
|
|
scan[i].bm_bighint = (daddr_t)-1;
|
|
break;
|
|
}
|
|
}
|
|
if (memindex < i)
|
|
memindex = i;
|
|
return(memindex);
|
|
}
|
|
|
|
#ifdef BLIST_DEBUG
|
|
|
|
static void
|
|
blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int skip, int tab)
|
|
{
|
|
int i;
|
|
int next_skip;
|
|
int lastState = 0;
|
|
|
|
if (radix == BLIST_BMAP_RADIX) {
|
|
printf(
|
|
"%*.*s(%08llx,%lld): bitmap %08llx big=%lld\n",
|
|
tab, tab, "",
|
|
(long long)blk, (long long)radix,
|
|
(long long)scan->u.bmu_bitmap,
|
|
(long long)scan->bm_bighint
|
|
);
|
|
return;
|
|
}
|
|
|
|
if (scan->u.bmu_avail == 0) {
|
|
printf(
|
|
"%*.*s(%08llx,%lld) ALL ALLOCATED\n",
|
|
tab, tab, "",
|
|
(long long)blk,
|
|
(long long)radix
|
|
);
|
|
return;
|
|
}
|
|
if (scan->u.bmu_avail == radix) {
|
|
printf(
|
|
"%*.*s(%08llx,%lld) ALL FREE\n",
|
|
tab, tab, "",
|
|
(long long)blk,
|
|
(long long)radix
|
|
);
|
|
return;
|
|
}
|
|
|
|
printf(
|
|
"%*.*s(%08llx,%lld): subtree (%lld/%lld) big=%lld {\n",
|
|
tab, tab, "",
|
|
(long long)blk, (long long)radix,
|
|
(long long)scan->u.bmu_avail,
|
|
(long long)radix,
|
|
(long long)scan->bm_bighint
|
|
);
|
|
|
|
radix /= BLIST_META_RADIX;
|
|
next_skip = ((u_int)skip / BLIST_META_RADIX);
|
|
tab += 4;
|
|
|
|
for (i = 1; i <= skip; i += next_skip) {
|
|
if (scan[i].bm_bighint == (daddr_t)-1) {
|
|
printf(
|
|
"%*.*s(%08llx,%lld): Terminator\n",
|
|
tab, tab, "",
|
|
(long long)blk, (long long)radix
|
|
);
|
|
lastState = 0;
|
|
break;
|
|
}
|
|
blst_radix_print(
|
|
&scan[i],
|
|
blk,
|
|
radix,
|
|
next_skip - 1,
|
|
tab
|
|
);
|
|
blk += radix;
|
|
}
|
|
tab -= 4;
|
|
|
|
printf(
|
|
"%*.*s}\n",
|
|
tab, tab, ""
|
|
);
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef BLIST_DEBUG
|
|
|
|
int
|
|
main(int ac, char **av)
|
|
{
|
|
int size = 1024;
|
|
int i;
|
|
blist_t bl;
|
|
|
|
for (i = 1; i < ac; ++i) {
|
|
const char *ptr = av[i];
|
|
if (*ptr != '-') {
|
|
size = strtol(ptr, NULL, 0);
|
|
continue;
|
|
}
|
|
ptr += 2;
|
|
fprintf(stderr, "Bad option: %s\n", ptr - 2);
|
|
exit(1);
|
|
}
|
|
bl = blist_create(size, M_WAITOK);
|
|
blist_free(bl, 0, size);
|
|
|
|
for (;;) {
|
|
char buf[1024];
|
|
daddr_t da = 0;
|
|
daddr_t count = 0;
|
|
|
|
|
|
printf("%lld/%lld/%lld> ", (long long)bl->bl_free,
|
|
(long long)size, (long long)bl->bl_radix);
|
|
fflush(stdout);
|
|
if (fgets(buf, sizeof(buf), stdin) == NULL)
|
|
break;
|
|
switch(buf[0]) {
|
|
case 'r':
|
|
if (sscanf(buf + 1, "%lld", &count) == 1) {
|
|
blist_resize(&bl, count, 1);
|
|
} else {
|
|
printf("?\n");
|
|
}
|
|
case 'p':
|
|
blist_print(bl);
|
|
break;
|
|
case 'a':
|
|
if (sscanf(buf + 1, "%lld", &count) == 1) {
|
|
daddr_t blk = blist_alloc(bl, count);
|
|
printf(" R=%08llx\n", (long long)blk);
|
|
} else {
|
|
printf("?\n");
|
|
}
|
|
break;
|
|
case 'f':
|
|
if (sscanf(buf + 1, "%llx %lld",
|
|
(long long *)&da, (long long *)&count) == 2) {
|
|
blist_free(bl, da, count);
|
|
} else {
|
|
printf("?\n");
|
|
}
|
|
break;
|
|
case 'l':
|
|
if (sscanf(buf + 1, "%llx %lld",
|
|
(long long *)&da, (long long *)&count) == 2) {
|
|
printf(" n=%d\n",
|
|
blist_fill(bl, da, count));
|
|
} else {
|
|
printf("?\n");
|
|
}
|
|
break;
|
|
case '?':
|
|
case 'h':
|
|
puts(
|
|
"p -print\n"
|
|
"a %d -allocate\n"
|
|
"f %x %d -free\n"
|
|
"l %x %d -fill\n"
|
|
"r %d -resize\n"
|
|
"h/? -help"
|
|
);
|
|
break;
|
|
default:
|
|
printf("?\n");
|
|
break;
|
|
}
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
void
|
|
panic(const char *ctl, ...)
|
|
{
|
|
va_list va;
|
|
|
|
va_start(va, ctl);
|
|
vfprintf(stderr, ctl, va);
|
|
fprintf(stderr, "\n");
|
|
va_end(va);
|
|
exit(1);
|
|
}
|
|
|
|
#endif
|
|
|