freebsd-dev/lib/libc/xdr/xdr_float.c
Alfred Perlstein 8360efbd6c Bring in a hybrid of SunSoft's transport-independent RPC (TI-RPC) and
associated changes that had to happen to make this possible as well as
bugs fixed along the way.

  Bring in required TLI library routines to support this.

  Since we don't support TLI we've essentially copied what NetBSD
  has done, adding a thin layer to emulate direct the TLI calls
  into BSD socket calls.

  This is mostly from Sun's tirpc release that was made in 1994,
  however some fixes were backported from the 1999 release (supposedly
  only made available after this porting effort was underway).

  The submitter has agreed to continue on and bring us up to the
  1999 release.

  Several key features are introduced with this update:
    Client calls are thread safe. (1999 code has server side thread
    safe)
    Updated, a more modern interface.

  Many userland updates were done to bring the code up to par with
  the recent RPC API.

  There is an update to the pthreads library, a function
  pthread_main_np() was added to emulate a function of Sun's threads
  library.

  While we're at it, bring in NetBSD's lockd, it's been far too
  long of a wait.

  New rpcbind(8) replaces portmap(8) (supporting communication over
  an authenticated Unix-domain socket, and by default only allowing
  set and unset requests over that channel). It's much more secure
  than the old portmapper.

  Umount(8), mountd(8), mount_nfs(8), nfsd(8) have also been upgraded
  to support TI-RPC and to support IPV6.

  Umount(8) is also fixed to unmount pathnames longer than 80 chars,
  which are currently truncated by the Kernel statfs structure.

Submitted by: Martin Blapp <mb@imp.ch>
Manpage review: ru
Secure RPC implemented by: wpaul
2001-03-19 12:50:13 +00:00

310 lines
7.6 KiB
C

/* $NetBSD: xdr_float.c,v 1.23 2000/07/17 04:59:51 matt Exp $ */
/*
* Sun RPC is a product of Sun Microsystems, Inc. and is provided for
* unrestricted use provided that this legend is included on all tape
* media and as a part of the software program in whole or part. Users
* may copy or modify Sun RPC without charge, but are not authorized
* to license or distribute it to anyone else except as part of a product or
* program developed by the user.
*
* SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
* WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun RPC is provided with no support and without any obligation on the
* part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
#include <sys/cdefs.h>
#if defined(LIBC_SCCS) && !defined(lint)
static char *sccsid = "@(#)xdr_float.c 1.12 87/08/11 Copyr 1984 Sun Micro";
static char *sccsid = "@(#)xdr_float.c 2.1 88/07/29 4.0 RPCSRC";
static char *rcsid = "$FreeBSD$";
#endif
/*
* xdr_float.c, Generic XDR routines implementation.
*
* Copyright (C) 1984, Sun Microsystems, Inc.
*
* These are the "floating point" xdr routines used to (de)serialize
* most common data items. See xdr.h for more info on the interface to
* xdr.
*/
#include "namespace.h"
#include <sys/types.h>
#include <sys/param.h>
#include <stdio.h>
#include <rpc/types.h>
#include <rpc/xdr.h>
#include "un-namespace.h"
/*
* NB: Not portable.
* This routine works on machines with IEEE754 FP and Vaxen.
*/
#if defined(__m68k__) || defined(__sparc__) || defined(__i386__) || \
defined(__mips__) || defined(__ns32k__) || defined(__alpha__) || \
defined(__arm32__) || defined(__ppc__) || defined(__ia64__) || \
defined(__arm26__)
#include <machine/endian.h>
#define IEEEFP
#endif
#if defined(__vax__)
/* What IEEE single precision floating point looks like on a Vax */
struct ieee_single {
unsigned int mantissa: 23;
unsigned int exp : 8;
unsigned int sign : 1;
};
/* Vax single precision floating point */
struct vax_single {
unsigned int mantissa1 : 7;
unsigned int exp : 8;
unsigned int sign : 1;
unsigned int mantissa2 : 16;
};
#define VAX_SNG_BIAS 0x81
#define IEEE_SNG_BIAS 0x7f
static struct sgl_limits {
struct vax_single s;
struct ieee_single ieee;
} sgl_limits[2] = {
{{ 0x7f, 0xff, 0x0, 0xffff }, /* Max Vax */
{ 0x0, 0xff, 0x0 }}, /* Max IEEE */
{{ 0x0, 0x0, 0x0, 0x0 }, /* Min Vax */
{ 0x0, 0x0, 0x0 }} /* Min IEEE */
};
#endif /* vax */
bool_t
xdr_float(xdrs, fp)
XDR *xdrs;
float *fp;
{
#ifndef IEEEFP
struct ieee_single is;
struct vax_single vs, *vsp;
struct sgl_limits *lim;
int i;
#endif
switch (xdrs->x_op) {
case XDR_ENCODE:
#ifdef IEEEFP
return (XDR_PUTINT32(xdrs, (int32_t *)fp));
#else
vs = *((struct vax_single *)fp);
for (i = 0, lim = sgl_limits;
i < sizeof(sgl_limits)/sizeof(struct sgl_limits);
i++, lim++) {
if ((vs.mantissa2 == lim->s.mantissa2) &&
(vs.exp == lim->s.exp) &&
(vs.mantissa1 == lim->s.mantissa1)) {
is = lim->ieee;
goto shipit;
}
}
is.exp = vs.exp - VAX_SNG_BIAS + IEEE_SNG_BIAS;
is.mantissa = (vs.mantissa1 << 16) | vs.mantissa2;
shipit:
is.sign = vs.sign;
return (XDR_PUTINT32(xdrs, (int32_t *)&is));
#endif
case XDR_DECODE:
#ifdef IEEEFP
return (XDR_GETINT32(xdrs, (int32_t *)fp));
#else
vsp = (struct vax_single *)fp;
if (!XDR_GETINT32(xdrs, (int32_t *)&is))
return (FALSE);
for (i = 0, lim = sgl_limits;
i < sizeof(sgl_limits)/sizeof(struct sgl_limits);
i++, lim++) {
if ((is.exp == lim->ieee.exp) &&
(is.mantissa == lim->ieee.mantissa)) {
*vsp = lim->s;
goto doneit;
}
}
vsp->exp = is.exp - IEEE_SNG_BIAS + VAX_SNG_BIAS;
vsp->mantissa2 = is.mantissa;
vsp->mantissa1 = (is.mantissa >> 16);
doneit:
vsp->sign = is.sign;
return (TRUE);
#endif
case XDR_FREE:
return (TRUE);
}
/* NOTREACHED */
return (FALSE);
}
#if defined(__vax__)
/* What IEEE double precision floating point looks like on a Vax */
struct ieee_double {
unsigned int mantissa1 : 20;
unsigned int exp : 11;
unsigned int sign : 1;
unsigned int mantissa2 : 32;
};
/* Vax double precision floating point */
struct vax_double {
unsigned int mantissa1 : 7;
unsigned int exp : 8;
unsigned int sign : 1;
unsigned int mantissa2 : 16;
unsigned int mantissa3 : 16;
unsigned int mantissa4 : 16;
};
#define VAX_DBL_BIAS 0x81
#define IEEE_DBL_BIAS 0x3ff
#define MASK(nbits) ((1 << nbits) - 1)
static struct dbl_limits {
struct vax_double d;
struct ieee_double ieee;
} dbl_limits[2] = {
{{ 0x7f, 0xff, 0x0, 0xffff, 0xffff, 0xffff }, /* Max Vax */
{ 0x0, 0x7ff, 0x0, 0x0 }}, /* Max IEEE */
{{ 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, /* Min Vax */
{ 0x0, 0x0, 0x0, 0x0 }} /* Min IEEE */
};
#endif /* vax */
bool_t
xdr_double(xdrs, dp)
XDR *xdrs;
double *dp;
{
#ifdef IEEEFP
int32_t *i32p;
bool_t rv;
#else
int32_t *lp;
struct ieee_double id;
struct vax_double vd;
struct dbl_limits *lim;
int i;
#endif
switch (xdrs->x_op) {
case XDR_ENCODE:
#ifdef IEEEFP
i32p = (int32_t *)(void *)dp;
#if BYTE_ORDER == BIG_ENDIAN
rv = XDR_PUTINT32(xdrs, i32p);
if (!rv)
return (rv);
rv = XDR_PUTINT32(xdrs, i32p+1);
#else
rv = XDR_PUTINT32(xdrs, i32p+1);
if (!rv)
return (rv);
rv = XDR_PUTINT32(xdrs, i32p);
#endif
return (rv);
#else
vd = *((struct vax_double *)dp);
for (i = 0, lim = dbl_limits;
i < sizeof(dbl_limits)/sizeof(struct dbl_limits);
i++, lim++) {
if ((vd.mantissa4 == lim->d.mantissa4) &&
(vd.mantissa3 == lim->d.mantissa3) &&
(vd.mantissa2 == lim->d.mantissa2) &&
(vd.mantissa1 == lim->d.mantissa1) &&
(vd.exp == lim->d.exp)) {
id = lim->ieee;
goto shipit;
}
}
id.exp = vd.exp - VAX_DBL_BIAS + IEEE_DBL_BIAS;
id.mantissa1 = (vd.mantissa1 << 13) | (vd.mantissa2 >> 3);
id.mantissa2 = ((vd.mantissa2 & MASK(3)) << 29) |
(vd.mantissa3 << 13) |
((vd.mantissa4 >> 3) & MASK(13));
shipit:
id.sign = vd.sign;
lp = (int32_t *)&id;
return (XDR_PUTINT32(xdrs, lp++) && XDR_PUTINT32(xdrs, lp));
#endif
case XDR_DECODE:
#ifdef IEEEFP
i32p = (int32_t *)(void *)dp;
#if BYTE_ORDER == BIG_ENDIAN
rv = XDR_GETINT32(xdrs, i32p);
if (!rv)
return (rv);
rv = XDR_GETINT32(xdrs, i32p+1);
#else
rv = XDR_GETINT32(xdrs, i32p+1);
if (!rv)
return (rv);
rv = XDR_GETINT32(xdrs, i32p);
#endif
return (rv);
#else
lp = (int32_t *)&id;
if (!XDR_GETINT32(xdrs, lp++) || !XDR_GETINT32(xdrs, lp))
return (FALSE);
for (i = 0, lim = dbl_limits;
i < sizeof(dbl_limits)/sizeof(struct dbl_limits);
i++, lim++) {
if ((id.mantissa2 == lim->ieee.mantissa2) &&
(id.mantissa1 == lim->ieee.mantissa1) &&
(id.exp == lim->ieee.exp)) {
vd = lim->d;
goto doneit;
}
}
vd.exp = id.exp - IEEE_DBL_BIAS + VAX_DBL_BIAS;
vd.mantissa1 = (id.mantissa1 >> 13);
vd.mantissa2 = ((id.mantissa1 & MASK(13)) << 3) |
(id.mantissa2 >> 29);
vd.mantissa3 = (id.mantissa2 >> 13);
vd.mantissa4 = (id.mantissa2 << 3);
doneit:
vd.sign = id.sign;
*dp = *((double *)&vd);
return (TRUE);
#endif
case XDR_FREE:
return (TRUE);
}
/* NOTREACHED */
return (FALSE);
}